xref: /freebsd/sys/dev/nge/if_nge.c (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2000, 2001
6  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #ifdef HAVE_KERNEL_OPTION_HEADERS
92 #include "opt_device_polling.h"
93 #endif
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/bus.h>
98 #include <sys/endian.h>
99 #include <sys/kernel.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/module.h>
104 #include <sys/mutex.h>
105 #include <sys/rman.h>
106 #include <sys/socket.h>
107 #include <sys/sockio.h>
108 #include <sys/sysctl.h>
109 
110 #include <net/bpf.h>
111 #include <net/if.h>
112 #include <net/if_var.h>
113 #include <net/if_arp.h>
114 #include <net/ethernet.h>
115 #include <net/if_dl.h>
116 #include <net/if_media.h>
117 #include <net/if_types.h>
118 #include <net/if_vlan_var.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/mii_bitbang.h>
122 #include <dev/mii/miivar.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #include <machine/bus.h>
128 
129 #include <dev/nge/if_ngereg.h>
130 
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 MODULE_DEPEND(nge, pci, 1, 1, 1);
135 MODULE_DEPEND(nge, ether, 1, 1, 1);
136 MODULE_DEPEND(nge, miibus, 1, 1, 1);
137 
138 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static const struct nge_type nge_devs[] = {
144 	{ NGE_VENDORID, NGE_DEVICEID,
145 	    "National Semiconductor Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int nge_probe(device_t);
150 static int nge_attach(device_t);
151 static int nge_detach(device_t);
152 static int nge_shutdown(device_t);
153 static int nge_suspend(device_t);
154 static int nge_resume(device_t);
155 
156 static __inline void nge_discard_rxbuf(struct nge_softc *, int);
157 static int nge_newbuf(struct nge_softc *, int);
158 static int nge_encap(struct nge_softc *, struct mbuf **);
159 #ifndef __NO_STRICT_ALIGNMENT
160 static __inline void nge_fixup_rx(struct mbuf *);
161 #endif
162 static int nge_rxeof(struct nge_softc *);
163 static void nge_txeof(struct nge_softc *);
164 static void nge_intr(void *);
165 static void nge_tick(void *);
166 static void nge_stats_update(struct nge_softc *);
167 static void nge_start(if_t);
168 static void nge_start_locked(if_t);
169 static int nge_ioctl(if_t, u_long, caddr_t);
170 static void nge_init(void *);
171 static void nge_init_locked(struct nge_softc *);
172 static int nge_stop_mac(struct nge_softc *);
173 static void nge_stop(struct nge_softc *);
174 static void nge_wol(struct nge_softc *);
175 static void nge_watchdog(struct nge_softc *);
176 static int nge_mediachange(if_t);
177 static void nge_mediastatus(if_t, struct ifmediareq *);
178 
179 static void nge_delay(struct nge_softc *);
180 static void nge_eeprom_idle(struct nge_softc *);
181 static void nge_eeprom_putbyte(struct nge_softc *, int);
182 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
183 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
184 
185 static int nge_miibus_readreg(device_t, int, int);
186 static int nge_miibus_writereg(device_t, int, int, int);
187 static void nge_miibus_statchg(device_t);
188 
189 static void nge_rxfilter(struct nge_softc *);
190 static void nge_reset(struct nge_softc *);
191 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
192 static int nge_dma_alloc(struct nge_softc *);
193 static void nge_dma_free(struct nge_softc *);
194 static int nge_list_rx_init(struct nge_softc *);
195 static int nge_list_tx_init(struct nge_softc *);
196 static void nge_sysctl_node(struct nge_softc *);
197 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
198 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
199 
200 /*
201  * MII bit-bang glue
202  */
203 static uint32_t nge_mii_bitbang_read(device_t);
204 static void nge_mii_bitbang_write(device_t, uint32_t);
205 
206 static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
207 	nge_mii_bitbang_read,
208 	nge_mii_bitbang_write,
209 	{
210 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
211 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
212 		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
213 		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
214 		0,			/* MII_BIT_DIR_PHY_HOST */
215 	}
216 };
217 
218 static device_method_t nge_methods[] = {
219 	/* Device interface */
220 	DEVMETHOD(device_probe,		nge_probe),
221 	DEVMETHOD(device_attach,	nge_attach),
222 	DEVMETHOD(device_detach,	nge_detach),
223 	DEVMETHOD(device_shutdown,	nge_shutdown),
224 	DEVMETHOD(device_suspend,	nge_suspend),
225 	DEVMETHOD(device_resume,	nge_resume),
226 
227 	/* MII interface */
228 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
229 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
230 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
231 
232 	DEVMETHOD_END
233 };
234 
235 static driver_t nge_driver = {
236 	"nge",
237 	nge_methods,
238 	sizeof(struct nge_softc)
239 };
240 
241 DRIVER_MODULE(nge, pci, nge_driver, 0, 0);
242 DRIVER_MODULE(miibus, nge, miibus_driver, 0, 0);
243 
244 #define NGE_SETBIT(sc, reg, x)				\
245 	CSR_WRITE_4(sc, reg,				\
246 		CSR_READ_4(sc, reg) | (x))
247 
248 #define NGE_CLRBIT(sc, reg, x)				\
249 	CSR_WRITE_4(sc, reg,				\
250 		CSR_READ_4(sc, reg) & ~(x))
251 
252 #define SIO_SET(x)					\
253 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
254 
255 #define SIO_CLR(x)					\
256 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
257 
258 static void
259 nge_delay(struct nge_softc *sc)
260 {
261 	int idx;
262 
263 	for (idx = (300 / 33) + 1; idx > 0; idx--)
264 		CSR_READ_4(sc, NGE_CSR);
265 }
266 
267 static void
268 nge_eeprom_idle(struct nge_softc *sc)
269 {
270 	int i;
271 
272 	SIO_SET(NGE_MEAR_EE_CSEL);
273 	nge_delay(sc);
274 	SIO_SET(NGE_MEAR_EE_CLK);
275 	nge_delay(sc);
276 
277 	for (i = 0; i < 25; i++) {
278 		SIO_CLR(NGE_MEAR_EE_CLK);
279 		nge_delay(sc);
280 		SIO_SET(NGE_MEAR_EE_CLK);
281 		nge_delay(sc);
282 	}
283 
284 	SIO_CLR(NGE_MEAR_EE_CLK);
285 	nge_delay(sc);
286 	SIO_CLR(NGE_MEAR_EE_CSEL);
287 	nge_delay(sc);
288 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
289 }
290 
291 /*
292  * Send a read command and address to the EEPROM, check for ACK.
293  */
294 static void
295 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
296 {
297 	int d, i;
298 
299 	d = addr | NGE_EECMD_READ;
300 
301 	/*
302 	 * Feed in each bit and stobe the clock.
303 	 */
304 	for (i = 0x400; i; i >>= 1) {
305 		if (d & i) {
306 			SIO_SET(NGE_MEAR_EE_DIN);
307 		} else {
308 			SIO_CLR(NGE_MEAR_EE_DIN);
309 		}
310 		nge_delay(sc);
311 		SIO_SET(NGE_MEAR_EE_CLK);
312 		nge_delay(sc);
313 		SIO_CLR(NGE_MEAR_EE_CLK);
314 		nge_delay(sc);
315 	}
316 }
317 
318 /*
319  * Read a word of data stored in the EEPROM at address 'addr.'
320  */
321 static void
322 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
323 {
324 	int i;
325 	uint16_t word = 0;
326 
327 	/* Force EEPROM to idle state. */
328 	nge_eeprom_idle(sc);
329 
330 	/* Enter EEPROM access mode. */
331 	nge_delay(sc);
332 	SIO_CLR(NGE_MEAR_EE_CLK);
333 	nge_delay(sc);
334 	SIO_SET(NGE_MEAR_EE_CSEL);
335 	nge_delay(sc);
336 
337 	/*
338 	 * Send address of word we want to read.
339 	 */
340 	nge_eeprom_putbyte(sc, addr);
341 
342 	/*
343 	 * Start reading bits from EEPROM.
344 	 */
345 	for (i = 0x8000; i; i >>= 1) {
346 		SIO_SET(NGE_MEAR_EE_CLK);
347 		nge_delay(sc);
348 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
349 			word |= i;
350 		nge_delay(sc);
351 		SIO_CLR(NGE_MEAR_EE_CLK);
352 		nge_delay(sc);
353 	}
354 
355 	/* Turn off EEPROM access mode. */
356 	nge_eeprom_idle(sc);
357 
358 	*dest = word;
359 }
360 
361 /*
362  * Read a sequence of words from the EEPROM.
363  */
364 static void
365 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
366 {
367 	int i;
368 	uint16_t word = 0, *ptr;
369 
370 	for (i = 0; i < cnt; i++) {
371 		nge_eeprom_getword(sc, off + i, &word);
372 		ptr = (uint16_t *)(dest + (i * 2));
373 		*ptr = word;
374 	}
375 }
376 
377 /*
378  * Read the MII serial port for the MII bit-bang module.
379  */
380 static uint32_t
381 nge_mii_bitbang_read(device_t dev)
382 {
383 	struct nge_softc *sc;
384 	uint32_t val;
385 
386 	sc = device_get_softc(dev);
387 
388 	val = CSR_READ_4(sc, NGE_MEAR);
389 	CSR_BARRIER_4(sc, NGE_MEAR,
390 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
391 
392 	return (val);
393 }
394 
395 /*
396  * Write the MII serial port for the MII bit-bang module.
