xref: /freebsd/sys/dev/nge/if_nge.c (revision 10b59a9b4add0320d52c15ce057dd697261e7dfc)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #ifdef HAVE_KERNEL_OPTION_HEADERS
92 #include "opt_device_polling.h"
93 #endif
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/bus.h>
98 #include <sys/endian.h>
99 #include <sys/kernel.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/module.h>
104 #include <sys/mutex.h>
105 #include <sys/rman.h>
106 #include <sys/socket.h>
107 #include <sys/sockio.h>
108 #include <sys/sysctl.h>
109 
110 #include <net/bpf.h>
111 #include <net/if.h>
112 #include <net/if_arp.h>
113 #include <net/ethernet.h>
114 #include <net/if_dl.h>
115 #include <net/if_media.h>
116 #include <net/if_types.h>
117 #include <net/if_vlan_var.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/mii_bitbang.h>
121 #include <dev/mii/miivar.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #include <machine/bus.h>
127 
128 #include <dev/nge/if_ngereg.h>
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 MODULE_DEPEND(nge, pci, 1, 1, 1);
134 MODULE_DEPEND(nge, ether, 1, 1, 1);
135 MODULE_DEPEND(nge, miibus, 1, 1, 1);
136 
137 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
138 
139 /*
140  * Various supported device vendors/types and their names.
141  */
142 static const struct nge_type const nge_devs[] = {
143 	{ NGE_VENDORID, NGE_DEVICEID,
144 	    "National Semiconductor Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static int nge_probe(device_t);
149 static int nge_attach(device_t);
150 static int nge_detach(device_t);
151 static int nge_shutdown(device_t);
152 static int nge_suspend(device_t);
153 static int nge_resume(device_t);
154 
155 static __inline void nge_discard_rxbuf(struct nge_softc *, int);
156 static int nge_newbuf(struct nge_softc *, int);
157 static int nge_encap(struct nge_softc *, struct mbuf **);
158 #ifndef __NO_STRICT_ALIGNMENT
159 static __inline void nge_fixup_rx(struct mbuf *);
160 #endif
161 static int nge_rxeof(struct nge_softc *);
162 static void nge_txeof(struct nge_softc *);
163 static void nge_intr(void *);
164 static void nge_tick(void *);
165 static void nge_stats_update(struct nge_softc *);
166 static void nge_start(struct ifnet *);
167 static void nge_start_locked(struct ifnet *);
168 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
169 static void nge_init(void *);
170 static void nge_init_locked(struct nge_softc *);
171 static int nge_stop_mac(struct nge_softc *);
172 static void nge_stop(struct nge_softc *);
173 static void nge_wol(struct nge_softc *);
174 static void nge_watchdog(struct nge_softc *);
175 static int nge_mediachange(struct ifnet *);
176 static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
177 
178 static void nge_delay(struct nge_softc *);
179 static void nge_eeprom_idle(struct nge_softc *);
180 static void nge_eeprom_putbyte(struct nge_softc *, int);
181 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
182 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
183 
184 static int nge_miibus_readreg(device_t, int, int);
185 static int nge_miibus_writereg(device_t, int, int, int);
186 static void nge_miibus_statchg(device_t);
187 
188 static void nge_rxfilter(struct nge_softc *);
189 static void nge_reset(struct nge_softc *);
190 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
191 static int nge_dma_alloc(struct nge_softc *);
192 static void nge_dma_free(struct nge_softc *);
193 static int nge_list_rx_init(struct nge_softc *);
194 static int nge_list_tx_init(struct nge_softc *);
195 static void nge_sysctl_node(struct nge_softc *);
196 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
197 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
198 
199 /*
200  * MII bit-bang glue
201  */
202 static uint32_t nge_mii_bitbang_read(device_t);
203 static void nge_mii_bitbang_write(device_t, uint32_t);
204 
205 static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
206 	nge_mii_bitbang_read,
207 	nge_mii_bitbang_write,
208 	{
209 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
210 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
211 		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
212 		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
213 		0,			/* MII_BIT_DIR_PHY_HOST */
214 	}
215 };
216 
217 static device_method_t nge_methods[] = {
218 	/* Device interface */
219 	DEVMETHOD(device_probe,		nge_probe),
220 	DEVMETHOD(device_attach,	nge_attach),
221 	DEVMETHOD(device_detach,	nge_detach),
222 	DEVMETHOD(device_shutdown,	nge_shutdown),
223 	DEVMETHOD(device_suspend,	nge_suspend),
224 	DEVMETHOD(device_resume,	nge_resume),
225 
226 	/* bus interface */
227 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
228 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
229 
230 	/* MII interface */
231 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
232 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
233 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
234 
235 	{ NULL, NULL }
236 };
237 
238 static driver_t nge_driver = {
239 	"nge",
240 	nge_methods,
241 	sizeof(struct nge_softc)
242 };
243 
244 static devclass_t nge_devclass;
245 
246 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
247 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
248 
249 #define NGE_SETBIT(sc, reg, x)				\
250 	CSR_WRITE_4(sc, reg,				\
251 		CSR_READ_4(sc, reg) | (x))
252 
253 #define NGE_CLRBIT(sc, reg, x)				\
254 	CSR_WRITE_4(sc, reg,				\
255 		CSR_READ_4(sc, reg) & ~(x))
256 
257 #define SIO_SET(x)					\
258 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
259 
260 #define SIO_CLR(x)					\
261 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
262 
263 static void
264 nge_delay(struct nge_softc *sc)
265 {
266 	int idx;
267 
268 	for (idx = (300 / 33) + 1; idx > 0; idx--)
269 		CSR_READ_4(sc, NGE_CSR);
270 }
271 
272 static void
273 nge_eeprom_idle(struct nge_softc *sc)
274 {
275 	int i;
276 
277 	SIO_SET(NGE_MEAR_EE_CSEL);
278 	nge_delay(sc);
279 	SIO_SET(NGE_MEAR_EE_CLK);
280 	nge_delay(sc);
281 
282 	for (i = 0; i < 25; i++) {
283 		SIO_CLR(NGE_MEAR_EE_CLK);
284 		nge_delay(sc);
285 		SIO_SET(NGE_MEAR_EE_CLK);
286 		nge_delay(sc);
287 	}
288 
289 	SIO_CLR(NGE_MEAR_EE_CLK);
290 	nge_delay(sc);
291 	SIO_CLR(NGE_MEAR_EE_CSEL);
292 	nge_delay(sc);
293 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
294 }
295 
296 /*
297  * Send a read command and address to the EEPROM, check for ACK.
298  */
299 static void
300 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
301 {
302 	int d, i;
303 
304 	d = addr | NGE_EECMD_READ;
305 
306 	/*
307 	 * Feed in each bit and stobe the clock.
308 	 */
309 	for (i = 0x400; i; i >>= 1) {
310 		if (d & i) {
311 			SIO_SET(NGE_MEAR_EE_DIN);
312 		} else {
313 			SIO_CLR(NGE_MEAR_EE_DIN);
314 		}
315 		nge_delay(sc);
316 		SIO_SET(NGE_MEAR_EE_CLK);
317 		nge_delay(sc);
318 		SIO_CLR(NGE_MEAR_EE_CLK);
319 		nge_delay(sc);
320 	}
321 }
322 
323 /*
324  * Read a word of data stored in the EEPROM at address 'addr.'
325  */
326 static void
327 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
328 {
329 	int i;
330 	uint16_t word = 0;
331 
332 	/* Force EEPROM to idle state. */
333 	nge_eeprom_idle(sc);
334 
335 	/* Enter EEPROM access mode. */
336 	nge_delay(sc);
337 	SIO_CLR(NGE_MEAR_EE_CLK);
338 	nge_delay(sc);
339 	SIO_SET(NGE_MEAR_EE_CSEL);
340 	nge_delay(sc);
341 
342 	/*
343 	 * Send address of word we want to read.
344 	 */
345 	nge_eeprom_putbyte(sc, addr);
346 
347 	/*
348 	 * Start reading bits from EEPROM.
349 	 */
350 	for (i = 0x8000; i; i >>= 1) {
351 		SIO_SET(NGE_MEAR_EE_CLK);
352 		nge_delay(sc);
353 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
354 			word |= i;
355 		nge_delay(sc);
356 		SIO_CLR(NGE_MEAR_EE_CLK);
357 		nge_delay(sc);
358 	}
359 
360 	/* Turn off EEPROM access mode. */
361 	nge_eeprom_idle(sc);
362 
363 	*dest = word;
364 }
365 
366 /*
367  * Read a sequence of words from the EEPROM.
368  */
369 static void
370 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
371 {
372 	int i;
373 	uint16_t word = 0, *ptr;
374 
375 	for (i = 0; i < cnt; i++) {
376 		nge_eeprom_getword(sc, off + i, &word);
377 		ptr = (uint16_t *)(dest + (i * 2));
378 		*ptr = word;
379 	}
380 }
381 
382 /*
383  * Read the MII serial port for the MII bit-bang module.
384  */
385 static uint32_t
386 nge_mii_bitbang_read(device_t dev)
387 {
388 	struct nge_softc *sc;
389 	uint32_t val;
390 
391 	sc = device_get_softc(dev);
392 
393 	val = CSR_READ_4(sc, NGE_MEAR);
394 	CSR_BARRIER_4(sc, NGE_MEAR,
395 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
396 
397 	return (val);
398 }
399 
400 /*
401  * Write the MII serial port for the MII bit-bang module.
