1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2001 Wind River Systems 5 * Copyright (c) 1997, 1998, 1999, 2000, 2001 6 * Bill Paul <wpaul@bsdi.com>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 /* 40 * National Semiconductor DP83820/DP83821 gigabit ethernet driver 41 * for FreeBSD. Datasheets are available from: 42 * 43 * http://www.national.com/ds/DP/DP83820.pdf 44 * http://www.national.com/ds/DP/DP83821.pdf 45 * 46 * These chips are used on several low cost gigabit ethernet NICs 47 * sold by D-Link, Addtron, SMC and Asante. Both parts are 48 * virtually the same, except the 83820 is a 64-bit/32-bit part, 49 * while the 83821 is 32-bit only. 50 * 51 * Many cards also use National gigE transceivers, such as the 52 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet 53 * contains a full register description that applies to all of these 54 * components: 55 * 56 * http://www.national.com/ds/DP/DP83861.pdf 57 * 58 * Written by Bill Paul <wpaul@bsdi.com> 59 * BSDi Open Source Solutions 60 */ 61 62 /* 63 * The NatSemi DP83820 and 83821 controllers are enhanced versions 64 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100 65 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII 66 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP 67 * hardware checksum offload (IPv4 only), VLAN tagging and filtering, 68 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern 69 * matching buffers, one perfect address filter buffer and interrupt 70 * moderation. The 83820 supports both 64-bit and 32-bit addressing 71 * and data transfers: the 64-bit support can be toggled on or off 72 * via software. This affects the size of certain fields in the DMA 73 * descriptors. 74 * 75 * There are two bugs/misfeatures in the 83820/83821 that I have 76 * discovered so far: 77 * 78 * - Receive buffers must be aligned on 64-bit boundaries, which means 79 * you must resort to copying data in order to fix up the payload 80 * alignment. 81 * 82 * - In order to transmit jumbo frames larger than 8170 bytes, you have 83 * to turn off transmit checksum offloading, because the chip can't 84 * compute the checksum on an outgoing frame unless it fits entirely 85 * within the TX FIFO, which is only 8192 bytes in size. If you have 86 * TX checksum offload enabled and you transmit attempt to transmit a 87 * frame larger than 8170 bytes, the transmitter will wedge. 88 * 89 * To work around the latter problem, TX checksum offload is disabled 90 * if the user selects an MTU larger than 8152 (8170 - 18). 91 */ 92 93 #ifdef HAVE_KERNEL_OPTION_HEADERS 94 #include "opt_device_polling.h" 95 #endif 96 97 #include <sys/param.h> 98 #include <sys/systm.h> 99 #include <sys/bus.h> 100 #include <sys/endian.h> 101 #include <sys/kernel.h> 102 #include <sys/lock.h> 103 #include <sys/malloc.h> 104 #include <sys/mbuf.h> 105 #include <sys/module.h> 106 #include <sys/mutex.h> 107 #include <sys/rman.h> 108 #include <sys/socket.h> 109 #include <sys/sockio.h> 110 #include <sys/sysctl.h> 111 112 #include <net/bpf.h> 113 #include <net/if.h> 114 #include <net/if_var.h> 115 #include <net/if_arp.h> 116 #include <net/ethernet.h> 117 #include <net/if_dl.h> 118 #include <net/if_media.h> 119 #include <net/if_types.h> 120 #include <net/if_vlan_var.h> 121 122 #include <dev/mii/mii.h> 123 #include <dev/mii/mii_bitbang.h> 124 #include <dev/mii/miivar.h> 125 126 #include <dev/pci/pcireg.h> 127 #include <dev/pci/pcivar.h> 128 129 #include <machine/bus.h> 130 131 #include <dev/nge/if_ngereg.h> 132 133 /* "device miibus" required. See GENERIC if you get errors here. */ 134 #include "miibus_if.h" 135 136 MODULE_DEPEND(nge, pci, 1, 1, 1); 137 MODULE_DEPEND(nge, ether, 1, 1, 1); 138 MODULE_DEPEND(nge, miibus, 1, 1, 1); 139 140 #define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 141 142 /* 143 * Various supported device vendors/types and their names. 144 */ 145 static const struct nge_type nge_devs[] = { 146 { NGE_VENDORID, NGE_DEVICEID, 147 "National Semiconductor Gigabit Ethernet" }, 148 { 0, 0, NULL } 149 }; 150 151 static int nge_probe(device_t); 152 static int nge_attach(device_t); 153 static int nge_detach(device_t); 154 static int nge_shutdown(device_t); 155 static int nge_suspend(device_t); 156 static int nge_resume(device_t); 157 158 static __inline void nge_discard_rxbuf(struct nge_softc *, int); 159 static int nge_newbuf(struct nge_softc *, int); 160 static int nge_encap(struct nge_softc *, struct mbuf **); 161 #ifndef __NO_STRICT_ALIGNMENT 162 static __inline void nge_fixup_rx(struct mbuf *); 163 #endif 164 static int nge_rxeof(struct nge_softc *); 165 static void nge_txeof(struct nge_softc *); 166 static void nge_intr(void *); 167 static void nge_tick(void *); 168 static void nge_stats_update(struct nge_softc *); 169 static void nge_start(struct ifnet *); 170 static void nge_start_locked(struct ifnet *); 171 static int nge_ioctl(struct ifnet *, u_long, caddr_t); 172 static void nge_init(void *); 173 static void nge_init_locked(struct nge_softc *); 174 static int nge_stop_mac(struct nge_softc *); 175 static void nge_stop(struct nge_softc *); 176 static void nge_wol(struct nge_softc *); 177 static void nge_watchdog(struct nge_softc *); 178 static int nge_mediachange(struct ifnet *); 179 static void nge_mediastatus(struct ifnet *, struct ifmediareq *); 180 181 static void nge_delay(struct nge_softc *); 182 static void nge_eeprom_idle(struct nge_softc *); 183 static void nge_eeprom_putbyte(struct nge_softc *, int); 184 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *); 185 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int); 186 187 static int nge_miibus_readreg(device_t, int, int); 188 static int nge_miibus_writereg(device_t, int, int, int); 189 static void nge_miibus_statchg(device_t); 190 191 static void nge_rxfilter(struct nge_softc *); 192 static void nge_reset(struct nge_softc *); 193 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int); 194 static int nge_dma_alloc(struct nge_softc *); 195 static void nge_dma_free(struct nge_softc *); 196 static int nge_list_rx_init(struct nge_softc *); 197 static int nge_list_tx_init(struct nge_softc *); 198 static void nge_sysctl_node(struct nge_softc *); 199 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 200 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS); 201 202 /* 203 * MII bit-bang glue 204 */ 205 static uint32_t nge_mii_bitbang_read(device_t); 206 static void nge_mii_bitbang_write(device_t, uint32_t); 207 208 static const struct mii_bitbang_ops nge_mii_bitbang_ops = { 209 nge_mii_bitbang_read, 210 nge_mii_bitbang_write, 211 { 212 NGE_MEAR_MII_DATA, /* MII_BIT_MDO */ 213 NGE_MEAR_MII_DATA, /* MII_BIT_MDI */ 214 NGE_MEAR_MII_CLK, /* MII_BIT_MDC */ 215 NGE_MEAR_MII_DIR, /* MII_BIT_DIR_HOST_PHY */ 216 0, /* MII_BIT_DIR_PHY_HOST */ 217 } 218 }; 219 220 static device_method_t nge_methods[] = { 221 /* Device interface */ 222 DEVMETHOD(device_probe, nge_probe), 223 DEVMETHOD(device_attach, nge_attach), 224 DEVMETHOD(device_detach, nge_detach), 225 DEVMETHOD(device_shutdown, nge_shutdown), 226 DEVMETHOD(device_suspend, nge_suspend), 227 DEVMETHOD(device_resume, nge_resume), 228 229 /* MII interface */ 230 DEVMETHOD(miibus_readreg, nge_miibus_readreg), 231 DEVMETHOD(miibus_writereg, nge_miibus_writereg), 232 DEVMETHOD(miibus_statchg, nge_miibus_statchg), 233 234 DEVMETHOD_END 235 }; 236 237 static driver_t nge_driver = { 238 "nge", 239 nge_methods, 240 sizeof(struct nge_softc) 241 }; 242 243 static devclass_t nge_devclass; 244 245 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0); 246 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0); 247 248 #define NGE_SETBIT(sc, reg, x) \ 249 CSR_WRITE_4(sc, reg, \ 250 CSR_READ_4(sc, reg) | (x)) 251 252 #define NGE_CLRBIT(sc, reg, x) \ 253 CSR_WRITE_4(sc, reg, \ 254 CSR_READ_4(sc, reg) & ~(x)) 255 256 #define SIO_SET(x) \ 257 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x)) 258 259 #define SIO_CLR(x) \ 260 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x)) 261 262 static void 263 nge_delay(struct nge_softc *sc) 264 { 265 int idx; 266 267 for (idx = (300 / 33) + 1; idx > 0; idx--) 268 CSR_READ_4(sc, NGE_CSR); 269 } 270 271 static void 272 nge_eeprom_idle(struct nge_softc *sc) 273 { 274 int i; 275 276 SIO_SET(NGE_MEAR_EE_CSEL); 277 nge_delay(sc); 278 SIO_SET(NGE_MEAR_EE_CLK); 279 nge_delay(sc); 280 281 for (i = 0; i < 25; i++) { 282 SIO_CLR(NGE_MEAR_EE_CLK); 283 nge_delay(sc); 284 SIO_SET(NGE_MEAR_EE_CLK); 285 nge_delay(sc); 286 } 287 288 SIO_CLR(NGE_MEAR_EE_CLK); 289 nge_delay(sc); 290 SIO_CLR(NGE_MEAR_EE_CSEL); 291 nge_delay(sc); 292 CSR_WRITE_4(sc, NGE_MEAR, 0x00000000); 293 } 294 295 /* 296 * Send a read command and address to the EEPROM, check for ACK. 297 */ 298 static void 299 nge_eeprom_putbyte(struct nge_softc *sc, int addr) 300 { 301 int d, i; 302 303 d = addr | NGE_EECMD_READ; 304 305 /* 306 * Feed in each bit and stobe the clock. 307 */ 308 for (i = 0x400; i; i >>= 1) { 309 if (d & i) { 310 SIO_SET(NGE_MEAR_EE_DIN); 311 } else { 312 SIO_CLR(NGE_MEAR_EE_DIN); 313 } 314 nge_delay(sc); 315 SIO_SET(NGE_MEAR_EE_CLK); 316 nge_delay(sc); 317 SIO_CLR(NGE_MEAR_EE_CLK); 318 nge_delay(sc); 319 } 320 } 321 322 /* 323 * Read a word of data stored in the EEPROM at address 'addr.' 324 */ 325 static void 326 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest) 327 { 328 int i; 329 uint16_t word = 0; 330 331 /* Force EEPROM to idle state. */ 332 nge_eeprom_idle(sc); 333 334 /* Enter EEPROM access mode. */ 335 nge_delay(sc); 336 SIO_CLR(NGE_MEAR_EE_CLK); 337 nge_delay(sc); 338 SIO_SET(NGE_MEAR_EE_CSEL); 339 nge_delay(sc); 340 341 /* 342 * Send address of word we want to read. 343 */ 344 nge_eeprom_putbyte(sc, addr); 345 346 /* 347 * Start reading bits from EEPROM. 348 */ 349 for (i = 0x8000; i; i >>= 1) { 350 SIO_SET(NGE_MEAR_EE_CLK); 351 nge_delay(sc); 352 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT) 353 word |= i; 354 nge_delay(sc); 355 SIO_CLR(NGE_MEAR_EE_CLK); 356 nge_delay(sc); 357 } 358 359 /* Turn off EEPROM access mode. */ 360 nge_eeprom_idle(sc); 361 362 *dest = word; 363 } 364 365 /* 366 * Read a sequence of words from the EEPROM. 