xref: /freebsd/sys/dev/nge/if_nge.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/module.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/if_types.h>
106 #include <net/if_vlan_var.h>
107 
108 #include <net/bpf.h>
109 
110 #include <vm/vm.h>              /* for vtophys */
111 #include <vm/pmap.h>            /* for vtophys */
112 #include <machine/clock.h>      /* for DELAY */
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 
124 #define NGE_USEIOSPACE
125 
126 #include <dev/nge/if_ngereg.h>
127 
128 MODULE_DEPEND(nge, pci, 1, 1, 1);
129 MODULE_DEPEND(nge, ether, 1, 1, 1);
130 MODULE_DEPEND(nge, miibus, 1, 1, 1);
131 
132 /* "controller miibus0" required.  See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134 
135 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 static struct nge_type nge_devs[] = {
141 	{ NGE_VENDORID, NGE_DEVICEID,
142 	    "National Semiconductor Gigabit Ethernet" },
143 	{ 0, 0, NULL }
144 };
145 
146 static int nge_probe(device_t);
147 static int nge_attach(device_t);
148 static int nge_detach(device_t);
149 
150 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
151 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
152 #ifdef NGE_FIXUP_RX
153 static __inline void nge_fixup_rx (struct mbuf *);
154 #endif
155 static void nge_rxeof(struct nge_softc *);
156 static void nge_txeof(struct nge_softc *);
157 static void nge_intr(void *);
158 static void nge_tick(void *);
159 static void nge_tick_locked(struct nge_softc *);
160 static void nge_start(struct ifnet *);
161 static void nge_start_locked(struct ifnet *);
162 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
163 static void nge_init(void *);
164 static void nge_init_locked(struct nge_softc *);
165 static void nge_stop(struct nge_softc *);
166 static void nge_watchdog(struct ifnet *);
167 static void nge_shutdown(device_t);
168 static int nge_ifmedia_upd(struct ifnet *);
169 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
170 
171 static void nge_delay(struct nge_softc *);
172 static void nge_eeprom_idle(struct nge_softc *);
173 static void nge_eeprom_putbyte(struct nge_softc *, int);
174 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
175 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
176 
177 static void nge_mii_sync(struct nge_softc *);
178 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
179 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
180 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
181 
182 static int nge_miibus_readreg(device_t, int, int);
183 static int nge_miibus_writereg(device_t, int, int, int);
184 static void nge_miibus_statchg(device_t);
185 
186 static void nge_setmulti(struct nge_softc *);
187 static void nge_reset(struct nge_softc *);
188 static int nge_list_rx_init(struct nge_softc *);
189 static int nge_list_tx_init(struct nge_softc *);
190 
191 #ifdef NGE_USEIOSPACE
192 #define NGE_RES			SYS_RES_IOPORT
193 #define NGE_RID			NGE_PCI_LOIO
194 #else
195 #define NGE_RES			SYS_RES_MEMORY
196 #define NGE_RID			NGE_PCI_LOMEM
197 #endif
198 
199 static device_method_t nge_methods[] = {
200 	/* Device interface */
201 	DEVMETHOD(device_probe,		nge_probe),
202 	DEVMETHOD(device_attach,	nge_attach),
203 	DEVMETHOD(device_detach,	nge_detach),
204 	DEVMETHOD(device_shutdown,	nge_shutdown),
205 
206 	/* bus interface */
207 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209 
210 	/* MII interface */
211 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
212 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
213 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
214 
215 	{ 0, 0 }
216 };
217 
218 static driver_t nge_driver = {
219 	"nge",
220 	nge_methods,
221 	sizeof(struct nge_softc)
222 };
223 
224 static devclass_t nge_devclass;
225 
226 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
227 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
228 
229 #define NGE_SETBIT(sc, reg, x)				\
230 	CSR_WRITE_4(sc, reg,				\
231 		CSR_READ_4(sc, reg) | (x))
232 
233 #define NGE_CLRBIT(sc, reg, x)				\
234 	CSR_WRITE_4(sc, reg,				\
235 		CSR_READ_4(sc, reg) & ~(x))
236 
237 #define SIO_SET(x)					\
238 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
239 
240 #define SIO_CLR(x)					\
241 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
242 
243 static void
244 nge_delay(sc)
245 	struct nge_softc	*sc;
246 {
247 	int			idx;
248 
249 	for (idx = (300 / 33) + 1; idx > 0; idx--)
250 		CSR_READ_4(sc, NGE_CSR);
251 
252 	return;
253 }
254 
255 static void
256 nge_eeprom_idle(sc)
257 	struct nge_softc	*sc;
258 {
259 	register int		i;
260 
261 	SIO_SET(NGE_MEAR_EE_CSEL);
262 	nge_delay(sc);
263 	SIO_SET(NGE_MEAR_EE_CLK);
264 	nge_delay(sc);
265 
266 	for (i = 0; i < 25; i++) {
267 		SIO_CLR(NGE_MEAR_EE_CLK);
268 		nge_delay(sc);
269 		SIO_SET(NGE_MEAR_EE_CLK);
270 		nge_delay(sc);
271 	}
272 
273 	SIO_CLR(NGE_MEAR_EE_CLK);
274 	nge_delay(sc);
275 	SIO_CLR(NGE_MEAR_EE_CSEL);
276 	nge_delay(sc);
277 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
278 
279 	return;
280 }
281 
282 /*
283  * Send a read command and address to the EEPROM, check for ACK.
284  */
285 static void
286 nge_eeprom_putbyte(sc, addr)
287 	struct nge_softc	*sc;
288 	int			addr;
289 {
290 	register int		d, i;
291 
292 	d = addr | NGE_EECMD_READ;
293 
294 	/*
295 	 * Feed in each bit and stobe the clock.
296 	 */
297 	for (i = 0x400; i; i >>= 1) {
298 		if (d & i) {
299 			SIO_SET(NGE_MEAR_EE_DIN);
300 		} else {
301 			SIO_CLR(NGE_MEAR_EE_DIN);
302 		}
303 		nge_delay(sc);
304 		SIO_SET(NGE_MEAR_EE_CLK);
305 		nge_delay(sc);
306 		SIO_CLR(NGE_MEAR_EE_CLK);
307 		nge_delay(sc);
308 	}
309 
310 	return;
311 }
312 
313 /*
314  * Read a word of data stored in the EEPROM at address 'addr.'
315  */
316 static void
317 nge_eeprom_getword(sc, addr, dest)
318 	struct nge_softc	*sc;
319 	int			addr;
320 	u_int16_t		*dest;
321 {
322 	register int		i;
323 	u_int16_t		word = 0;
324 
325 	/* Force EEPROM to idle state. */
326 	nge_eeprom_idle(sc);
327 
328 	/* Enter EEPROM access mode. */
329 	nge_delay(sc);
330 	SIO_CLR(NGE_MEAR_EE_CLK);
331 	nge_delay(sc);
332 	SIO_SET(NGE_MEAR_EE_CSEL);
333 	nge_delay(sc);
334 
335 	/*
336 	 * Send address of word we want to read.
337 	 */
338 	nge_eeprom_putbyte(sc, addr);
339 
340 	/*
341 	 * Start reading bits from EEPROM.
342 	 */
343 	for (i = 0x8000; i; i >>= 1) {
344 		SIO_SET(NGE_MEAR_EE_CLK);
345 		nge_delay(sc);
346 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
347 			word |= i;
348 		nge_delay(sc);
349 		SIO_CLR(NGE_MEAR_EE_CLK);
350 		nge_delay(sc);
351 	}
352 
353 	/* Turn off EEPROM access mode. */
354 	nge_eeprom_idle(sc);
355 
356 	*dest = word;
357 
358 	return;
359 }
360 
361 /*
362  * Read a sequence of words from the EEPROM.
