xref: /freebsd/sys/dev/nfe/if_nfe.c (revision ff0ba87247820afbdfdc1b307c803f7923d0e4d3)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_arp.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/if_vlan_var.h>
51 
52 #include <net/bpf.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/bus.h>
57 #include <sys/rman.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <dev/nfe/if_nfereg.h>
66 #include <dev/nfe/if_nfevar.h>
67 
68 MODULE_DEPEND(nfe, pci, 1, 1, 1);
69 MODULE_DEPEND(nfe, ether, 1, 1, 1);
70 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
71 
72 /* "device miibus" required.  See GENERIC if you get errors here. */
73 #include "miibus_if.h"
74 
75 static int  nfe_probe(device_t);
76 static int  nfe_attach(device_t);
77 static int  nfe_detach(device_t);
78 static int  nfe_suspend(device_t);
79 static int  nfe_resume(device_t);
80 static int nfe_shutdown(device_t);
81 static int  nfe_can_use_msix(struct nfe_softc *);
82 static int  nfe_detect_msik9(struct nfe_softc *);
83 static void nfe_power(struct nfe_softc *);
84 static int  nfe_miibus_readreg(device_t, int, int);
85 static int  nfe_miibus_writereg(device_t, int, int, int);
86 static void nfe_miibus_statchg(device_t);
87 static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
88 static void nfe_set_intr(struct nfe_softc *);
89 static __inline void nfe_enable_intr(struct nfe_softc *);
90 static __inline void nfe_disable_intr(struct nfe_softc *);
91 static int  nfe_ioctl(if_t, u_long, caddr_t);
92 static void nfe_alloc_msix(struct nfe_softc *, int);
93 static int nfe_intr(void *);
94 static void nfe_int_task(void *, int);
95 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
96 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
97 static int nfe_newbuf(struct nfe_softc *, int);
98 static int nfe_jnewbuf(struct nfe_softc *, int);
99 static int  nfe_rxeof(struct nfe_softc *, int, int *);
100 static int  nfe_jrxeof(struct nfe_softc *, int, int *);
101 static void nfe_txeof(struct nfe_softc *);
102 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
103 static void nfe_setmulti(struct nfe_softc *);
104 static void nfe_start(if_t);
105 static void nfe_start_locked(if_t);
106 static void nfe_watchdog(if_t);
107 static void nfe_init(void *);
108 static void nfe_init_locked(void *);
109 static void nfe_stop(if_t);
110 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
111 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
112 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
113 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
114 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
115 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
116 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
118 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
119 static int  nfe_ifmedia_upd(if_t);
120 static void nfe_ifmedia_sts(if_t, struct ifmediareq *);
121 static void nfe_tick(void *);
122 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
123 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
124 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
125 
126 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
127 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
128 static void nfe_sysctl_node(struct nfe_softc *);
129 static void nfe_stats_clear(struct nfe_softc *);
130 static void nfe_stats_update(struct nfe_softc *);
131 static void nfe_set_linkspeed(struct nfe_softc *);
132 static void nfe_set_wol(struct nfe_softc *);
133 
134 #ifdef NFE_DEBUG
135 static int nfedebug = 0;
136 #define	DPRINTF(sc, ...)	do {				\
137 	if (nfedebug)						\
138 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
139 } while (0)
140 #define	DPRINTFN(sc, n, ...)	do {				\
141 	if (nfedebug >= (n))					\
142 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
143 } while (0)
144 #else
145 #define	DPRINTF(sc, ...)
146 #define	DPRINTFN(sc, n, ...)