367 */ 368 static void 369 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt) 370 { 371 int i; 372 uint16_t word = 0, *ptr; 373 374 for (i = 0; i < cnt; i++) { 375 nge_eeprom_getword(sc, off + i, &word); 376 ptr = (uint16_t *)(dest + (i * 2)); 377 *ptr = word; 378 } 379 } 380 381 /* 382 * Read the MII serial port for the MII bit-bang module. 383 */ 384 static uint32_t 385 nge_mii_bitbang_read(device_t dev) 386 { 387 struct nge_softc *sc; 388 uint32_t val; 389 390 sc = device_get_softc(dev); 391 392 val = CSR_READ_4(sc, NGE_MEAR); 393 CSR_BARRIER_4(sc, NGE_MEAR, 394 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 395 396 return (val); 397 } 398 399 /* 400 * Write the MII serial port for the MII bit-bang module. 401 */ 402 static void 403 nge_mii_bitbang_write(device_t dev, uint32_t val) 404 { 405 struct nge_softc *sc; 406 407 sc = device_get_softc(dev); 408 409 CSR_WRITE_4(sc, NGE_MEAR, val); 410 CSR_BARRIER_4(sc, NGE_MEAR, 411 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 412 } 413 414 static int 415 nge_miibus_readreg(device_t dev, int phy, int reg) 416 { 417 struct nge_softc *sc; 418 int rv; 419 420 sc = device_get_softc(dev); 421 if ((sc->nge_flags & NGE_FLAG_TBI) != 0) { 422 /* Pretend PHY is at address 0. */ 423 if (phy != 0) 424 return (0); 425 switch (reg) { 426 case MII_BMCR: 427 reg = NGE_TBI_BMCR; 428 break; 429 case MII_BMSR: 430 /* 83820/83821 has different bit layout for BMSR. */ 431 rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT; 432 reg = CSR_READ_4(sc, NGE_TBI_BMSR); 433 if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0) 434 rv |= BMSR_ACOMP; 435 if ((reg & NGE_TBIBMSR_LINKSTAT) != 0) 436 rv |= BMSR_LINK; 437 return (rv); 438 case MII_ANAR: 439 reg = NGE_TBI_ANAR; 440 break; 441 case MII_ANLPAR: 442 reg = NGE_TBI_ANLPAR; 443 break; 444 case MII_ANER: 445 reg = NGE_TBI_ANER; 446 break; 447 case MII_EXTSR: 448 reg = NGE_TBI_ESR; 449 break; 450 case MII_PHYIDR1: 451 case MII_PHYIDR2: 452 return (0); 453 default: 454 device_printf(sc->nge_dev, 455 "bad phy register read : %d\n", reg); 456 return (0); 457 } 458 return (CSR_READ_4(sc, reg)); 459 } 460 461 return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg)); 462 } 463 464 static int 465 nge_miibus_writereg(device_t dev, int phy, int reg, int data) 466 { 467 struct nge_softc *sc; 468 469 sc = device_get_softc(dev); 470 if ((sc->nge_flags & NGE_FLAG_TBI) != 0) { 471 /* Pretend PHY is at address 0. */ 472 if (phy != 0) 473 return (0); 474 switch (reg) { 475 case MII_BMCR: 476 reg = NGE_TBI_BMCR; 477 break; 478 case MII_BMSR: 479 return (0); 480 case MII_ANAR: 481 reg = NGE_TBI_ANAR; 482 break; 483 case MII_ANLPAR: 484 reg = NGE_TBI_ANLPAR; 485 break; 486 case MII_ANER: 487 reg = NGE_TBI_ANER; 488 break; 489 case MII_EXTSR: 490 reg = NGE_TBI_ESR; 491 break; 492 case MII_PHYIDR1: 493 case MII_PHYIDR2: 494 return (0); 495 default: 496 device_printf(sc->nge_dev, 497 "bad phy register write : %d\n", reg); 498 return (0); 499 } 500 CSR_WRITE_4(sc, reg, data); 501 return (0); 502 } 503 504 mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data); 505 506 return (0); 507 } 508 509 /* 510 * media status/link state change handler. 511 */ 512 static void 513 nge_miibus_statchg(device_t dev) 514 { 515 struct nge_softc *sc; 516 struct mii_data *mii; 517 struct ifnet *ifp; 518 struct nge_txdesc *txd; 519 uint32_t done, reg, status; 520 int i; 521 522 sc = device_get_softc(dev); 523 NGE_LOCK_ASSERT(sc); 524 525 mii = device_get_softc(sc->nge_miibus); 526 ifp = sc->nge_ifp; 527 if (mii == NULL || ifp == NULL || 528 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 529 return; 530 531 sc->nge_flags &= ~NGE_FLAG_LINK; 532 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) == 533 (IFM_AVALID | IFM_ACTIVE)) { 534 switch (IFM_SUBTYPE(mii->mii_media_active)) { 535 case IFM_10_T: 536 case IFM_100_TX: 537 case IFM_1000_T: 538 case IFM_1000_SX: 539 case IFM_1000_LX: 540 case IFM_1000_CX: 541 sc->nge_flags |= NGE_FLAG_LINK; 542 break; 543 default: 544 break; 545 } 546 } 547 548 /* Stop Tx/Rx MACs. */ 549 if (nge_stop_mac(sc) == ETIMEDOUT) 550 device_printf(sc->nge_dev, 551 "%s: unable to stop Tx/Rx MAC\n", __func__); 552 nge_txeof(sc); 553 nge_rxeof(sc); 554 if (sc->nge_head != NULL) { 555 m_freem(sc->nge_head); 556 sc->nge_head = sc->nge_tail = NULL; 557 } 558 559 /* Release queued frames. */ 560 for (i = 0; i < NGE_TX_RING_CNT; i++) { 561 txd = &sc->nge_cdata.nge_txdesc[i]; 562 if (txd->tx_m != NULL) { 563 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, 564 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 565 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, 566 txd->tx_dmamap); 567 m_freem(txd->tx_m); 568 txd->tx_m = NULL; 569 } 570 } 571 572 /* Program MAC with resolved speed/duplex. */ 573 if ((sc->nge_flags & NGE_FLAG_LINK) != 0) { 574 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 575 NGE_SETBIT(sc, NGE_TX_CFG, 576 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 577 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 578 #ifdef notyet 579 /* Enable flow-control. */ 580 if ((IFM_OPTIONS(mii->mii_media_active) & 581 (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0) 582 NGE_SETBIT(sc, NGE_PAUSECSR, 583 NGE_PAUSECSR_PAUSE_ENB); 584 #endif 585 } else { 586 NGE_CLRBIT(sc, NGE_TX_CFG, 587 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 588 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 589 NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB); 590 } 591 /* If we have a 1000Mbps link, set the mode_1000 bit. */ 592 reg = CSR_READ_4(sc, NGE_CFG); 593 switch (IFM_SUBTYPE(mii->mii_media_active)) { 594 case IFM_1000_SX: 595 case IFM_1000_LX: 596 case IFM_1000_CX: 597 case IFM_1000_T: 598 reg |= NGE_CFG_MODE_1000; 599 break; 600 default: 601 reg &= ~NGE_CFG_MODE_1000; 602 break; 603 } 604 CSR_WRITE_4(sc, NGE_CFG, reg); 605 606 /* Reset Tx/Rx MAC. */ 607 reg = CSR_READ_4(sc, NGE_CSR); 608 reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET; 609 CSR_WRITE_4(sc, NGE_CSR, reg); 610 /* Check the completion of reset. */ 611 done = 0; 612 for (i = 0; i < NGE_TIMEOUT; i++) { 613 DELAY(1); 614 status = CSR_READ_4(sc, NGE_ISR); 615 if ((status & NGE_ISR_RX_RESET_DONE) != 0) 616 done |= NGE_ISR_RX_RESET_DONE; 617 if ((status & NGE_ISR_TX_RESET_DONE) != 0) 618 done |= NGE_ISR_TX_RESET_DONE; 619 if (done == 620 (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE)) 621 break; 622 } 623 if (i == NGE_TIMEOUT) 624 device_printf(sc->nge_dev, 625 "%s: unable to reset Tx/Rx MAC\n", __func__); 626 /* Reuse Rx buffer and reset consumer pointer. */ 627 sc->nge_cdata.nge_rx_cons = 0; 628 /* 629 * It seems that resetting Rx/Tx MAC results in 630 * resetting Tx/Rx descriptor pointer registers such 631 * that reloading Tx/Rx lists address are needed. 632 */ 633 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 634 NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr)); 635 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 636 NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr)); 637 CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 638 NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr)); 639 CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 640 NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr)); 641 /* Reinitialize Tx buffers. */ 642 nge_list_tx_init(sc); 643 644 /* Restart Rx MAC. */ 645 reg = CSR_READ_4(sc, NGE_CSR); 646 reg |= NGE_CSR_RX_ENABLE; 647 CSR_WRITE_4(sc, NGE_CSR, reg); 648 for (i = 0; i < NGE_TIMEOUT; i++) { 649 if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0) 650 break; 651 DELAY(1); 652 } 653 if (i == NGE_TIMEOUT) 654 device_printf(sc->nge_dev, 655 "%s: unable to restart Rx MAC\n", __func__); 656 } 657 658 /* Data LED off for TBI mode */ 659 if ((sc->nge_flags & NGE_FLAG_TBI) != 0) 660 CSR_WRITE_4(sc, NGE_GPIO, 661 CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT); 662 } 663 664 static void 665 nge_rxfilter(struct nge_softc *sc) 666 { 667 struct ifnet *ifp; 668 struct ifmultiaddr *ifma; 669 uint32_t h, i, rxfilt; 670 int bit, index; 671 672 NGE_LOCK_ASSERT(sc); 673 ifp = sc->nge_ifp; 674 675 /* Make sure to stop Rx filtering. */ 676 rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL); 677 rxfilt &= ~NGE_RXFILTCTL_ENABLE; 678 CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt); 679 CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE); 680 681 rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS); 682 rxfilt &= ~NGE_RXFILTCTL_BROAD; 683 /* 684 * We don't want to use the hash table for matching unicast 685 * addresses. 686 */ 687 rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH); 688 689 /* 690 * For the NatSemi chip, we have to explicitly enable the 691 * reception of ARP frames, as well as turn on the 'perfect 692 * match' filter where we store the station address, otherwise 693 * we won't receive unicasts meant for this host. 694 */ 695 rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT; 696 697 /* 698 * Set the capture broadcast bit to capture broadcast frames. 