363  */
364 static void
365 nge_read_eeprom(sc, dest, off, cnt, swap)
366 	struct nge_softc	*sc;
367 	caddr_t			dest;
368 	int			off;
369 	int			cnt;
370 	int			swap;
371 {
372 	int			i;
373 	u_int16_t		word = 0, *ptr;
374 
375 	for (i = 0; i < cnt; i++) {
376 		nge_eeprom_getword(sc, off + i, &word);
377 		ptr = (u_int16_t *)(dest + (i * 2));
378 		if (swap)
379 			*ptr = ntohs(word);
380 		else
381 			*ptr = word;
382 	}
383 
384 	return;
385 }
386 
387 /*
388  * Sync the PHYs by setting data bit and strobing the clock 32 times.
389  */
390 static void
391 nge_mii_sync(sc)
392 	struct nge_softc		*sc;
393 {
394 	register int		i;
395 
396 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
397 
398 	for (i = 0; i < 32; i++) {
399 		SIO_SET(NGE_MEAR_MII_CLK);
400 		DELAY(1);
401 		SIO_CLR(NGE_MEAR_MII_CLK);
402 		DELAY(1);
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Clock a series of bits through the MII.
410  */
411 static void
412 nge_mii_send(sc, bits, cnt)
413 	struct nge_softc		*sc;
414 	u_int32_t		bits;
415 	int			cnt;
416 {
417 	int			i;
418 
419 	SIO_CLR(NGE_MEAR_MII_CLK);
420 
421 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
422                 if (bits & i) {
423 			SIO_SET(NGE_MEAR_MII_DATA);
424                 } else {
425 			SIO_CLR(NGE_MEAR_MII_DATA);
426                 }
427 		DELAY(1);
428 		SIO_CLR(NGE_MEAR_MII_CLK);
429 		DELAY(1);
430 		SIO_SET(NGE_MEAR_MII_CLK);
431 	}
432 }
433 
434 /*
435  * Read an PHY register through the MII.
436  */
437 static int
438 nge_mii_readreg(sc, frame)
439 	struct nge_softc		*sc;
440 	struct nge_mii_frame	*frame;
441 
442 {
443 	int			i, ack;
444 
445 	/*
446 	 * Set up frame for RX.
447 	 */
448 	frame->mii_stdelim = NGE_MII_STARTDELIM;
449 	frame->mii_opcode = NGE_MII_READOP;
450 	frame->mii_turnaround = 0;
451 	frame->mii_data = 0;
452 
453 	CSR_WRITE_4(sc, NGE_MEAR, 0);
454 
455 	/*
456  	 * Turn on data xmit.
457 	 */
458 	SIO_SET(NGE_MEAR_MII_DIR);
459 
460 	nge_mii_sync(sc);
461 
462 	/*
463 	 * Send command/address info.
464 	 */
465 	nge_mii_send(sc, frame->mii_stdelim, 2);
466 	nge_mii_send(sc, frame->mii_opcode, 2);
467 	nge_mii_send(sc, frame->mii_phyaddr, 5);
468 	nge_mii_send(sc, frame->mii_regaddr, 5);
469 
470 	/* Idle bit */
471 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
472 	DELAY(1);
473 	SIO_SET(NGE_MEAR_MII_CLK);
474 	DELAY(1);
475 
476 	/* Turn off xmit. */
477 	SIO_CLR(NGE_MEAR_MII_DIR);
478 	/* Check for ack */
479 	SIO_CLR(NGE_MEAR_MII_CLK);
480 	DELAY(1);
481 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
482 	SIO_SET(NGE_MEAR_MII_CLK);
483 	DELAY(1);
484 
485 	/*
486 	 * Now try reading data bits. If the ack failed, we still
487 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
488 	 */
489 	if (ack) {
490 		for(i = 0; i < 16; i++) {
491 			SIO_CLR(NGE_MEAR_MII_CLK);
492 			DELAY(1);
493 			SIO_SET(NGE_MEAR_MII_CLK);
494 			DELAY(1);
495 		}
496 		goto fail;
497 	}
498 
499 	for (i = 0x8000; i; i >>= 1) {
500 		SIO_CLR(NGE_MEAR_MII_CLK);
501 		DELAY(1);
502 		if (!ack) {
503 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
504 				frame->mii_data |= i;
505 			DELAY(1);
506 		}
507 		SIO_SET(NGE_MEAR_MII_CLK);
508 		DELAY(1);
509 	}
510 
511 fail:
512 
513 	SIO_CLR(NGE_MEAR_MII_CLK);
514 	DELAY(1);
515 	SIO_SET(NGE_MEAR_MII_CLK);
516 	DELAY(1);
517 
518 	if (ack)
519 		return(1);
520 	return(0);
521 }
522 
523 /*
524  * Write to a PHY register through the MII.
525  */
526 static int
527 nge_mii_writereg(sc, frame)
528 	struct nge_softc		*sc;
529 	struct nge_mii_frame	*frame;
530 
531 {
532 
533 	/*
534 	 * Set up frame for TX.
535 	 */
536 
537 	frame->mii_stdelim = NGE_MII_STARTDELIM;
538 	frame->mii_opcode = NGE_MII_WRITEOP;
539 	frame->mii_turnaround = NGE_MII_TURNAROUND;
540 
541 	/*
542  	 * Turn on data output.
543 	 */
544 	SIO_SET(NGE_MEAR_MII_DIR);
545 
546 	nge_mii_sync(sc);
547 
548 	nge_mii_send(sc, frame->mii_stdelim, 2);
549 	nge_mii_send(sc, frame->mii_opcode, 2);
550 	nge_mii_send(sc, frame->mii_phyaddr, 5);
551 	nge_mii_send(sc, frame->mii_regaddr, 5);
552 	nge_mii_send(sc, frame->mii_turnaround, 2);
553 	nge_mii_send(sc, frame->mii_data, 16);
554 
555 	/* Idle bit. */
556 	SIO_SET(NGE_MEAR_MII_CLK);
557 	DELAY(1);
558 	SIO_CLR(NGE_MEAR_MII_CLK);
559 	DELAY(1);
560 
561 	/*
562 	 * Turn off xmit.
563 	 */
564 	SIO_CLR(NGE_MEAR_MII_DIR);
565 
566 	return(0);
567 }
568 
569 static int
570 nge_miibus_readreg(dev, phy, reg)
571 	device_t		dev;
572 	int			phy, reg;
573 {
574 	struct nge_softc	*sc;
575 	struct nge_mii_frame	frame;
576 
577 	sc = device_get_softc(dev);
578 
579 	bzero((char *)&frame, sizeof(frame));
580 
581 	frame.mii_phyaddr = phy;
582 	frame.mii_regaddr = reg;
583 	nge_mii_readreg(sc, &frame);
584 
585 	return(frame.mii_data);
586 }
587 
588 static int
589 nge_miibus_writereg(dev, phy, reg, data)
590 	device_t		dev;
591 	int			phy, reg, data;
592 {
593 	struct nge_softc	*sc;
594 	struct nge_mii_frame	frame;
595 
596 	sc = device_get_softc(dev);
597 
598 	bzero((char *)&frame, sizeof(frame));
599 
600 	frame.mii_phyaddr = phy;
601 	frame.mii_regaddr = reg;
602 	frame.mii_data = data;
603 	nge_mii_writereg(sc, &frame);
604 
605 	return(0);
606 }
607 
608 static void
609 nge_miibus_statchg(dev)
610 	device_t		dev;
611 {
612 	int			status;
613 	struct nge_softc	*sc;
614 	struct mii_data		*mii;
615 
616 	sc = device_get_softc(dev);
617 	if (sc->nge_tbi) {
618 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
619 		    == IFM_AUTO) {
620 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
621 			if (status == 0 || status & NGE_TBIANAR_FDX) {
622 				NGE_SETBIT(sc, NGE_TX_CFG,
623 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
624 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
625 			} else {
626 				NGE_CLRBIT(sc, NGE_TX_CFG,
627 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
628 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
629 			}
630 
631 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
632 			!= IFM_FDX) {
633 			NGE_CLRBIT(sc, NGE_TX_CFG,
634 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
635 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
636 		} else {
637 			NGE_SETBIT(sc, NGE_TX_CFG,
638 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
639 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
640 		}
641 	} else {
642 		mii = device_get_softc(sc->nge_miibus);
643 
644 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
645 		        NGE_SETBIT(sc, NGE_TX_CFG,
646 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
647 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
648 		} else {
649 			NGE_CLRBIT(sc, NGE_TX_CFG,
650 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
651 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
652 		}
653 
654 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
655 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
656 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
657 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
658 		} else {
659 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
660 		}
661 	}
662 	return;
663 }
664 
665 static void
666 nge_setmulti(sc)
667 	struct nge_softc	*sc;
668 {
669 	struct ifnet		*ifp;
670 	struct ifmultiaddr	*ifma;
671 	u_int32_t		h = 0, i, filtsave;
672 	int			bit, index;
673 
674 	NGE_LOCK_ASSERT(sc);
675 	ifp = sc->nge_ifp;
676 
677 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
678 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
679 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
680 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
681 		return;
682 	}
683 
684 	/*
685 	 * We have to explicitly enable the multicast hash table
686 	 * on the NatSemi chip if we want to use it, which we do.