397  */
398 static void
399 nge_mii_bitbang_write(device_t dev, uint32_t val)
400 {
401 	struct nge_softc *sc;
402 
403 	sc = device_get_softc(dev);
404 
405 	CSR_WRITE_4(sc, NGE_MEAR, val);
406 	CSR_BARRIER_4(sc, NGE_MEAR,
407 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
408 }
409 
410 static int
411 nge_miibus_readreg(device_t dev, int phy, int reg)
412 {
413 	struct nge_softc *sc;
414 	int rv;
415 
416 	sc = device_get_softc(dev);
417 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
418 		/* Pretend PHY is at address 0. */
419 		if (phy != 0)
420 			return (0);
421 		switch (reg) {
422 		case MII_BMCR:
423 			reg = NGE_TBI_BMCR;
424 			break;
425 		case MII_BMSR:
426 			/* 83820/83821 has different bit layout for BMSR. */
427 			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
428 			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
429 			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
430 				rv |= BMSR_ACOMP;
431 			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
432 				rv |= BMSR_LINK;
433 			return (rv);
434 		case MII_ANAR:
435 			reg = NGE_TBI_ANAR;
436 			break;
437 		case MII_ANLPAR:
438 			reg = NGE_TBI_ANLPAR;
439 			break;
440 		case MII_ANER:
441 			reg = NGE_TBI_ANER;
442 			break;
443 		case MII_EXTSR:
444 			reg = NGE_TBI_ESR;
445 			break;
446 		case MII_PHYIDR1:
447 		case MII_PHYIDR2:
448 			return (0);
449 		default:
450 			device_printf(sc->nge_dev,
451 			    "bad phy register read : %d\n", reg);
452 			return (0);
453 		}
454 		return (CSR_READ_4(sc, reg));
455 	}
456 
457 	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
458 }
459 
460 static int
461 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
462 {
463 	struct nge_softc *sc;
464 
465 	sc = device_get_softc(dev);
466 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
467 		/* Pretend PHY is at address 0. */
468 		if (phy != 0)
469 			return (0);
470 		switch (reg) {
471 		case MII_BMCR:
472 			reg = NGE_TBI_BMCR;
473 			break;
474 		case MII_BMSR:
475 			return (0);
476 		case MII_ANAR:
477 			reg = NGE_TBI_ANAR;
478 			break;
479 		case MII_ANLPAR:
480 			reg = NGE_TBI_ANLPAR;
481 			break;
482 		case MII_ANER:
483 			reg = NGE_TBI_ANER;
484 			break;
485 		case MII_EXTSR:
486 			reg = NGE_TBI_ESR;
487 			break;
488 		case MII_PHYIDR1:
489 		case MII_PHYIDR2:
490 			return (0);
491 		default:
492 			device_printf(sc->nge_dev,
493 			    "bad phy register write : %d\n", reg);
494 			return (0);
495 		}
496 		CSR_WRITE_4(sc, reg, data);
497 		return (0);
498 	}
499 
500 	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
501 
502 	return (0);
503 }
504 
505 /*
506  * media status/link state change handler.
507  */
508 static void
509 nge_miibus_statchg(device_t dev)
510 {
511 	struct nge_softc *sc;
512 	struct mii_data *mii;
513 	if_t ifp;
514 	struct nge_txdesc *txd;
515 	uint32_t done, reg, status;
516 	int i;
517 
518 	sc = device_get_softc(dev);
519 	NGE_LOCK_ASSERT(sc);
520 
521 	mii = device_get_softc(sc->nge_miibus);
522 	ifp = sc->nge_ifp;
523 	if (mii == NULL || ifp == NULL ||
524 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
525 		return;
526 
527 	sc->nge_flags &= ~NGE_FLAG_LINK;
528 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
529 	    (IFM_AVALID | IFM_ACTIVE)) {
530 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
531 		case IFM_10_T:
532 		case IFM_100_TX:
533 		case IFM_1000_T:
534 		case IFM_1000_SX:
535 		case IFM_1000_LX:
536 		case IFM_1000_CX:
537 			sc->nge_flags |= NGE_FLAG_LINK;
538 			break;
539 		default:
540 			break;
541 		}
542 	}
543 
544 	/* Stop Tx/Rx MACs. */
545 	if (nge_stop_mac(sc) == ETIMEDOUT)
546 		device_printf(sc->nge_dev,
547 		    "%s: unable to stop Tx/Rx MAC\n", __func__);
548 	nge_txeof(sc);
549 	nge_rxeof(sc);
550 	if (sc->nge_head != NULL) {
551 		m_freem(sc->nge_head);
552 		sc->nge_head = sc->nge_tail = NULL;
553 	}
554 
555 	/* Release queued frames. */
556 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
557 		txd = &sc->nge_cdata.nge_txdesc[i];
558 		if (txd->tx_m != NULL) {
559 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
560 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
561 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
562 			    txd->tx_dmamap);
563 			m_freem(txd->tx_m);
564 			txd->tx_m = NULL;
565 		}
566 	}
567 
568 	/* Program MAC with resolved speed/duplex. */
569 	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
570 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
571 			NGE_SETBIT(sc, NGE_TX_CFG,
572 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
573 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
574 #ifdef notyet
575 			/* Enable flow-control. */
576 			if ((IFM_OPTIONS(mii->mii_media_active) &
577 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
578 				NGE_SETBIT(sc, NGE_PAUSECSR,
579 				    NGE_PAUSECSR_PAUSE_ENB);
580 #endif
581 		} else {
582 			NGE_CLRBIT(sc, NGE_TX_CFG,
583 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
584 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
585 			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
586 		}
587 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
588 		reg = CSR_READ_4(sc, NGE_CFG);
589 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
590 		case IFM_1000_SX:
591 		case IFM_1000_LX:
592 		case IFM_1000_CX:
593 		case IFM_1000_T:
594 			reg |= NGE_CFG_MODE_1000;
595 			break;
596 		default:
597 			reg &= ~NGE_CFG_MODE_1000;
598 			break;
599 		}
600 		CSR_WRITE_4(sc, NGE_CFG, reg);
601 
602 		/* Reset Tx/Rx MAC. */
603 		reg = CSR_READ_4(sc, NGE_CSR);
604 		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
605 		CSR_WRITE_4(sc, NGE_CSR, reg);
606 		/* Check the completion of reset. */
607 		done = 0;
608 		for (i = 0; i < NGE_TIMEOUT; i++) {
609 			DELAY(1);
610 			status = CSR_READ_4(sc, NGE_ISR);
611 			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
612 				done |= NGE_ISR_RX_RESET_DONE;
613 			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
614 				done |= NGE_ISR_TX_RESET_DONE;
615 			if (done ==
616 			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
617 				break;
618 		}
619 		if (i == NGE_TIMEOUT)
620 			device_printf(sc->nge_dev,
621 			    "%s: unable to reset Tx/Rx MAC\n", __func__);
622 		/* Reuse Rx buffer and reset consumer pointer. */
623 		sc->nge_cdata.nge_rx_cons = 0;
624 		/*
625 		 * It seems that resetting Rx/Tx MAC results in
626 		 * resetting Tx/Rx descriptor pointer registers such
627 		 * that reloading Tx/Rx lists address are needed.
628 		 */
629 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
630 		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
631 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
632 		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
633 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
634 		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
635 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
636 		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
637 		/* Reinitialize Tx buffers. */
638 		nge_list_tx_init(sc);
639 
640 		/* Restart Rx MAC. */
641 		reg = CSR_READ_4(sc, NGE_CSR);
642 		reg |= NGE_CSR_RX_ENABLE;
643 		CSR_WRITE_4(sc, NGE_CSR, reg);
644 		for (i = 0; i < NGE_TIMEOUT; i++) {
645 			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
646 				break;
647 			DELAY(1);
648 		}
649 		if (i == NGE_TIMEOUT)
650 			device_printf(sc->nge_dev,
651 			    "%s: unable to restart Rx MAC\n", __func__);
652 	}
653 
654 	/* Data LED off for TBI mode */
655 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
656 		CSR_WRITE_4(sc, NGE_GPIO,
657 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
658 }
659 
660 static u_int
661 nge_write_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
662 {
663 	struct nge_softc *sc = arg;
664 	uint32_t h;
665 	int bit, index;
666 
667 	/*
668 	 * From the 11 bits returned by the crc routine, the top 7
669 	 * bits represent the 16-bit word in the mcast hash table
670 	 * that needs to be updated, and the lower 4 bits represent
671 	 * which bit within that byte needs to be set.
672 	 */
673 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 21;
674 	index = (h >> 4) & 0x7F;
675 	bit = h & 0xF;
676 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + (index * 2));
677 	NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
678 
679 	return (1);
680 }
681 
682 static void
683 nge_rxfilter(struct nge_softc *sc)
684 {
685 	if_t ifp;
686 	uint32_t i, rxfilt;
687 
688 	NGE_LOCK_ASSERT(sc);
689 	ifp = sc->nge_ifp;
690 
691 	/* Make sure to stop Rx filtering. */
692 	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
693 	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
694 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
695 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
696 
697 	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
698 	rxfilt &= ~NGE_RXFILTCTL_BROAD;
699 	/*
700 	 * We don't want to use the hash table for matching unicast
701 	 * addresses.
702 	 */
703 	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
704 
705 	/*
706 	 * For the NatSemi chip, we have to explicitly enable the
707 	 * reception of ARP frames, as well as turn on the 'perfect
708 	 * match' filter where we store the station address, otherwise
709 	 * we won't receive unicasts meant for this host.
710 	 */
711 	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
712 
713 	/*
714 	 * Set the capture broadcast bit to capture broadcast frames.
715 	 */
716 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
717 		rxfilt |= NGE_RXFILTCTL_BROAD;
718 
719 	if ((if_getflags(ifp) & IFF_PROMISC) != 0 ||
720 	    (if_getflags(ifp) & IFF_ALLMULTI) != 0) {
721 		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
722 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
723 			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
724 		goto done;
725 	}
726 
727 	/*
728 	 * We have to explicitly enable the multicast hash table
729 	 * on the NatSemi chip if we want to use it, which we do.
730 	 */
731 	rxfilt |= NGE_RXFILTCTL_MCHASH;
732 
733 	/* first, zot all the existing hash bits */
734 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
735 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
736 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
737 	}
738 
739 	if_foreach_llmaddr(ifp, nge_write_maddr, sc);
740 done:
741 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
742 	/* Turn the receive filter on. */
743 	rxfilt |= NGE_RXFILTCTL_ENABLE;
744 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
745 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
746 }
747 
748 static void
749 nge_reset(struct nge_softc *sc)
750 {
751 	uint32_t v;
752 	int i;
753 
754 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
755 
756 	for (i = 0; i < NGE_TIMEOUT; i++) {
757 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
758 			break;
759 		DELAY(1);
760 	}
761 
762 	if (i == NGE_TIMEOUT)
763 		device_printf(sc->nge_dev, "reset never completed\n");
764 
765 	/* Wait a little while for the chip to get its brains in order. */
766 	DELAY(1000);
767 
768 	/*
769 	 * If this is a NetSemi chip, make sure to clear
770 	 * PME mode.