699 */ 700 if ((ifp->if_flags & IFF_BROADCAST) != 0) 701 rxfilt |= NGE_RXFILTCTL_BROAD; 702 703 if ((ifp->if_flags & IFF_PROMISC) != 0 || 704 (ifp->if_flags & IFF_ALLMULTI) != 0) { 705 rxfilt |= NGE_RXFILTCTL_ALLMULTI; 706 if ((ifp->if_flags & IFF_PROMISC) != 0) 707 rxfilt |= NGE_RXFILTCTL_ALLPHYS; 708 goto done; 709 } 710 711 /* 712 * We have to explicitly enable the multicast hash table 713 * on the NatSemi chip if we want to use it, which we do. 714 */ 715 rxfilt |= NGE_RXFILTCTL_MCHASH; 716 717 /* first, zot all the existing hash bits */ 718 for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) { 719 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i); 720 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0); 721 } 722 723 /* 724 * From the 11 bits returned by the crc routine, the top 7 725 * bits represent the 16-bit word in the mcast hash table 726 * that needs to be updated, and the lower 4 bits represent 727 * which bit within that byte needs to be set. 728 */ 729 if_maddr_rlock(ifp); 730 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 731 if (ifma->ifma_addr->sa_family != AF_LINK) 732 continue; 733 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 734 ifma->ifma_addr), ETHER_ADDR_LEN) >> 21; 735 index = (h >> 4) & 0x7F; 736 bit = h & 0xF; 737 CSR_WRITE_4(sc, NGE_RXFILT_CTL, 738 NGE_FILTADDR_MCAST_LO + (index * 2)); 739 NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit)); 740 } 741 if_maddr_runlock(ifp); 742 743 done: 744 CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt); 745 /* Turn the receive filter on. */ 746 rxfilt |= NGE_RXFILTCTL_ENABLE; 747 CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt); 748 CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE); 749 } 750 751 static void 752 nge_reset(struct nge_softc *sc) 753 { 754 uint32_t v; 755 int i; 756 757 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET); 758 759 for (i = 0; i < NGE_TIMEOUT; i++) { 760 if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET)) 761 break; 762 DELAY(1); 763 } 764 765 if (i == NGE_TIMEOUT) 766 device_printf(sc->nge_dev, "reset never completed\n"); 767 768 /* Wait a little while for the chip to get its brains in order. */ 769 DELAY(1000); 770 771 /* 772 * If this is a NetSemi chip, make sure to clear 773 * PME mode. 774 */ 775 CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS); 776 CSR_WRITE_4(sc, NGE_CLKRUN, 0); 777 778 /* Clear WOL events which may interfere normal Rx filter opertaion. */ 779 CSR_WRITE_4(sc, NGE_WOLCSR, 0); 780 781 /* 782 * Only DP83820 supports 64bits addressing/data transfers and 783 * 64bit addressing requires different descriptor structures. 784 * To make it simple, disable 64bit addressing/data transfers. 785 */ 786 v = CSR_READ_4(sc, NGE_CFG); 787 v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB); 788 CSR_WRITE_4(sc, NGE_CFG, v); 789 } 790 791 /* 792 * Probe for a NatSemi chip. Check the PCI vendor and device 793 * IDs against our list and return a device name if we find a match. 794 */ 795 static int 796 nge_probe(device_t dev) 797 { 798 const struct nge_type *t; 799 800 t = nge_devs; 801 802 while (t->nge_name != NULL) { 803 if ((pci_get_vendor(dev) == t->nge_vid) && 804 (pci_get_device(dev) == t->nge_did)) { 805 device_set_desc(dev, t->nge_name); 806 return (BUS_PROBE_DEFAULT); 807 } 808 t++; 809 } 810 811 return (ENXIO); 812 } 813 814 /* 815 * Attach the interface. Allocate softc structures, do ifmedia 816 * setup and ethernet/BPF attach. 817 */ 818 static int 819 nge_attach(device_t dev) 820 { 821 uint8_t eaddr[ETHER_ADDR_LEN]; 822 uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg; 823 struct nge_softc *sc; 824 struct ifnet *ifp; 825 int error, i, rid; 826 827 error = 0; 828 sc = device_get_softc(dev); 829 sc->nge_dev = dev; 830 831 NGE_LOCK_INIT(sc, device_get_nameunit(dev)); 832 callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0); 833 834 /* 835 * Map control/status registers. 836 */ 837 pci_enable_busmaster(dev); 838 839 #ifdef NGE_USEIOSPACE 840 sc->nge_res_type = SYS_RES_IOPORT; 841 sc->nge_res_id = PCIR_BAR(0); 842 #else 843 sc->nge_res_type = SYS_RES_MEMORY; 844 sc->nge_res_id = PCIR_BAR(1); 845 #endif 846 sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type, 847 &sc->nge_res_id, RF_ACTIVE); 848 849 if (sc->nge_res == NULL) { 850 if (sc->nge_res_type == SYS_RES_MEMORY) { 851 sc->nge_res_type = SYS_RES_IOPORT; 852 sc->nge_res_id = PCIR_BAR(0); 853 } else { 854 sc->nge_res_type = SYS_RES_MEMORY; 855 sc->nge_res_id = PCIR_BAR(1); 856 } 857 sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type, 858 &sc->nge_res_id, RF_ACTIVE); 859 if (sc->nge_res == NULL) { 860 device_printf(dev, "couldn't allocate %s resources\n", 861 sc->nge_res_type == SYS_RES_MEMORY ? "memory" : 862 "I/O"); 863 NGE_LOCK_DESTROY(sc); 864 return (ENXIO); 865 } 866 } 867 868 /* Allocate interrupt */ 869 rid = 0; 870 sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 871 RF_SHAREABLE | RF_ACTIVE); 872 873 if (sc->nge_irq == NULL) { 874 device_printf(dev, "couldn't map interrupt\n"); 875 error = ENXIO; 876 goto fail; 877 } 878 879 /* Enable MWI. */ 880 reg = pci_read_config(dev, PCIR_COMMAND, 2); 881 reg |= PCIM_CMD_MWRICEN; 882 pci_write_config(dev, PCIR_COMMAND, reg, 2); 883 884 /* Reset the adapter. */ 885 nge_reset(sc); 886 887 /* 888 * Get station address from the EEPROM. 889 */ 890 nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3); 891 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) 892 ea[i] = le16toh(ea[i]); 893 ea_temp = ea[0]; 894 ea[0] = ea[2]; 895 ea[2] = ea_temp; 896 bcopy(ea, eaddr, sizeof(eaddr)); 897 898 if (nge_dma_alloc(sc) != 0) { 899 error = ENXIO; 900 goto fail; 901 } 902 903 nge_sysctl_node(sc); 904 905 ifp = sc->nge_ifp = if_alloc(IFT_ETHER); 906 if (ifp == NULL) { 907 device_printf(dev, "can not allocate ifnet structure\n"); 908 error = ENOSPC; 909 goto fail; 910 } 911 ifp->if_softc = sc; 912 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 913 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 914 ifp->if_ioctl = nge_ioctl; 915 ifp->if_start = nge_start; 916 ifp->if_init = nge_init; 917 ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1; 918 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 919 IFQ_SET_READY(&ifp->if_snd); 920 ifp->if_hwassist = NGE_CSUM_FEATURES; 921 ifp->if_capabilities = IFCAP_HWCSUM; 922 /* 923 * It seems that some hardwares doesn't provide 3.3V auxiliary 924 * supply(3VAUX) to drive PME such that checking PCI power 925 * management capability is necessary. 926 */ 927 if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0) 928 ifp->if_capabilities |= IFCAP_WOL; 929 ifp->if_capenable = ifp->if_capabilities; 930 931 if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) { 932 sc->nge_flags |= NGE_FLAG_TBI; 933 device_printf(dev, "Using TBI\n"); 934 /* Configure GPIO. */ 935 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 936 | NGE_GPIO_GP4_OUT 937 | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB 938 | NGE_GPIO_GP3_OUTENB 939 | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN); 940 } 941 942 /* 943 * Do MII setup. 944 */ 945 error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange, 946 nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); 947 if (error != 0) { 948 device_printf(dev, "attaching PHYs failed\n"); 949 goto fail; 950 } 951 952 /* 953 * Call MI attach routine. 954 */ 955 ether_ifattach(ifp, eaddr); 956 957 /* VLAN capability setup. */ 958 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 959 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 960 ifp->if_capenable = ifp->if_capabilities; 961 #ifdef DEVICE_POLLING 962 ifp->if_capabilities |= IFCAP_POLLING; 963 #endif 964 /* 965 * Tell the upper layer(s) we support long frames. 966 * Must appear after the call to ether_ifattach() because 967 * ether_ifattach() sets ifi_hdrlen to the default value. 968 */ 969 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 970 971 /* 972 * Hookup IRQ last. 973 */ 974 error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE, 975 NULL, nge_intr, sc, &sc->nge_intrhand); 976 if (error) { 977 device_printf(dev, "couldn't set up irq\n"); 978 goto fail; 979 } 980 981 fail: 982 if (error != 0) 983 nge_detach(dev); 984 return (error); 985 } 986 987 static int 988 nge_detach(device_t dev) 989 { 990 struct nge_softc *sc; 991 struct ifnet *ifp; 992 993 sc = device_get_softc(dev); 994 ifp = sc->nge_ifp; 995 996 #ifdef DEVICE_POLLING 997 if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING) 998 ether_poll_deregister(ifp); 999 #endif 1000 1001 if (device_is_attached(dev)) { 1002 NGE_LOCK(sc); 1003 sc->nge_flags |= NGE_FLAG_DETACH; 1004 nge_stop(sc); 1005 NGE_UNLOCK(sc); 1006 callout_drain(&sc->nge_stat_ch); 1007 if (ifp != NULL) 1008 ether_ifdetach(ifp); 1009 } 1010 1011 if (sc->nge_miibus != NULL) { 1012 device_delete_child(dev, sc->nge_miibus); 1013 sc->nge_miibus = NULL; 1014 } 1015 bus_generic_detach(dev); 1016 if (sc->nge_intrhand != NULL) 1017 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 1018 if (sc->nge_irq != NULL) 1019 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 1020 if (sc->nge_res != NULL) 1021 bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id, 1022 sc->nge_res); 1023 1024 nge_dma_free(sc); 1025 if (ifp != NULL) 1026 if_free(ifp); 1027 1028 NGE_LOCK_DESTROY(sc); 1029 1030 return (0); 1031 } 1032 1033 struct nge_dmamap_arg { 1034 bus_addr_t nge_busaddr; 1035 }; 1036 1037 static void 1038 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1039 { 1040 struct nge_dmamap_arg *ctx; 1041 1042 if (error != 0) 1043 return; 1044 ctx = arg; 1045 ctx->nge_busaddr = segs[0].ds_addr; 1046 } 1047 1048 static int 1049 nge_dma_alloc(struct nge_softc *sc) 1050 { 1051 struct nge_dmamap_arg ctx; 1052 struct nge_txdesc *txd; 1053 struct nge_rxdesc *rxd; 1054 int error, i; 1055 1056 /* Create parent DMA tag. */ 1057 error = bus_dma_tag_create( 1058 bus_get_dma_tag(sc->nge_dev), /* parent */ 1059 1, 0, /* alignment, boundary */ 1060 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1061 BUS_SPACE_MAXADDR, /* highaddr */ 1062 NULL, NULL, /* filter, filterarg */ 1063 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1064 0, /* nsegments */ 1065 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1066 0, /* flags */ 1067 NULL, NULL, /* lockfunc, lockarg */ 1068 &sc->nge_cdata.nge_parent_tag); 1069 if (error != 0) { 1070 device_printf(sc->nge_dev, "failed to create parent DMA tag\n"); 1071 goto fail; 1072 } 1073 /* Create tag for Tx ring. */ 1074 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */ 1075 NGE_RING_ALIGN, 0, /* alignment, boundary */ 1076 BUS_SPACE_MAXADDR, /* lowaddr */ 1077 BUS_SPACE_MAXADDR, /* highaddr */ 1078 NULL, NULL, /* filter, filterarg */ 1079 NGE_TX_RING_SIZE, /* maxsize */ 1080 1, /* nsegments */ 1081 NGE_TX_RING_SIZE, /* maxsegsize */ 1082 0, /* flags */ 1083 NULL, NULL, /* lockfunc, lockarg */ 1084 &sc->nge_cdata.nge_tx_ring_tag); 1085 if (error != 0) { 1086 device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n"); 1087 goto fail; 1088 } 1089 1090 /* Create tag for Rx ring. */ 1091 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */ 1092 NGE_RING_ALIGN, 0, /* alignment, boundary */ 1093 BUS_SPACE_MAXADDR, /* lowaddr */ 1094 BUS_SPACE_MAXADDR, /* highaddr */ 1095 NULL, NULL, /* filter, filterarg */ 1096 NGE_RX_RING_SIZE, /* maxsize */ 1097 1, /* nsegments */ 1098 