402  */
403 static void
404 nge_mii_bitbang_write(device_t dev, uint32_t val)
405 {
406 	struct nge_softc *sc;
407 
408 	sc = device_get_softc(dev);
409 
410 	CSR_WRITE_4(sc, NGE_MEAR, val);
411 	CSR_BARRIER_4(sc, NGE_MEAR,
412 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
413 }
414 
415 static int
416 nge_miibus_readreg(device_t dev, int phy, int reg)
417 {
418 	struct nge_softc *sc;
419 	int rv;
420 
421 	sc = device_get_softc(dev);
422 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
423 		/* Pretend PHY is at address 0. */
424 		if (phy != 0)
425 			return (0);
426 		switch (reg) {
427 		case MII_BMCR:
428 			reg = NGE_TBI_BMCR;
429 			break;
430 		case MII_BMSR:
431 			/* 83820/83821 has different bit layout for BMSR. */
432 			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
433 			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
434 			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
435 				rv |= BMSR_ACOMP;
436 			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
437 				rv |= BMSR_LINK;
438 			return (rv);
439 		case MII_ANAR:
440 			reg = NGE_TBI_ANAR;
441 			break;
442 		case MII_ANLPAR:
443 			reg = NGE_TBI_ANLPAR;
444 			break;
445 		case MII_ANER:
446 			reg = NGE_TBI_ANER;
447 			break;
448 		case MII_EXTSR:
449 			reg = NGE_TBI_ESR;
450 			break;
451 		case MII_PHYIDR1:
452 		case MII_PHYIDR2:
453 			return (0);
454 		default:
455 			device_printf(sc->nge_dev,
456 			    "bad phy register read : %d\n", reg);
457 			return (0);
458 		}
459 		return (CSR_READ_4(sc, reg));
460 	}
461 
462 	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
463 }
464 
465 static int
466 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
467 {
468 	struct nge_softc *sc;
469 
470 	sc = device_get_softc(dev);
471 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
472 		/* Pretend PHY is at address 0. */
473 		if (phy != 0)
474 			return (0);
475 		switch (reg) {
476 		case MII_BMCR:
477 			reg = NGE_TBI_BMCR;
478 			break;
479 		case MII_BMSR:
480 			return (0);
481 		case MII_ANAR:
482 			reg = NGE_TBI_ANAR;
483 			break;
484 		case MII_ANLPAR:
485 			reg = NGE_TBI_ANLPAR;
486 			break;
487 		case MII_ANER:
488 			reg = NGE_TBI_ANER;
489 			break;
490 		case MII_EXTSR:
491 			reg = NGE_TBI_ESR;
492 			break;
493 		case MII_PHYIDR1:
494 		case MII_PHYIDR2:
495 			return (0);
496 		default:
497 			device_printf(sc->nge_dev,
498 			    "bad phy register write : %d\n", reg);
499 			return (0);
500 		}
501 		CSR_WRITE_4(sc, reg, data);
502 		return (0);
503 	}
504 
505 	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
506 
507 	return (0);
508 }
509 
510 /*
511  * media status/link state change handler.
512  */
513 static void
514 nge_miibus_statchg(device_t dev)
515 {
516 	struct nge_softc *sc;
517 	struct mii_data *mii;
518 	struct ifnet *ifp;
519 	struct nge_txdesc *txd;
520 	uint32_t done, reg, status;
521 	int i;
522 
523 	sc = device_get_softc(dev);
524 	NGE_LOCK_ASSERT(sc);
525 
526 	mii = device_get_softc(sc->nge_miibus);
527 	ifp = sc->nge_ifp;
528 	if (mii == NULL || ifp == NULL ||
529 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
530 		return;
531 
532 	sc->nge_flags &= ~NGE_FLAG_LINK;
533 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
534 	    (IFM_AVALID | IFM_ACTIVE)) {
535 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
536 		case IFM_10_T:
537 		case IFM_100_TX:
538 		case IFM_1000_T:
539 		case IFM_1000_SX:
540 		case IFM_1000_LX:
541 		case IFM_1000_CX:
542 			sc->nge_flags |= NGE_FLAG_LINK;
543 			break;
544 		default:
545 			break;
546 		}
547 	}
548 
549 	/* Stop Tx/Rx MACs. */
550 	if (nge_stop_mac(sc) == ETIMEDOUT)
551 		device_printf(sc->nge_dev,
552 		    "%s: unable to stop Tx/Rx MAC\n", __func__);
553 	nge_txeof(sc);
554 	nge_rxeof(sc);
555 	if (sc->nge_head != NULL) {
556 		m_freem(sc->nge_head);
557 		sc->nge_head = sc->nge_tail = NULL;
558 	}
559 
560 	/* Release queued frames. */
561 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
562 		txd = &sc->nge_cdata.nge_txdesc[i];
563 		if (txd->tx_m != NULL) {
564 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
565 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
566 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
567 			    txd->tx_dmamap);
568 			m_freem(txd->tx_m);
569 			txd->tx_m = NULL;
570 		}
571 	}
572 
573 	/* Program MAC with resolved speed/duplex. */
574 	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
575 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
576 			NGE_SETBIT(sc, NGE_TX_CFG,
577 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
578 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
579 #ifdef notyet
580 			/* Enable flow-control. */
581 			if ((IFM_OPTIONS(mii->mii_media_active) &
582 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
583 				NGE_SETBIT(sc, NGE_PAUSECSR,
584 				    NGE_PAUSECSR_PAUSE_ENB);
585 #endif
586 		} else {
587 			NGE_CLRBIT(sc, NGE_TX_CFG,
588 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
589 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
590 			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
591 		}
592 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
593 		reg = CSR_READ_4(sc, NGE_CFG);
594 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
595 		case IFM_1000_SX:
596 		case IFM_1000_LX:
597 		case IFM_1000_CX:
598 		case IFM_1000_T:
599 			reg |= NGE_CFG_MODE_1000;
600 			break;
601 		default:
602 			reg &= ~NGE_CFG_MODE_1000;
603 			break;
604 		}
605 		CSR_WRITE_4(sc, NGE_CFG, reg);
606 
607 		/* Reset Tx/Rx MAC. */
608 		reg = CSR_READ_4(sc, NGE_CSR);
609 		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
610 		CSR_WRITE_4(sc, NGE_CSR, reg);
611 		/* Check the completion of reset. */
612 		done = 0;
613 		for (i = 0; i < NGE_TIMEOUT; i++) {
614 			DELAY(1);
615 			status = CSR_READ_4(sc, NGE_ISR);
616 			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
617 				done |= NGE_ISR_RX_RESET_DONE;
618 			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
619 				done |= NGE_ISR_TX_RESET_DONE;
620 			if (done ==
621 			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
622 				break;
623 		}
624 		if (i == NGE_TIMEOUT)
625 			device_printf(sc->nge_dev,
626 			    "%s: unable to reset Tx/Rx MAC\n", __func__);
627 		/* Reuse Rx buffer and reset consumer pointer. */
628 		sc->nge_cdata.nge_rx_cons = 0;
629 		/*
630 		 * It seems that resetting Rx/Tx MAC results in
631 		 * resetting Tx/Rx descriptor pointer registers such
632 		 * that reloading Tx/Rx lists address are needed.
633 		 */
634 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
635 		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
636 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
637 		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
638 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
639 		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
640 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
641 		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
642 		/* Reinitialize Tx buffers. */
643 		nge_list_tx_init(sc);
644 
645 		/* Restart Rx MAC. */
646 		reg = CSR_READ_4(sc, NGE_CSR);
647 		reg |= NGE_CSR_RX_ENABLE;
648 		CSR_WRITE_4(sc, NGE_CSR, reg);
649 		for (i = 0; i < NGE_TIMEOUT; i++) {
650 			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
651 				break;
652 			DELAY(1);
653 		}
654 		if (i == NGE_TIMEOUT)
655 			device_printf(sc->nge_dev,
656 			    "%s: unable to restart Rx MAC\n", __func__);
657 	}
658 
659 	/* Data LED off for TBI mode */
660 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
661 		CSR_WRITE_4(sc, NGE_GPIO,
662 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
663 }
664 
665 static void
666 nge_rxfilter(struct nge_softc *sc)
667 {
668 	struct ifnet *ifp;
669 	struct ifmultiaddr *ifma;
670 	uint32_t h, i, rxfilt;
671 	int bit, index;
672 
673 	NGE_LOCK_ASSERT(sc);
674 	ifp = sc->nge_ifp;
675 
676 	/* Make sure to stop Rx filtering. */
677 	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
678 	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
679 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
680 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
681 
682 	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
683 	rxfilt &= ~NGE_RXFILTCTL_BROAD;
684 	/*
685 	 * We don't want to use the hash table for matching unicast
686 	 * addresses.
687 	 */
688 	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
689 
690 	/*
691 	 * For the NatSemi chip, we have to explicitly enable the
692 	 * reception of ARP frames, as well as turn on the 'perfect
693 	 * match' filter where we store the station address, otherwise
694 	 * we won't receive unicasts meant for this host.
695 	 */
696 	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
697 
698 	/*
699 	 * Set the capture broadcast bit to capture broadcast frames.
700 	 */
701 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
702 		rxfilt |= NGE_RXFILTCTL_BROAD;
703 
704 	if ((ifp->if_flags & IFF_PROMISC) != 0 ||
705 	    (ifp->if_flags & IFF_ALLMULTI) != 0) {
706 		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
707 		if ((ifp->if_flags & IFF_PROMISC) != 0)
708 			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
709 		goto done;
710 	}
711 
712 	/*
713 	 * We have to explicitly enable the multicast hash table
714 	 * on the NatSemi chip if we want to use it, which we do.
715 	 */
716 	rxfilt |= NGE_RXFILTCTL_MCHASH;
717 
718 	/* first, zot all the existing hash bits */
719 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
720 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
721 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
722 	}
723 
724 	/*
725 	 * From the 11 bits returned by the crc routine, the top 7
726 	 * bits represent the 16-bit word in the mcast hash table
727 	 * that needs to be updated, and the lower 4 bits represent
728 	 * which bit within that byte needs to be set.
729 	 */
730 	if_maddr_rlock(ifp);
731 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
732 		if (ifma->ifma_addr->sa_family != AF_LINK)
733 			continue;
734 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
735 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
736 		index = (h >> 4) & 0x7F;
737 		bit = h & 0xF;
738 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
739 		    NGE_FILTADDR_MCAST_LO + (index * 2));
740 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
741 	}
742 	if_maddr_runlock(ifp);
743 
744 done:
745 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
746 	/* Turn the receive filter on. */
747 	rxfilt |= NGE_RXFILTCTL_ENABLE;
748 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
749 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
750 }
751 
752 static void
753 nge_reset(struct nge_softc *sc)
754 {
755 	uint32_t v;
756 	int i;
757 
758 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
759 
760 	for (i = 0; i < NGE_TIMEOUT; i++) {
761 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
762 			break;
763 		DELAY(1);
764 	}
765 
766 	if (i == NGE_TIMEOUT)
767 		device_printf(sc->nge_dev, "reset never completed\n");
768 
769 	/* Wait a little while for the chip to get its brains in order. */
770 	DELAY(1000);
771 
772 	/*
773 	 * If this is a NetSemi chip, make sure to clear
774 	 * PME mode.