771 	 */
772 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
773 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
774 
775 	/* Clear WOL events which may interfere normal Rx filter opertaion. */
776 	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
777 
778 	/*
779 	 * Only DP83820 supports 64bits addressing/data transfers and
780 	 * 64bit addressing requires different descriptor structures.
781 	 * To make it simple, disable 64bit addressing/data transfers.
782 	 */
783 	v = CSR_READ_4(sc, NGE_CFG);
784 	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
785 	CSR_WRITE_4(sc, NGE_CFG, v);
786 }
787 
788 /*
789  * Probe for a NatSemi chip. Check the PCI vendor and device
790  * IDs against our list and return a device name if we find a match.
791  */
792 static int
793 nge_probe(device_t dev)
794 {
795 	const struct nge_type *t;
796 
797 	t = nge_devs;
798 
799 	while (t->nge_name != NULL) {
800 		if ((pci_get_vendor(dev) == t->nge_vid) &&
801 		    (pci_get_device(dev) == t->nge_did)) {
802 			device_set_desc(dev, t->nge_name);
803 			return (BUS_PROBE_DEFAULT);
804 		}
805 		t++;
806 	}
807 
808 	return (ENXIO);
809 }
810 
811 /*
812  * Attach the interface. Allocate softc structures, do ifmedia
813  * setup and ethernet/BPF attach.
814  */
815 static int
816 nge_attach(device_t dev)
817 {
818 	uint8_t eaddr[ETHER_ADDR_LEN];
819 	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
820 	struct nge_softc *sc;
821 	if_t ifp;
822 	int error, i, rid;
823 
824 	error = 0;
825 	sc = device_get_softc(dev);
826 	sc->nge_dev = dev;
827 
828 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
829 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
830 
831 	/*
832 	 * Map control/status registers.
833 	 */
834 	pci_enable_busmaster(dev);
835 
836 #ifdef NGE_USEIOSPACE
837 	sc->nge_res_type = SYS_RES_IOPORT;
838 	sc->nge_res_id = PCIR_BAR(0);
839 #else
840 	sc->nge_res_type = SYS_RES_MEMORY;
841 	sc->nge_res_id = PCIR_BAR(1);
842 #endif
843 	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
844 	    &sc->nge_res_id, RF_ACTIVE);
845 
846 	if (sc->nge_res == NULL) {
847 		if (sc->nge_res_type == SYS_RES_MEMORY) {
848 			sc->nge_res_type = SYS_RES_IOPORT;
849 			sc->nge_res_id = PCIR_BAR(0);
850 		} else {
851 			sc->nge_res_type = SYS_RES_MEMORY;
852 			sc->nge_res_id = PCIR_BAR(1);
853 		}
854 		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
855 		    &sc->nge_res_id, RF_ACTIVE);
856 		if (sc->nge_res == NULL) {
857 			device_printf(dev, "couldn't allocate %s resources\n",
858 			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
859 			    "I/O");
860 			NGE_LOCK_DESTROY(sc);
861 			return (ENXIO);
862 		}
863 	}
864 
865 	/* Allocate interrupt */
866 	rid = 0;
867 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
868 	    RF_SHAREABLE | RF_ACTIVE);
869 
870 	if (sc->nge_irq == NULL) {
871 		device_printf(dev, "couldn't map interrupt\n");
872 		error = ENXIO;
873 		goto fail;
874 	}
875 
876 	/* Enable MWI. */
877 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
878 	reg |= PCIM_CMD_MWRICEN;
879 	pci_write_config(dev, PCIR_COMMAND, reg, 2);
880 
881 	/* Reset the adapter. */
882 	nge_reset(sc);
883 
884 	/*
885 	 * Get station address from the EEPROM.
886 	 */
887 	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
888 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
889 		ea[i] = le16toh(ea[i]);
890 	ea_temp = ea[0];
891 	ea[0] = ea[2];
892 	ea[2] = ea_temp;
893 	bcopy(ea, eaddr, sizeof(eaddr));
894 
895 	if (nge_dma_alloc(sc) != 0) {
896 		error = ENXIO;
897 		goto fail;
898 	}
899 
900 	nge_sysctl_node(sc);
901 
902 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
903 	if_setsoftc(ifp, sc);
904 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
905 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
906 	if_setioctlfn(ifp, nge_ioctl);
907 	if_setstartfn(ifp, nge_start);
908 	if_setinitfn(ifp, nge_init);
909 	if_setsendqlen(ifp, NGE_TX_RING_CNT - 1);
910 	if_setsendqready(ifp);
911 	if_sethwassist(ifp, NGE_CSUM_FEATURES);
912 	if_setcapabilities(ifp, IFCAP_HWCSUM);
913 	/*
914 	 * It seems that some hardwares doesn't provide 3.3V auxiliary
915 	 * supply(3VAUX) to drive PME such that checking PCI power
916 	 * management capability is necessary.
917 	 */
918 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
919 		if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
920 	if_setcapenable(ifp, if_getcapabilities(ifp));
921 
922 	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
923 		sc->nge_flags |= NGE_FLAG_TBI;
924 		device_printf(dev, "Using TBI\n");
925 		/* Configure GPIO. */
926 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
927 		    | NGE_GPIO_GP4_OUT
928 		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
929 		    | NGE_GPIO_GP3_OUTENB
930 		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
931 	}
932 
933 	/*
934 	 * Do MII setup.
935 	 */
936 	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
937 	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
938 	if (error != 0) {
939 		device_printf(dev, "attaching PHYs failed\n");
940 		goto fail;
941 	}
942 
943 	/*
944 	 * Call MI attach routine.
945 	 */
946 	ether_ifattach(ifp, eaddr);
947 
948 	/* VLAN capability setup. */
949 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING, 0);
950 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
951 	if_setcapenable(ifp, if_getcapabilities(ifp));
952 #ifdef DEVICE_POLLING
953 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
954 #endif
955 	/*
956 	 * Tell the upper layer(s) we support long frames.
957 	 * Must appear after the call to ether_ifattach() because
958 	 * ether_ifattach() sets ifi_hdrlen to the default value.
959 	 */
960 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
961 
962 	/*
963 	 * Hookup IRQ last.
964 	 */
965 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
966 	    NULL, nge_intr, sc, &sc->nge_intrhand);
967 	if (error) {
968 		device_printf(dev, "couldn't set up irq\n");
969 		goto fail;
970 	}
971 
972 fail:
973 	if (error != 0)
974 		nge_detach(dev);
975 	return (error);
976 }
977 
978 static int
979 nge_detach(device_t dev)
980 {
981 	struct nge_softc *sc;
982 	if_t ifp;
983 
984 	sc = device_get_softc(dev);
985 	ifp = sc->nge_ifp;
986 
987 #ifdef DEVICE_POLLING
988 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
989 		ether_poll_deregister(ifp);
990 #endif
991 
992 	if (device_is_attached(dev)) {
993 		NGE_LOCK(sc);
994 		sc->nge_flags |= NGE_FLAG_DETACH;
995 		nge_stop(sc);
996 		NGE_UNLOCK(sc);
997 		callout_drain(&sc->nge_stat_ch);
998 		if (ifp != NULL)
999 			ether_ifdetach(ifp);
1000 	}
1001 
1002 	if (sc->nge_miibus != NULL) {
1003 		device_delete_child(dev, sc->nge_miibus);
1004 		sc->nge_miibus = NULL;
1005 	}
1006 	bus_generic_detach(dev);
1007 	if (sc->nge_intrhand != NULL)
1008 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1009 	if (sc->nge_irq != NULL)
1010 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1011 	if (sc->nge_res != NULL)
1012 		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1013 		    sc->nge_res);
1014 
1015 	nge_dma_free(sc);
1016 	if (ifp != NULL)
1017 		if_free(ifp);
1018 
1019 	NGE_LOCK_DESTROY(sc);
1020 
1021 	return (0);
1022 }
1023 
1024 struct nge_dmamap_arg {
1025 	bus_addr_t	nge_busaddr;
1026 };
1027 
1028 static void
1029 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1030 {
1031 	struct nge_dmamap_arg *ctx;
1032 
1033 	if (error != 0)
1034 		return;
1035 	ctx = arg;
1036 	ctx->nge_busaddr = segs[0].ds_addr;
1037 }
1038 
1039 static int
1040 nge_dma_alloc(struct nge_softc *sc)
1041 {
1042 	struct nge_dmamap_arg ctx;
1043 	struct nge_txdesc *txd;
1044 	struct nge_rxdesc *rxd;
1045 	int error, i;
1046 
1047 	/* Create parent DMA tag. */
1048 	error = bus_dma_tag_create(
1049 	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1050 	    1, 0,			/* alignment, boundary */
1051 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1052 	    BUS_SPACE_MAXADDR,		/* highaddr */
1053 	    NULL, NULL,			/* filter, filterarg */
1054 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1055 	    0,				/* nsegments */
1056 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1057 	    0,				/* flags */
1058 	    NULL, NULL,			/* lockfunc, lockarg */
1059 	    &sc->nge_cdata.nge_parent_tag);
1060 	if (error != 0) {
1061 		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1062 		goto fail;
1063 	}
1064 	/* Create tag for Tx ring. */
1065 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1066 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1067 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1068 	    BUS_SPACE_MAXADDR,		/* highaddr */
1069 	    NULL, NULL,			/* filter, filterarg */
1070 	    NGE_TX_RING_SIZE,		/* maxsize */
1071 	    1,				/* nsegments */
1072 	    NGE_TX_RING_SIZE,		/* maxsegsize */
1073 	    0,				/* flags */
1074 	    NULL, NULL,			/* lockfunc, lockarg */
1075 	    &sc->nge_cdata.nge_tx_ring_tag);
1076 	if (error != 0) {
1077 		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1078 		goto fail;
1079 	}
1080 
1081 	/* Create tag for Rx ring. */
1082 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1083 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1084 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1085 	    BUS_SPACE_MAXADDR,		/* highaddr */
1086 	    NULL, NULL,			/* filter, filterarg */