NGE_RX_RING_SIZE, /* maxsegsize */ 1099 0, /* flags */ 1100 NULL, NULL, /* lockfunc, lockarg */ 1101 &sc->nge_cdata.nge_rx_ring_tag); 1102 if (error != 0) { 1103 device_printf(sc->nge_dev, 1104 "failed to create Rx ring DMA tag\n"); 1105 goto fail; 1106 } 1107 1108 /* Create tag for Tx buffers. */ 1109 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */ 1110 1, 0, /* alignment, boundary */ 1111 BUS_SPACE_MAXADDR, /* lowaddr */ 1112 BUS_SPACE_MAXADDR, /* highaddr */ 1113 NULL, NULL, /* filter, filterarg */ 1114 MCLBYTES * NGE_MAXTXSEGS, /* maxsize */ 1115 NGE_MAXTXSEGS, /* nsegments */ 1116 MCLBYTES, /* maxsegsize */ 1117 0, /* flags */ 1118 NULL, NULL, /* lockfunc, lockarg */ 1119 &sc->nge_cdata.nge_tx_tag); 1120 if (error != 0) { 1121 device_printf(sc->nge_dev, "failed to create Tx DMA tag\n"); 1122 goto fail; 1123 } 1124 1125 /* Create tag for Rx buffers. */ 1126 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */ 1127 NGE_RX_ALIGN, 0, /* alignment, boundary */ 1128 BUS_SPACE_MAXADDR, /* lowaddr */ 1129 BUS_SPACE_MAXADDR, /* highaddr */ 1130 NULL, NULL, /* filter, filterarg */ 1131 MCLBYTES, /* maxsize */ 1132 1, /* nsegments */ 1133 MCLBYTES, /* maxsegsize */ 1134 0, /* flags */ 1135 NULL, NULL, /* lockfunc, lockarg */ 1136 &sc->nge_cdata.nge_rx_tag); 1137 if (error != 0) { 1138 device_printf(sc->nge_dev, "failed to create Rx DMA tag\n"); 1139 goto fail; 1140 } 1141 1142 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1143 error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag, 1144 (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK | 1145 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map); 1146 if (error != 0) { 1147 device_printf(sc->nge_dev, 1148 "failed to allocate DMA'able memory for Tx ring\n"); 1149 goto fail; 1150 } 1151 1152 ctx.nge_busaddr = 0; 1153 error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag, 1154 sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring, 1155 NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0); 1156 if (error != 0 || ctx.nge_busaddr == 0) { 1157 device_printf(sc->nge_dev, 1158 "failed to load DMA'able memory for Tx ring\n"); 1159 goto fail; 1160 } 1161 sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr; 1162 1163 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 1164 error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag, 1165 (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK | 1166 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map); 1167 if (error != 0) { 1168 device_printf(sc->nge_dev, 1169 "failed to allocate DMA'able memory for Rx ring\n"); 1170 goto fail; 1171 } 1172 1173 ctx.nge_busaddr = 0; 1174 error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag, 1175 sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring, 1176 NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0); 1177 if (error != 0 || ctx.nge_busaddr == 0) { 1178 device_printf(sc->nge_dev, 1179 "failed to load DMA'able memory for Rx ring\n"); 1180 goto fail; 1181 } 1182 sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr; 1183 1184 /* Create DMA maps for Tx buffers. */ 1185 for (i = 0; i < NGE_TX_RING_CNT; i++) { 1186 txd = &sc->nge_cdata.nge_txdesc[i]; 1187 txd->tx_m = NULL; 1188 txd->tx_dmamap = NULL; 1189 error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0, 1190 &txd->tx_dmamap); 1191 if (error != 0) { 1192 device_printf(sc->nge_dev, 1193 "failed to create Tx dmamap\n"); 1194 goto fail; 1195 } 1196 } 1197 /* Create DMA maps for Rx buffers. */ 1198 if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0, 1199 &sc->nge_cdata.nge_rx_sparemap)) != 0) { 1200 device_printf(sc->nge_dev, 1201 "failed to create spare Rx dmamap\n"); 1202 goto fail; 1203 } 1204 for (i = 0; i < NGE_RX_RING_CNT; i++) { 1205 rxd = &sc->nge_cdata.nge_rxdesc[i]; 1206 rxd->rx_m = NULL; 1207 rxd->rx_dmamap = NULL; 1208 error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0, 1209 &rxd->rx_dmamap); 1210 if (error != 0) { 1211 device_printf(sc->nge_dev, 1212 "failed to create Rx dmamap\n"); 1213 goto fail; 1214 } 1215 } 1216 1217 fail: 1218 return (error); 1219 } 1220 1221 static void 1222 nge_dma_free(struct nge_softc *sc) 1223 { 1224 struct nge_txdesc *txd; 1225 struct nge_rxdesc *rxd; 1226 int i; 1227 1228 /* Tx ring. */ 1229 if (sc->nge_cdata.nge_tx_ring_tag) { 1230 if (sc->nge_rdata.nge_tx_ring_paddr) 1231 bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag, 1232 sc->nge_cdata.nge_tx_ring_map); 1233 if (sc->nge_rdata.nge_tx_ring) 1234 bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag, 1235 sc->nge_rdata.nge_tx_ring, 1236 sc->nge_cdata.nge_tx_ring_map); 1237 sc->nge_rdata.nge_tx_ring = NULL; 1238 sc->nge_rdata.nge_tx_ring_paddr = 0; 1239 bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag); 1240 sc->nge_cdata.nge_tx_ring_tag = NULL; 1241 } 1242 /* Rx ring. */ 1243 if (sc->nge_cdata.nge_rx_ring_tag) { 1244 if (sc->nge_rdata.nge_rx_ring_paddr) 1245 bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag, 1246 sc->nge_cdata.nge_rx_ring_map); 1247 if (sc->nge_rdata.nge_rx_ring) 1248 bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag, 1249 sc->nge_rdata.nge_rx_ring, 1250 sc->nge_cdata.nge_rx_ring_map); 1251 sc->nge_rdata.nge_rx_ring = NULL; 1252 sc->nge_rdata.nge_rx_ring_paddr = 0; 1253 bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag); 1254 sc->nge_cdata.nge_rx_ring_tag = NULL; 1255 } 1256 /* Tx buffers. */ 1257 if (sc->nge_cdata.nge_tx_tag) { 1258 for (i = 0; i < NGE_TX_RING_CNT; i++) { 1259 txd = &sc->nge_cdata.nge_txdesc[i]; 1260 if (txd->tx_dmamap) { 1261 bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag, 1262 txd->tx_dmamap); 1263 txd->tx_dmamap = NULL; 1264 } 1265 } 1266 bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag); 1267 sc->nge_cdata.nge_tx_tag = NULL; 1268 } 1269 /* Rx buffers. */ 1270 if (sc->nge_cdata.nge_rx_tag) { 1271 for (i = 0; i < NGE_RX_RING_CNT; i++) { 1272 rxd = &sc->nge_cdata.nge_rxdesc[i]; 1273 if (rxd->rx_dmamap) { 1274 bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag, 1275 rxd->rx_dmamap); 1276 rxd->rx_dmamap = NULL; 1277 } 1278 } 1279 if (sc->nge_cdata.nge_rx_sparemap) { 1280 bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag, 1281 sc->nge_cdata.nge_rx_sparemap); 1282 sc->nge_cdata.nge_rx_sparemap = 0; 1283 } 1284 bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag); 1285 sc->nge_cdata.nge_rx_tag = NULL; 1286 } 1287 1288 if (sc->nge_cdata.nge_parent_tag) { 1289 bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag); 1290 sc->nge_cdata.nge_parent_tag = NULL; 1291 } 1292 } 1293 1294 /* 1295 * Initialize the transmit descriptors. 1296 */ 1297 static int 1298 nge_list_tx_init(struct nge_softc *sc) 1299 { 1300 struct nge_ring_data *rd; 1301 struct nge_txdesc *txd; 1302 bus_addr_t addr; 1303 int i; 1304 1305 sc->nge_cdata.nge_tx_prod = 0; 1306 sc->nge_cdata.nge_tx_cons = 0; 1307 sc->nge_cdata.nge_tx_cnt = 0; 1308 1309 rd = &sc->nge_rdata; 1310 bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT); 1311 for (i = 0; i < NGE_TX_RING_CNT; i++) { 1312 if (i == NGE_TX_RING_CNT - 1) 1313 addr = NGE_TX_RING_ADDR(sc, 0); 1314 else 1315 addr = NGE_TX_RING_ADDR(sc, i + 1); 1316 rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr)); 1317 txd = &sc->nge_cdata.nge_txdesc[i]; 1318 txd->tx_m = NULL; 1319 } 1320 1321 bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag, 1322 sc->nge_cdata.nge_tx_ring_map, 1323 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1324 1325 return (0); 1326 } 1327 1328 /* 1329 * Initialize the RX descriptors and allocate mbufs for them. Note that 1330 * we arrange the descriptors in a closed ring, so that the last descriptor 1331 * points back to the first. 1332 */ 1333 static int 1334 nge_list_rx_init(struct nge_softc *sc) 1335 { 1336 struct nge_ring_data *rd; 1337 bus_addr_t addr; 1338 int i; 1339 1340 sc->nge_cdata.nge_rx_cons = 0; 1341 sc->nge_head = sc->nge_tail = NULL; 1342 1343 rd = &sc->nge_rdata; 1344 bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT); 1345 for (i = 0; i < NGE_RX_RING_CNT; i++) { 1346 if (nge_newbuf(sc, i) != 0) 1347 return (ENOBUFS); 1348 if (i == NGE_RX_RING_CNT - 1) 1349 addr = NGE_RX_RING_ADDR(sc, 0); 1350 else 1351 addr = NGE_RX_RING_ADDR(sc, i + 1); 1352 rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr)); 1353 } 1354 1355 bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag, 1356 sc->nge_cdata.nge_rx_ring_map, 1357 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1358 1359 return (0); 1360 } 1361 1362 static __inline void 1363 nge_discard_rxbuf(struct nge_softc *sc, int idx) 1364 { 1365 struct nge_desc *desc; 1366 1367 desc = &sc->nge_rdata.nge_rx_ring[idx]; 1368 desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t)); 1369 desc->nge_extsts = 0; 1370 } 1371 1372 /* 1373 * Initialize an RX descriptor and attach an MBUF cluster. 1374 */ 1375 static int 1376 nge_newbuf(struct nge_softc *sc, int idx) 1377 { 1378 struct nge_desc *desc; 1379 struct nge_rxdesc *rxd; 1380 struct mbuf *m; 1381 bus_dma_segment_t segs[1]; 1382 bus_dmamap_t map; 1383 int nsegs; 1384 1385 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1386 if (m == NULL) 1387 return (ENOBUFS); 1388 m->m_len = m->m_pkthdr.len = MCLBYTES; 1389 m_adj(m, sizeof(uint64_t)); 1390 1391 if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag, 1392 sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) { 1393 m_freem(m); 1394 return (ENOBUFS); 1395 } 1396 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1397 1398 rxd = &sc->nge_cdata.nge_rxdesc[idx]; 1399 if (rxd->rx_m != NULL) { 1400 bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap, 1401 BUS_DMASYNC_POSTREAD); 1402 bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap); 1403 } 1404 map = rxd->rx_dmamap; 1405 rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap; 1406 sc->nge_cdata.nge_rx_sparemap = map; 1407 bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap, 1408 BUS_DMASYNC_PREREAD); 1409 rxd->rx_m = m; 1410 desc = &sc->nge_rdata.nge_rx_ring[idx]; 1411 desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr)); 1412 desc->nge_cmdsts = htole32(segs[0].ds_len); 1413 desc->nge_extsts = 0; 1414 1415 return (0); 1416 } 1417 1418 #ifndef __NO_STRICT_ALIGNMENT 1419 static __inline void 1420 nge_fixup_rx(struct mbuf *m) 1421 { 1422 int i; 1423 uint16_t *src, *dst; 1424 1425 src = mtod(m, uint16_t *); 1426 dst = src - 1; 1427 1428 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1429 *dst++ = *src++; 1430 1431 m->m_data -= ETHER_ALIGN; 1432 } 1433 #endif 1434 1435 /* 1436 * A frame has been uploaded: pass the resulting mbuf chain up to 1437 * the higher level protocols. 