775 	 */
776 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
777 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
778 
779 	/* Clear WOL events which may interfere normal Rx filter opertaion. */
780 	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
781 
782 	/*
783 	 * Only DP83820 supports 64bits addressing/data transfers and
784 	 * 64bit addressing requires different descriptor structures.
785 	 * To make it simple, disable 64bit addressing/data transfers.
786 	 */
787 	v = CSR_READ_4(sc, NGE_CFG);
788 	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
789 	CSR_WRITE_4(sc, NGE_CFG, v);
790 }
791 
792 /*
793  * Probe for a NatSemi chip. Check the PCI vendor and device
794  * IDs against our list and return a device name if we find a match.
795  */
796 static int
797 nge_probe(device_t dev)
798 {
799 	const struct nge_type *t;
800 
801 	t = nge_devs;
802 
803 	while (t->nge_name != NULL) {
804 		if ((pci_get_vendor(dev) == t->nge_vid) &&
805 		    (pci_get_device(dev) == t->nge_did)) {
806 			device_set_desc(dev, t->nge_name);
807 			return (BUS_PROBE_DEFAULT);
808 		}
809 		t++;
810 	}
811 
812 	return (ENXIO);
813 }
814 
815 /*
816  * Attach the interface. Allocate softc structures, do ifmedia
817  * setup and ethernet/BPF attach.
818  */
819 static int
820 nge_attach(device_t dev)
821 {
822 	uint8_t eaddr[ETHER_ADDR_LEN];
823 	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
824 	struct nge_softc *sc;
825 	struct ifnet *ifp;
826 	int error, i, rid;
827 
828 	error = 0;
829 	sc = device_get_softc(dev);
830 	sc->nge_dev = dev;
831 
832 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
833 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
834 
835 	/*
836 	 * Map control/status registers.
837 	 */
838 	pci_enable_busmaster(dev);
839 
840 #ifdef NGE_USEIOSPACE
841 	sc->nge_res_type = SYS_RES_IOPORT;
842 	sc->nge_res_id = PCIR_BAR(0);
843 #else
844 	sc->nge_res_type = SYS_RES_MEMORY;
845 	sc->nge_res_id = PCIR_BAR(1);
846 #endif
847 	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
848 	    &sc->nge_res_id, RF_ACTIVE);
849 
850 	if (sc->nge_res == NULL) {
851 		if (sc->nge_res_type == SYS_RES_MEMORY) {
852 			sc->nge_res_type = SYS_RES_IOPORT;
853 			sc->nge_res_id = PCIR_BAR(0);
854 		} else {
855 			sc->nge_res_type = SYS_RES_MEMORY;
856 			sc->nge_res_id = PCIR_BAR(1);
857 		}
858 		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
859 		    &sc->nge_res_id, RF_ACTIVE);
860 		if (sc->nge_res == NULL) {
861 			device_printf(dev, "couldn't allocate %s resources\n",
862 			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
863 			    "I/O");
864 			NGE_LOCK_DESTROY(sc);
865 			return (ENXIO);
866 		}
867 	}
868 
869 	/* Allocate interrupt */
870 	rid = 0;
871 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
872 	    RF_SHAREABLE | RF_ACTIVE);
873 
874 	if (sc->nge_irq == NULL) {
875 		device_printf(dev, "couldn't map interrupt\n");
876 		error = ENXIO;
877 		goto fail;
878 	}
879 
880 	/* Enable MWI. */
881 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
882 	reg |= PCIM_CMD_MWRICEN;
883 	pci_write_config(dev, PCIR_COMMAND, reg, 2);
884 
885 	/* Reset the adapter. */
886 	nge_reset(sc);
887 
888 	/*
889 	 * Get station address from the EEPROM.
890 	 */
891 	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
892 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
893 		ea[i] = le16toh(ea[i]);
894 	ea_temp = ea[0];
895 	ea[0] = ea[2];
896 	ea[2] = ea_temp;
897 	bcopy(ea, eaddr, sizeof(eaddr));
898 
899 	if (nge_dma_alloc(sc) != 0) {
900 		error = ENXIO;
901 		goto fail;
902 	}
903 
904 	nge_sysctl_node(sc);
905 
906 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
907 	if (ifp == NULL) {
908 		device_printf(dev, "can not allocate ifnet structure\n");
909 		error = ENOSPC;
910 		goto fail;
911 	}
912 	ifp->if_softc = sc;
913 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
914 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
915 	ifp->if_ioctl = nge_ioctl;
916 	ifp->if_start = nge_start;
917 	ifp->if_init = nge_init;
918 	ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
919 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
920 	IFQ_SET_READY(&ifp->if_snd);
921 	ifp->if_hwassist = NGE_CSUM_FEATURES;
922 	ifp->if_capabilities = IFCAP_HWCSUM;
923 	/*
924 	 * It seems that some hardwares doesn't provide 3.3V auxiliary
925 	 * supply(3VAUX) to drive PME such that checking PCI power
926 	 * management capability is necessary.
927 	 */
928 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
929 		ifp->if_capabilities |= IFCAP_WOL;
930 	ifp->if_capenable = ifp->if_capabilities;
931 
932 	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
933 		sc->nge_flags |= NGE_FLAG_TBI;
934 		device_printf(dev, "Using TBI\n");
935 		/* Configure GPIO. */
936 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
937 		    | NGE_GPIO_GP4_OUT
938 		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
939 		    | NGE_GPIO_GP3_OUTENB
940 		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
941 	}
942 
943 	/*
944 	 * Do MII setup.
945 	 */
946 	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
947 	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
948 	if (error != 0) {
949 		device_printf(dev, "attaching PHYs failed\n");
950 		goto fail;
951 	}
952 
953 	/*
954 	 * Call MI attach routine.
955 	 */
956 	ether_ifattach(ifp, eaddr);
957 
958 	/* VLAN capability setup. */
959 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
960 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
961 	ifp->if_capenable = ifp->if_capabilities;
962 #ifdef DEVICE_POLLING
963 	ifp->if_capabilities |= IFCAP_POLLING;
964 #endif
965 	/*
966 	 * Tell the upper layer(s) we support long frames.
967 	 * Must appear after the call to ether_ifattach() because
968 	 * ether_ifattach() sets ifi_hdrlen to the default value.
969 	 */
970 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
971 
972 	/*
973 	 * Hookup IRQ last.
974 	 */
975 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
976 	    NULL, nge_intr, sc, &sc->nge_intrhand);
977 	if (error) {
978 		device_printf(dev, "couldn't set up irq\n");
979 		goto fail;
980 	}
981 
982 fail:
983 	if (error != 0)
984 		nge_detach(dev);
985 	return (error);
986 }
987 
988 static int
989 nge_detach(device_t dev)
990 {
991 	struct nge_softc *sc;
992 	struct ifnet *ifp;
993 
994 	sc = device_get_softc(dev);
995 	ifp = sc->nge_ifp;
996 
997 #ifdef DEVICE_POLLING
998 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
999 		ether_poll_deregister(ifp);
1000 #endif
1001 
1002 	if (device_is_attached(dev)) {
1003 		NGE_LOCK(sc);
1004 		sc->nge_flags |= NGE_FLAG_DETACH;
1005 		nge_stop(sc);
1006 		NGE_UNLOCK(sc);
1007 		callout_drain(&sc->nge_stat_ch);
1008 		if (ifp != NULL)
1009 			ether_ifdetach(ifp);
1010 	}
1011 
1012 	if (sc->nge_miibus != NULL) {
1013 		device_delete_child(dev, sc->nge_miibus);
1014 		sc->nge_miibus = NULL;
1015 	}
1016 	bus_generic_detach(dev);
1017 	if (sc->nge_intrhand != NULL)
1018 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1019 	if (sc->nge_irq != NULL)
1020 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1021 	if (sc->nge_res != NULL)
1022 		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1023 		    sc->nge_res);
1024 
1025 	nge_dma_free(sc);
1026 	if (ifp != NULL)
1027 		if_free(ifp);
1028 
1029 	NGE_LOCK_DESTROY(sc);
1030 
1031 	return (0);
1032 }
1033 
1034 struct nge_dmamap_arg {
1035 	bus_addr_t	nge_busaddr;
1036 };
1037 
1038 static void
1039 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1040 {
1041 	struct nge_dmamap_arg *ctx;
1042 
1043 	if (error != 0)
1044 		return;
1045 	ctx = arg;
1046 	ctx->nge_busaddr = segs[0].ds_addr;
1047 }
1048 
1049 static int
1050 nge_dma_alloc(struct nge_softc *sc)
1051 {
1052 	struct nge_dmamap_arg ctx;
1053 	struct nge_txdesc *txd;
1054 	struct nge_rxdesc *rxd;
1055 	int error, i;
1056 
1057 	/* Create parent DMA tag. */
1058 	error = bus_dma_tag_create(
1059 	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1060 	    1, 0,			/* alignment, boundary */
1061 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1062 	    BUS_SPACE_MAXADDR,		/* highaddr */
1063 	    NULL, NULL,			/* filter, filterarg */
1064 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1065 	    0,				/* nsegments */
1066 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1067 	    0,				/* flags */
1068 	    NULL, NULL,			/* lockfunc, lockarg */
1069 	    &sc->nge_cdata.nge_parent_tag);
1070 	if (error != 0) {
1071 		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1072 		goto fail;
1073 	}
1074 	/* Create tag for Tx ring. */
1075 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1076 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1077 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1078 	    BUS_SPACE_MAXADDR,		/* highaddr */
1079 	    NULL, NULL,			/* filter, filterarg */
1080 	    NGE_TX_RING_SIZE,		/* maxsize */
1081 	    1,				/* nsegments */
1082 	    NGE_TX_RING_SIZE,		/* maxsegsize */
1083 	    0,				/* flags */
1084 	    NULL, NULL,			/* lockfunc, lockarg */
1085 	    &sc->nge_cdata.nge_tx_ring_tag);
1086 	if (error != 0) {
1087 		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1088 		goto fail;
1089 	}
1090 
1091 	/* Create tag for Rx ring. */
1092 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1093 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1094 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1095 	    BUS_SPACE_MAXADDR,		/* highaddr */