687 	 * We also have to tell it that we don't want to use the
688 	 * hash table for matching unicast addresses.
689 	 */
690 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
691 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
692 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
693 
694 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
695 
696 	/* first, zot all the existing hash bits */
697 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
698 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
699 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
700 	}
701 
702 	/*
703 	 * From the 11 bits returned by the crc routine, the top 7
704 	 * bits represent the 16-bit word in the mcast hash table
705 	 * that needs to be updated, and the lower 4 bits represent
706 	 * which bit within that byte needs to be set.
707 	 */
708 	IF_ADDR_LOCK(ifp);
709 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
710 		if (ifma->ifma_addr->sa_family != AF_LINK)
711 			continue;
712 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
713 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
714 		index = (h >> 4) & 0x7F;
715 		bit = h & 0xF;
716 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
717 		    NGE_FILTADDR_MCAST_LO + (index * 2));
718 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
719 	}
720 	IF_ADDR_UNLOCK(ifp);
721 
722 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
723 
724 	return;
725 }
726 
727 static void
728 nge_reset(sc)
729 	struct nge_softc	*sc;
730 {
731 	register int		i;
732 
733 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
734 
735 	for (i = 0; i < NGE_TIMEOUT; i++) {
736 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
737 			break;
738 	}
739 
740 	if (i == NGE_TIMEOUT)
741 		printf("nge%d: reset never completed\n", sc->nge_unit);
742 
743 	/* Wait a little while for the chip to get its brains in order. */
744 	DELAY(1000);
745 
746 	/*
747 	 * If this is a NetSemi chip, make sure to clear
748 	 * PME mode.
749 	 */
750 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
751 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
752 
753         return;
754 }
755 
756 /*
757  * Probe for a NatSemi chip. Check the PCI vendor and device
758  * IDs against our list and return a device name if we find a match.
759  */
760 static int
761 nge_probe(dev)
762 	device_t		dev;
763 {
764 	struct nge_type		*t;
765 
766 	t = nge_devs;
767 
768 	while(t->nge_name != NULL) {
769 		if ((pci_get_vendor(dev) == t->nge_vid) &&
770 		    (pci_get_device(dev) == t->nge_did)) {
771 			device_set_desc(dev, t->nge_name);
772 			return(BUS_PROBE_DEFAULT);
773 		}
774 		t++;
775 	}
776 
777 	return(ENXIO);
778 }
779 
780 /*
781  * Attach the interface. Allocate softc structures, do ifmedia
782  * setup and ethernet/BPF attach.
783  */
784 static int
785 nge_attach(dev)
786 	device_t		dev;
787 {
788 	u_char			eaddr[ETHER_ADDR_LEN];
789 	struct nge_softc	*sc;
790 	struct ifnet		*ifp;
791 	int			unit, error = 0, rid;
792 	const char		*sep = "";
793 
794 	sc = device_get_softc(dev);
795 	unit = device_get_unit(dev);
796 	bzero(sc, sizeof(struct nge_softc));
797 
798 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
799 	/*
800 	 * Map control/status registers.
801 	 */
802 	pci_enable_busmaster(dev);
803 
804 	rid = NGE_RID;
805 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
806 
807 	if (sc->nge_res == NULL) {
808 		printf("nge%d: couldn't map ports/memory\n", unit);
809 		error = ENXIO;
810 		goto fail;
811 	}
812 
813 	sc->nge_btag = rman_get_bustag(sc->nge_res);
814 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
815 
816 	/* Allocate interrupt */
817 	rid = 0;
818 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
819 	    RF_SHAREABLE | RF_ACTIVE);
820 
821 	if (sc->nge_irq == NULL) {
822 		printf("nge%d: couldn't map interrupt\n", unit);
823 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
824 		error = ENXIO;
825 		goto fail;
826 	}
827 
828 	/* Reset the adapter. */
829 	nge_reset(sc);
830 
831 	/*
832 	 * Get station address from the EEPROM.
833 	 */
834 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
835 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
836 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
837 
838 	sc->nge_unit = unit;
839 
840 	/* XXX: leaked on error */
841 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
842 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
843 
844 	if (sc->nge_ldata == NULL) {
845 		printf("nge%d: no memory for list buffers!\n", unit);
846 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
847 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
848 		error = ENXIO;
849 		goto fail;
850 	}
851 
852 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
853 	if (ifp == NULL) {
854 		printf("nge%d: can not if_alloc()\n", unit);
855 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
856 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
857 		error = ENOSPC;
858 		goto fail;
859 	}
860 	ifp->if_softc = sc;
861 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
862 	ifp->if_mtu = ETHERMTU;
863 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
864 	ifp->if_ioctl = nge_ioctl;
865 	ifp->if_start = nge_start;
866 	ifp->if_watchdog = nge_watchdog;
867 	ifp->if_init = nge_init;
868 	ifp->if_baudrate = 1000000000;
869 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
870 	ifp->if_hwassist = NGE_CSUM_FEATURES;
871 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
872 #ifdef DEVICE_POLLING
873 	ifp->if_capabilities |= IFCAP_POLLING;
874 #endif
875 	ifp->if_capenable = ifp->if_capabilities;
876 
877 	/*
878 	 * Do MII setup.
879 	 */
880 	/* XXX: leaked on error */
881 	if (mii_phy_probe(dev, &sc->nge_miibus,
882 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
883 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
884 			sc->nge_tbi = 1;
885 			device_printf(dev, "Using TBI\n");
886 
887 			sc->nge_miibus = dev;
888 
889 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
890 				nge_ifmedia_sts);
891 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
892 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
893 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
894 			device_printf(dev, " ");
895 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
896 			PRINT("1000baseSX");
897 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
898 			PRINT("1000baseSX-FDX");
899 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
900 			PRINT("auto");
901 
902 			printf("\n");
903 #undef ADD
904 #undef PRINT
905 			ifmedia_set(&sc->nge_ifmedia,
906 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
907 
908 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
909 				| NGE_GPIO_GP4_OUT
910 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
911 				| NGE_GPIO_GP3_OUTENB
912 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
913 
914 		} else {
915 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
916 			if_free(ifp);
917 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
918 			bus_release_resource(dev, NGE_RES, NGE_RID,
919 					 sc->nge_res);
920 			error = ENXIO;
921 			goto fail;
922 		}
923 	}
924 
925 	/*
926 	 * Call MI attach routine.