147 #endif
148 
149 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
150 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
151 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
152 
153 /* Tunables. */
154 static int msi_disable = 0;
155 static int msix_disable = 0;
156 static int jumbo_disable = 0;
157 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
158 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
159 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
160 
161 static device_method_t nfe_methods[] = {
162 	/* Device interface */
163 	DEVMETHOD(device_probe,		nfe_probe),
164 	DEVMETHOD(device_attach,	nfe_attach),
165 	DEVMETHOD(device_detach,	nfe_detach),
166 	DEVMETHOD(device_suspend,	nfe_suspend),
167 	DEVMETHOD(device_resume,	nfe_resume),
168 	DEVMETHOD(device_shutdown,	nfe_shutdown),
169 
170 	/* MII interface */
171 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
172 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
173 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
174 
175 	DEVMETHOD_END
176 };
177 
178 static driver_t nfe_driver = {
179 	"nfe",
180 	nfe_methods,
181 	sizeof(struct nfe_softc)
182 };
183 
184 static devclass_t nfe_devclass;
185 
186 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
187 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
188 
189 static struct nfe_type nfe_devs[] = {
190 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
191 	    "NVIDIA nForce MCP Networking Adapter"},
192 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
193 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
194 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
195 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
196 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
197 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
198 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
199 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
200 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
201 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
202 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
203 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
204 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
205 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
206 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
207 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
208 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
209 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
210 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
211 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
212 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
213 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
214 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
215 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
216 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
217 	    "NVIDIA nForce MCP55 Networking Adapter"},
218 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
219 	    "NVIDIA nForce MCP55 Networking Adapter"},
220 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
221 	    "NVIDIA nForce MCP61 Networking Adapter"},
222 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
223 	    "NVIDIA nForce MCP61 Networking Adapter"},
224 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
225 	    "NVIDIA nForce MCP61 Networking Adapter"},
226 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
227 	    "NVIDIA nForce MCP61 Networking Adapter"},
228 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
229 	    "NVIDIA nForce MCP65 Networking Adapter"},
230 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
231 	    "NVIDIA nForce MCP65 Networking Adapter"},
232 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
233 	    "NVIDIA nForce MCP65 Networking Adapter"},
234 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
235 	    "NVIDIA nForce MCP65 Networking Adapter"},
236 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
237 	    "NVIDIA nForce MCP67 Networking Adapter"},
238 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
239 	    "NVIDIA nForce MCP67 Networking Adapter"},
240 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
241 	    "NVIDIA nForce MCP67 Networking Adapter"},
242 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
243 	    "NVIDIA nForce MCP67 Networking Adapter"},
244 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
245 	    "NVIDIA nForce MCP73 Networking Adapter"},
246 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
247 	    "NVIDIA nForce MCP73 Networking Adapter"},
248 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
249 	    "NVIDIA nForce MCP73 Networking Adapter"},
250 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
251 	    "NVIDIA nForce MCP73 Networking Adapter"},
252 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
253 	    "NVIDIA nForce MCP77 Networking Adapter"},
254 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
255 	    "NVIDIA nForce MCP77 Networking Adapter"},
256 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
257 	    "NVIDIA nForce MCP77 Networking Adapter"},
258 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
259 	    "NVIDIA nForce MCP77 Networking Adapter"},
260 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
261 	    "NVIDIA nForce MCP79 Networking Adapter"},
262 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
263 	    "NVIDIA nForce MCP79 Networking Adapter"},
264 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
265 	    "NVIDIA nForce MCP79 Networking Adapter"},