1438 */ 1439 static int 1440 nge_rxeof(struct nge_softc *sc) 1441 { 1442 struct mbuf *m; 1443 struct ifnet *ifp; 1444 struct nge_desc *cur_rx; 1445 struct nge_rxdesc *rxd; 1446 int cons, prog, rx_npkts, total_len; 1447 uint32_t cmdsts, extsts; 1448 1449 NGE_LOCK_ASSERT(sc); 1450 1451 ifp = sc->nge_ifp; 1452 cons = sc->nge_cdata.nge_rx_cons; 1453 rx_npkts = 0; 1454 1455 bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag, 1456 sc->nge_cdata.nge_rx_ring_map, 1457 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1458 1459 for (prog = 0; prog < NGE_RX_RING_CNT && 1460 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; 1461 NGE_INC(cons, NGE_RX_RING_CNT)) { 1462 #ifdef DEVICE_POLLING 1463 if (ifp->if_capenable & IFCAP_POLLING) { 1464 if (sc->rxcycles <= 0) 1465 break; 1466 sc->rxcycles--; 1467 } 1468 #endif 1469 cur_rx = &sc->nge_rdata.nge_rx_ring[cons]; 1470 cmdsts = le32toh(cur_rx->nge_cmdsts); 1471 extsts = le32toh(cur_rx->nge_extsts); 1472 if ((cmdsts & NGE_CMDSTS_OWN) == 0) 1473 break; 1474 prog++; 1475 rxd = &sc->nge_cdata.nge_rxdesc[cons]; 1476 m = rxd->rx_m; 1477 total_len = cmdsts & NGE_CMDSTS_BUFLEN; 1478 1479 if ((cmdsts & NGE_CMDSTS_MORE) != 0) { 1480 if (nge_newbuf(sc, cons) != 0) { 1481 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1482 if (sc->nge_head != NULL) { 1483 m_freem(sc->nge_head); 1484 sc->nge_head = sc->nge_tail = NULL; 1485 } 1486 nge_discard_rxbuf(sc, cons); 1487 continue; 1488 } 1489 m->m_len = total_len; 1490 if (sc->nge_head == NULL) { 1491 m->m_pkthdr.len = total_len; 1492 sc->nge_head = sc->nge_tail = m; 1493 } else { 1494 m->m_flags &= ~M_PKTHDR; 1495 sc->nge_head->m_pkthdr.len += total_len; 1496 sc->nge_tail->m_next = m; 1497 sc->nge_tail = m; 1498 } 1499 continue; 1500 } 1501 1502 /* 1503 * If an error occurs, update stats, clear the 1504 * status word and leave the mbuf cluster in place: 1505 * it should simply get re-used next time this descriptor 1506 * comes up in the ring. 1507 */ 1508 if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) { 1509 if ((cmdsts & NGE_RXSTAT_RUNT) && 1510 total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) { 1511 /* 1512 * Work-around hardware bug, accept runt frames 1513 * if its length is larger than or equal to 56. 1514 */ 1515 } else { 1516 /* 1517 * Input error counters are updated by hardware. 1518 */ 1519 if (sc->nge_head != NULL) { 1520 m_freem(sc->nge_head); 1521 sc->nge_head = sc->nge_tail = NULL; 1522 } 1523 nge_discard_rxbuf(sc, cons); 1524 continue; 1525 } 1526 } 1527 1528 /* Try conjure up a replacement mbuf. */ 1529 1530 if (nge_newbuf(sc, cons) != 0) { 1531 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1532 if (sc->nge_head != NULL) { 1533 m_freem(sc->nge_head); 1534 sc->nge_head = sc->nge_tail = NULL; 1535 } 1536 nge_discard_rxbuf(sc, cons); 1537 continue; 1538 } 1539 1540 /* Chain received mbufs. */ 1541 if (sc->nge_head != NULL) { 1542 m->m_len = total_len; 1543 m->m_flags &= ~M_PKTHDR; 1544 sc->nge_tail->m_next = m; 1545 m = sc->nge_head; 1546 m->m_pkthdr.len += total_len; 1547 sc->nge_head = sc->nge_tail = NULL; 1548 } else 1549 m->m_pkthdr.len = m->m_len = total_len; 1550 1551 /* 1552 * Ok. NatSemi really screwed up here. This is the 1553 * only gigE chip I know of with alignment constraints 1554 * on receive buffers. RX buffers must be 64-bit aligned. 1555 */ 1556 /* 1557 * By popular demand, ignore the alignment problems 1558 * on the non-strict alignment platform. The performance hit 1559 * incurred due to unaligned accesses is much smaller 1560 * than the hit produced by forcing buffer copies all 1561 * the time, especially with jumbo frames. We still 1562 * need to fix up the alignment everywhere else though. 1563 */ 1564 #ifndef __NO_STRICT_ALIGNMENT 1565 nge_fixup_rx(m); 1566 #endif 1567 m->m_pkthdr.rcvif = ifp; 1568 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1569 1570 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) { 1571 /* Do IP checksum checking. */ 1572 if ((extsts & NGE_RXEXTSTS_IPPKT) != 0) 1573 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1574 if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0) 1575 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1576 if ((extsts & NGE_RXEXTSTS_TCPPKT && 1577 !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) || 1578 (extsts & NGE_RXEXTSTS_UDPPKT && 1579 !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) { 1580 m->m_pkthdr.csum_flags |= 1581 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1582 m->m_pkthdr.csum_data = 0xffff; 1583 } 1584 } 1585 1586 /* 1587 * If we received a packet with a vlan tag, pass it 1588 * to vlan_input() instead of ether_input(). 1589 */ 1590 if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 && 1591 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 1592 m->m_pkthdr.ether_vtag = 1593 bswap16(extsts & NGE_RXEXTSTS_VTCI); 1594 m->m_flags |= M_VLANTAG; 1595 } 1596 NGE_UNLOCK(sc); 1597 (*ifp->if_input)(ifp, m); 1598 NGE_LOCK(sc); 1599 rx_npkts++; 1600 } 1601 1602 if (prog > 0) { 1603 sc->nge_cdata.nge_rx_cons = cons; 1604 bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag, 1605 sc->nge_cdata.nge_rx_ring_map, 1606 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1607 } 1608 return (rx_npkts); 1609 } 1610 1611 /* 1612 * A frame was downloaded to the chip. It's safe for us to clean up 1613 * the list buffers. 1614 */ 1615 static void 1616 nge_txeof(struct nge_softc *sc) 1617 { 1618 struct nge_desc *cur_tx; 1619 struct nge_txdesc *txd; 1620 struct ifnet *ifp; 1621 uint32_t cmdsts; 1622 int cons, prod; 1623 1624 NGE_LOCK_ASSERT(sc); 1625 ifp = sc->nge_ifp; 1626 1627 cons = sc->nge_cdata.nge_tx_cons; 1628 prod = sc->nge_cdata.nge_tx_prod; 1629 if (cons == prod) 1630 return; 1631 1632 bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag, 1633 sc->nge_cdata.nge_tx_ring_map, 1634 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1635 1636 /* 1637 * Go through our tx list and free mbufs for those 1638 * frames that have been transmitted. 1639 */ 1640 for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) { 1641 cur_tx = &sc->nge_rdata.nge_tx_ring[cons]; 1642 cmdsts = le32toh(cur_tx->nge_cmdsts); 1643 if ((cmdsts & NGE_CMDSTS_OWN) != 0) 1644 break; 1645 sc->nge_cdata.nge_tx_cnt--; 1646 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1647 if ((cmdsts & NGE_CMDSTS_MORE) != 0) 1648 continue; 1649 1650 txd = &sc->nge_cdata.nge_txdesc[cons]; 1651 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap, 1652 BUS_DMASYNC_POSTWRITE); 1653 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap); 1654 if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) { 1655 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1656 if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0) 1657 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1658 if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0) 1659 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1660 } else 1661 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1662 1663 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16); 1664 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n", 1665 __func__)); 1666 m_freem(txd->tx_m); 1667 txd->tx_m = NULL; 1668 } 1669 1670 sc->nge_cdata.nge_tx_cons = cons; 1671 if (sc->nge_cdata.nge_tx_cnt == 0) 1672 sc->nge_watchdog_timer = 0; 1673 } 1674 1675 static void 1676 nge_tick(void *xsc) 1677 { 1678 struct nge_softc *sc; 1679 struct mii_data *mii; 1680 1681 sc = xsc; 1682 NGE_LOCK_ASSERT(sc); 1683 mii = device_get_softc(sc->nge_miibus); 1684 mii_tick(mii); 1685 /* 1686 * For PHYs that does not reset established link, it is 1687 * necessary to check whether driver still have a valid 1688 * link(e.g link state change callback is not called). 1689 * Otherwise, driver think it lost link because driver 1690 * initialization routine clears link state flag. 1691 */ 1692 if ((sc->nge_flags & NGE_FLAG_LINK) == 0) 1693 nge_miibus_statchg(sc->nge_dev); 1694 nge_stats_update(sc); 1695 nge_watchdog(sc); 1696 callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc); 1697 } 1698 1699 static void 1700 nge_stats_update(struct nge_softc *sc) 1701 { 1702 struct ifnet *ifp; 1703 struct nge_stats now, *stats, *nstats; 1704 1705 NGE_LOCK_ASSERT(sc); 1706 1707 ifp = sc->nge_ifp; 1708 stats = &now; 1709 stats->rx_pkts_errs = 1710 CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF; 1711 stats->rx_crc_errs = 1712 CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF; 1713 stats->rx_fifo_oflows = 1714 CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF; 1715 stats->rx_align_errs = 1716 CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF; 1717 stats->rx_sym_errs = 1718 CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF; 1719 stats->rx_pkts_jumbos = 1720 CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF; 1721 stats->rx_len_errs = 1722 CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF; 1723 stats->rx_unctl_frames = 1724 CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF; 1725 stats->rx_pause = 1726 CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF; 1727 stats->tx_pause = 1728 CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF; 1729 stats->tx_seq_errs = 1730 CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF; 1731 1732 /* 1733 * Since we've accept errored frames exclude Rx length errors. 