1087 	    NGE_RX_RING_SIZE,		/* maxsize */
1088 	    1,				/* nsegments */
1089 	    NGE_RX_RING_SIZE,		/* maxsegsize */
1090 	    0,				/* flags */
1091 	    NULL, NULL,			/* lockfunc, lockarg */
1092 	    &sc->nge_cdata.nge_rx_ring_tag);
1093 	if (error != 0) {
1094 		device_printf(sc->nge_dev,
1095 		    "failed to create Rx ring DMA tag\n");
1096 		goto fail;
1097 	}
1098 
1099 	/* Create tag for Tx buffers. */
1100 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1101 	    1, 0,			/* alignment, boundary */
1102 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1103 	    BUS_SPACE_MAXADDR,		/* highaddr */
1104 	    NULL, NULL,			/* filter, filterarg */
1105 	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1106 	    NGE_MAXTXSEGS,		/* nsegments */
1107 	    MCLBYTES,			/* maxsegsize */
1108 	    0,				/* flags */
1109 	    NULL, NULL,			/* lockfunc, lockarg */
1110 	    &sc->nge_cdata.nge_tx_tag);
1111 	if (error != 0) {
1112 		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1113 		goto fail;
1114 	}
1115 
1116 	/* Create tag for Rx buffers. */
1117 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1118 	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1119 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1120 	    BUS_SPACE_MAXADDR,		/* highaddr */
1121 	    NULL, NULL,			/* filter, filterarg */
1122 	    MCLBYTES,			/* maxsize */
1123 	    1,				/* nsegments */
1124 	    MCLBYTES,			/* maxsegsize */
1125 	    0,				/* flags */
1126 	    NULL, NULL,			/* lockfunc, lockarg */
1127 	    &sc->nge_cdata.nge_rx_tag);
1128 	if (error != 0) {
1129 		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1130 		goto fail;
1131 	}
1132 
1133 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1134 	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1135 	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1136 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1137 	if (error != 0) {
1138 		device_printf(sc->nge_dev,
1139 		    "failed to allocate DMA'able memory for Tx ring\n");
1140 		goto fail;
1141 	}
1142 
1143 	ctx.nge_busaddr = 0;
1144 	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1145 	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1146 	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1147 	if (error != 0 || ctx.nge_busaddr == 0) {
1148 		device_printf(sc->nge_dev,
1149 		    "failed to load DMA'able memory for Tx ring\n");
1150 		goto fail;
1151 	}
1152 	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1153 
1154 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1155 	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1156 	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1157 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1158 	if (error != 0) {
1159 		device_printf(sc->nge_dev,
1160 		    "failed to allocate DMA'able memory for Rx ring\n");
1161 		goto fail;
1162 	}
1163 
1164 	ctx.nge_busaddr = 0;
1165 	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1166 	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1167 	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1168 	if (error != 0 || ctx.nge_busaddr == 0) {
1169 		device_printf(sc->nge_dev,
1170 		    "failed to load DMA'able memory for Rx ring\n");
1171 		goto fail;
1172 	}
1173 	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1174 
1175 	/* Create DMA maps for Tx buffers. */
1176 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1177 		txd = &sc->nge_cdata.nge_txdesc[i];
1178 		txd->tx_m = NULL;
1179 		txd->tx_dmamap = NULL;
1180 		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1181 		    &txd->tx_dmamap);
1182 		if (error != 0) {
1183 			device_printf(sc->nge_dev,
1184 			    "failed to create Tx dmamap\n");
1185 			goto fail;
1186 		}
1187 	}
1188 	/* Create DMA maps for Rx buffers. */
1189 	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1190 	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1191 		device_printf(sc->nge_dev,
1192 		    "failed to create spare Rx dmamap\n");
1193 		goto fail;
1194 	}
1195 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1196 		rxd = &sc->nge_cdata.nge_rxdesc[i];
1197 		rxd->rx_m = NULL;
1198 		rxd->rx_dmamap = NULL;
1199 		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1200 		    &rxd->rx_dmamap);
1201 		if (error != 0) {
1202 			device_printf(sc->nge_dev,
1203 			    "failed to create Rx dmamap\n");
1204 			goto fail;
1205 		}
1206 	}
1207 
1208 fail:
1209 	return (error);
1210 }
1211 
1212 static void
1213 nge_dma_free(struct nge_softc *sc)
1214 {
1215 	struct nge_txdesc *txd;
1216 	struct nge_rxdesc *rxd;
1217 	int i;
1218 
1219 	/* Tx ring. */
1220 	if (sc->nge_cdata.nge_tx_ring_tag) {
1221 		if (sc->nge_rdata.nge_tx_ring_paddr)
1222 			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1223 			    sc->nge_cdata.nge_tx_ring_map);
1224 		if (sc->nge_rdata.nge_tx_ring)
1225 			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1226 			    sc->nge_rdata.nge_tx_ring,
1227 			    sc->nge_cdata.nge_tx_ring_map);
1228 		sc->nge_rdata.nge_tx_ring = NULL;
1229 		sc->nge_rdata.nge_tx_ring_paddr = 0;
1230 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1231 		sc->nge_cdata.nge_tx_ring_tag = NULL;
1232 	}
1233 	/* Rx ring. */
1234 	if (sc->nge_cdata.nge_rx_ring_tag) {
1235 		if (sc->nge_rdata.nge_rx_ring_paddr)
1236 			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1237 			    sc->nge_cdata.nge_rx_ring_map);
1238 		if (sc->nge_rdata.nge_rx_ring)
1239 			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1240 			    sc->nge_rdata.nge_rx_ring,
1241 			    sc->nge_cdata.nge_rx_ring_map);
1242 		sc->nge_rdata.nge_rx_ring = NULL;
1243 		sc->nge_rdata.nge_rx_ring_paddr = 0;
1244 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1245 		sc->nge_cdata.nge_rx_ring_tag = NULL;
1246 	}
1247 	/* Tx buffers. */
1248 	if (sc->nge_cdata.nge_tx_tag) {
1249 		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1250 			txd = &sc->nge_cdata.nge_txdesc[i];
1251 			if (txd->tx_dmamap) {
1252 				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1253 				    txd->tx_dmamap);
1254 				txd->tx_dmamap = NULL;
1255 			}
1256 		}
1257 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1258 		sc->nge_cdata.nge_tx_tag = NULL;
1259 	}
1260 	/* Rx buffers. */
1261 	if (sc->nge_cdata.nge_rx_tag) {
1262 		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1263 			rxd = &sc->nge_cdata.nge_rxdesc[i];
1264 			if (rxd->rx_dmamap) {
1265 				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1266 				    rxd->rx_dmamap);
1267 				rxd->rx_dmamap = NULL;
1268 			}
1269 		}
1270 		if (sc->nge_cdata.nge_rx_sparemap) {
1271 			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1272 			    sc->nge_cdata.nge_rx_sparemap);
1273 			sc->nge_cdata.nge_rx_sparemap = 0;
1274 		}
1275 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1276 		sc->nge_cdata.nge_rx_tag = NULL;
1277 	}
1278 
1279 	if (sc->nge_cdata.nge_parent_tag) {
1280 		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1281 		sc->nge_cdata.nge_parent_tag = NULL;
1282 	}
1283 }
1284 
1285 /*
1286  * Initialize the transmit descriptors.
1287  */
1288 static int
1289 nge_list_tx_init(struct nge_softc *sc)
1290 {
1291 	struct nge_ring_data *rd;
1292 	struct nge_txdesc *txd;
1293 	bus_addr_t addr;
1294 	int i;
1295 
1296 	sc->nge_cdata.nge_tx_prod = 0;
1297 	sc->nge_cdata.nge_tx_cons = 0;
1298 	sc->nge_cdata.nge_tx_cnt = 0;
1299 
1300 	rd = &sc->nge_rdata;
1301 	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1302 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1303 		if (i == NGE_TX_RING_CNT - 1)
1304 			addr = NGE_TX_RING_ADDR(sc, 0);
1305 		else
1306 			addr = NGE_TX_RING_ADDR(sc, i + 1);
1307 		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1308 		txd = &sc->nge_cdata.nge_txdesc[i];
1309 		txd->tx_m = NULL;
1310 	}
1311 
1312 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1313 	    sc->nge_cdata.nge_tx_ring_map,
1314 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1315 
1316 	return (0);
1317 }
1318 
1319 /*
1320  * Initialize the RX descriptors and allocate mbufs for them. Note that
1321  * we arrange the descriptors in a closed ring, so that the last descriptor
1322  * points back to the first.
1323  */
1324 static int
1325 nge_list_rx_init(struct nge_softc *sc)
1326 {
1327 	struct nge_ring_data *rd;
1328 	bus_addr_t addr;
1329 	int i;
1330 
1331 	sc->nge_cdata.nge_rx_cons = 0;
1332 	sc->nge_head = sc->nge_tail = NULL;
1333 
1334 	rd = &sc->nge_rdata;
1335 	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1336 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1337 		if (nge_newbuf(sc, i) != 0)
1338 			return (ENOBUFS);
1339 		if (i == NGE_RX_RING_CNT - 1)
1340 			addr = NGE_RX_RING_ADDR(sc, 0);
1341 		else
1342 			addr = NGE_RX_RING_ADDR(sc, i + 1);
1343 		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1344 	}
1345 
1346 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1347 	    sc->nge_cdata.nge_rx_ring_map,
1348 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1349 
1350 	return (0);
1351 }
1352 
1353 static __inline void
1354 nge_discard_rxbuf(struct nge_softc *sc, int idx)
1355 {
1356 	struct nge_desc *desc;
1357 
1358 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1359 	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1360 	desc->nge_extsts = 0;
1361 }
1362 
1363 /*
1364  * Initialize an RX descriptor and attach an MBUF cluster.