266 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
267 	    "NVIDIA nForce MCP79 Networking Adapter"},
268 	{0, 0, NULL}
269 };
270 
271 
272 /* Probe for supported hardware ID's */
273 static int
274 nfe_probe(device_t dev)
275 {
276 	struct nfe_type *t;
277 
278 	t = nfe_devs;
279 	/* Check for matching PCI DEVICE ID's */
280 	while (t->name != NULL) {
281 		if ((pci_get_vendor(dev) == t->vid_id) &&
282 		    (pci_get_device(dev) == t->dev_id)) {
283 			device_set_desc(dev, t->name);
284 			return (BUS_PROBE_DEFAULT);
285 		}
286 		t++;
287 	}
288 
289 	return (ENXIO);
290 }
291 
292 static void
293 nfe_alloc_msix(struct nfe_softc *sc, int count)
294 {
295 	int rid;
296 
297 	rid = PCIR_BAR(2);
298 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
299 	    &rid, RF_ACTIVE);
300 	if (sc->nfe_msix_res == NULL) {
301 		device_printf(sc->nfe_dev,
302 		    "couldn't allocate MSIX table resource\n");
303 		return;
304 	}
305 	rid = PCIR_BAR(3);
306 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
307 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
308 	if (sc->nfe_msix_pba_res == NULL) {
309 		device_printf(sc->nfe_dev,
310 		    "couldn't allocate MSIX PBA resource\n");
311 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
312 		    sc->nfe_msix_res);
313 		sc->nfe_msix_res = NULL;
314 		return;
315 	}
316 
317 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
318 		if (count == NFE_MSI_MESSAGES) {
319 			if (bootverbose)
320 				device_printf(sc->nfe_dev,
321 				    "Using %d MSIX messages\n", count);
322 			sc->nfe_msix = 1;
323 		} else {
324 			if (bootverbose)
325 				device_printf(sc->nfe_dev,
326 				    "couldn't allocate MSIX\n");
327 			pci_release_msi(sc->nfe_dev);
328 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
329 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
330 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
331 			    PCIR_BAR(2), sc->nfe_msix_res);
332 			sc->nfe_msix_pba_res = NULL;
333 			sc->nfe_msix_res = NULL;
334 		}
335 	}
336 }
337 
338 
339 static int
340 nfe_detect_msik9(struct nfe_softc *sc)
341 {
342 	static const char *maker = "MSI";
343 	static const char *product = "K9N6PGM2-V2 (MS-7309)";
344 	char *m, *p;
345 	int found;
346 
347 	found = 0;
348 	m = kern_getenv("smbios.planar.maker");
349 	p = kern_getenv("smbios.planar.product");
350 	if (m != NULL && p != NULL) {
351 		if (strcmp(m, maker) == 0 && strcmp(p, product) == 0)
352 			found = 1;
353 	}
354 	if (m != NULL)
355 		freeenv(m);
356 	if (p != NULL)
357 		freeenv(p);
358 
359 	return (found);
360 }
361 
362 
363 static int
364 nfe_attach(device_t dev)
365 {
366 	struct nfe_softc *sc;
367 	if_t ifp;
368 	bus_addr_t dma_addr_max;
369 	int error = 0, i, msic, phyloc, reg, rid;
370 
371 	sc = device_get_softc(dev);
372 	sc->nfe_dev = dev;
373 
374 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
375 	    MTX_DEF);
376 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
377 
378 	pci_enable_busmaster(dev);
379 
380 	rid = PCIR_BAR(0);
381 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
382 	    RF_ACTIVE);
383 	if (sc->nfe_res[0] == NULL) {
384 		device_printf(dev, "couldn't map memory resources\n");
385 		mtx_destroy(&sc->nfe_mtx);
386 		return (ENXIO);
387 	}
388 
389 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
390 		uint16_t v, width;
391 
392 		v = pci_read_config(dev, reg + 0x08, 2);
393 		/* Change max. read request size to 4096. */
394 		v &= ~(7 << 12);
395 		v |= (5 << 12);
396 		pci_write_config(dev, reg + 0x08, v, 2);
397 
398 		v = pci_read_config(dev, reg + 0x0c, 2);
399 		/* link capability */
400 		v = (v >> 4) & 0x0f;
401 		width = pci_read_config(dev, reg + 0x12, 2);
402 		/* negotiated link width */
403 		width = (width >> 4) & 0x3f;
404 		if (v != width)
405 			device_printf(sc->nfe_dev,
406 			    "warning, negotiated width of link(x%d) != "
407 			    "max. width of link(x%d)\n", width, v);
408 	}
409 
410 	if (nfe_can_use_msix(sc) == 0) {
411 		device_printf(sc->nfe_dev,
412 		    "MSI/MSI-X capability black-listed, will use INTx\n");
413 		msix_disable = 1;
414 		msi_disable = 1;
415 	}
416 
417 	/* Allocate interrupt */
418 	if (msix_disable == 0 || msi_disable == 0) {
419 		if (msix_disable == 0 &&
420 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
421 			nfe_alloc_msix(sc, msic);
422 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
423 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
424 		    pci_alloc_msi(dev, &msic) == 0) {
425 			if (msic == NFE_MSI_MESSAGES) {
426 				if (bootverbose)
427 					device_printf(dev,
428 					    "Using %d MSI messages\n", msic);
429 				sc->nfe_msi = 1;
430 			} else
431 				pci_release_msi(dev);
432 		}
433 	}
434 
435 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
436 		rid = 0;
437 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
438 		    RF_SHAREABLE | RF_ACTIVE);
439 		if (sc->nfe_irq[0] == NULL) {
440 			device_printf(dev, "couldn't allocate IRQ resources\n");
441 			error = ENXIO;
442 			goto fail;
443 		}
444 	} else {
445 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
446 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
447 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
448 			if (sc->nfe_irq[i] == NULL) {
449 				device_printf(dev,
450 				    "couldn't allocate IRQ resources for "
451 				    "message %d\n", rid);
452 				error = ENXIO;
453 				goto fail;
454 			}
455 		}
456 		/* Map interrupts to vector 0. */
457 		if (sc->nfe_msix != 0) {
458 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
459 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