1734 */ 1735 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1736 stats->rx_pkts_errs + stats->rx_crc_errs + 1737 stats->rx_fifo_oflows + stats->rx_sym_errs); 1738 1739 nstats = &sc->nge_stats; 1740 nstats->rx_pkts_errs += stats->rx_pkts_errs; 1741 nstats->rx_crc_errs += stats->rx_crc_errs; 1742 nstats->rx_fifo_oflows += stats->rx_fifo_oflows; 1743 nstats->rx_align_errs += stats->rx_align_errs; 1744 nstats->rx_sym_errs += stats->rx_sym_errs; 1745 nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos; 1746 nstats->rx_len_errs += stats->rx_len_errs; 1747 nstats->rx_unctl_frames += stats->rx_unctl_frames; 1748 nstats->rx_pause += stats->rx_pause; 1749 nstats->tx_pause += stats->tx_pause; 1750 nstats->tx_seq_errs += stats->tx_seq_errs; 1751 } 1752 1753 #ifdef DEVICE_POLLING 1754 static poll_handler_t nge_poll; 1755 1756 static int 1757 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1758 { 1759 struct nge_softc *sc; 1760 int rx_npkts = 0; 1761 1762 sc = ifp->if_softc; 1763 1764 NGE_LOCK(sc); 1765 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1766 NGE_UNLOCK(sc); 1767 return (rx_npkts); 1768 } 1769 1770 /* 1771 * On the nge, reading the status register also clears it. 1772 * So before returning to intr mode we must make sure that all 1773 * possible pending sources of interrupts have been served. 1774 * In practice this means run to completion the *eof routines, 1775 * and then call the interrupt routine. 1776 */ 1777 sc->rxcycles = count; 1778 rx_npkts = nge_rxeof(sc); 1779 nge_txeof(sc); 1780 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1781 nge_start_locked(ifp); 1782 1783 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) { 1784 uint32_t status; 1785 1786 /* Reading the ISR register clears all interrupts. */ 1787 status = CSR_READ_4(sc, NGE_ISR); 1788 1789 if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0) 1790 rx_npkts += nge_rxeof(sc); 1791 1792 if ((status & NGE_ISR_RX_IDLE) != 0) 1793 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1794 1795 if ((status & NGE_ISR_SYSERR) != 0) { 1796 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1797 nge_init_locked(sc); 1798 } 1799 } 1800 NGE_UNLOCK(sc); 1801 return (rx_npkts); 1802 } 1803 #endif /* DEVICE_POLLING */ 1804 1805 static void 1806 nge_intr(void *arg) 1807 { 1808 struct nge_softc *sc; 1809 struct ifnet *ifp; 1810 uint32_t status; 1811 1812 sc = (struct nge_softc *)arg; 1813 ifp = sc->nge_ifp; 1814 1815 NGE_LOCK(sc); 1816 1817 if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0) 1818 goto done_locked; 1819 1820 /* Reading the ISR register clears all interrupts. */ 1821 status = CSR_READ_4(sc, NGE_ISR); 1822 if (status == 0xffffffff || (status & NGE_INTRS) == 0) 1823 goto done_locked; 1824 #ifdef DEVICE_POLLING 1825 if ((ifp->if_capenable & IFCAP_POLLING) != 0) 1826 goto done_locked; 1827 #endif 1828 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1829 goto done_locked; 1830 1831 /* Disable interrupts. */ 1832 CSR_WRITE_4(sc, NGE_IER, 0); 1833 1834 /* Data LED on for TBI mode */ 1835 if ((sc->nge_flags & NGE_FLAG_TBI) != 0) 1836 CSR_WRITE_4(sc, NGE_GPIO, 1837 CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT); 1838 1839 for (; (status & NGE_INTRS) != 0;) { 1840 if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR | 1841 NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0) 1842 nge_txeof(sc); 1843 1844 if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR | 1845 NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW | 1846 NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0) 1847 nge_rxeof(sc); 1848 1849 if ((status & NGE_ISR_RX_IDLE) != 0) 1850 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1851 1852 if ((status & NGE_ISR_SYSERR) != 0) { 1853 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1854 nge_init_locked(sc); 1855 } 1856 /* Reading the ISR register clears all interrupts. */ 1857 status = CSR_READ_4(sc, NGE_ISR); 1858 } 1859 1860 /* Re-enable interrupts. */ 1861 CSR_WRITE_4(sc, NGE_IER, 1); 1862 1863 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1864 nge_start_locked(ifp); 1865 1866 /* Data LED off for TBI mode */ 1867 if ((sc->nge_flags & NGE_FLAG_TBI) != 0) 1868 CSR_WRITE_4(sc, NGE_GPIO, 1869 CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT); 1870 1871 done_locked: 1872 NGE_UNLOCK(sc); 1873 } 1874 1875 /* 1876 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1877 * pointers to the fragment pointers. 1878 */ 1879 static int 1880 nge_encap(struct nge_softc *sc, struct mbuf **m_head) 1881 { 1882 struct nge_txdesc *txd, *txd_last; 1883 struct nge_desc *desc; 1884 struct mbuf *m; 1885 bus_dmamap_t map; 1886 bus_dma_segment_t txsegs[NGE_MAXTXSEGS]; 1887 int error, i, nsegs, prod, si; 1888 1889 NGE_LOCK_ASSERT(sc); 1890 1891 m = *m_head; 1892 prod = sc->nge_cdata.nge_tx_prod; 1893 txd = &sc->nge_cdata.nge_txdesc[prod]; 1894 txd_last = txd; 1895 map = txd->tx_dmamap; 1896 error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map, 1897 *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); 1898 if (error == EFBIG) { 1899 m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS); 1900 if (m == NULL) { 1901 m_freem(*m_head); 1902 *m_head = NULL; 1903 return (ENOBUFS); 1904 } 1905 *m_head = m; 1906 error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, 1907 map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); 1908 if (error != 0) { 1909 m_freem(*m_head); 1910 *m_head = NULL; 1911 return (error); 1912 } 1913 } else if (error != 0) 1914 return (error); 1915 if (nsegs == 0) { 1916 m_freem(*m_head); 1917 *m_head = NULL; 1918 return (EIO); 1919 } 1920 1921 /* Check number of available descriptors. */ 1922 if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) { 1923 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map); 1924 return (ENOBUFS); 1925 } 1926 1927 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE); 1928 1929 si = prod; 1930 for (i = 0; i < nsegs; i++) { 1931 desc = &sc->nge_rdata.nge_tx_ring[prod]; 1932 desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr)); 1933 if (i == 0) 1934 desc->nge_cmdsts = htole32(txsegs[i].ds_len | 1935 NGE_CMDSTS_MORE); 1936 else 1937 desc->nge_cmdsts = htole32(txsegs[i].ds_len | 1938 NGE_CMDSTS_MORE | NGE_CMDSTS_OWN); 1939 desc->nge_extsts = 0; 1940 sc->nge_cdata.nge_tx_cnt++; 1941 NGE_INC(prod, NGE_TX_RING_CNT); 1942 } 1943 /* Update producer index. */ 1944 sc->nge_cdata.nge_tx_prod = prod; 1945 1946 prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT; 1947 desc = &sc->nge_rdata.nge_tx_ring[prod]; 1948 /* Check if we have a VLAN tag to insert. */ 1949 if ((m->m_flags & M_VLANTAG) != 0) 1950 desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT | 1951 bswap16(m->m_pkthdr.ether_vtag)); 1952 /* Set EOP on the last desciptor. */ 1953 desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE); 1954 1955 /* Set checksum offload in the first descriptor. */ 1956 desc = &sc->nge_rdata.nge_tx_ring[si]; 1957 if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) { 1958 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 1959 desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM); 1960 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1961 desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM); 1962 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1963 desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM); 1964 } 1965 /* Lastly, turn the first descriptor ownership to hardware. */ 1966 desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN); 1967 1968 txd = &sc->nge_cdata.nge_txdesc[prod]; 1969 map = txd_last->tx_dmamap; 1970 txd_last->tx_dmamap = txd->tx_dmamap; 1971 txd->tx_dmamap = map; 1972 txd->tx_m = m; 1973 1974 return (0); 1975 } 1976 1977 /* 1978 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1979 * to the mbuf data regions directly in the transmit lists. We also save a 1980 * copy of the pointers since the transmit list fragment pointers are 1981 * physical addresses. 1982 */ 1983 1984 static void 1985 nge_start(struct ifnet *ifp) 1986 { 1987 struct nge_softc *sc; 1988 1989 sc = ifp->if_softc; 1990 NGE_LOCK(sc); 1991 nge_start_locked(ifp); 1992 NGE_UNLOCK(sc); 1993 } 1994 1995 static void 1996 nge_start_locked(struct ifnet *ifp) 1997 { 1998 struct nge_softc *sc; 1999 struct mbuf *m_head; 2000 int enq; 2001 2002 sc = ifp->if_softc; 2003 2004 NGE_LOCK_ASSERT(sc); 2005 2006 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2007 IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0) 2008 return; 2009 2010 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2011 sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) { 2012 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2013 if (m_head == NULL) 2014 break; 2015 /* 2016 * Pack the data into the transmit ring. If we 2017 * don't have room, set the OACTIVE flag and wait 2018 * for the NIC to drain the ring. 2019 */ 2020 if (nge_encap(sc, &m_head)) { 2021 if (m_head == NULL) 2022 break; 2023 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2024 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2025 break; 2026 } 2027 2028 enq++; 2029 /* 2030 * If there's a BPF listener, bounce a copy of this frame 2031 * to him. 2032 */ 2033 ETHER_BPF_MTAP(ifp, m_head); 2034 } 2035 2036 if (enq > 0) { 2037 bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag, 2038 sc->nge_cdata.nge_tx_ring_map, 2039 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2040 /* Transmit */ 2041 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE); 2042 2043 /* Set a timeout in case the chip goes out to lunch. */ 2044 sc->nge_watchdog_timer = 5; 2045 } 2046 } 2047 2048 static void 2049 nge_init(void *xsc) 2050 { 2051 struct nge_softc *sc = xsc; 2052 2053 NGE_LOCK(sc); 2054 nge_init_locked(sc); 2055 NGE_UNLOCK(sc); 2056 } 2057 2058 static void 2059 nge_init_locked(struct nge_softc *sc) 2060 { 2061 struct ifnet *ifp = sc->nge_ifp; 2062 struct mii_data *mii; 2063 uint8_t *eaddr; 2064 uint32_t reg; 2065 2066 NGE_LOCK_ASSERT(sc); 2067 2068 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2069 return; 2070 2071 /* 2072 * Cancel pending I/O and free all RX/TX buffers. 