1365  */
1366 static int
1367 nge_newbuf(struct nge_softc *sc, int idx)
1368 {
1369 	struct nge_desc *desc;
1370 	struct nge_rxdesc *rxd;
1371 	struct mbuf *m;
1372 	bus_dma_segment_t segs[1];
1373 	bus_dmamap_t map;
1374 	int nsegs;
1375 
1376 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1377 	if (m == NULL)
1378 		return (ENOBUFS);
1379 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1380 	m_adj(m, sizeof(uint64_t));
1381 
1382 	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1383 	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1384 		m_freem(m);
1385 		return (ENOBUFS);
1386 	}
1387 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1388 
1389 	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1390 	if (rxd->rx_m != NULL) {
1391 		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1392 		    BUS_DMASYNC_POSTREAD);
1393 		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1394 	}
1395 	map = rxd->rx_dmamap;
1396 	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1397 	sc->nge_cdata.nge_rx_sparemap = map;
1398 	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1399 	    BUS_DMASYNC_PREREAD);
1400 	rxd->rx_m = m;
1401 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1402 	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1403 	desc->nge_cmdsts = htole32(segs[0].ds_len);
1404 	desc->nge_extsts = 0;
1405 
1406 	return (0);
1407 }
1408 
1409 #ifndef __NO_STRICT_ALIGNMENT
1410 static __inline void
1411 nge_fixup_rx(struct mbuf *m)
1412 {
1413 	int			i;
1414 	uint16_t		*src, *dst;
1415 
1416 	src = mtod(m, uint16_t *);
1417 	dst = src - 1;
1418 
1419 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1420 		*dst++ = *src++;
1421 
1422 	m->m_data -= ETHER_ALIGN;
1423 }
1424 #endif
1425 
1426 /*
1427  * A frame has been uploaded: pass the resulting mbuf chain up to
1428  * the higher level protocols.
1429  */
1430 static int
1431 nge_rxeof(struct nge_softc *sc)
1432 {
1433 	struct mbuf *m;
1434 	if_t ifp;
1435 	struct nge_desc *cur_rx;
1436 	struct nge_rxdesc *rxd;
1437 	int cons, prog, rx_npkts, total_len;
1438 	uint32_t cmdsts, extsts;
1439 
1440 	NGE_LOCK_ASSERT(sc);
1441 
1442 	ifp = sc->nge_ifp;
1443 	cons = sc->nge_cdata.nge_rx_cons;
1444 	rx_npkts = 0;
1445 
1446 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1447 	    sc->nge_cdata.nge_rx_ring_map,
1448 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1449 
1450 	for (prog = 0; prog < NGE_RX_RING_CNT &&
1451 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0;
1452 	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1453 #ifdef DEVICE_POLLING
1454 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1455 			if (sc->rxcycles <= 0)
1456 				break;
1457 			sc->rxcycles--;
1458 		}
1459 #endif
1460 		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1461 		cmdsts = le32toh(cur_rx->nge_cmdsts);
1462 		extsts = le32toh(cur_rx->nge_extsts);
1463 		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1464 			break;
1465 		prog++;
1466 		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1467 		m = rxd->rx_m;
1468 		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1469 
1470 		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1471 			if (nge_newbuf(sc, cons) != 0) {
1472 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1473 				if (sc->nge_head != NULL) {
1474 					m_freem(sc->nge_head);
1475 					sc->nge_head = sc->nge_tail = NULL;
1476 				}
1477 				nge_discard_rxbuf(sc, cons);
1478 				continue;
1479 			}
1480 			m->m_len = total_len;
1481 			if (sc->nge_head == NULL) {
1482 				m->m_pkthdr.len = total_len;
1483 				sc->nge_head = sc->nge_tail = m;
1484 			} else {
1485 				m->m_flags &= ~M_PKTHDR;
1486 				sc->nge_head->m_pkthdr.len += total_len;
1487 				sc->nge_tail->m_next = m;
1488 				sc->nge_tail = m;
1489 			}
1490 			continue;
1491 		}
1492 
1493 		/*
1494 		 * If an error occurs, update stats, clear the
1495 		 * status word and leave the mbuf cluster in place:
1496 		 * it should simply get re-used next time this descriptor
1497 	 	 * comes up in the ring.
1498 		 */
1499 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1500 			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1501 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1502 				/*
1503 				 * Work-around hardware bug, accept runt frames
1504 				 * if its length is larger than or equal to 56.
1505 				 */
1506 			} else {
1507 				/*
1508 				 * Input error counters are updated by hardware.
1509 				 */
1510 				if (sc->nge_head != NULL) {
1511 					m_freem(sc->nge_head);
1512 					sc->nge_head = sc->nge_tail = NULL;
1513 				}
1514 				nge_discard_rxbuf(sc, cons);
1515 				continue;
1516 			}
1517 		}
1518 
1519 		/* Try conjure up a replacement mbuf. */
1520 
1521 		if (nge_newbuf(sc, cons) != 0) {
1522 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1523 			if (sc->nge_head != NULL) {
1524 				m_freem(sc->nge_head);
1525 				sc->nge_head = sc->nge_tail = NULL;
1526 			}
1527 			nge_discard_rxbuf(sc, cons);
1528 			continue;
1529 		}
1530 
1531 		/* Chain received mbufs. */
1532 		if (sc->nge_head != NULL) {
1533 			m->m_len = total_len;
1534 			m->m_flags &= ~M_PKTHDR;
1535 			sc->nge_tail->m_next = m;
1536 			m = sc->nge_head;
1537 			m->m_pkthdr.len += total_len;
1538 			sc->nge_head = sc->nge_tail = NULL;
1539 		} else
1540 			m->m_pkthdr.len = m->m_len = total_len;
1541 
1542 		/*
1543 		 * Ok. NatSemi really screwed up here. This is the
1544 		 * only gigE chip I know of with alignment constraints
1545 		 * on receive buffers. RX buffers must be 64-bit aligned.
1546 		 */
1547 		/*
1548 		 * By popular demand, ignore the alignment problems
1549 		 * on the non-strict alignment platform. The performance hit
1550 		 * incurred due to unaligned accesses is much smaller
1551 		 * than the hit produced by forcing buffer copies all
1552 		 * the time, especially with jumbo frames. We still
1553 		 * need to fix up the alignment everywhere else though.
1554 		 */
1555 #ifndef __NO_STRICT_ALIGNMENT
1556 		nge_fixup_rx(m);
1557 #endif
1558 		m->m_pkthdr.rcvif = ifp;
1559 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1560 
1561 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1562 			/* Do IP checksum checking. */
1563 			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1564 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1565 			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1566 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1567 			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1568 			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1569 			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1570 			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1571 				m->m_pkthdr.csum_flags |=
1572 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1573 				m->m_pkthdr.csum_data = 0xffff;
1574 			}
1575 		}
1576 
1577 		/*
1578 		 * If we received a packet with a vlan tag, pass it
1579 		 * to vlan_input() instead of ether_input().
1580 		 */
1581 		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1582 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1583 			m->m_pkthdr.ether_vtag =
1584 			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1585 			m->m_flags |= M_VLANTAG;
1586 		}
1587 		NGE_UNLOCK(sc);
1588 		if_input(ifp, m);
1589 		NGE_LOCK(sc);
1590 		rx_npkts++;
1591 	}
1592 
1593 	if (prog > 0) {
1594 		sc->nge_cdata.nge_rx_cons = cons;
1595 		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1596 		    sc->nge_cdata.nge_rx_ring_map,
1597 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1598 	}
1599 	return (rx_npkts);
1600 }
1601 
1602 /*
1603  * A frame was downloaded to the chip. It's safe for us to clean up
1604  * the list buffers.
1605  */
1606 static void
1607 nge_txeof(struct nge_softc *sc)
1608 {
1609 	struct nge_desc	*cur_tx;
1610 	struct nge_txdesc *txd;
1611 	if_t ifp;
1612 	uint32_t cmdsts;
1613 	int cons, prod;
1614 
1615 	NGE_LOCK_ASSERT(sc);
1616 	ifp = sc->nge_ifp;
1617 
1618 	cons = sc->nge_cdata.nge_tx_cons;
1619 	prod = sc->nge_cdata.nge_tx_prod;
1620 	if (cons == prod)
1621 		return;
1622 
1623 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1624 	    sc->nge_cdata.nge_tx_ring_map,
1625 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1626 
1627 	/*
1628 	 * Go through our tx list and free mbufs for those
1629 	 * frames that have been transmitted.
1630 	 */
1631 	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1632 		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1633 		cmdsts = le32toh(cur_tx->nge_cmdsts);
1634 		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1635 			break;
1636 		sc->nge_cdata.nge_tx_cnt--;
1637 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1638 		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1639 			continue;
1640 
1641 		txd = &sc->nge_cdata.nge_txdesc[cons];
1642 		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1643 		    BUS_DMASYNC_POSTWRITE);
1644 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1645 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1646 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1647 			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1648 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1649 			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1650 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1651 		} else
1652 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1653 
1654 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16);
1655 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1656 		    __func__));
1657 		m_freem(txd->tx_m);
1658 		txd->tx_m = NULL;
1659 	}
1660 
1661 	sc->nge_cdata.nge_tx_cons = cons;
1662 	if (sc->nge_cdata.nge_tx_cnt == 0)
1663 		sc->nge_watchdog_timer = 0;
1664 }
1665 
1666 static void
1667 nge_tick(void *xsc)
1668 {
1669 	struct nge_softc *sc;
1670 	struct mii_data *mii;
1671 
1672 	sc = xsc;
1673 	NGE_LOCK_ASSERT(sc);
1674 	mii = device_get_softc(sc->nge_miibus);
1675 	mii_tick(mii);
1676 	/*
1677 	 * For PHYs that does not reset established link, it is
1678 	 * necessary to check whether driver still have a valid
1679 	 * link(e.g link state change callback is not called).
1680 	 * Otherwise, driver think it lost link because driver
1681 	 * initialization routine clears link state flag.
1682 	 */
1683 	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1684 		nge_miibus_statchg(sc->nge_dev);
1685 	nge_stats_update(sc);
1686 	nge_watchdog(sc);
1687 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1688 }
1689 
1690 static void
1691 nge_stats_update(struct nge_softc *sc)
1692 {
1693 	if_t ifp;
1694 	struct nge_stats now, *stats, *nstats;
1695 
1696 	NGE_LOCK_ASSERT(sc);
1697 
1698 	ifp = sc->nge_ifp;
1699 	stats = &now;
1700 	stats->rx_pkts_errs =
1701 	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1702 	stats->rx_crc_errs =
1703 	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1704 	stats->rx_fifo_oflows =
1705 	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1706 	stats->rx_align_errs =
1707 	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1708 	stats->rx_sym_errs =
1709 	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1710 	stats->rx_pkts_jumbos =
1711 	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1712 	stats->rx_len_errs =
1713 	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1714 	stats->rx_unctl_frames =
1715 	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1716 	stats->rx_pause =
1717 	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1718 	stats->tx_pause =
1719 	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1720 	stats->tx_seq_errs =
1721 	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1722 
1723 	/*
1724 	 * Since we've accept errored frames exclude Rx length errors.