927 	 */
928 	ether_ifattach(ifp, eaddr);
929 	callout_init(&sc->nge_stat_ch, CALLOUT_MPSAFE);
930 
931 	/*
932 	 * Hookup IRQ last.
933 	 */
934 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
935 	    nge_intr, sc, &sc->nge_intrhand);
936 	if (error) {
937 		/* XXX: resource leaks */
938 		if_free(ifp);
939 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
940 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
941 		printf("nge%d: couldn't set up irq\n", unit);
942 	}
943 
944 fail:
945 
946 	if (error)
947 		NGE_LOCK_DESTROY(sc);
948 	return(error);
949 }
950 
951 static int
952 nge_detach(dev)
953 	device_t		dev;
954 {
955 	struct nge_softc	*sc;
956 	struct ifnet		*ifp;
957 
958 	sc = device_get_softc(dev);
959 	ifp = sc->nge_ifp;
960 
961 	NGE_LOCK(sc);
962 	nge_reset(sc);
963 	nge_stop(sc);
964 	NGE_UNLOCK(sc);
965 	ether_ifdetach(ifp);
966 
967 	bus_generic_detach(dev);
968 	if (!sc->nge_tbi) {
969 		device_delete_child(dev, sc->nge_miibus);
970 	}
971 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
972 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
973 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
974 
975 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
976 	if_free(ifp);
977 
978 	NGE_LOCK_DESTROY(sc);
979 
980 	return(0);
981 }
982 
983 /*
984  * Initialize the transmit descriptors.
985  */
986 static int
987 nge_list_tx_init(sc)
988 	struct nge_softc	*sc;
989 {
990 	struct nge_list_data	*ld;
991 	struct nge_ring_data	*cd;
992 	int			i;
993 
994 	cd = &sc->nge_cdata;
995 	ld = sc->nge_ldata;
996 
997 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
998 		if (i == (NGE_TX_LIST_CNT - 1)) {
999 			ld->nge_tx_list[i].nge_nextdesc =
1000 			    &ld->nge_tx_list[0];
1001 			ld->nge_tx_list[i].nge_next =
1002 			    vtophys(&ld->nge_tx_list[0]);
1003 		} else {
1004 			ld->nge_tx_list[i].nge_nextdesc =
1005 			    &ld->nge_tx_list[i + 1];
1006 			ld->nge_tx_list[i].nge_next =
1007 			    vtophys(&ld->nge_tx_list[i + 1]);
1008 		}
1009 		ld->nge_tx_list[i].nge_mbuf = NULL;
1010 		ld->nge_tx_list[i].nge_ptr = 0;
1011 		ld->nge_tx_list[i].nge_ctl = 0;
1012 	}
1013 
1014 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1015 
1016 	return(0);
1017 }
1018 
1019 
1020 /*
1021  * Initialize the RX descriptors and allocate mbufs for them. Note that
1022  * we arrange the descriptors in a closed ring, so that the last descriptor
1023  * points back to the first.
1024  */
1025 static int
1026 nge_list_rx_init(sc)
1027 	struct nge_softc	*sc;
1028 {
1029 	struct nge_list_data	*ld;
1030 	struct nge_ring_data	*cd;
1031 	int			i;
1032 
1033 	ld = sc->nge_ldata;
1034 	cd = &sc->nge_cdata;
1035 
1036 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1037 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1038 			return(ENOBUFS);
1039 		if (i == (NGE_RX_LIST_CNT - 1)) {
1040 			ld->nge_rx_list[i].nge_nextdesc =
1041 			    &ld->nge_rx_list[0];
1042 			ld->nge_rx_list[i].nge_next =
1043 			    vtophys(&ld->nge_rx_list[0]);
1044 		} else {
1045 			ld->nge_rx_list[i].nge_nextdesc =
1046 			    &ld->nge_rx_list[i + 1];
1047 			ld->nge_rx_list[i].nge_next =
1048 			    vtophys(&ld->nge_rx_list[i + 1]);
1049 		}
1050 	}
1051 
1052 	cd->nge_rx_prod = 0;
1053 	sc->nge_head = sc->nge_tail = NULL;
1054 
1055 	return(0);
1056 }
1057 
1058 /*
1059  * Initialize an RX descriptor and attach an MBUF cluster.
1060  */
1061 static int
1062 nge_newbuf(sc, c, m)
1063 	struct nge_softc	*sc;
1064 	struct nge_desc		*c;
1065 	struct mbuf		*m;
1066 {
1067 
1068 	if (m == NULL) {
1069 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1070 		if (m == NULL)
1071 			return (ENOBUFS);
1072 	} else
1073 		m->m_data = m->m_ext.ext_buf;
1074 
1075 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1076 
1077 	m_adj(m, sizeof(u_int64_t));
1078 
1079 	c->nge_mbuf = m;
1080 	c->nge_ptr = vtophys(mtod(m, caddr_t));
1081 	c->nge_ctl = m->m_len;
1082 	c->nge_extsts = 0;
1083 
1084 	return(0);
1085 }
1086 
1087 #ifdef NGE_FIXUP_RX
1088 static __inline void
1089 nge_fixup_rx(m)
1090 	struct mbuf		*m;
1091 {
1092         int			i;
1093         uint16_t		*src, *dst;
1094 
1095 	src = mtod(m, uint16_t *);
1096 	dst = src - 1;
1097 
1098 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1099 		*dst++ = *src++;
1100 
1101 	m->m_data -= ETHER_ALIGN;
1102 
1103 	return;
1104 }
1105 #endif
1106 
1107 /*
1108  * A frame has been uploaded: pass the resulting mbuf chain up to
1109  * the higher level protocols.
1110  */
1111 static void
1112 nge_rxeof(sc)
1113 	struct nge_softc	*sc;
1114 {
1115         struct mbuf		*m;
1116         struct ifnet		*ifp;
1117 	struct nge_desc		*cur_rx;
1118 	int			i, total_len = 0;
1119 	u_int32_t		rxstat;
1120 
1121 	NGE_LOCK_ASSERT(sc);
1122 	ifp = sc->nge_ifp;
1123 	i = sc->nge_cdata.nge_rx_prod;
1124 
1125 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1126 		u_int32_t		extsts;
1127 
1128 #ifdef DEVICE_POLLING
1129 		if (ifp->if_flags & IFF_POLLING) {
1130 			if (sc->rxcycles <= 0)
1131 				break;
1132 			sc->rxcycles--;
1133 		}
1134 #endif /* DEVICE_POLLING */
1135 
1136 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1137 		rxstat = cur_rx->nge_rxstat;
1138 		extsts = cur_rx->nge_extsts;
1139 		m = cur_rx->nge_mbuf;
1140 		cur_rx->nge_mbuf = NULL;
1141 		total_len = NGE_RXBYTES(cur_rx);
1142 		NGE_INC(i, NGE_RX_LIST_CNT);
1143 
1144 		if (rxstat & NGE_CMDSTS_MORE) {
1145 			m->m_len = total_len;
1146 			if (sc->nge_head == NULL) {
1147 				m->m_pkthdr.len = total_len;
1148 				sc->nge_head = sc->nge_tail = m;
1149 			} else {
1150 				m->m_flags &= ~M_PKTHDR;
1151 				sc->nge_head->m_pkthdr.len += total_len;
1152 				sc->nge_tail->m_next = m;
1153 				sc->nge_tail = m;
1154 			}
1155 			nge_newbuf(sc, cur_rx, NULL);
1156 			continue;
1157 		}
1158 
1159 		/*
1160 		 * If an error occurs, update stats, clear the
1161 		 * status word and leave the mbuf cluster in place:
1162 		 * it should simply get re-used next time this descriptor
1163 	 	 * comes up in the ring.