1096 	    NULL, NULL,			/* filter, filterarg */
1097 	    NGE_RX_RING_SIZE,		/* maxsize */
1098 	    1,				/* nsegments */
1099 	    NGE_RX_RING_SIZE,		/* maxsegsize */
1100 	    0,				/* flags */
1101 	    NULL, NULL,			/* lockfunc, lockarg */
1102 	    &sc->nge_cdata.nge_rx_ring_tag);
1103 	if (error != 0) {
1104 		device_printf(sc->nge_dev,
1105 		    "failed to create Rx ring DMA tag\n");
1106 		goto fail;
1107 	}
1108 
1109 	/* Create tag for Tx buffers. */
1110 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1111 	    1, 0,			/* alignment, boundary */
1112 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1113 	    BUS_SPACE_MAXADDR,		/* highaddr */
1114 	    NULL, NULL,			/* filter, filterarg */
1115 	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1116 	    NGE_MAXTXSEGS,		/* nsegments */
1117 	    MCLBYTES,			/* maxsegsize */
1118 	    0,				/* flags */
1119 	    NULL, NULL,			/* lockfunc, lockarg */
1120 	    &sc->nge_cdata.nge_tx_tag);
1121 	if (error != 0) {
1122 		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1123 		goto fail;
1124 	}
1125 
1126 	/* Create tag for Rx buffers. */
1127 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1128 	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1129 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1130 	    BUS_SPACE_MAXADDR,		/* highaddr */
1131 	    NULL, NULL,			/* filter, filterarg */
1132 	    MCLBYTES,			/* maxsize */
1133 	    1,				/* nsegments */
1134 	    MCLBYTES,			/* maxsegsize */
1135 	    0,				/* flags */
1136 	    NULL, NULL,			/* lockfunc, lockarg */
1137 	    &sc->nge_cdata.nge_rx_tag);
1138 	if (error != 0) {
1139 		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1140 		goto fail;
1141 	}
1142 
1143 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1144 	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1145 	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1146 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1147 	if (error != 0) {
1148 		device_printf(sc->nge_dev,
1149 		    "failed to allocate DMA'able memory for Tx ring\n");
1150 		goto fail;
1151 	}
1152 
1153 	ctx.nge_busaddr = 0;
1154 	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1155 	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1156 	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1157 	if (error != 0 || ctx.nge_busaddr == 0) {
1158 		device_printf(sc->nge_dev,
1159 		    "failed to load DMA'able memory for Tx ring\n");
1160 		goto fail;
1161 	}
1162 	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1163 
1164 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1165 	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1166 	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1167 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1168 	if (error != 0) {
1169 		device_printf(sc->nge_dev,
1170 		    "failed to allocate DMA'able memory for Rx ring\n");
1171 		goto fail;
1172 	}
1173 
1174 	ctx.nge_busaddr = 0;
1175 	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1176 	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1177 	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1178 	if (error != 0 || ctx.nge_busaddr == 0) {
1179 		device_printf(sc->nge_dev,
1180 		    "failed to load DMA'able memory for Rx ring\n");
1181 		goto fail;
1182 	}
1183 	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1184 
1185 	/* Create DMA maps for Tx buffers. */
1186 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1187 		txd = &sc->nge_cdata.nge_txdesc[i];
1188 		txd->tx_m = NULL;
1189 		txd->tx_dmamap = NULL;
1190 		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1191 		    &txd->tx_dmamap);
1192 		if (error != 0) {
1193 			device_printf(sc->nge_dev,
1194 			    "failed to create Tx dmamap\n");
1195 			goto fail;
1196 		}
1197 	}
1198 	/* Create DMA maps for Rx buffers. */
1199 	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1200 	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1201 		device_printf(sc->nge_dev,
1202 		    "failed to create spare Rx dmamap\n");
1203 		goto fail;
1204 	}
1205 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1206 		rxd = &sc->nge_cdata.nge_rxdesc[i];
1207 		rxd->rx_m = NULL;
1208 		rxd->rx_dmamap = NULL;
1209 		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1210 		    &rxd->rx_dmamap);
1211 		if (error != 0) {
1212 			device_printf(sc->nge_dev,
1213 			    "failed to create Rx dmamap\n");
1214 			goto fail;
1215 		}
1216 	}
1217 
1218 fail:
1219 	return (error);
1220 }
1221 
1222 static void
1223 nge_dma_free(struct nge_softc *sc)
1224 {
1225 	struct nge_txdesc *txd;
1226 	struct nge_rxdesc *rxd;
1227 	int i;
1228 
1229 	/* Tx ring. */
1230 	if (sc->nge_cdata.nge_tx_ring_tag) {
1231 		if (sc->nge_cdata.nge_tx_ring_map)
1232 			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1233 			    sc->nge_cdata.nge_tx_ring_map);
1234 		if (sc->nge_cdata.nge_tx_ring_map &&
1235 		    sc->nge_rdata.nge_tx_ring)
1236 			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1237 			    sc->nge_rdata.nge_tx_ring,
1238 			    sc->nge_cdata.nge_tx_ring_map);
1239 		sc->nge_rdata.nge_tx_ring = NULL;
1240 		sc->nge_cdata.nge_tx_ring_map = NULL;
1241 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1242 		sc->nge_cdata.nge_tx_ring_tag = NULL;
1243 	}
1244 	/* Rx ring. */
1245 	if (sc->nge_cdata.nge_rx_ring_tag) {
1246 		if (sc->nge_cdata.nge_rx_ring_map)
1247 			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1248 			    sc->nge_cdata.nge_rx_ring_map);
1249 		if (sc->nge_cdata.nge_rx_ring_map &&
1250 		    sc->nge_rdata.nge_rx_ring)
1251 			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1252 			    sc->nge_rdata.nge_rx_ring,
1253 			    sc->nge_cdata.nge_rx_ring_map);
1254 		sc->nge_rdata.nge_rx_ring = NULL;
1255 		sc->nge_cdata.nge_rx_ring_map = NULL;
1256 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1257 		sc->nge_cdata.nge_rx_ring_tag = NULL;
1258 	}
1259 	/* Tx buffers. */
1260 	if (sc->nge_cdata.nge_tx_tag) {
1261 		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1262 			txd = &sc->nge_cdata.nge_txdesc[i];
1263 			if (txd->tx_dmamap) {
1264 				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1265 				    txd->tx_dmamap);
1266 				txd->tx_dmamap = NULL;
1267 			}
1268 		}
1269 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1270 		sc->nge_cdata.nge_tx_tag = NULL;
1271 	}
1272 	/* Rx buffers. */
1273 	if (sc->nge_cdata.nge_rx_tag) {
1274 		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1275 			rxd = &sc->nge_cdata.nge_rxdesc[i];
1276 			if (rxd->rx_dmamap) {
1277 				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1278 				    rxd->rx_dmamap);
1279 				rxd->rx_dmamap = NULL;
1280 			}
1281 		}
1282 		if (sc->nge_cdata.nge_rx_sparemap) {
1283 			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1284 			    sc->nge_cdata.nge_rx_sparemap);
1285 			sc->nge_cdata.nge_rx_sparemap = 0;
1286 		}
1287 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1288 		sc->nge_cdata.nge_rx_tag = NULL;
1289 	}
1290 
1291 	if (sc->nge_cdata.nge_parent_tag) {
1292 		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1293 		sc->nge_cdata.nge_parent_tag = NULL;
1294 	}
1295 }
1296 
1297 /*
1298  * Initialize the transmit descriptors.
1299  */
1300 static int
1301 nge_list_tx_init(struct nge_softc *sc)
1302 {
1303 	struct nge_ring_data *rd;
1304 	struct nge_txdesc *txd;
1305 	bus_addr_t addr;
1306 	int i;
1307 
1308 	sc->nge_cdata.nge_tx_prod = 0;
1309 	sc->nge_cdata.nge_tx_cons = 0;
1310 	sc->nge_cdata.nge_tx_cnt = 0;
1311 
1312 	rd = &sc->nge_rdata;
1313 	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1314 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1315 		if (i == NGE_TX_RING_CNT - 1)
1316 			addr = NGE_TX_RING_ADDR(sc, 0);
1317 		else
1318 			addr = NGE_TX_RING_ADDR(sc, i + 1);
1319 		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1320 		txd = &sc->nge_cdata.nge_txdesc[i];
1321 		txd->tx_m = NULL;
1322 	}
1323 
1324 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1325 	    sc->nge_cdata.nge_tx_ring_map,
1326 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1327 
1328 	return (0);
1329 }
1330 
1331 /*
1332  * Initialize the RX descriptors and allocate mbufs for them. Note that
1333  * we arrange the descriptors in a closed ring, so that the last descriptor
1334  * points back to the first.
1335  */
1336 static int
1337 nge_list_rx_init(struct nge_softc *sc)
1338 {
1339 	struct nge_ring_data *rd;
1340 	bus_addr_t addr;
1341 	int i;
1342 
1343 	sc->nge_cdata.nge_rx_cons = 0;
1344 	sc->nge_head = sc->nge_tail = NULL;
1345 
1346 	rd = &sc->nge_rdata;
1347 	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1348 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1349 		if (nge_newbuf(sc, i) != 0)
1350 			return (ENOBUFS);
1351 		if (i == NGE_RX_RING_CNT - 1)
1352 			addr = NGE_RX_RING_ADDR(sc, 0);
1353 		else
1354 			addr = NGE_RX_RING_ADDR(sc, i + 1);
1355 		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1356 	}
1357 
1358 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1359 	    sc->nge_cdata.nge_rx_ring_map,
1360 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1361 
1362 	return (0);
1363 }
1364 
1365 static __inline void
1366 nge_discard_rxbuf(struct nge_softc *sc, int idx)
1367 {
1368 	struct nge_desc *desc;
1369 
1370 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1371 	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1372 	desc->nge_extsts = 0;
1373 }
1374 
1375 /*
1376  * Initialize an RX descriptor and attach an MBUF cluster.