1725 	 */
1726 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
1727 	    stats->rx_pkts_errs + stats->rx_crc_errs +
1728 	    stats->rx_fifo_oflows + stats->rx_sym_errs);
1729 
1730 	nstats = &sc->nge_stats;
1731 	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1732 	nstats->rx_crc_errs += stats->rx_crc_errs;
1733 	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1734 	nstats->rx_align_errs += stats->rx_align_errs;
1735 	nstats->rx_sym_errs += stats->rx_sym_errs;
1736 	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1737 	nstats->rx_len_errs += stats->rx_len_errs;
1738 	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1739 	nstats->rx_pause += stats->rx_pause;
1740 	nstats->tx_pause += stats->tx_pause;
1741 	nstats->tx_seq_errs += stats->tx_seq_errs;
1742 }
1743 
1744 #ifdef DEVICE_POLLING
1745 static poll_handler_t nge_poll;
1746 
1747 static int
1748 nge_poll(if_t ifp, enum poll_cmd cmd, int count)
1749 {
1750 	struct nge_softc *sc;
1751 	int rx_npkts = 0;
1752 
1753 	sc = if_getsoftc(ifp);
1754 
1755 	NGE_LOCK(sc);
1756 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1757 		NGE_UNLOCK(sc);
1758 		return (rx_npkts);
1759 	}
1760 
1761 	/*
1762 	 * On the nge, reading the status register also clears it.
1763 	 * So before returning to intr mode we must make sure that all
1764 	 * possible pending sources of interrupts have been served.
1765 	 * In practice this means run to completion the *eof routines,
1766 	 * and then call the interrupt routine.
1767 	 */
1768 	sc->rxcycles = count;
1769 	rx_npkts = nge_rxeof(sc);
1770 	nge_txeof(sc);
1771 	if (!if_sendq_empty(ifp))
1772 		nge_start_locked(ifp);
1773 
1774 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1775 		uint32_t	status;
1776 
1777 		/* Reading the ISR register clears all interrupts. */
1778 		status = CSR_READ_4(sc, NGE_ISR);
1779 
1780 		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1781 			rx_npkts += nge_rxeof(sc);
1782 
1783 		if ((status & NGE_ISR_RX_IDLE) != 0)
1784 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1785 
1786 		if ((status & NGE_ISR_SYSERR) != 0) {
1787 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1788 			nge_init_locked(sc);
1789 		}
1790 	}
1791 	NGE_UNLOCK(sc);
1792 	return (rx_npkts);
1793 }
1794 #endif /* DEVICE_POLLING */
1795 
1796 static void
1797 nge_intr(void *arg)
1798 {
1799 	struct nge_softc *sc;
1800 	if_t ifp;
1801 	uint32_t status;
1802 
1803 	sc = (struct nge_softc *)arg;
1804 	ifp = sc->nge_ifp;
1805 
1806 	NGE_LOCK(sc);
1807 
1808 	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1809 		goto done_locked;
1810 
1811 	/* Reading the ISR register clears all interrupts. */
1812 	status = CSR_READ_4(sc, NGE_ISR);
1813 	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1814 		goto done_locked;
1815 #ifdef DEVICE_POLLING
1816 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
1817 		goto done_locked;
1818 #endif
1819 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1820 		goto done_locked;
1821 
1822 	/* Disable interrupts. */
1823 	CSR_WRITE_4(sc, NGE_IER, 0);
1824 
1825 	/* Data LED on for TBI mode */
1826 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1827 		CSR_WRITE_4(sc, NGE_GPIO,
1828 		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1829 
1830 	for (; (status & NGE_INTRS) != 0;) {
1831 		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1832 		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1833 			nge_txeof(sc);
1834 
1835 		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1836 		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1837 		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1838 			nge_rxeof(sc);
1839 
1840 		if ((status & NGE_ISR_RX_IDLE) != 0)
1841 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1842 
1843 		if ((status & NGE_ISR_SYSERR) != 0) {
1844 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1845 			nge_init_locked(sc);
1846 		}
1847 		/* Reading the ISR register clears all interrupts. */
1848 		status = CSR_READ_4(sc, NGE_ISR);
1849 	}
1850 
1851 	/* Re-enable interrupts. */
1852 	CSR_WRITE_4(sc, NGE_IER, 1);
1853 
1854 	if (!if_sendq_empty(ifp))
1855 		nge_start_locked(ifp);
1856 
1857 	/* Data LED off for TBI mode */
1858 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1859 		CSR_WRITE_4(sc, NGE_GPIO,
1860 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1861 
1862 done_locked:
1863 	NGE_UNLOCK(sc);
1864 }
1865 
1866 /*
1867  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1868  * pointers to the fragment pointers.
1869  */
1870 static int
1871 nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1872 {
1873 	struct nge_txdesc *txd, *txd_last;
1874 	struct nge_desc *desc;
1875 	struct mbuf *m;
1876 	bus_dmamap_t map;
1877 	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1878 	int error, i, nsegs, prod, si;
1879 
1880 	NGE_LOCK_ASSERT(sc);
1881 
1882 	m = *m_head;
1883 	prod = sc->nge_cdata.nge_tx_prod;
1884 	txd = &sc->nge_cdata.nge_txdesc[prod];
1885 	txd_last = txd;
1886 	map = txd->tx_dmamap;
1887 	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1888 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1889 	if (error == EFBIG) {
1890 		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1891 		if (m == NULL) {
1892 			m_freem(*m_head);
1893 			*m_head = NULL;
1894 			return (ENOBUFS);
1895 		}
1896 		*m_head = m;
1897 		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1898 		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1899 		if (error != 0) {
1900 			m_freem(*m_head);
1901 			*m_head = NULL;
1902 			return (error);
1903 		}
1904 	} else if (error != 0)
1905 		return (error);
1906 	if (nsegs == 0) {
1907 		m_freem(*m_head);
1908 		*m_head = NULL;
1909 		return (EIO);
1910 	}
1911 
1912 	/* Check number of available descriptors. */
1913 	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1914 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1915 		return (ENOBUFS);
1916 	}
1917 
1918 	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1919 
1920 	si = prod;
1921 	for (i = 0; i < nsegs; i++) {
1922 		desc = &sc->nge_rdata.nge_tx_ring[prod];
1923 		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1924 		if (i == 0)
1925 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1926 			    NGE_CMDSTS_MORE);
1927 		else
1928 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1929 			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1930 		desc->nge_extsts = 0;
1931 		sc->nge_cdata.nge_tx_cnt++;
1932 		NGE_INC(prod, NGE_TX_RING_CNT);
1933 	}
1934 	/* Update producer index. */
1935 	sc->nge_cdata.nge_tx_prod = prod;
1936 
1937 	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1938 	desc = &sc->nge_rdata.nge_tx_ring[prod];
1939 	/* Check if we have a VLAN tag to insert. */
1940 	if ((m->m_flags & M_VLANTAG) != 0)
1941 		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1942 		    bswap16(m->m_pkthdr.ether_vtag));
1943 	/* Set EOP on the last descriptor. */
1944 	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1945 
1946 	/* Set checksum offload in the first descriptor. */
1947 	desc = &sc->nge_rdata.nge_tx_ring[si];
1948 	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1949 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1950 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1951 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1952 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1953 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1954 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1955 	}
1956 	/* Lastly, turn the first descriptor ownership to hardware. */
1957 	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1958 
1959 	txd = &sc->nge_cdata.nge_txdesc[prod];
1960 	map = txd_last->tx_dmamap;
1961 	txd_last->tx_dmamap = txd->tx_dmamap;
1962 	txd->tx_dmamap = map;
1963 	txd->tx_m = m;
1964 
1965 	return (0);
1966 }
1967 
1968 /*
1969  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1970  * to the mbuf data regions directly in the transmit lists. We also save a
1971  * copy of the pointers since the transmit list fragment pointers are
1972  * physical addresses.
1973  */
1974 
1975 static void
1976 nge_start(if_t ifp)
1977 {
1978 	struct nge_softc *sc;
1979 
1980 	sc = if_getsoftc(ifp);
1981 	NGE_LOCK(sc);
1982 	nge_start_locked(ifp);
1983 	NGE_UNLOCK(sc);
1984 }
1985 
1986 static void
1987 nge_start_locked(if_t ifp)
1988 {
1989 	struct nge_softc *sc;
1990 	struct mbuf *m_head;
1991 	int enq;
1992 
1993 	sc = if_getsoftc(ifp);
1994 
1995 	NGE_LOCK_ASSERT(sc);
1996 
1997 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1998 	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
1999 		return;
2000 
2001 	for (enq = 0; !if_sendq_empty(ifp) &&
2002 	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2003 		m_head = if_dequeue(ifp);
2004 		if (m_head == NULL)
2005 			break;
2006 		/*
2007 		 * Pack the data into the transmit ring. If we
2008 		 * don't have room, set the OACTIVE flag and wait
2009 		 * for the NIC to drain the ring.
2010 		 */
2011 		if (nge_encap(sc, &m_head)) {
2012 			if (m_head == NULL)
2013 				break;
2014 			if_sendq_prepend(ifp, m_head);
2015 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2016 			break;
2017 		}
2018 
2019 		enq++;
2020 		/*
2021 		 * If there's a BPF listener, bounce a copy of this frame
2022 		 * to him.
2023 		 */
2024 		ETHER_BPF_MTAP(ifp, m_head);
2025 	}
2026 
2027 	if (enq > 0) {
2028 		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2029 		    sc->nge_cdata.nge_tx_ring_map,
2030 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2031 		/* Transmit */
2032 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2033 
2034 		/* Set a timeout in case the chip goes out to lunch. */
2035 		sc->nge_watchdog_timer = 5;
2036 	}
2037 }
2038 
2039 static void
2040 nge_init(void *xsc)
2041 {
2042 	struct nge_softc *sc = xsc;
2043 
2044 	NGE_LOCK(sc);
2045 	nge_init_locked(sc);
2046 	NGE_UNLOCK(sc);
2047 }
2048 
2049 static void
2050 nge_init_locked(struct nge_softc *sc)
2051 {
2052 	if_t ifp = sc->nge_ifp;
2053 	struct mii_data *mii;
2054 	uint8_t *eaddr;
2055 	uint32_t reg;
2056 
2057 	NGE_LOCK_ASSERT(sc);
2058 
2059 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2060 		return;
2061 
2062 	/*
2063 	 * Cancel pending I/O and free all RX/TX buffers.