1164 		 */
1165 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1166 			ifp->if_ierrors++;
1167 			if (sc->nge_head != NULL) {
1168 				m_freem(sc->nge_head);
1169 				sc->nge_head = sc->nge_tail = NULL;
1170 			}
1171 			nge_newbuf(sc, cur_rx, m);
1172 			continue;
1173 		}
1174 
1175 		/* Try conjure up a replacement mbuf. */
1176 
1177 		if (nge_newbuf(sc, cur_rx, NULL)) {
1178 			ifp->if_ierrors++;
1179 			if (sc->nge_head != NULL) {
1180 				m_freem(sc->nge_head);
1181 				sc->nge_head = sc->nge_tail = NULL;
1182 			}
1183 			nge_newbuf(sc, cur_rx, m);
1184 			continue;
1185 		}
1186 
1187 		if (sc->nge_head != NULL) {
1188 			m->m_len = total_len;
1189 			m->m_flags &= ~M_PKTHDR;
1190 			sc->nge_tail->m_next = m;
1191 			m = sc->nge_head;
1192 			m->m_pkthdr.len += total_len;
1193 			sc->nge_head = sc->nge_tail = NULL;
1194 		} else
1195 			m->m_pkthdr.len = m->m_len = total_len;
1196 
1197 		/*
1198 		 * Ok. NatSemi really screwed up here. This is the
1199 		 * only gigE chip I know of with alignment constraints
1200 		 * on receive buffers. RX buffers must be 64-bit aligned.
1201 		 */
1202 		/*
1203 		 * By popular demand, ignore the alignment problems
1204 		 * on the Intel x86 platform. The performance hit
1205 		 * incurred due to unaligned accesses is much smaller
1206 		 * than the hit produced by forcing buffer copies all
1207 		 * the time, especially with jumbo frames. We still
1208 		 * need to fix up the alignment everywhere else though.
1209 		 */
1210 #ifdef NGE_FIXUP_RX
1211 		nge_fixup_rx(m);
1212 #endif
1213 
1214 		ifp->if_ipackets++;
1215 		m->m_pkthdr.rcvif = ifp;
1216 
1217 		/* Do IP checksum checking. */
1218 		if (extsts & NGE_RXEXTSTS_IPPKT)
1219 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1220 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1221 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1222 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1223 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1224 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1225 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1226 			m->m_pkthdr.csum_flags |=
1227 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1228 			m->m_pkthdr.csum_data = 0xffff;
1229 		}
1230 
1231 		/*
1232 		 * If we received a packet with a vlan tag, pass it
1233 		 * to vlan_input() instead of ether_input().
1234 		 */
1235 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1236 			VLAN_INPUT_TAG(ifp, m,
1237 			    ntohs(extsts & NGE_RXEXTSTS_VTCI), continue);
1238 		}
1239 		NGE_UNLOCK(sc);
1240 		(*ifp->if_input)(ifp, m);
1241 		NGE_LOCK(sc);
1242 	}
1243 
1244 	sc->nge_cdata.nge_rx_prod = i;
1245 
1246 	return;
1247 }
1248 
1249 /*
1250  * A frame was downloaded to the chip. It's safe for us to clean up
1251  * the list buffers.
1252  */
1253 
1254 static void
1255 nge_txeof(sc)
1256 	struct nge_softc	*sc;
1257 {
1258 	struct nge_desc		*cur_tx;
1259 	struct ifnet		*ifp;
1260 	u_int32_t		idx;
1261 
1262 	NGE_LOCK_ASSERT(sc);
1263 	ifp = sc->nge_ifp;
1264 
1265 	/*
1266 	 * Go through our tx list and free mbufs for those
1267 	 * frames that have been transmitted.
1268 	 */
1269 	idx = sc->nge_cdata.nge_tx_cons;
1270 	while (idx != sc->nge_cdata.nge_tx_prod) {
1271 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1272 
1273 		if (NGE_OWNDESC(cur_tx))
1274 			break;
1275 
1276 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1277 			sc->nge_cdata.nge_tx_cnt--;
1278 			NGE_INC(idx, NGE_TX_LIST_CNT);
1279 			continue;
1280 		}
1281 
1282 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1283 			ifp->if_oerrors++;
1284 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1285 				ifp->if_collisions++;
1286 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1287 				ifp->if_collisions++;
1288 		}
1289 
1290 		ifp->if_collisions +=
1291 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1292 
1293 		ifp->if_opackets++;
1294 		if (cur_tx->nge_mbuf != NULL) {
1295 			m_freem(cur_tx->nge_mbuf);
1296 			cur_tx->nge_mbuf = NULL;
1297 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1298 		}
1299 
1300 		sc->nge_cdata.nge_tx_cnt--;
1301 		NGE_INC(idx, NGE_TX_LIST_CNT);
1302 	}
1303 
1304 	sc->nge_cdata.nge_tx_cons = idx;
1305 
1306 	if (idx == sc->nge_cdata.nge_tx_prod)
1307 		ifp->if_timer = 0;
1308 
1309 	return;
1310 }
1311 
1312 static void
1313 nge_tick(xsc)
1314 	void			*xsc;
1315 {
1316 	struct nge_softc	*sc;
1317 
1318 	sc = xsc;
1319 
1320 	NGE_LOCK(sc);
1321 	nge_tick_locked(sc);
1322 	NGE_UNLOCK(sc);
1323 }
1324 
1325 static void
1326 nge_tick_locked(sc)
1327 	struct nge_softc	*sc;
1328 {
1329 	struct mii_data		*mii;
1330 	struct ifnet		*ifp;
1331 
1332 	NGE_LOCK_ASSERT(sc);
1333 	ifp = sc->nge_ifp;
1334 
1335 	if (sc->nge_tbi) {
1336 		if (!sc->nge_link) {
1337 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1338 			    & NGE_TBIBMSR_ANEG_DONE) {
1339 				if (bootverbose)
1340 					printf("nge%d: gigabit link up\n",
1341 					    sc->nge_unit);
1342 				nge_miibus_statchg(sc->nge_miibus);
1343 				sc->nge_link++;
1344 				if (ifp->if_snd.ifq_head != NULL)
1345 					nge_start_locked(ifp);
1346 			}
1347 		}
1348 	} else {
1349 		mii = device_get_softc(sc->nge_miibus);
1350 		mii_tick(mii);
1351 
1352 		if (!sc->nge_link) {
1353 			if (mii->mii_media_status & IFM_ACTIVE &&
1354 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1355 				sc->nge_link++;
1356 				if (IFM_SUBTYPE(mii->mii_media_active)
1357 				    == IFM_1000_T && bootverbose)
1358 					printf("nge%d: gigabit link up\n",
1359 					    sc->nge_unit);
1360 				if (ifp->if_snd.ifq_head != NULL)
1361 					nge_start_locked(ifp);
1362 			}
1363 		}
1364 	}
1365 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1366 
1367 	return;
1368 }
1369 
1370 #ifdef DEVICE_POLLING
1371 static poll_handler_t nge_poll;
1372 
1373 static void
1374 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1375 {
1376 	struct  nge_softc *sc = ifp->if_softc;
1377 
1378 	NGE_LOCK(sc);
1379 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1380 		ether_poll_deregister(ifp);
1381 		cmd = POLL_DEREGISTER;
1382 	}
1383 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1384 		CSR_WRITE_4(sc, NGE_IER, 1);
1385 		NGE_UNLOCK(sc);
1386 		return;
1387 	}
1388 
1389 	/*
1390 	 * On the nge, reading the status register also clears it.
1391 	 * So before returning to intr mode we must make sure that all
1392 	 * possible pending sources of interrupts have been served.