1377  */
1378 static int
1379 nge_newbuf(struct nge_softc *sc, int idx)
1380 {
1381 	struct nge_desc *desc;
1382 	struct nge_rxdesc *rxd;
1383 	struct mbuf *m;
1384 	bus_dma_segment_t segs[1];
1385 	bus_dmamap_t map;
1386 	int nsegs;
1387 
1388 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1389 	if (m == NULL)
1390 		return (ENOBUFS);
1391 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1392 	m_adj(m, sizeof(uint64_t));
1393 
1394 	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1395 	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1396 		m_freem(m);
1397 		return (ENOBUFS);
1398 	}
1399 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1400 
1401 	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1402 	if (rxd->rx_m != NULL) {
1403 		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1404 		    BUS_DMASYNC_POSTREAD);
1405 		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1406 	}
1407 	map = rxd->rx_dmamap;
1408 	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1409 	sc->nge_cdata.nge_rx_sparemap = map;
1410 	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1411 	    BUS_DMASYNC_PREREAD);
1412 	rxd->rx_m = m;
1413 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1414 	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1415 	desc->nge_cmdsts = htole32(segs[0].ds_len);
1416 	desc->nge_extsts = 0;
1417 
1418 	return (0);
1419 }
1420 
1421 #ifndef __NO_STRICT_ALIGNMENT
1422 static __inline void
1423 nge_fixup_rx(struct mbuf *m)
1424 {
1425 	int			i;
1426 	uint16_t		*src, *dst;
1427 
1428 	src = mtod(m, uint16_t *);
1429 	dst = src - 1;
1430 
1431 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1432 		*dst++ = *src++;
1433 
1434 	m->m_data -= ETHER_ALIGN;
1435 }
1436 #endif
1437 
1438 /*
1439  * A frame has been uploaded: pass the resulting mbuf chain up to
1440  * the higher level protocols.
1441  */
1442 static int
1443 nge_rxeof(struct nge_softc *sc)
1444 {
1445 	struct mbuf *m;
1446 	struct ifnet *ifp;
1447 	struct nge_desc *cur_rx;
1448 	struct nge_rxdesc *rxd;
1449 	int cons, prog, rx_npkts, total_len;
1450 	uint32_t cmdsts, extsts;
1451 
1452 	NGE_LOCK_ASSERT(sc);
1453 
1454 	ifp = sc->nge_ifp;
1455 	cons = sc->nge_cdata.nge_rx_cons;
1456 	rx_npkts = 0;
1457 
1458 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1459 	    sc->nge_cdata.nge_rx_ring_map,
1460 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1461 
1462 	for (prog = 0; prog < NGE_RX_RING_CNT &&
1463 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1464 	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1465 #ifdef DEVICE_POLLING
1466 		if (ifp->if_capenable & IFCAP_POLLING) {
1467 			if (sc->rxcycles <= 0)
1468 				break;
1469 			sc->rxcycles--;
1470 		}
1471 #endif
1472 		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1473 		cmdsts = le32toh(cur_rx->nge_cmdsts);
1474 		extsts = le32toh(cur_rx->nge_extsts);
1475 		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1476 			break;
1477 		prog++;
1478 		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1479 		m = rxd->rx_m;
1480 		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1481 
1482 		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1483 			if (nge_newbuf(sc, cons) != 0) {
1484 				ifp->if_iqdrops++;
1485 				if (sc->nge_head != NULL) {
1486 					m_freem(sc->nge_head);
1487 					sc->nge_head = sc->nge_tail = NULL;
1488 				}
1489 				nge_discard_rxbuf(sc, cons);
1490 				continue;
1491 			}
1492 			m->m_len = total_len;
1493 			if (sc->nge_head == NULL) {
1494 				m->m_pkthdr.len = total_len;
1495 				sc->nge_head = sc->nge_tail = m;
1496 			} else {
1497 				m->m_flags &= ~M_PKTHDR;
1498 				sc->nge_head->m_pkthdr.len += total_len;
1499 				sc->nge_tail->m_next = m;
1500 				sc->nge_tail = m;
1501 			}
1502 			continue;
1503 		}
1504 
1505 		/*
1506 		 * If an error occurs, update stats, clear the
1507 		 * status word and leave the mbuf cluster in place:
1508 		 * it should simply get re-used next time this descriptor
1509 	 	 * comes up in the ring.
1510 		 */
1511 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1512 			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1513 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1514 				/*
1515 				 * Work-around hardware bug, accept runt frames
1516 				 * if its length is larger than or equal to 56.
1517 				 */
1518 			} else {
1519 				/*
1520 				 * Input error counters are updated by hardware.
1521 				 */
1522 				if (sc->nge_head != NULL) {
1523 					m_freem(sc->nge_head);
1524 					sc->nge_head = sc->nge_tail = NULL;
1525 				}
1526 				nge_discard_rxbuf(sc, cons);
1527 				continue;
1528 			}
1529 		}
1530 
1531 		/* Try conjure up a replacement mbuf. */
1532 
1533 		if (nge_newbuf(sc, cons) != 0) {
1534 			ifp->if_iqdrops++;
1535 			if (sc->nge_head != NULL) {
1536 				m_freem(sc->nge_head);
1537 				sc->nge_head = sc->nge_tail = NULL;
1538 			}
1539 			nge_discard_rxbuf(sc, cons);
1540 			continue;
1541 		}
1542 
1543 		/* Chain received mbufs. */
1544 		if (sc->nge_head != NULL) {
1545 			m->m_len = total_len;
1546 			m->m_flags &= ~M_PKTHDR;
1547 			sc->nge_tail->m_next = m;
1548 			m = sc->nge_head;
1549 			m->m_pkthdr.len += total_len;
1550 			sc->nge_head = sc->nge_tail = NULL;
1551 		} else
1552 			m->m_pkthdr.len = m->m_len = total_len;
1553 
1554 		/*
1555 		 * Ok. NatSemi really screwed up here. This is the
1556 		 * only gigE chip I know of with alignment constraints
1557 		 * on receive buffers. RX buffers must be 64-bit aligned.
1558 		 */
1559 		/*
1560 		 * By popular demand, ignore the alignment problems
1561 		 * on the non-strict alignment platform. The performance hit
1562 		 * incurred due to unaligned accesses is much smaller
1563 		 * than the hit produced by forcing buffer copies all
1564 		 * the time, especially with jumbo frames. We still
1565 		 * need to fix up the alignment everywhere else though.
1566 		 */
1567 #ifndef __NO_STRICT_ALIGNMENT
1568 		nge_fixup_rx(m);
1569 #endif
1570 		m->m_pkthdr.rcvif = ifp;
1571 		ifp->if_ipackets++;
1572 
1573 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1574 			/* Do IP checksum checking. */
1575 			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1576 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1577 			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1578 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1579 			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1580 			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1581 			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1582 			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1583 				m->m_pkthdr.csum_flags |=
1584 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1585 				m->m_pkthdr.csum_data = 0xffff;
1586 			}
1587 		}
1588 
1589 		/*
1590 		 * If we received a packet with a vlan tag, pass it
1591 		 * to vlan_input() instead of ether_input().
1592 		 */
1593 		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1594 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1595 			m->m_pkthdr.ether_vtag =
1596 			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1597 			m->m_flags |= M_VLANTAG;
1598 		}
1599 		NGE_UNLOCK(sc);
1600 		(*ifp->if_input)(ifp, m);
1601 		NGE_LOCK(sc);
1602 		rx_npkts++;
1603 	}
1604 
1605 	if (prog > 0) {
1606 		sc->nge_cdata.nge_rx_cons = cons;
1607 		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1608 		    sc->nge_cdata.nge_rx_ring_map,
1609 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1610 	}
1611 	return (rx_npkts);
1612 }
1613 
1614 /*
1615  * A frame was downloaded to the chip. It's safe for us to clean up
1616  * the list buffers.
1617  */
1618 static void
1619 nge_txeof(struct nge_softc *sc)
1620 {
1621 	struct nge_desc	*cur_tx;
1622 	struct nge_txdesc *txd;
1623 	struct ifnet *ifp;
1624 	uint32_t cmdsts;
1625 	int cons, prod;
1626 
1627 	NGE_LOCK_ASSERT(sc);
1628 	ifp = sc->nge_ifp;
1629 
1630 	cons = sc->nge_cdata.nge_tx_cons;
1631 	prod = sc->nge_cdata.nge_tx_prod;
1632 	if (cons == prod)
1633 		return;
1634 
1635 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1636 	    sc->nge_cdata.nge_tx_ring_map,
1637 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1638 
1639 	/*
1640 	 * Go through our tx list and free mbufs for those
1641 	 * frames that have been transmitted.
1642 	 */
1643 	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1644 		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1645 		cmdsts = le32toh(cur_tx->nge_cmdsts);
1646 		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1647 			break;
1648 		sc->nge_cdata.nge_tx_cnt--;
1649 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1650 		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1651 			continue;
1652 
1653 		txd = &sc->nge_cdata.nge_txdesc[cons];
1654 		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1655 		    BUS_DMASYNC_POSTWRITE);
1656 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1657 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1658 			ifp->if_oerrors++;
1659 			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1660 				ifp->if_collisions++;
1661 			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1662 				ifp->if_collisions++;
1663 		} else
1664 			ifp->if_opackets++;
1665 
1666 		ifp->if_collisions += (cmdsts & NGE_TXSTAT_COLLCNT) >> 16;
1667 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1668 		    __func__));
1669 		m_freem(txd->tx_m);
1670 		txd->tx_m = NULL;
1671 	}
1672 
1673 	sc->nge_cdata.nge_tx_cons = cons;
1674 	if (sc->nge_cdata.nge_tx_cnt == 0)
1675 		sc->nge_watchdog_timer = 0;
1676 }
1677 
1678 static void
1679 nge_tick(void *xsc)
1680 {
1681 	struct nge_softc *sc;
1682 	struct mii_data *mii;
1683 
1684 	sc = xsc;
1685 	NGE_LOCK_ASSERT(sc);
1686 	mii = device_get_softc(sc->nge_miibus);
1687 	mii_tick(mii);
1688 	/*
1689 	 * For PHYs that does not reset established link, it is
1690 	 * necessary to check whether driver still have a valid
1691 	 * link(e.g link state change callback is not called).
1692 	 * Otherwise, driver think it lost link because driver
1693 	 * initialization routine clears link state flag.
1694 	 */
1695 	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1696 		nge_miibus_statchg(sc->nge_dev);
1697 	nge_stats_update(sc);
1698 	nge_watchdog(sc);
1699 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1700 }
1701 
1702 static void
1703 nge_stats_update(struct nge_softc *sc)
1704 {
1705 	struct ifnet *ifp;
1706 	struct nge_stats now, *stats, *nstats;
1707 
1708 	NGE_LOCK_ASSERT(sc);
1709 
1710 	ifp = sc->nge_ifp;
1711 	stats = &now;
1712 	stats->rx_pkts_errs =
1713 	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1714 	stats->rx_crc_errs =
1715 	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1716 	stats->rx_fifo_oflows =
1717 	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1718 	stats->rx_align_errs =
1719 	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1720 	stats->rx_sym_errs =
1721 	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1722 	stats->rx_pkts_jumbos =
1723 	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1724 	stats->rx_len_errs =
1725 	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1726 	stats->rx_unctl_frames =
1727 	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1728 	stats->rx_pause =
1729 	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1730 	stats->tx_pause =
1731 	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1732 	stats->tx_seq_errs =
1733 	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1734 
1735 	/*
1736 	 * Since we've accept errored frames exclude Rx length errors.