2073 */ 2074 nge_stop(sc); 2075 2076 /* Reset the adapter. */ 2077 nge_reset(sc); 2078 2079 /* Disable Rx filter prior to programming Rx filter. */ 2080 CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0); 2081 CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE); 2082 2083 mii = device_get_softc(sc->nge_miibus); 2084 2085 /* Set MAC address. */ 2086 eaddr = IF_LLADDR(sc->nge_ifp); 2087 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0); 2088 CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]); 2089 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1); 2090 CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]); 2091 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2); 2092 CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]); 2093 2094 /* Init circular RX list. */ 2095 if (nge_list_rx_init(sc) == ENOBUFS) { 2096 device_printf(sc->nge_dev, "initialization failed: no " 2097 "memory for rx buffers\n"); 2098 nge_stop(sc); 2099 return; 2100 } 2101 2102 /* 2103 * Init tx descriptors. 2104 */ 2105 nge_list_tx_init(sc); 2106 2107 /* Set Rx filter. */ 2108 nge_rxfilter(sc); 2109 2110 /* Disable PRIQ ctl. */ 2111 CSR_WRITE_4(sc, NGE_PRIOQCTL, 0); 2112 2113 /* 2114 * Set pause frames parameters. 2115 * Rx stat FIFO hi-threshold : 2 or more packets 2116 * Rx stat FIFO lo-threshold : less than 2 packets 2117 * Rx data FIFO hi-threshold : 2K or more bytes 2118 * Rx data FIFO lo-threshold : less than 2K bytes 2119 * pause time : (512ns * 0xffff) -> 33.55ms 2120 */ 2121 CSR_WRITE_4(sc, NGE_PAUSECSR, 2122 NGE_PAUSECSR_PAUSE_ON_MCAST | 2123 NGE_PAUSECSR_PAUSE_ON_DA | 2124 ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) | 2125 ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) | 2126 ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) | 2127 ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) | 2128 NGE_PAUSECSR_CNT); 2129 2130 /* 2131 * Load the address of the RX and TX lists. 2132 */ 2133 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 2134 NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr)); 2135 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 2136 NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr)); 2137 CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 2138 NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr)); 2139 CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 2140 NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr)); 2141 2142 /* Set RX configuration. */ 2143 CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG); 2144 2145 CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0); 2146 /* 2147 * Enable hardware checksum validation for all IPv4 2148 * packets, do not reject packets with bad checksums. 2149 */ 2150 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2151 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB); 2152 2153 /* 2154 * Tell the chip to detect and strip VLAN tag info from 2155 * received frames. The tag will be provided in the extsts 2156 * field in the RX descriptors. 2157 */ 2158 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB); 2159 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2160 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB); 2161 2162 /* Set TX configuration. */ 2163 CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG); 2164 2165 /* 2166 * Enable TX IPv4 checksumming on a per-packet basis. 2167 */ 2168 CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT); 2169 2170 /* 2171 * Tell the chip to insert VLAN tags on a per-packet basis as 2172 * dictated by the code in the frame encapsulation routine. 2173 */ 2174 NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT); 2175 2176 /* 2177 * Enable the delivery of PHY interrupts based on 2178 * link/speed/duplex status changes. Also enable the 2179 * extsts field in the DMA descriptors (needed for 2180 * TCP/IP checksum offload on transmit). 2181 */ 2182 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD | 2183 NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB); 2184 2185 /* 2186 * Configure interrupt holdoff (moderation). We can 2187 * have the chip delay interrupt delivery for a certain 2188 * period. Units are in 100us, and the max setting 2189 * is 25500us (0xFF x 100us). Default is a 100us holdoff. 2190 */ 2191 CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff); 2192 2193 /* 2194 * Enable MAC statistics counters and clear. 2195 */ 2196 reg = CSR_READ_4(sc, NGE_MIBCTL); 2197 reg &= ~NGE_MIBCTL_FREEZE_CNT; 2198 reg |= NGE_MIBCTL_CLEAR_CNT; 2199 CSR_WRITE_4(sc, NGE_MIBCTL, reg); 2200 2201 /* 2202 * Enable interrupts. 2203 */ 2204 CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS); 2205 #ifdef DEVICE_POLLING 2206 /* 2207 * ... only enable interrupts if we are not polling, make sure 2208 * they are off otherwise. 2209 */ 2210 if ((ifp->if_capenable & IFCAP_POLLING) != 0) 2211 CSR_WRITE_4(sc, NGE_IER, 0); 2212 else 2213 #endif 2214 CSR_WRITE_4(sc, NGE_IER, 1); 2215 2216 sc->nge_flags &= ~NGE_FLAG_LINK; 2217 mii_mediachg(mii); 2218 2219 sc->nge_watchdog_timer = 0; 2220 callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc); 2221 2222 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2223 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2224 } 2225 2226 /* 2227 * Set media options. 2228 */ 2229 static int 2230 nge_mediachange(struct ifnet *ifp) 2231 { 2232 struct nge_softc *sc; 2233 struct mii_data *mii; 2234 struct mii_softc *miisc; 2235 int error; 2236 2237 sc = ifp->if_softc; 2238 NGE_LOCK(sc); 2239 mii = device_get_softc(sc->nge_miibus); 2240 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2241 PHY_RESET(miisc); 2242 error = mii_mediachg(mii); 2243 NGE_UNLOCK(sc); 2244 2245 return (error); 2246 } 2247 2248 /* 2249 * Report current media status. 2250 */ 2251 static void 2252 nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2253 { 2254 struct nge_softc *sc; 2255 struct mii_data *mii; 2256 2257 sc = ifp->if_softc; 2258 NGE_LOCK(sc); 2259 mii = device_get_softc(sc->nge_miibus); 2260 mii_pollstat(mii); 2261 ifmr->ifm_active = mii->mii_media_active; 2262 ifmr->ifm_status = mii->mii_media_status; 2263 NGE_UNLOCK(sc); 2264 } 2265 2266 static int 2267 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2268 { 2269 struct nge_softc *sc = ifp->if_softc; 2270 struct ifreq *ifr = (struct ifreq *) data; 2271 struct mii_data *mii; 2272 int error = 0, mask; 2273 2274 switch (command) { 2275 case SIOCSIFMTU: 2276 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU) 2277 error = EINVAL; 2278 else { 2279 NGE_LOCK(sc); 2280 ifp->if_mtu = ifr->ifr_mtu; 2281 /* 2282 * Workaround: if the MTU is larger than 2283 * 8152 (TX FIFO size minus 64 minus 18), turn off 2284 * TX checksum offloading. 2285 */ 2286 if (ifr->ifr_mtu >= 8152) { 2287 ifp->if_capenable &= ~IFCAP_TXCSUM; 2288 ifp->if_hwassist &= ~NGE_CSUM_FEATURES; 2289 } else { 2290 ifp->if_capenable |= IFCAP_TXCSUM; 2291 ifp->if_hwassist |= NGE_CSUM_FEATURES; 2292 } 2293 NGE_UNLOCK(sc); 2294 VLAN_CAPABILITIES(ifp); 2295 } 2296 break; 2297 case SIOCSIFFLAGS: 2298 NGE_LOCK(sc); 2299 if ((ifp->if_flags & IFF_UP) != 0) { 2300 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2301 if ((ifp->if_flags ^ sc->nge_if_flags) & 2302 (IFF_PROMISC | IFF_ALLMULTI)) 2303 nge_rxfilter(sc); 2304 } else { 2305 if ((sc->nge_flags & NGE_FLAG_DETACH) == 0) 2306 nge_init_locked(sc); 2307 } 2308 } else { 2309 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2310 nge_stop(sc); 2311 } 2312 sc->nge_if_flags = ifp->if_flags; 2313 NGE_UNLOCK(sc); 2314 error = 0; 2315 break; 2316 case SIOCADDMULTI: 2317 case SIOCDELMULTI: 2318 NGE_LOCK(sc); 2319 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2320 nge_rxfilter(sc); 2321 NGE_UNLOCK(sc); 2322 break; 2323 case SIOCGIFMEDIA: 2324 case SIOCSIFMEDIA: 2325 mii = device_get_softc(sc->nge_miibus); 2326 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2327 break; 2328 case SIOCSIFCAP: 2329 NGE_LOCK(sc); 2330 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2331 #ifdef DEVICE_POLLING 2332 if ((mask & IFCAP_POLLING) != 0 && 2333 (IFCAP_POLLING & ifp->if_capabilities) != 0) { 2334 ifp->if_capenable ^= IFCAP_POLLING; 2335 if ((IFCAP_POLLING & ifp->if_capenable) != 0) { 2336 error = ether_poll_register(nge_poll, ifp); 2337 if (error != 0) { 2338 NGE_UNLOCK(sc); 2339 break; 2340 } 2341 /* Disable interrupts. */ 2342 CSR_WRITE_4(sc, NGE_IER, 0); 2343 } else { 2344 error = ether_poll_deregister(ifp); 2345 /* Enable interrupts. */ 2346 CSR_WRITE_4(sc, NGE_IER, 1); 2347 } 2348 } 2349 #endif /* DEVICE_POLLING */ 2350 if ((mask & IFCAP_TXCSUM) != 0 && 2351 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 2352 ifp->if_capenable ^= IFCAP_TXCSUM; 2353 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) 2354 ifp->if_hwassist |= NGE_CSUM_FEATURES; 2355 else 2356 ifp->if_hwassist &= ~NGE_CSUM_FEATURES; 2357 } 2358 if ((mask & IFCAP_RXCSUM) != 0 && 2359 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) 2360 ifp->if_capenable ^= IFCAP_RXCSUM; 2361 2362 if ((mask & IFCAP_WOL) != 0 && 2363 (ifp->if_capabilities & IFCAP_WOL) != 0) { 2364 if ((mask & IFCAP_WOL_UCAST) != 0) 2365 ifp->if_capenable ^= IFCAP_WOL_UCAST; 2366 if ((mask & IFCAP_WOL_MCAST) != 0) 2367 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2368 if ((mask & IFCAP_WOL_MAGIC) != 0) 2369 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2370 } 2371 2372 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2373 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2374 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2375 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2376 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2377 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2378 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2379 if ((ifp->if_capenable & 2380 IFCAP_VLAN_HWTAGGING) != 0) 2381 NGE_SETBIT(sc, 2382 NGE_VLAN_IP_RXCTL, 2383 NGE_VIPRXCTL_TAG_STRIP_ENB); 2384 else 2385 NGE_CLRBIT(sc, 2386 NGE_VLAN_IP_RXCTL, 2387 NGE_VIPRXCTL_TAG_STRIP_ENB); 2388 } 2389 } 2390 /* 2391 * Both VLAN hardware tagging and checksum offload is 2392 * required to do checksum offload on VLAN interface. 