1393 	 * In practice this means run to completion the *eof routines,
1394 	 * and then call the interrupt routine
1395 	 */
1396 	sc->rxcycles = count;
1397 	nge_rxeof(sc);
1398 	nge_txeof(sc);
1399 	if (ifp->if_snd.ifq_head != NULL)
1400 		nge_start_locked(ifp);
1401 
1402 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1403 		u_int32_t	status;
1404 
1405 		/* Reading the ISR register clears all interrupts. */
1406 		status = CSR_READ_4(sc, NGE_ISR);
1407 
1408 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1409 			nge_rxeof(sc);
1410 
1411 		if (status & (NGE_ISR_RX_IDLE))
1412 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1413 
1414 		if (status & NGE_ISR_SYSERR) {
1415 			nge_reset(sc);
1416 			nge_init_locked(sc);
1417 		}
1418 	}
1419 	NGE_UNLOCK(sc);
1420 }
1421 #endif /* DEVICE_POLLING */
1422 
1423 static void
1424 nge_intr(arg)
1425 	void			*arg;
1426 {
1427 	struct nge_softc	*sc;
1428 	struct ifnet		*ifp;
1429 	u_int32_t		status;
1430 
1431 	sc = arg;
1432 	ifp = sc->nge_ifp;
1433 
1434 	NGE_LOCK(sc);
1435 #ifdef DEVICE_POLLING
1436 	if (ifp->if_flags & IFF_POLLING) {
1437 		NGE_UNLOCK(sc);
1438 		return;
1439 	}
1440 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1441 	    ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1442 		CSR_WRITE_4(sc, NGE_IER, 0);
1443 		NGE_UNLOCK(sc);
1444 		nge_poll(ifp, 0, 1);
1445 		return;
1446 	}
1447 #endif /* DEVICE_POLLING */
1448 
1449 	/* Supress unwanted interrupts */
1450 	if (!(ifp->if_flags & IFF_UP)) {
1451 		nge_stop(sc);
1452 		NGE_UNLOCK(sc);
1453 		return;
1454 	}
1455 
1456 	/* Disable interrupts. */
1457 	CSR_WRITE_4(sc, NGE_IER, 0);
1458 
1459 	/* Data LED on for TBI mode */
1460 	if(sc->nge_tbi)
1461 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1462 			     | NGE_GPIO_GP3_OUT);
1463 
1464 	for (;;) {
1465 		/* Reading the ISR register clears all interrupts. */
1466 		status = CSR_READ_4(sc, NGE_ISR);
1467 
1468 		if ((status & NGE_INTRS) == 0)
1469 			break;
1470 
1471 		if ((status & NGE_ISR_TX_DESC_OK) ||
1472 		    (status & NGE_ISR_TX_ERR) ||
1473 		    (status & NGE_ISR_TX_OK) ||
1474 		    (status & NGE_ISR_TX_IDLE))
1475 			nge_txeof(sc);
1476 
1477 		if ((status & NGE_ISR_RX_DESC_OK) ||
1478 		    (status & NGE_ISR_RX_ERR) ||
1479 		    (status & NGE_ISR_RX_OFLOW) ||
1480 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1481 		    (status & NGE_ISR_RX_IDLE) ||
1482 		    (status & NGE_ISR_RX_OK))
1483 			nge_rxeof(sc);
1484 
1485 		if ((status & NGE_ISR_RX_IDLE))
1486 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1487 
1488 		if (status & NGE_ISR_SYSERR) {
1489 			nge_reset(sc);
1490 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1491 			nge_init_locked(sc);
1492 		}
1493 
1494 #if 0
1495 		/*
1496 		 * XXX: nge_tick() is not ready to be called this way
1497 		 * it screws up the aneg timeout because mii_tick() is
1498 		 * only to be called once per second.
1499 		 */
1500 		if (status & NGE_IMR_PHY_INTR) {
1501 			sc->nge_link = 0;
1502 			nge_tick_locked(sc);
1503 		}
1504 #endif
1505 	}
1506 
1507 	/* Re-enable interrupts. */
1508 	CSR_WRITE_4(sc, NGE_IER, 1);
1509 
1510 	if (ifp->if_snd.ifq_head != NULL)
1511 		nge_start_locked(ifp);
1512 
1513 	/* Data LED off for TBI mode */
1514 
1515 	if(sc->nge_tbi)
1516 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1517 			    & ~NGE_GPIO_GP3_OUT);
1518 
1519 	NGE_UNLOCK(sc);
1520 
1521 	return;
1522 }
1523 
1524 /*
1525  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1526  * pointers to the fragment pointers.
1527  */
1528 static int
1529 nge_encap(sc, m_head, txidx)
1530 	struct nge_softc	*sc;
1531 	struct mbuf		*m_head;
1532 	u_int32_t		*txidx;
1533 {
1534 	struct nge_desc		*f = NULL;
1535 	struct mbuf		*m;
1536 	int			frag, cur, cnt = 0;
1537 	struct m_tag		*mtag;
1538 
1539 	/*
1540  	 * Start packing the mbufs in this chain into
1541 	 * the fragment pointers. Stop when we run out
1542  	 * of fragments or hit the end of the mbuf chain.
1543 	 */
1544 	m = m_head;
1545 	cur = frag = *txidx;
1546 
1547 	for (m = m_head; m != NULL; m = m->m_next) {
1548 		if (m->m_len != 0) {
1549 			if ((NGE_TX_LIST_CNT -
1550 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1551 				return(ENOBUFS);
1552 			f = &sc->nge_ldata->nge_tx_list[frag];
1553 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1554 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1555 			if (cnt != 0)
1556 				f->nge_ctl |= NGE_CMDSTS_OWN;
1557 			cur = frag;
1558 			NGE_INC(frag, NGE_TX_LIST_CNT);
1559 			cnt++;
1560 		}
1561 	}
1562 
1563 	if (m != NULL)
1564 		return(ENOBUFS);
1565 
1566 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1567 	if (m_head->m_pkthdr.csum_flags) {
1568 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1569 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1570 			    NGE_TXEXTSTS_IPCSUM;
1571 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1572 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1573 			    NGE_TXEXTSTS_TCPCSUM;
1574 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1575 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1576 			    NGE_TXEXTSTS_UDPCSUM;
1577 	}
1578 
1579 	mtag = VLAN_OUTPUT_TAG(sc->nge_ifp, m_head);
1580 	if (mtag != NULL) {
1581 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1582 		    (NGE_TXEXTSTS_VLANPKT|htons(VLAN_TAG_VALUE(mtag)));
1583 	}
1584 
1585 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1586 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1587 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1588 	sc->nge_cdata.nge_tx_cnt += cnt;
1589 	*txidx = frag;
1590 
1591 	return(0);
1592 }
1593 
1594 /*
1595  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1596  * to the mbuf data regions directly in the transmit lists. We also save a
1597  * copy of the pointers since the transmit list fragment pointers are
1598  * physical addresses.
1599  */
1600 
1601 static void
1602 nge_start(ifp)
1603 	struct ifnet		*ifp;
1604 {
1605 	struct nge_softc	*sc;
1606 
1607 	sc = ifp->if_softc;
1608 	NGE_LOCK(sc);
1609 	nge_start_locked(ifp);
1610 	NGE_UNLOCK(sc);
1611 }
1612 
1613 static void
1614 nge_start_locked(ifp)
1615 	struct ifnet		*ifp;
1616 {
1617 	struct nge_softc	*sc;
1618 	struct mbuf		*m_head = NULL;
1619 	u_int32_t		idx;
1620 
1621 	sc = ifp->if_softc;
1622 
1623 	if (!sc->nge_link)
1624 		return;
1625 
1626 	idx = sc->nge_cdata.nge_tx_prod;
1627 
1628 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1629 		return;
1630 
1631 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1632 		IF_DEQUEUE(&ifp->if_snd, m_head);
1633 		if (m_head == NULL)
1634 			break;
1635 
1636 		if (nge_encap(sc, m_head, &idx)) {
1637 			IF_PREPEND(&ifp->if_snd, m_head);
1638 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1639 			break;
1640 		}
1641 
1642 		/*
1643 		 * If there's a BPF listener, bounce a copy of this frame
1644 		 * to him.