1737 	 */
1738 	ifp->if_ierrors += stats->rx_pkts_errs + stats->rx_crc_errs +
1739 	    stats->rx_fifo_oflows + stats->rx_sym_errs;
1740 
1741 	nstats = &sc->nge_stats;
1742 	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1743 	nstats->rx_crc_errs += stats->rx_crc_errs;
1744 	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1745 	nstats->rx_align_errs += stats->rx_align_errs;
1746 	nstats->rx_sym_errs += stats->rx_sym_errs;
1747 	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1748 	nstats->rx_len_errs += stats->rx_len_errs;
1749 	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1750 	nstats->rx_pause += stats->rx_pause;
1751 	nstats->tx_pause += stats->tx_pause;
1752 	nstats->tx_seq_errs += stats->tx_seq_errs;
1753 }
1754 
1755 #ifdef DEVICE_POLLING
1756 static poll_handler_t nge_poll;
1757 
1758 static int
1759 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1760 {
1761 	struct nge_softc *sc;
1762 	int rx_npkts = 0;
1763 
1764 	sc = ifp->if_softc;
1765 
1766 	NGE_LOCK(sc);
1767 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1768 		NGE_UNLOCK(sc);
1769 		return (rx_npkts);
1770 	}
1771 
1772 	/*
1773 	 * On the nge, reading the status register also clears it.
1774 	 * So before returning to intr mode we must make sure that all
1775 	 * possible pending sources of interrupts have been served.
1776 	 * In practice this means run to completion the *eof routines,
1777 	 * and then call the interrupt routine.
1778 	 */
1779 	sc->rxcycles = count;
1780 	rx_npkts = nge_rxeof(sc);
1781 	nge_txeof(sc);
1782 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1783 		nge_start_locked(ifp);
1784 
1785 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1786 		uint32_t	status;
1787 
1788 		/* Reading the ISR register clears all interrupts. */
1789 		status = CSR_READ_4(sc, NGE_ISR);
1790 
1791 		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1792 			rx_npkts += nge_rxeof(sc);
1793 
1794 		if ((status & NGE_ISR_RX_IDLE) != 0)
1795 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1796 
1797 		if ((status & NGE_ISR_SYSERR) != 0) {
1798 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1799 			nge_init_locked(sc);
1800 		}
1801 	}
1802 	NGE_UNLOCK(sc);
1803 	return (rx_npkts);
1804 }
1805 #endif /* DEVICE_POLLING */
1806 
1807 static void
1808 nge_intr(void *arg)
1809 {
1810 	struct nge_softc *sc;
1811 	struct ifnet *ifp;
1812 	uint32_t status;
1813 
1814 	sc = (struct nge_softc *)arg;
1815 	ifp = sc->nge_ifp;
1816 
1817 	NGE_LOCK(sc);
1818 
1819 	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1820 		goto done_locked;
1821 
1822 	/* Reading the ISR register clears all interrupts. */
1823 	status = CSR_READ_4(sc, NGE_ISR);
1824 	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1825 		goto done_locked;
1826 #ifdef DEVICE_POLLING
1827 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1828 		goto done_locked;
1829 #endif
1830 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1831 		goto done_locked;
1832 
1833 	/* Disable interrupts. */
1834 	CSR_WRITE_4(sc, NGE_IER, 0);
1835 
1836 	/* Data LED on for TBI mode */
1837 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1838 		CSR_WRITE_4(sc, NGE_GPIO,
1839 		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1840 
1841 	for (; (status & NGE_INTRS) != 0;) {
1842 		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1843 		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1844 			nge_txeof(sc);
1845 
1846 		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1847 		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1848 		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1849 			nge_rxeof(sc);
1850 
1851 		if ((status & NGE_ISR_RX_IDLE) != 0)
1852 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1853 
1854 		if ((status & NGE_ISR_SYSERR) != 0) {
1855 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1856 			nge_init_locked(sc);
1857 		}
1858 		/* Reading the ISR register clears all interrupts. */
1859 		status = CSR_READ_4(sc, NGE_ISR);
1860 	}
1861 
1862 	/* Re-enable interrupts. */
1863 	CSR_WRITE_4(sc, NGE_IER, 1);
1864 
1865 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1866 		nge_start_locked(ifp);
1867 
1868 	/* Data LED off for TBI mode */
1869 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1870 		CSR_WRITE_4(sc, NGE_GPIO,
1871 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1872 
1873 done_locked:
1874 	NGE_UNLOCK(sc);
1875 }
1876 
1877 /*
1878  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1879  * pointers to the fragment pointers.
1880  */
1881 static int
1882 nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1883 {
1884 	struct nge_txdesc *txd, *txd_last;
1885 	struct nge_desc *desc;
1886 	struct mbuf *m;
1887 	bus_dmamap_t map;
1888 	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1889 	int error, i, nsegs, prod, si;
1890 
1891 	NGE_LOCK_ASSERT(sc);
1892 
1893 	m = *m_head;
1894 	prod = sc->nge_cdata.nge_tx_prod;
1895 	txd = &sc->nge_cdata.nge_txdesc[prod];
1896 	txd_last = txd;
1897 	map = txd->tx_dmamap;
1898 	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1899 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1900 	if (error == EFBIG) {
1901 		m = m_collapse(*m_head, M_DONTWAIT, NGE_MAXTXSEGS);
1902 		if (m == NULL) {
1903 			m_freem(*m_head);
1904 			*m_head = NULL;
1905 			return (ENOBUFS);
1906 		}
1907 		*m_head = m;
1908 		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1909 		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1910 		if (error != 0) {
1911 			m_freem(*m_head);
1912 			*m_head = NULL;
1913 			return (error);
1914 		}
1915 	} else if (error != 0)
1916 		return (error);
1917 	if (nsegs == 0) {
1918 		m_freem(*m_head);
1919 		*m_head = NULL;
1920 		return (EIO);
1921 	}
1922 
1923 	/* Check number of available descriptors. */
1924 	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1925 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1926 		return (ENOBUFS);
1927 	}
1928 
1929 	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1930 
1931 	si = prod;
1932 	for (i = 0; i < nsegs; i++) {
1933 		desc = &sc->nge_rdata.nge_tx_ring[prod];
1934 		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1935 		if (i == 0)
1936 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1937 			    NGE_CMDSTS_MORE);
1938 		else
1939 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1940 			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1941 		desc->nge_extsts = 0;
1942 		sc->nge_cdata.nge_tx_cnt++;
1943 		NGE_INC(prod, NGE_TX_RING_CNT);
1944 	}
1945 	/* Update producer index. */
1946 	sc->nge_cdata.nge_tx_prod = prod;
1947 
1948 	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1949 	desc = &sc->nge_rdata.nge_tx_ring[prod];
1950 	/* Check if we have a VLAN tag to insert. */
1951 	if ((m->m_flags & M_VLANTAG) != 0)
1952 		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1953 		    bswap16(m->m_pkthdr.ether_vtag));
1954 	/* Set EOP on the last desciptor. */
1955 	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1956 
1957 	/* Set checksum offload in the first descriptor. */
1958 	desc = &sc->nge_rdata.nge_tx_ring[si];
1959 	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1960 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1961 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1962 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1963 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1964 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1965 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1966 	}
1967 	/* Lastly, turn the first descriptor ownership to hardware. */
1968 	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1969 
1970 	txd = &sc->nge_cdata.nge_txdesc[prod];
1971 	map = txd_last->tx_dmamap;
1972 	txd_last->tx_dmamap = txd->tx_dmamap;
1973 	txd->tx_dmamap = map;
1974 	txd->tx_m = m;
1975 
1976 	return (0);
1977 }
1978 
1979 /*
1980  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1981  * to the mbuf data regions directly in the transmit lists. We also save a
1982  * copy of the pointers since the transmit list fragment pointers are
1983  * physical addresses.
1984  */
1985 
1986 static void
1987 nge_start(struct ifnet *ifp)
1988 {
1989 	struct nge_softc *sc;
1990 
1991 	sc = ifp->if_softc;
1992 	NGE_LOCK(sc);
1993 	nge_start_locked(ifp);
1994 	NGE_UNLOCK(sc);
1995 }
1996 
1997 static void
1998 nge_start_locked(struct ifnet *ifp)
1999 {
2000 	struct nge_softc *sc;
2001 	struct mbuf *m_head;
2002 	int enq;
2003 
2004 	sc = ifp->if_softc;
2005 
2006 	NGE_LOCK_ASSERT(sc);
2007 
2008 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2009 	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2010 		return;
2011 
2012 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2013 	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2014 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2015 		if (m_head == NULL)
2016 			break;
2017 		/*
2018 		 * Pack the data into the transmit ring. If we
2019 		 * don't have room, set the OACTIVE flag and wait
2020 		 * for the NIC to drain the ring.
2021 		 */
2022 		if (nge_encap(sc, &m_head)) {
2023 			if (m_head == NULL)
2024 				break;
2025 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2026 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2027 			break;
2028 		}
2029 
2030 		enq++;
2031 		/*
2032 		 * If there's a BPF listener, bounce a copy of this frame
2033 		 * to him.
2034 		 */
2035 		ETHER_BPF_MTAP(ifp, m_head);
2036 	}
2037 
2038 	if (enq > 0) {
2039 		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2040 		    sc->nge_cdata.nge_tx_ring_map,
2041 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2042 		/* Transmit */
2043 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2044 
2045 		/* Set a timeout in case the chip goes out to lunch. */
2046 		sc->nge_watchdog_timer = 5;
2047 	}
2048 }
2049 
2050 static void
2051 nge_init(void *xsc)
2052 {
2053 	struct nge_softc *sc = xsc;
2054 
2055 	NGE_LOCK(sc);
2056 	nge_init_locked(sc);
2057 	NGE_UNLOCK(sc);
2058 }
2059 
2060 static void
2061 nge_init_locked(struct nge_softc *sc)
2062 {
2063 	struct ifnet *ifp = sc->nge_ifp;
2064 	struct mii_data *mii;
2065 	uint8_t *eaddr;
2066 	uint32_t reg;
2067 
2068 	NGE_LOCK_ASSERT(sc);
2069 
2070 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2071 		return;
2072 
2073 	/*
2074 	 * Cancel pending I/O and free all RX/TX buffers.