2064 	 */
2065 	nge_stop(sc);
2066 
2067 	/* Reset the adapter. */
2068 	nge_reset(sc);
2069 
2070 	/* Disable Rx filter prior to programming Rx filter. */
2071 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2072 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2073 
2074 	mii = device_get_softc(sc->nge_miibus);
2075 
2076 	/* Set MAC address. */
2077 	eaddr = if_getlladdr(sc->nge_ifp);
2078 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2079 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2080 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2081 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2082 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2083 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2084 
2085 	/* Init circular RX list. */
2086 	if (nge_list_rx_init(sc) == ENOBUFS) {
2087 		device_printf(sc->nge_dev, "initialization failed: no "
2088 			"memory for rx buffers\n");
2089 		nge_stop(sc);
2090 		return;
2091 	}
2092 
2093 	/*
2094 	 * Init tx descriptors.
2095 	 */
2096 	nge_list_tx_init(sc);
2097 
2098 	/* Set Rx filter. */
2099 	nge_rxfilter(sc);
2100 
2101 	/* Disable PRIQ ctl. */
2102 	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2103 
2104 	/*
2105 	 * Set pause frames parameters.
2106 	 *  Rx stat FIFO hi-threshold : 2 or more packets
2107 	 *  Rx stat FIFO lo-threshold : less than 2 packets
2108 	 *  Rx data FIFO hi-threshold : 2K or more bytes
2109 	 *  Rx data FIFO lo-threshold : less than 2K bytes
2110 	 *  pause time : (512ns * 0xffff) -> 33.55ms
2111 	 */
2112 	CSR_WRITE_4(sc, NGE_PAUSECSR,
2113 	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2114 	    NGE_PAUSECSR_PAUSE_ON_DA |
2115 	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2116 	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2117 	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2118 	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2119 	    NGE_PAUSECSR_CNT);
2120 
2121 	/*
2122 	 * Load the address of the RX and TX lists.
2123 	 */
2124 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2125 	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2126 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2127 	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2128 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2129 	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2130 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2131 	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2132 
2133 	/* Set RX configuration. */
2134 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2135 
2136 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2137 	/*
2138 	 * Enable hardware checksum validation for all IPv4
2139 	 * packets, do not reject packets with bad checksums.
2140 	 */
2141 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2142 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2143 
2144 	/*
2145 	 * Tell the chip to detect and strip VLAN tag info from
2146 	 * received frames. The tag will be provided in the extsts
2147 	 * field in the RX descriptors.
2148 	 */
2149 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2150 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2151 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2152 
2153 	/* Set TX configuration. */
2154 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2155 
2156 	/*
2157 	 * Enable TX IPv4 checksumming on a per-packet basis.
2158 	 */
2159 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2160 
2161 	/*
2162 	 * Tell the chip to insert VLAN tags on a per-packet basis as
2163 	 * dictated by the code in the frame encapsulation routine.
2164 	 */
2165 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2166 
2167 	/*
2168 	 * Enable the delivery of PHY interrupts based on
2169 	 * link/speed/duplex status changes. Also enable the
2170 	 * extsts field in the DMA descriptors (needed for
2171 	 * TCP/IP checksum offload on transmit).
2172 	 */
2173 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2174 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2175 
2176 	/*
2177 	 * Configure interrupt holdoff (moderation). We can
2178 	 * have the chip delay interrupt delivery for a certain
2179 	 * period. Units are in 100us, and the max setting
2180 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2181 	 */
2182 	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2183 
2184 	/*
2185 	 * Enable MAC statistics counters and clear.
2186 	 */
2187 	reg = CSR_READ_4(sc, NGE_MIBCTL);
2188 	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2189 	reg |= NGE_MIBCTL_CLEAR_CNT;
2190 	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2191 
2192 	/*
2193 	 * Enable interrupts.
2194 	 */
2195 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2196 #ifdef DEVICE_POLLING
2197 	/*
2198 	 * ... only enable interrupts if we are not polling, make sure
2199 	 * they are off otherwise.
2200 	 */
2201 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
2202 		CSR_WRITE_4(sc, NGE_IER, 0);
2203 	else
2204 #endif
2205 	CSR_WRITE_4(sc, NGE_IER, 1);
2206 
2207 	sc->nge_flags &= ~NGE_FLAG_LINK;
2208 	mii_mediachg(mii);
2209 
2210 	sc->nge_watchdog_timer = 0;
2211 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2212 
2213 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2214 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2215 }
2216 
2217 /*
2218  * Set media options.
2219  */
2220 static int
2221 nge_mediachange(if_t ifp)
2222 {
2223 	struct nge_softc *sc;
2224 	struct mii_data	*mii;
2225 	struct mii_softc *miisc;
2226 	int error;
2227 
2228 	sc = if_getsoftc(ifp);
2229 	NGE_LOCK(sc);
2230 	mii = device_get_softc(sc->nge_miibus);
2231 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2232 		PHY_RESET(miisc);
2233 	error = mii_mediachg(mii);
2234 	NGE_UNLOCK(sc);
2235 
2236 	return (error);
2237 }
2238 
2239 /*
2240  * Report current media status.
2241  */
2242 static void
2243 nge_mediastatus(if_t ifp, struct ifmediareq *ifmr)
2244 {
2245 	struct nge_softc *sc;
2246 	struct mii_data *mii;
2247 
2248 	sc = if_getsoftc(ifp);
2249 	NGE_LOCK(sc);
2250 	mii = device_get_softc(sc->nge_miibus);
2251 	mii_pollstat(mii);
2252 	ifmr->ifm_active = mii->mii_media_active;
2253 	ifmr->ifm_status = mii->mii_media_status;
2254 	NGE_UNLOCK(sc);
2255 }
2256 
2257 static int
2258 nge_ioctl(if_t ifp, u_long command, caddr_t data)
2259 {
2260 	struct nge_softc *sc = if_getsoftc(ifp);
2261 	struct ifreq *ifr = (struct ifreq *) data;
2262 	struct mii_data *mii;
2263 	int error = 0, mask;
2264 
2265 	switch (command) {
2266 	case SIOCSIFMTU:
2267 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2268 			error = EINVAL;
2269 		else {
2270 			NGE_LOCK(sc);
2271 			if_setmtu(ifp, ifr->ifr_mtu);
2272 			/*
2273 			 * Workaround: if the MTU is larger than
2274 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2275 			 * TX checksum offloading.
2276 			 */
2277 			if (ifr->ifr_mtu >= 8152) {
2278 				if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
2279 				if_sethwassistbits(ifp, 0, NGE_CSUM_FEATURES);
2280 			} else {
2281 				if_setcapenablebit(ifp, IFCAP_TXCSUM, 0);
2282 				if_sethwassistbits(ifp, NGE_CSUM_FEATURES, 0);
2283 			}
2284 			NGE_UNLOCK(sc);
2285 			VLAN_CAPABILITIES(ifp);
2286 		}
2287 		break;
2288 	case SIOCSIFFLAGS:
2289 		NGE_LOCK(sc);
2290 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2291 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2292 				if ((if_getflags(ifp) ^ sc->nge_if_flags) &
2293 				    (IFF_PROMISC | IFF_ALLMULTI))
2294 					nge_rxfilter(sc);
2295 			} else {
2296 				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2297 					nge_init_locked(sc);
2298 			}
2299 		} else {
2300 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2301 				nge_stop(sc);
2302 		}
2303 		sc->nge_if_flags = if_getflags(ifp);
2304 		NGE_UNLOCK(sc);
2305 		error = 0;
2306 		break;
2307 	case SIOCADDMULTI:
2308 	case SIOCDELMULTI:
2309 		NGE_LOCK(sc);
2310 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2311 			nge_rxfilter(sc);
2312 		NGE_UNLOCK(sc);
2313 		break;
2314 	case SIOCGIFMEDIA:
2315 	case SIOCSIFMEDIA:
2316 		mii = device_get_softc(sc->nge_miibus);
2317 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2318 		break;
2319 	case SIOCSIFCAP:
2320 		NGE_LOCK(sc);
2321 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2322 #ifdef DEVICE_POLLING
2323 		if ((mask & IFCAP_POLLING) != 0 &&
2324 		    (IFCAP_POLLING & if_getcapabilities(ifp)) != 0) {
2325 			if_togglecapenable(ifp, IFCAP_POLLING);
2326 			if ((IFCAP_POLLING & if_getcapenable(ifp)) != 0) {
2327 				error = ether_poll_register(nge_poll, ifp);
2328 				if (error != 0) {
2329 					NGE_UNLOCK(sc);
2330 					break;
2331 				}
2332 				/* Disable interrupts. */
2333 				CSR_WRITE_4(sc, NGE_IER, 0);
2334 			} else {
2335 				error = ether_poll_deregister(ifp);
2336 				/* Enable interrupts. */
2337 				CSR_WRITE_4(sc, NGE_IER, 1);
2338 			}
2339 		}
2340 #endif /* DEVICE_POLLING */
2341 		if ((mask & IFCAP_TXCSUM) != 0 &&
2342 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2343 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2344 			if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2345 				if_sethwassistbits(ifp, NGE_CSUM_FEATURES, 0);
2346 			else
2347 				if_sethwassistbits(ifp, 0, NGE_CSUM_FEATURES);
2348 		}
2349 		if ((mask & IFCAP_RXCSUM) != 0 &&
2350 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0)
2351 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2352 
2353 		if ((mask & IFCAP_WOL) != 0 &&
2354 		    (if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
2355 			if ((mask & IFCAP_WOL_UCAST) != 0)
2356 				if_togglecapenable(ifp, IFCAP_WOL_UCAST);
2357 			if ((mask & IFCAP_WOL_MCAST) != 0)
2358 				if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2359 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2360 				if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2361 		}
2362 
2363 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2364 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2365 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2366 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2367 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2368 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2369 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2370 				if ((if_getcapenable(ifp) &
2371 				    IFCAP_VLAN_HWTAGGING) != 0)
2372 					NGE_SETBIT(sc,
2373 					    NGE_VLAN_IP_RXCTL,
2374 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2375 				else
2376 					NGE_CLRBIT(sc,
2377 					    NGE_VLAN_IP_RXCTL,
2378 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2379 			}
2380 		}
2381 		/*
2382 		 * Both VLAN hardware tagging and checksum offload is
2383 		 * required to do checksum offload on VLAN interface.