1645 		 */
1646 		BPF_MTAP(ifp, m_head);
1647 
1648 	}
1649 
1650 	/* Transmit */
1651 	sc->nge_cdata.nge_tx_prod = idx;
1652 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1653 
1654 	/*
1655 	 * Set a timeout in case the chip goes out to lunch.
1656 	 */
1657 	ifp->if_timer = 5;
1658 
1659 	return;
1660 }
1661 
1662 static void
1663 nge_init(xsc)
1664 	void			*xsc;
1665 {
1666 	struct nge_softc	*sc = xsc;
1667 
1668 	NGE_LOCK(sc);
1669 	nge_init_locked(sc);
1670 	NGE_UNLOCK(sc);
1671 }
1672 
1673 static void
1674 nge_init_locked(sc)
1675 	struct nge_softc	*sc;
1676 {
1677 	struct ifnet		*ifp = sc->nge_ifp;
1678 	struct mii_data		*mii;
1679 
1680 	NGE_LOCK_ASSERT(sc);
1681 
1682 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1683 		return;
1684 
1685 	/*
1686 	 * Cancel pending I/O and free all RX/TX buffers.
1687 	 */
1688 	nge_stop(sc);
1689 
1690 	if (sc->nge_tbi) {
1691 		mii = NULL;
1692 	} else {
1693 		mii = device_get_softc(sc->nge_miibus);
1694 	}
1695 
1696 	/* Set MAC address */
1697 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1698 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1699 	    ((u_int16_t *)IFP2ENADDR(sc->nge_ifp))[0]);
1700 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1701 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1702 	    ((u_int16_t *)IFP2ENADDR(sc->nge_ifp))[1]);
1703 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1704 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1705 	    ((u_int16_t *)IFP2ENADDR(sc->nge_ifp))[2]);
1706 
1707 	/* Init circular RX list. */
1708 	if (nge_list_rx_init(sc) == ENOBUFS) {
1709 		printf("nge%d: initialization failed: no "
1710 			"memory for rx buffers\n", sc->nge_unit);
1711 		nge_stop(sc);
1712 		return;
1713 	}
1714 
1715 	/*
1716 	 * Init tx descriptors.
1717 	 */
1718 	nge_list_tx_init(sc);
1719 
1720 	/*
1721 	 * For the NatSemi chip, we have to explicitly enable the
1722 	 * reception of ARP frames, as well as turn on the 'perfect
1723 	 * match' filter where we store the station address, otherwise
1724 	 * we won't receive unicasts meant for this host.
1725 	 */
1726 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1727 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1728 
1729 	 /* If we want promiscuous mode, set the allframes bit. */
1730 	if (ifp->if_flags & IFF_PROMISC) {
1731 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1732 	} else {
1733 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1734 	}
1735 
1736 	/*
1737 	 * Set the capture broadcast bit to capture broadcast frames.
1738 	 */
1739 	if (ifp->if_flags & IFF_BROADCAST) {
1740 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1741 	} else {
1742 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1743 	}
1744 
1745 	/*
1746 	 * Load the multicast filter.
1747 	 */
1748 	nge_setmulti(sc);
1749 
1750 	/* Turn the receive filter on */
1751 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1752 
1753 	/*
1754 	 * Load the address of the RX and TX lists.
1755 	 */
1756 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1757 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1758 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1759 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1760 
1761 	/* Set RX configuration */
1762 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1763 	/*
1764 	 * Enable hardware checksum validation for all IPv4
1765 	 * packets, do not reject packets with bad checksums.
1766 	 */
1767 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1768 
1769 	/*
1770 	 * Tell the chip to detect and strip VLAN tag info from
1771 	 * received frames. The tag will be provided in the extsts
1772 	 * field in the RX descriptors.
1773 	 */
1774 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1775 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1776 
1777 	/* Set TX configuration */
1778 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1779 
1780 	/*
1781 	 * Enable TX IPv4 checksumming on a per-packet basis.
1782 	 */
1783 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1784 
1785 	/*
1786 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1787 	 * dictated by the code in the frame encapsulation routine.
1788 	 */
1789 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1790 
1791 	/* Set full/half duplex mode. */
1792 	if (sc->nge_tbi) {
1793 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1794 		    == IFM_FDX) {
1795 			NGE_SETBIT(sc, NGE_TX_CFG,
1796 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1797 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1798 		} else {
1799 			NGE_CLRBIT(sc, NGE_TX_CFG,
1800 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1801 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1802 		}
1803 	} else {
1804 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1805 			NGE_SETBIT(sc, NGE_TX_CFG,
1806 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1807 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1808 		} else {
1809 			NGE_CLRBIT(sc, NGE_TX_CFG,
1810 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1811 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1812 		}
1813 	}
1814 
1815 	nge_tick_locked(sc);
1816 
1817 	/*
1818 	 * Enable the delivery of PHY interrupts based on
1819 	 * link/speed/duplex status changes. Also enable the
1820 	 * extsts field in the DMA descriptors (needed for
1821 	 * TCP/IP checksum offload on transmit).
1822 	 */
1823 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1824 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1825 
1826 	/*
1827 	 * Configure interrupt holdoff (moderation). We can
1828 	 * have the chip delay interrupt delivery for a certain
1829 	 * period. Units are in 100us, and the max setting
1830 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1831 	 */
1832 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1833 
1834 	/*
1835 	 * Enable interrupts.
1836 	 */
1837 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1838 #ifdef DEVICE_POLLING
1839 	/*
1840 	 * ... only enable interrupts if we are not polling, make sure
1841 	 * they are off otherwise.
1842 	 */
1843 	if (ifp->if_flags & IFF_POLLING)
1844 		CSR_WRITE_4(sc, NGE_IER, 0);
1845 	else
1846 #endif /* DEVICE_POLLING */
1847 	CSR_WRITE_4(sc, NGE_IER, 1);
1848 
1849 	/* Enable receiver and transmitter. */
1850 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1851 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1852 
1853 	nge_ifmedia_upd(ifp);
1854 
1855 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1856 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1857 
1858 	return;
1859 }
1860 
1861 /*
1862  * Set media options.
1863  */
1864 static int
1865 nge_ifmedia_upd(ifp)
1866 	struct ifnet		*ifp;
1867 {
1868 	struct nge_softc	*sc;
1869 	struct mii_data		*mii;
1870 
1871 	sc = ifp->if_softc;
1872 
1873 	if (sc->nge_tbi) {
1874 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1875 		     == IFM_AUTO) {
1876 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1877 				CSR_READ_4(sc, NGE_TBI_ANAR)
1878 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1879 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1880 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1881 				| NGE_TBIBMCR_RESTART_ANEG);
1882 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1883 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1884 			    & IFM_GMASK) == IFM_FDX) {
1885 			NGE_SETBIT(sc, NGE_TX_CFG,
1886 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1887 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1888 
1889 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1890 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1891 		} else {
1892 			NGE_CLRBIT(sc, NGE_TX_CFG,
1893 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1894 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1895 
1896 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1897 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1898 		}
1899 
1900 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1901 			    & ~NGE_GPIO_GP3_OUT);
1902 	} else {
1903 		mii = device_get_softc(sc->nge_miibus);
1904 		sc->nge_link = 0;
1905 		if (mii->mii_instance) {
1906 			struct mii_softc	*miisc;
1907 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1908 			    miisc = LIST_NEXT(miisc, mii_list))
1909 				mii_phy_reset(miisc);
1910 		}
1911 		mii_mediachg(mii);
1912 	}
1913 
1914 	return(0);
1915 }
1916 
1917 /*
1918  * Report current media status.