2075 	 */
2076 	nge_stop(sc);
2077 
2078 	/* Reset the adapter. */
2079 	nge_reset(sc);
2080 
2081 	/* Disable Rx filter prior to programming Rx filter. */
2082 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2083 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2084 
2085 	mii = device_get_softc(sc->nge_miibus);
2086 
2087 	/* Set MAC address. */
2088 	eaddr = IF_LLADDR(sc->nge_ifp);
2089 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2090 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2091 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2092 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2093 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2094 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2095 
2096 	/* Init circular RX list. */
2097 	if (nge_list_rx_init(sc) == ENOBUFS) {
2098 		device_printf(sc->nge_dev, "initialization failed: no "
2099 			"memory for rx buffers\n");
2100 		nge_stop(sc);
2101 		return;
2102 	}
2103 
2104 	/*
2105 	 * Init tx descriptors.
2106 	 */
2107 	nge_list_tx_init(sc);
2108 
2109 	/*
2110 	 * For the NatSemi chip, we have to explicitly enable the
2111 	 * reception of ARP frames, as well as turn on the 'perfect
2112 	 * match' filter where we store the station address, otherwise
2113 	 * we won't receive unicasts meant for this host.
2114 	 */
2115 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
2116 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
2117 
2118 	/*
2119 	 * Set the capture broadcast bit to capture broadcast frames.
2120 	 */
2121 	if (ifp->if_flags & IFF_BROADCAST) {
2122 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2123 	} else {
2124 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2125 	}
2126 
2127 	/* Turn the receive filter on. */
2128 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
2129 
2130 	/* Set Rx filter. */
2131 	nge_rxfilter(sc);
2132 
2133 	/* Disable PRIQ ctl. */
2134 	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2135 
2136 	/*
2137 	 * Set pause frames paramters.
2138 	 *  Rx stat FIFO hi-threshold : 2 or more packets
2139 	 *  Rx stat FIFO lo-threshold : less than 2 packets
2140 	 *  Rx data FIFO hi-threshold : 2K or more bytes
2141 	 *  Rx data FIFO lo-threshold : less than 2K bytes
2142 	 *  pause time : (512ns * 0xffff) -> 33.55ms
2143 	 */
2144 	CSR_WRITE_4(sc, NGE_PAUSECSR,
2145 	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2146 	    NGE_PAUSECSR_PAUSE_ON_DA |
2147 	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2148 	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2149 	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2150 	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2151 	    NGE_PAUSECSR_CNT);
2152 
2153 	/*
2154 	 * Load the address of the RX and TX lists.
2155 	 */
2156 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2157 	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2158 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2159 	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2160 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2161 	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2162 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2163 	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2164 
2165 	/* Set RX configuration. */
2166 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2167 
2168 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2169 	/*
2170 	 * Enable hardware checksum validation for all IPv4
2171 	 * packets, do not reject packets with bad checksums.
2172 	 */
2173 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2174 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2175 
2176 	/*
2177 	 * Tell the chip to detect and strip VLAN tag info from
2178 	 * received frames. The tag will be provided in the extsts
2179 	 * field in the RX descriptors.
2180 	 */
2181 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2182 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2183 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2184 
2185 	/* Set TX configuration. */
2186 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2187 
2188 	/*
2189 	 * Enable TX IPv4 checksumming on a per-packet basis.
2190 	 */
2191 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2192 
2193 	/*
2194 	 * Tell the chip to insert VLAN tags on a per-packet basis as
2195 	 * dictated by the code in the frame encapsulation routine.
2196 	 */
2197 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2198 
2199 	/*
2200 	 * Enable the delivery of PHY interrupts based on
2201 	 * link/speed/duplex status changes. Also enable the
2202 	 * extsts field in the DMA descriptors (needed for
2203 	 * TCP/IP checksum offload on transmit).
2204 	 */
2205 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2206 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2207 
2208 	/*
2209 	 * Configure interrupt holdoff (moderation). We can
2210 	 * have the chip delay interrupt delivery for a certain
2211 	 * period. Units are in 100us, and the max setting
2212 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2213 	 */
2214 	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2215 
2216 	/*
2217 	 * Enable MAC statistics counters and clear.
2218 	 */
2219 	reg = CSR_READ_4(sc, NGE_MIBCTL);
2220 	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2221 	reg |= NGE_MIBCTL_CLEAR_CNT;
2222 	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2223 
2224 	/*
2225 	 * Enable interrupts.
2226 	 */
2227 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2228 #ifdef DEVICE_POLLING
2229 	/*
2230 	 * ... only enable interrupts if we are not polling, make sure
2231 	 * they are off otherwise.
2232 	 */
2233 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2234 		CSR_WRITE_4(sc, NGE_IER, 0);
2235 	else
2236 #endif
2237 	CSR_WRITE_4(sc, NGE_IER, 1);
2238 
2239 	sc->nge_flags &= ~NGE_FLAG_LINK;
2240 	mii_mediachg(mii);
2241 
2242 	sc->nge_watchdog_timer = 0;
2243 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2244 
2245 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2246 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2247 }
2248 
2249 /*
2250  * Set media options.
2251  */
2252 static int
2253 nge_mediachange(struct ifnet *ifp)
2254 {
2255 	struct nge_softc *sc;
2256 	struct mii_data	*mii;
2257 	struct mii_softc *miisc;
2258 	int error;
2259 
2260 	sc = ifp->if_softc;
2261 	NGE_LOCK(sc);
2262 	mii = device_get_softc(sc->nge_miibus);
2263 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2264 		PHY_RESET(miisc);
2265 	error = mii_mediachg(mii);
2266 	NGE_UNLOCK(sc);
2267 
2268 	return (error);
2269 }
2270 
2271 /*
2272  * Report current media status.
2273  */
2274 static void
2275 nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2276 {
2277 	struct nge_softc *sc;
2278 	struct mii_data *mii;
2279 
2280 	sc = ifp->if_softc;
2281 	NGE_LOCK(sc);
2282 	mii = device_get_softc(sc->nge_miibus);
2283 	mii_pollstat(mii);
2284 	ifmr->ifm_active = mii->mii_media_active;
2285 	ifmr->ifm_status = mii->mii_media_status;
2286 	NGE_UNLOCK(sc);
2287 }
2288 
2289 static int
2290 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2291 {
2292 	struct nge_softc *sc = ifp->if_softc;
2293 	struct ifreq *ifr = (struct ifreq *) data;
2294 	struct mii_data *mii;
2295 	int error = 0, mask;
2296 
2297 	switch (command) {
2298 	case SIOCSIFMTU:
2299 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2300 			error = EINVAL;
2301 		else {
2302 			NGE_LOCK(sc);
2303 			ifp->if_mtu = ifr->ifr_mtu;
2304 			/*
2305 			 * Workaround: if the MTU is larger than
2306 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2307 			 * TX checksum offloading.
2308 			 */
2309 			if (ifr->ifr_mtu >= 8152) {
2310 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2311 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2312 			} else {
2313 				ifp->if_capenable |= IFCAP_TXCSUM;
2314 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2315 			}
2316 			NGE_UNLOCK(sc);
2317 			VLAN_CAPABILITIES(ifp);
2318 		}
2319 		break;
2320 	case SIOCSIFFLAGS:
2321 		NGE_LOCK(sc);
2322 		if ((ifp->if_flags & IFF_UP) != 0) {
2323 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2324 				if ((ifp->if_flags ^ sc->nge_if_flags) &
2325 				    (IFF_PROMISC | IFF_ALLMULTI))
2326 					nge_rxfilter(sc);
2327 			} else {
2328 				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2329 					nge_init_locked(sc);
2330 			}
2331 		} else {
2332 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2333 				nge_stop(sc);
2334 		}
2335 		sc->nge_if_flags = ifp->if_flags;
2336 		NGE_UNLOCK(sc);
2337 		error = 0;
2338 		break;
2339 	case SIOCADDMULTI:
2340 	case SIOCDELMULTI:
2341 		NGE_LOCK(sc);
2342 		nge_rxfilter(sc);
2343 		NGE_UNLOCK(sc);
2344 		error = 0;
2345 		break;
2346 	case SIOCGIFMEDIA:
2347 	case SIOCSIFMEDIA:
2348 		mii = device_get_softc(sc->nge_miibus);
2349 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2350 		break;
2351 	case SIOCSIFCAP:
2352 		NGE_LOCK(sc);
2353 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2354 #ifdef DEVICE_POLLING
2355 		if ((mask & IFCAP_POLLING) != 0 &&
2356 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2357 			ifp->if_capenable ^= IFCAP_POLLING;
2358 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2359 				error = ether_poll_register(nge_poll, ifp);
2360 				if (error != 0) {
2361 					NGE_UNLOCK(sc);
2362 					break;
2363 				}
2364 				/* Disable interrupts. */
2365 				CSR_WRITE_4(sc, NGE_IER, 0);
2366 			} else {
2367 				error = ether_poll_deregister(ifp);
2368 				/* Enable interrupts. */
2369 				CSR_WRITE_4(sc, NGE_IER, 1);
2370 			}
2371 		}
2372 #endif /* DEVICE_POLLING */
2373 		if ((mask & IFCAP_TXCSUM) != 0 &&
2374 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2375 			ifp->if_capenable ^= IFCAP_TXCSUM;
2376 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2377 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2378 			else
2379 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2380 		}
2381 		if ((mask & IFCAP_RXCSUM) != 0 &&
2382 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2383 			ifp->if_capenable ^= IFCAP_RXCSUM;
2384 
2385 		if ((mask & IFCAP_WOL) != 0 &&
2386 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2387 			if ((mask & IFCAP_WOL_UCAST) != 0)
2388 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2389 			if ((mask & IFCAP_WOL_MCAST) != 0)
2390 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2391 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2392 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2393 		}
2394 
2395 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2396 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2397 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2398 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2399 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2400 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2401 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2402 				if ((ifp->if_capenable &
2403 				    IFCAP_VLAN_HWTAGGING) != 0)
2404 					NGE_SETBIT(sc,
2405 					    NGE_VLAN_IP_RXCTL,
2406 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2407 				else
2408 					NGE_CLRBIT(sc,
2409 					    NGE_VLAN_IP_RXCTL,
2410 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2411 			}
2412 		}
2413 		/*
2414 		 * Both VLAN hardware tagging and checksum offload is
2415 		 * required to do checksum offload on VLAN interface.