2384 		 */
2385 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) == 0)
2386 			if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM);
2387 		if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2388 			if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM);
2389 		NGE_UNLOCK(sc);
2390 		VLAN_CAPABILITIES(ifp);
2391 		break;
2392 	default:
2393 		error = ether_ioctl(ifp, command, data);
2394 		break;
2395 	}
2396 
2397 	return (error);
2398 }
2399 
2400 static void
2401 nge_watchdog(struct nge_softc *sc)
2402 {
2403 	if_t ifp;
2404 
2405 	NGE_LOCK_ASSERT(sc);
2406 
2407 	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2408 		return;
2409 
2410 	ifp = sc->nge_ifp;
2411 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2412 	if_printf(ifp, "watchdog timeout\n");
2413 
2414 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2415 	nge_init_locked(sc);
2416 
2417 	if (!if_sendq_empty(ifp))
2418 		nge_start_locked(ifp);
2419 }
2420 
2421 static int
2422 nge_stop_mac(struct nge_softc *sc)
2423 {
2424 	uint32_t reg;
2425 	int i;
2426 
2427 	NGE_LOCK_ASSERT(sc);
2428 
2429 	reg = CSR_READ_4(sc, NGE_CSR);
2430 	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2431 		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2432 		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2433 		CSR_WRITE_4(sc, NGE_CSR, reg);
2434 		for (i = 0; i < NGE_TIMEOUT; i++) {
2435 			DELAY(1);
2436 			if ((CSR_READ_4(sc, NGE_CSR) &
2437 			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2438 				break;
2439 		}
2440 		if (i == NGE_TIMEOUT)
2441 			return (ETIMEDOUT);
2442 	}
2443 
2444 	return (0);
2445 }
2446 
2447 /*
2448  * Stop the adapter and free any mbufs allocated to the
2449  * RX and TX lists.
2450  */
2451 static void
2452 nge_stop(struct nge_softc *sc)
2453 {
2454 	struct nge_txdesc *txd;
2455 	struct nge_rxdesc *rxd;
2456 	int i;
2457 	if_t ifp;
2458 
2459 	NGE_LOCK_ASSERT(sc);
2460 	ifp = sc->nge_ifp;
2461 
2462 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2463 	sc->nge_flags &= ~NGE_FLAG_LINK;
2464 	callout_stop(&sc->nge_stat_ch);
2465 	sc->nge_watchdog_timer = 0;
2466 
2467 	CSR_WRITE_4(sc, NGE_IER, 0);
2468 	CSR_WRITE_4(sc, NGE_IMR, 0);
2469 	if (nge_stop_mac(sc) == ETIMEDOUT)
2470 		device_printf(sc->nge_dev,
2471 		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2472 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2473 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2474 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2475 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2476 	nge_stats_update(sc);
2477 	if (sc->nge_head != NULL) {
2478 		m_freem(sc->nge_head);
2479 		sc->nge_head = sc->nge_tail = NULL;
2480 	}
2481 
2482 	/*
2483 	 * Free RX and TX mbufs still in the queues.
2484 	 */
2485 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2486 		rxd = &sc->nge_cdata.nge_rxdesc[i];
2487 		if (rxd->rx_m != NULL) {
2488 			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2489 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2490 			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2491 			    rxd->rx_dmamap);
2492 			m_freem(rxd->rx_m);
2493 			rxd->rx_m = NULL;
2494 		}
2495 	}
2496 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2497 		txd = &sc->nge_cdata.nge_txdesc[i];
2498 		if (txd->tx_m != NULL) {
2499 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2500 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2501 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2502 			    txd->tx_dmamap);
2503 			m_freem(txd->tx_m);
2504 			txd->tx_m = NULL;
2505 		}
2506 	}
2507 }
2508 
2509 /*
2510  * Before setting WOL bits, caller should have stopped Receiver.
2511  */
2512 static void
2513 nge_wol(struct nge_softc *sc)
2514 {
2515 	if_t ifp;
2516 	uint32_t reg;
2517 	uint16_t pmstat;
2518 	int pmc;
2519 
2520 	NGE_LOCK_ASSERT(sc);
2521 
2522 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2523 		return;
2524 
2525 	ifp = sc->nge_ifp;
2526 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
2527 		/* Disable WOL & disconnect CLKRUN to save power. */
2528 		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2529 		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2530 	} else {
2531 		if (nge_stop_mac(sc) == ETIMEDOUT)
2532 			device_printf(sc->nge_dev,
2533 			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2534 		/*
2535 		 * Make sure wake frames will be buffered in the Rx FIFO.
2536 		 * (i.e. Silent Rx mode.)
2537 		 */
2538 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2539 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2540 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2541 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2542 		/* Enable Rx again. */
2543 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2544 		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2545 
2546 		/* Configure WOL events. */
2547 		reg = 0;
2548 		if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2549 			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2550 		if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
2551 			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2552 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2553 			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2554 		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2555 
2556 		/* Activate CLKRUN. */
2557 		reg = CSR_READ_4(sc, NGE_CLKRUN);
2558 		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2559 		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2560 	}
2561 
2562 	/* Request PME. */
2563 	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2564 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2565 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2566 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2567 	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2568 }
2569 
2570 /*
2571  * Stop all chip I/O so that the kernel's probe routines don't
2572  * get confused by errant DMAs when rebooting.
2573  */
2574 static int
2575 nge_shutdown(device_t dev)
2576 {
2577 
2578 	return (nge_suspend(dev));
2579 }
2580 
2581 static int
2582 nge_suspend(device_t dev)
2583 {
2584 	struct nge_softc *sc;
2585 
2586 	sc = device_get_softc(dev);
2587 
2588 	NGE_LOCK(sc);
2589 	nge_stop(sc);
2590 	nge_wol(sc);
2591 	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2592 	NGE_UNLOCK(sc);
2593 
2594 	return (0);
2595 }
2596 
2597 static int
2598 nge_resume(device_t dev)
2599 {
2600 	struct nge_softc *sc;
2601 	if_t ifp;
2602 	uint16_t pmstat;
2603 	int pmc;
2604 
2605 	sc = device_get_softc(dev);
2606 
2607 	NGE_LOCK(sc);
2608 	ifp = sc->nge_ifp;
2609 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2610 		/* Disable PME and clear PME status. */
2611 		pmstat = pci_read_config(sc->nge_dev,
2612 		    pmc + PCIR_POWER_STATUS, 2);
2613 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2614 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2615 			pci_write_config(sc->nge_dev,
2616 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2617 		}
2618 	}
2619 	if (if_getflags(ifp) & IFF_UP) {
2620 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2621 		nge_init_locked(sc);
2622 	}
2623 
2624 	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2625 	NGE_UNLOCK(sc);
2626 
2627 	return (0);
2628 }
2629 
2630 #define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2631 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2632 
2633 static void
2634 nge_sysctl_node(struct nge_softc *sc)
2635 {
2636 	struct sysctl_ctx_list *ctx;
2637 	struct sysctl_oid_list *child, *parent;
2638 	struct sysctl_oid *tree;
2639 	struct nge_stats *stats;
2640 	int error;
2641 
2642 	ctx = device_get_sysctl_ctx(sc->nge_dev);
2643 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2644 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2645 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->nge_int_holdoff,
2646 	    0, sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2647 	/* Pull in device tunables. */
2648 	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2649 	error = resource_int_value(device_get_name(sc->nge_dev),
2650 	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2651 	if (error == 0) {
2652 		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2653 		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2654 			device_printf(sc->nge_dev,
2655 			    "int_holdoff value out of range; "
2656 			    "using default: %d(%d us)\n",
2657 			    NGE_INT_HOLDOFF_DEFAULT,
2658 			    NGE_INT_HOLDOFF_DEFAULT * 100);
2659 			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2660 		}
2661 	}
2662 
2663 	stats = &sc->nge_stats;
2664 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2665 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NGE statistics");
2666 	parent = SYSCTL_CHILDREN(tree);
2667 
2668 	/* Rx statistics. */
2669 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2670 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
2671 	child = SYSCTL_CHILDREN(tree);
2672 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2673 	    &stats->rx_pkts_errs,
2674 	    "Packet errors including both wire errors and FIFO overruns");
2675 	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2676 	    &stats->rx_crc_errs, "CRC errors");
2677 	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2678 	    &stats->rx_fifo_oflows, "FIFO overflows");
2679 	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2680 	    &stats->rx_align_errs, "Frame alignment errors");
2681 	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2682 	    &stats->rx_sym_errs, "One or more symbol errors");
2683 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2684 	    &stats->rx_pkts_jumbos,
2685 	    "Packets received with length greater than 1518 bytes");
2686 	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2687 	    &stats->rx_len_errs, "In Range Length errors");
2688 	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2689 	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2690 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2691 	    &stats->rx_pause, "Pause frames");
2692 
2693 	/* Tx statistics. */
2694 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2695 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
2696 	child = SYSCTL_CHILDREN(tree);
2697 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2698 	    &stats->tx_pause, "Pause frames");
2699 	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2700 	    &stats->tx_seq_errs,
2701 	    "Loss of collision heartbeat during transmission");
2702 }
2703 
2704 #undef NGE_SYSCTL_STAT_ADD32
2705 
2706 static int
2707 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2708 {
2709 	int error, value;
2710 
2711 	if (arg1 == NULL)
2712 		return (EINVAL);
2713 	value = *(int *)arg1;
2714 	error = sysctl_handle_int(oidp, &value, 0, req);
2715 	if (error != 0 || req->newptr == NULL)
2716 		return (error);
2717 	if (value < low || value > high)
2718 		return (EINVAL);
2719 	*(int *)arg1 = value;
2720 
2721 	return (0);
2722 }
2723 
2724 static int
2725 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2726 {
2727 
2728 	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2729 	    NGE_INT_HOLDOFF_MAX));
2730 }
2731