1919  */
1920 static void
1921 nge_ifmedia_sts(ifp, ifmr)
1922 	struct ifnet		*ifp;
1923 	struct ifmediareq	*ifmr;
1924 {
1925 	struct nge_softc	*sc;
1926 	struct mii_data		*mii;
1927 
1928 	sc = ifp->if_softc;
1929 
1930 	if (sc->nge_tbi) {
1931 		ifmr->ifm_status = IFM_AVALID;
1932 		ifmr->ifm_active = IFM_ETHER;
1933 
1934 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1935 			ifmr->ifm_status |= IFM_ACTIVE;
1936 		}
1937 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1938 			ifmr->ifm_active |= IFM_LOOP;
1939 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1940 			ifmr->ifm_active |= IFM_NONE;
1941 			ifmr->ifm_status = 0;
1942 			return;
1943 		}
1944 		ifmr->ifm_active |= IFM_1000_SX;
1945 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1946 		    == IFM_AUTO) {
1947 			ifmr->ifm_active |= IFM_AUTO;
1948 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1949 			    & NGE_TBIANAR_FDX) {
1950 				ifmr->ifm_active |= IFM_FDX;
1951 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1952 				  & NGE_TBIANAR_HDX) {
1953 				ifmr->ifm_active |= IFM_HDX;
1954 			}
1955 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1956 			== IFM_FDX)
1957 			ifmr->ifm_active |= IFM_FDX;
1958 		else
1959 			ifmr->ifm_active |= IFM_HDX;
1960 
1961 	} else {
1962 		mii = device_get_softc(sc->nge_miibus);
1963 		mii_pollstat(mii);
1964 		ifmr->ifm_active = mii->mii_media_active;
1965 		ifmr->ifm_status = mii->mii_media_status;
1966 	}
1967 
1968 	return;
1969 }
1970 
1971 static int
1972 nge_ioctl(ifp, command, data)
1973 	struct ifnet		*ifp;
1974 	u_long			command;
1975 	caddr_t			data;
1976 {
1977 	struct nge_softc	*sc = ifp->if_softc;
1978 	struct ifreq		*ifr = (struct ifreq *) data;
1979 	struct mii_data		*mii;
1980 	int			error = 0;
1981 
1982 	switch(command) {
1983 	case SIOCSIFMTU:
1984 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1985 			error = EINVAL;
1986 		else {
1987 			ifp->if_mtu = ifr->ifr_mtu;
1988 			/*
1989 			 * Workaround: if the MTU is larger than
1990 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1991 			 * TX checksum offloading.
1992 			 */
1993 			if (ifr->ifr_mtu >= 8152) {
1994 				ifp->if_capenable &= ~IFCAP_TXCSUM;
1995 				ifp->if_hwassist = 0;
1996 			} else {
1997 				ifp->if_capenable |= IFCAP_TXCSUM;
1998 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1999 			}
2000 		}
2001 		break;
2002 	case SIOCSIFFLAGS:
2003 		NGE_LOCK(sc);
2004 		if (ifp->if_flags & IFF_UP) {
2005 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2006 			    ifp->if_flags & IFF_PROMISC &&
2007 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2008 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2009 				    NGE_RXFILTCTL_ALLPHYS|
2010 				    NGE_RXFILTCTL_ALLMULTI);
2011 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2012 			    !(ifp->if_flags & IFF_PROMISC) &&
2013 			    sc->nge_if_flags & IFF_PROMISC) {
2014 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2015 				    NGE_RXFILTCTL_ALLPHYS);
2016 				if (!(ifp->if_flags & IFF_ALLMULTI))
2017 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2018 					    NGE_RXFILTCTL_ALLMULTI);
2019 			} else {
2020 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2021 				nge_init_locked(sc);
2022 			}
2023 		} else {
2024 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2025 				nge_stop(sc);
2026 		}
2027 		sc->nge_if_flags = ifp->if_flags;
2028 		NGE_UNLOCK(sc);
2029 		error = 0;
2030 		break;
2031 	case SIOCADDMULTI:
2032 	case SIOCDELMULTI:
2033 		NGE_LOCK(sc);
2034 		nge_setmulti(sc);
2035 		NGE_UNLOCK(sc);
2036 		error = 0;
2037 		break;
2038 	case SIOCGIFMEDIA:
2039 	case SIOCSIFMEDIA:
2040 		if (sc->nge_tbi) {
2041 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2042 					      command);
2043 		} else {
2044 			mii = device_get_softc(sc->nge_miibus);
2045 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2046 					      command);
2047 		}
2048 		break;
2049 	case SIOCSIFCAP:
2050 		ifp->if_capenable &= ~IFCAP_POLLING;
2051 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
2052 		break;
2053 	default:
2054 		error = ether_ioctl(ifp, command, data);
2055 		break;
2056 	}
2057 
2058 	return(error);
2059 }
2060 
2061 static void
2062 nge_watchdog(ifp)
2063 	struct ifnet		*ifp;
2064 {
2065 	struct nge_softc	*sc;
2066 
2067 	sc = ifp->if_softc;
2068 
2069 	ifp->if_oerrors++;
2070 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2071 
2072 	NGE_LOCK(sc);
2073 	nge_stop(sc);
2074 	nge_reset(sc);
2075 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2076 	nge_init_locked(sc);
2077 
2078 	if (ifp->if_snd.ifq_head != NULL)
2079 		nge_start_locked(ifp);
2080 
2081 	NGE_UNLOCK(sc);
2082 
2083 	return;
2084 }
2085 
2086 /*
2087  * Stop the adapter and free any mbufs allocated to the
2088  * RX and TX lists.
2089  */
2090 static void
2091 nge_stop(sc)
2092 	struct nge_softc	*sc;
2093 {
2094 	register int		i;
2095 	struct ifnet		*ifp;
2096 	struct mii_data		*mii;
2097 
2098 	NGE_LOCK_ASSERT(sc);
2099 	ifp = sc->nge_ifp;
2100 	ifp->if_timer = 0;
2101 	if (sc->nge_tbi) {
2102 		mii = NULL;
2103 	} else {
2104 		mii = device_get_softc(sc->nge_miibus);
2105 	}
2106 
2107 	callout_stop(&sc->nge_stat_ch);
2108 #ifdef DEVICE_POLLING
2109 	ether_poll_deregister(ifp);
2110 #endif
2111 	CSR_WRITE_4(sc, NGE_IER, 0);
2112 	CSR_WRITE_4(sc, NGE_IMR, 0);
2113 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2114 	DELAY(1000);
2115 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2116 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2117 
2118 	if (!sc->nge_tbi)
2119 		mii_down(mii);
2120 
2121 	sc->nge_link = 0;
2122 
2123 	/*
2124 	 * Free data in the RX lists.
2125 	 */
2126 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2127 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2128 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2129 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2130 		}
2131 	}
2132 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2133 		sizeof(sc->nge_ldata->nge_rx_list));
2134 
2135 	/*
2136 	 * Free the TX list buffers.
2137 	 */
2138 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2139 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2140 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2141 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2142 		}
2143 	}
2144 
2145 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2146 		sizeof(sc->nge_ldata->nge_tx_list));
2147 
2148 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2149 
2150 	return;
2151 }
2152 
2153 /*
2154  * Stop all chip I/O so that the kernel's probe routines don't
2155  * get confused by errant DMAs when rebooting.
2156  */
2157 static void
2158 nge_shutdown(dev)
2159 	device_t		dev;
2160 {
2161 	struct nge_softc	*sc;
2162 
2163 	sc = device_get_softc(dev);
2164 
2165 	NGE_LOCK(sc);
2166 	nge_reset(sc);
2167 	nge_stop(sc);
2168 	NGE_UNLOCK(sc);
2169 
2170 	return;
2171 }
2172