2393 */ 2394 if ((ifp->if_capenable & IFCAP_TXCSUM) == 0) 2395 ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM; 2396 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 2397 ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM; 2398 NGE_UNLOCK(sc); 2399 VLAN_CAPABILITIES(ifp); 2400 break; 2401 default: 2402 error = ether_ioctl(ifp, command, data); 2403 break; 2404 } 2405 2406 return (error); 2407 } 2408 2409 static void 2410 nge_watchdog(struct nge_softc *sc) 2411 { 2412 struct ifnet *ifp; 2413 2414 NGE_LOCK_ASSERT(sc); 2415 2416 if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer) 2417 return; 2418 2419 ifp = sc->nge_ifp; 2420 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2421 if_printf(ifp, "watchdog timeout\n"); 2422 2423 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2424 nge_init_locked(sc); 2425 2426 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2427 nge_start_locked(ifp); 2428 } 2429 2430 static int 2431 nge_stop_mac(struct nge_softc *sc) 2432 { 2433 uint32_t reg; 2434 int i; 2435 2436 NGE_LOCK_ASSERT(sc); 2437 2438 reg = CSR_READ_4(sc, NGE_CSR); 2439 if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) { 2440 reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE); 2441 reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE; 2442 CSR_WRITE_4(sc, NGE_CSR, reg); 2443 for (i = 0; i < NGE_TIMEOUT; i++) { 2444 DELAY(1); 2445 if ((CSR_READ_4(sc, NGE_CSR) & 2446 (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0) 2447 break; 2448 } 2449 if (i == NGE_TIMEOUT) 2450 return (ETIMEDOUT); 2451 } 2452 2453 return (0); 2454 } 2455 2456 /* 2457 * Stop the adapter and free any mbufs allocated to the 2458 * RX and TX lists. 2459 */ 2460 static void 2461 nge_stop(struct nge_softc *sc) 2462 { 2463 struct nge_txdesc *txd; 2464 struct nge_rxdesc *rxd; 2465 int i; 2466 struct ifnet *ifp; 2467 2468 NGE_LOCK_ASSERT(sc); 2469 ifp = sc->nge_ifp; 2470 2471 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2472 sc->nge_flags &= ~NGE_FLAG_LINK; 2473 callout_stop(&sc->nge_stat_ch); 2474 sc->nge_watchdog_timer = 0; 2475 2476 CSR_WRITE_4(sc, NGE_IER, 0); 2477 CSR_WRITE_4(sc, NGE_IMR, 0); 2478 if (nge_stop_mac(sc) == ETIMEDOUT) 2479 device_printf(sc->nge_dev, 2480 "%s: unable to stop Tx/Rx MAC\n", __func__); 2481 CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0); 2482 CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0); 2483 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0); 2484 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0); 2485 nge_stats_update(sc); 2486 if (sc->nge_head != NULL) { 2487 m_freem(sc->nge_head); 2488 sc->nge_head = sc->nge_tail = NULL; 2489 } 2490 2491 /* 2492 * Free RX and TX mbufs still in the queues. 2493 */ 2494 for (i = 0; i < NGE_RX_RING_CNT; i++) { 2495 rxd = &sc->nge_cdata.nge_rxdesc[i]; 2496 if (rxd->rx_m != NULL) { 2497 bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, 2498 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 2499 bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, 2500 rxd->rx_dmamap); 2501 m_freem(rxd->rx_m); 2502 rxd->rx_m = NULL; 2503 } 2504 } 2505 for (i = 0; i < NGE_TX_RING_CNT; i++) { 2506 txd = &sc->nge_cdata.nge_txdesc[i]; 2507 if (txd->tx_m != NULL) { 2508 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, 2509 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2510 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, 2511 txd->tx_dmamap); 2512 m_freem(txd->tx_m); 2513 txd->tx_m = NULL; 2514 } 2515 } 2516 } 2517 2518 /* 2519 * Before setting WOL bits, caller should have stopped Receiver. 2520 */ 2521 static void 2522 nge_wol(struct nge_softc *sc) 2523 { 2524 struct ifnet *ifp; 2525 uint32_t reg; 2526 uint16_t pmstat; 2527 int pmc; 2528 2529 NGE_LOCK_ASSERT(sc); 2530 2531 if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0) 2532 return; 2533 2534 ifp = sc->nge_ifp; 2535 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 2536 /* Disable WOL & disconnect CLKRUN to save power. */ 2537 CSR_WRITE_4(sc, NGE_WOLCSR, 0); 2538 CSR_WRITE_4(sc, NGE_CLKRUN, 0); 2539 } else { 2540 if (nge_stop_mac(sc) == ETIMEDOUT) 2541 device_printf(sc->nge_dev, 2542 "%s: unable to stop Tx/Rx MAC\n", __func__); 2543 /* 2544 * Make sure wake frames will be buffered in the Rx FIFO. 2545 * (i.e. Silent Rx mode.) 2546 */ 2547 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0); 2548 CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE); 2549 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0); 2550 CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE); 2551 /* Enable Rx again. */ 2552 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 2553 CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE); 2554 2555 /* Configure WOL events. */ 2556 reg = 0; 2557 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 2558 reg |= NGE_WOLCSR_WAKE_ON_UNICAST; 2559 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 2560 reg |= NGE_WOLCSR_WAKE_ON_MULTICAST; 2561 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2562 reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT; 2563 CSR_WRITE_4(sc, NGE_WOLCSR, reg); 2564 2565 /* Activate CLKRUN. */ 2566 reg = CSR_READ_4(sc, NGE_CLKRUN); 2567 reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB; 2568 CSR_WRITE_4(sc, NGE_CLKRUN, reg); 2569 } 2570 2571 /* Request PME. */ 2572 pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2); 2573 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 2574 if ((ifp->if_capenable & IFCAP_WOL) != 0) 2575 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 2576 pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 2577 } 2578 2579 /* 2580 * Stop all chip I/O so that the kernel's probe routines don't 2581 * get confused by errant DMAs when rebooting. 2582 */ 2583 static int 2584 nge_shutdown(device_t dev) 2585 { 2586 2587 return (nge_suspend(dev)); 2588 } 2589 2590 static int 2591 nge_suspend(device_t dev) 2592 { 2593 struct nge_softc *sc; 2594 2595 sc = device_get_softc(dev); 2596 2597 NGE_LOCK(sc); 2598 nge_stop(sc); 2599 nge_wol(sc); 2600 sc->nge_flags |= NGE_FLAG_SUSPENDED; 2601 NGE_UNLOCK(sc); 2602 2603 return (0); 2604 } 2605 2606 static int 2607 nge_resume(device_t dev) 2608 { 2609 struct nge_softc *sc; 2610 struct ifnet *ifp; 2611 uint16_t pmstat; 2612 int pmc; 2613 2614 sc = device_get_softc(dev); 2615 2616 NGE_LOCK(sc); 2617 ifp = sc->nge_ifp; 2618 if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) { 2619 /* Disable PME and clear PME status. */ 2620 pmstat = pci_read_config(sc->nge_dev, 2621 pmc + PCIR_POWER_STATUS, 2); 2622 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { 2623 pmstat &= ~PCIM_PSTAT_PMEENABLE; 2624 pci_write_config(sc->nge_dev, 2625 pmc + PCIR_POWER_STATUS, pmstat, 2); 2626 } 2627 } 2628 if (ifp->if_flags & IFF_UP) { 2629 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2630 nge_init_locked(sc); 2631 } 2632 2633 sc->nge_flags &= ~NGE_FLAG_SUSPENDED; 2634 NGE_UNLOCK(sc); 2635 2636 return (0); 2637 } 2638 2639 #define NGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2640 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2641 2642 static void 2643 nge_sysctl_node(struct nge_softc *sc) 2644 { 2645 struct sysctl_ctx_list *ctx; 2646 struct sysctl_oid_list *child, *parent; 2647 struct sysctl_oid *tree; 2648 struct nge_stats *stats; 2649 int error; 2650 2651 ctx = device_get_sysctl_ctx(sc->nge_dev); 2652 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev)); 2653 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff", 2654 CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0, 2655 sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation"); 2656 /* Pull in device tunables. */ 2657 sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT; 2658 error = resource_int_value(device_get_name(sc->nge_dev), 2659 device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff); 2660 if (error == 0) { 2661 if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN || 2662 sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) { 2663 device_printf(sc->nge_dev, 2664 "int_holdoff value out of range; " 2665 "using default: %d(%d us)\n", 2666 NGE_INT_HOLDOFF_DEFAULT, 2667 NGE_INT_HOLDOFF_DEFAULT * 100); 2668 sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT; 2669 } 2670 } 2671 2672 stats = &sc->nge_stats; 2673 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2674 NULL, "NGE statistics"); 2675 parent = SYSCTL_CHILDREN(tree); 2676 2677 /* Rx statistics. */ 2678 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 2679 NULL, "Rx MAC statistics"); 2680 child = SYSCTL_CHILDREN(tree); 2681 NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs", 2682 &stats->rx_pkts_errs, 2683 "Packet errors including both wire errors and FIFO overruns"); 2684 NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 2685 &stats->rx_crc_errs, "CRC errors"); 2686 NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 2687 &stats->rx_fifo_oflows, "FIFO overflows"); 2688 NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", 2689 &stats->rx_align_errs, "Frame alignment errors"); 2690 NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs", 2691 &stats->rx_sym_errs, "One or more symbol errors"); 2692 NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos", 2693 &stats->rx_pkts_jumbos, 2694 "Packets received with length greater than 1518 bytes"); 2695 NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 2696 &stats->rx_len_errs, "In Range Length errors"); 2697 NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames", 2698 &stats->rx_unctl_frames, "Control frames with unsupported opcode"); 2699 NGE_SYSCTL_STAT_ADD32(ctx, child, "pause", 2700 &stats->rx_pause, "Pause frames"); 2701 2702 /* Tx statistics. */ 2703 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 2704 NULL, "Tx MAC statistics"); 2705 child = SYSCTL_CHILDREN(tree); 2706 NGE_SYSCTL_STAT_ADD32(ctx, child, "pause", 2707 &stats->tx_pause, "Pause frames"); 2708 NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs", 2709 &stats->tx_seq_errs, 2710 "Loss of collision heartbeat during transmission"); 2711 } 2712 2713 #undef NGE_SYSCTL_STAT_ADD32 2714 2715 static int 2716 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2717 { 2718 int error, value; 2719 2720 if (arg1 == NULL) 2721 return (EINVAL); 2722 value = *(int *)arg1; 2723 error = sysctl_handle_int(oidp, &value, 0, req); 2724 if (error != 0 || req->newptr == NULL) 2725 return (error); 2726 if (value < low || value > high) 2727 return (EINVAL); 2728 *(int *)arg1 = value; 2729 2730 return (0); 2731 } 2732 2733 static int 2734 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS) 2735 { 2736 2737 return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN, 2738 NGE_INT_HOLDOFF_MAX)); 2739 } 2740