2416 		 */
2417 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2418 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2419 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2420 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2421 		NGE_UNLOCK(sc);
2422 		VLAN_CAPABILITIES(ifp);
2423 		break;
2424 	default:
2425 		error = ether_ioctl(ifp, command, data);
2426 		break;
2427 	}
2428 
2429 	return (error);
2430 }
2431 
2432 static void
2433 nge_watchdog(struct nge_softc *sc)
2434 {
2435 	struct ifnet *ifp;
2436 
2437 	NGE_LOCK_ASSERT(sc);
2438 
2439 	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2440 		return;
2441 
2442 	ifp = sc->nge_ifp;
2443 	ifp->if_oerrors++;
2444 	if_printf(ifp, "watchdog timeout\n");
2445 
2446 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2447 	nge_init_locked(sc);
2448 
2449 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2450 		nge_start_locked(ifp);
2451 }
2452 
2453 static int
2454 nge_stop_mac(struct nge_softc *sc)
2455 {
2456 	uint32_t reg;
2457 	int i;
2458 
2459 	NGE_LOCK_ASSERT(sc);
2460 
2461 	reg = CSR_READ_4(sc, NGE_CSR);
2462 	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2463 		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2464 		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2465 		CSR_WRITE_4(sc, NGE_CSR, reg);
2466 		for (i = 0; i < NGE_TIMEOUT; i++) {
2467 			DELAY(1);
2468 			if ((CSR_READ_4(sc, NGE_CSR) &
2469 			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2470 				break;
2471 		}
2472 		if (i == NGE_TIMEOUT)
2473 			return (ETIMEDOUT);
2474 	}
2475 
2476 	return (0);
2477 }
2478 
2479 /*
2480  * Stop the adapter and free any mbufs allocated to the
2481  * RX and TX lists.
2482  */
2483 static void
2484 nge_stop(struct nge_softc *sc)
2485 {
2486 	struct nge_txdesc *txd;
2487 	struct nge_rxdesc *rxd;
2488 	int i;
2489 	struct ifnet *ifp;
2490 
2491 	NGE_LOCK_ASSERT(sc);
2492 	ifp = sc->nge_ifp;
2493 
2494 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2495 	sc->nge_flags &= ~NGE_FLAG_LINK;
2496 	callout_stop(&sc->nge_stat_ch);
2497 	sc->nge_watchdog_timer = 0;
2498 
2499 	CSR_WRITE_4(sc, NGE_IER, 0);
2500 	CSR_WRITE_4(sc, NGE_IMR, 0);
2501 	if (nge_stop_mac(sc) == ETIMEDOUT)
2502 		device_printf(sc->nge_dev,
2503 		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2504 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2505 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2506 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2507 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2508 	nge_stats_update(sc);
2509 	if (sc->nge_head != NULL) {
2510 		m_freem(sc->nge_head);
2511 		sc->nge_head = sc->nge_tail = NULL;
2512 	}
2513 
2514 	/*
2515 	 * Free RX and TX mbufs still in the queues.
2516 	 */
2517 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2518 		rxd = &sc->nge_cdata.nge_rxdesc[i];
2519 		if (rxd->rx_m != NULL) {
2520 			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2521 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2522 			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2523 			    rxd->rx_dmamap);
2524 			m_freem(rxd->rx_m);
2525 			rxd->rx_m = NULL;
2526 		}
2527 	}
2528 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2529 		txd = &sc->nge_cdata.nge_txdesc[i];
2530 		if (txd->tx_m != NULL) {
2531 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2532 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2533 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2534 			    txd->tx_dmamap);
2535 			m_freem(txd->tx_m);
2536 			txd->tx_m = NULL;
2537 		}
2538 	}
2539 }
2540 
2541 /*
2542  * Before setting WOL bits, caller should have stopped Receiver.
2543  */
2544 static void
2545 nge_wol(struct nge_softc *sc)
2546 {
2547 	struct ifnet *ifp;
2548 	uint32_t reg;
2549 	uint16_t pmstat;
2550 	int pmc;
2551 
2552 	NGE_LOCK_ASSERT(sc);
2553 
2554 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2555 		return;
2556 
2557 	ifp = sc->nge_ifp;
2558 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2559 		/* Disable WOL & disconnect CLKRUN to save power. */
2560 		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2561 		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2562 	} else {
2563 		if (nge_stop_mac(sc) == ETIMEDOUT)
2564 			device_printf(sc->nge_dev,
2565 			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2566 		/*
2567 		 * Make sure wake frames will be buffered in the Rx FIFO.
2568 		 * (i.e. Silent Rx mode.)
2569 		 */
2570 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2571 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2572 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2573 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2574 		/* Enable Rx again. */
2575 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2576 		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2577 
2578 		/* Configure WOL events. */
2579 		reg = 0;
2580 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2581 			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2582 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2583 			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2584 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2585 			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2586 		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2587 
2588 		/* Activate CLKRUN. */
2589 		reg = CSR_READ_4(sc, NGE_CLKRUN);
2590 		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2591 		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2592 	}
2593 
2594 	/* Request PME. */
2595 	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2596 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2597 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2598 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2599 	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2600 }
2601 
2602 /*
2603  * Stop all chip I/O so that the kernel's probe routines don't
2604  * get confused by errant DMAs when rebooting.
2605  */
2606 static int
2607 nge_shutdown(device_t dev)
2608 {
2609 
2610 	return (nge_suspend(dev));
2611 }
2612 
2613 static int
2614 nge_suspend(device_t dev)
2615 {
2616 	struct nge_softc *sc;
2617 
2618 	sc = device_get_softc(dev);
2619 
2620 	NGE_LOCK(sc);
2621 	nge_stop(sc);
2622 	nge_wol(sc);
2623 	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2624 	NGE_UNLOCK(sc);
2625 
2626 	return (0);
2627 }
2628 
2629 static int
2630 nge_resume(device_t dev)
2631 {
2632 	struct nge_softc *sc;
2633 	struct ifnet *ifp;
2634 	uint16_t pmstat;
2635 	int pmc;
2636 
2637 	sc = device_get_softc(dev);
2638 
2639 	NGE_LOCK(sc);
2640 	ifp = sc->nge_ifp;
2641 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2642 		/* Disable PME and clear PME status. */
2643 		pmstat = pci_read_config(sc->nge_dev,
2644 		    pmc + PCIR_POWER_STATUS, 2);
2645 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2646 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2647 			pci_write_config(sc->nge_dev,
2648 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2649 		}
2650 	}
2651 	if (ifp->if_flags & IFF_UP) {
2652 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2653 		nge_init_locked(sc);
2654 	}
2655 
2656 	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2657 	NGE_UNLOCK(sc);
2658 
2659 	return (0);
2660 }
2661 
2662 #define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2663 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2664 
2665 static void
2666 nge_sysctl_node(struct nge_softc *sc)
2667 {
2668 	struct sysctl_ctx_list *ctx;
2669 	struct sysctl_oid_list *child, *parent;
2670 	struct sysctl_oid *tree;
2671 	struct nge_stats *stats;
2672 	int error;
2673 
2674 	ctx = device_get_sysctl_ctx(sc->nge_dev);
2675 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2676 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2677 	    CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
2678 	    sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2679 	/* Pull in device tunables. */
2680 	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2681 	error = resource_int_value(device_get_name(sc->nge_dev),
2682 	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2683 	if (error == 0) {
2684 		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2685 		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2686 			device_printf(sc->nge_dev,
2687 			    "int_holdoff value out of range; "
2688 			    "using default: %d(%d us)\n",
2689 			    NGE_INT_HOLDOFF_DEFAULT,
2690 			    NGE_INT_HOLDOFF_DEFAULT * 100);
2691 			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2692 		}
2693 	}
2694 
2695 	stats = &sc->nge_stats;
2696 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2697 	    NULL, "NGE statistics");
2698 	parent = SYSCTL_CHILDREN(tree);
2699 
2700 	/* Rx statistics. */
2701 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2702 	    NULL, "Rx MAC statistics");
2703 	child = SYSCTL_CHILDREN(tree);
2704 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2705 	    &stats->rx_pkts_errs,
2706 	    "Packet errors including both wire errors and FIFO overruns");
2707 	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2708 	    &stats->rx_crc_errs, "CRC errors");
2709 	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2710 	    &stats->rx_fifo_oflows, "FIFO overflows");
2711 	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2712 	    &stats->rx_align_errs, "Frame alignment errors");
2713 	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2714 	    &stats->rx_sym_errs, "One or more symbol errors");
2715 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2716 	    &stats->rx_pkts_jumbos,
2717 	    "Packets received with length greater than 1518 bytes");
2718 	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2719 	    &stats->rx_len_errs, "In Range Length errors");
2720 	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2721 	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2722 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2723 	    &stats->rx_pause, "Pause frames");
2724 
2725 	/* Tx statistics. */
2726 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2727 	    NULL, "Tx MAC statistics");
2728 	child = SYSCTL_CHILDREN(tree);
2729 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2730 	    &stats->tx_pause, "Pause frames");
2731 	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2732 	    &stats->tx_seq_errs,
2733 	    "Loss of collision heartbeat during transmission");
2734 }
2735 
2736 #undef NGE_SYSCTL_STAT_ADD32
2737 
2738 static int
2739 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2740 {
2741 	int error, value;
2742 
2743 	if (arg1 == NULL)
2744 		return (EINVAL);
2745 	value = *(int *)arg1;
2746 	error = sysctl_handle_int(oidp, &value, 0, req);
2747 	if (error != 0 || req->newptr == NULL)
2748 		return (error);
2749 	if (value < low || value > high)
2750 		return (EINVAL);
2751 	*(int *)arg1 = value;
2752 
2753 	return (0);
2754 }
2755 
2756 static int
2757 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2758 {
2759 
2760 	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2761 	    NGE_INT_HOLDOFF_MAX));
2762 }
2763