460 		} else if (sc->nfe_msi != 0) {
461 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
462 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
463 		}
464 	}
465 
466 	/* Set IRQ status/mask register. */
467 	sc->nfe_irq_status = NFE_IRQ_STATUS;
468 	sc->nfe_irq_mask = NFE_IRQ_MASK;
469 	sc->nfe_intrs = NFE_IRQ_WANTED;
470 	sc->nfe_nointrs = 0;
471 	if (sc->nfe_msix != 0) {
472 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
473 		sc->nfe_nointrs = NFE_IRQ_WANTED;
474 	} else if (sc->nfe_msi != 0) {
475 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
476 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
477 	}
478 
479 	sc->nfe_devid = pci_get_device(dev);
480 	sc->nfe_revid = pci_get_revid(dev);
481 	sc->nfe_flags = 0;
482 
483 	switch (sc->nfe_devid) {
484 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
485 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
486 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
487 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
488 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
489 		break;
490 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
491 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
492 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
493 		break;
494 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
495 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
496 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
497 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
498 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
499 		    NFE_MIB_V1;
500 		break;
501 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
502 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
503 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
504 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
505 		break;
506 
507 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
508 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
509 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
510 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
511 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
512 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
513 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
514 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
515 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
516 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
517 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
518 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
519 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
520 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
521 		break;
522 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
523 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
524 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
525 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
526 		/* XXX flow control */
527 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
528 		    NFE_CORRECT_MACADDR | NFE_MIB_V3;
529 		break;
530 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
531 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
532 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
533 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
534 		/* XXX flow control */
535 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
536 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
537 		break;
538 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
539 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
540 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
541 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
542 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
543 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
544 		    NFE_MIB_V2;
545 		break;
546 	}
547 
548 	nfe_power(sc);
549 	/* Check for reversed ethernet address */
550 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
551 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
552 	nfe_get_macaddr(sc, sc->eaddr);
553 	/*
554 	 * Allocate the parent bus DMA tag appropriate for PCI.
555 	 */
556 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
557 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
558 		dma_addr_max = NFE_DMA_MAXADDR;
559 	error = bus_dma_tag_create(
560 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
561 	    1, 0,				/* alignment, boundary */
562 	    dma_addr_max,			/* lowaddr */
563 	    BUS_SPACE_MAXADDR,			/* highaddr */
564 	    NULL, NULL,				/* filter, filterarg */
565 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
566 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
567 	    0,					/* flags */
568 	    NULL, NULL,				/* lockfunc, lockarg */
569 	    &sc->nfe_parent_tag);
570 	if (error)
571 		goto fail;
572 
573 	ifp = sc->nfe_ifp = if_gethandle(IFT_ETHER);
574 	if (ifp == NULL) {
575 		device_printf(dev, "can not if_gethandle()\n");
576 		error = ENOSPC;
577 		goto fail;
578 	}
579 
580 	/*
581 	 * Allocate Tx and Rx rings.
582 	 */
583 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
584 		goto fail;
585 
586 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
587 		goto fail;
588 
589 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
590 	/* Create sysctl node. */
591 	nfe_sysctl_node(sc);
592 
593 	if_setsoftc(ifp, sc);
594 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
596 	if_setioctlfn(ifp, nfe_ioctl);
597 	if_setstartfn(ifp, nfe_start);
598 	if_sethwassist(ifp, 0);
599 	if_setcapabilities(ifp, 0);
600 	if_setinitfn(ifp, nfe_init);
601 	if_setsendqlen(ifp, NFE_TX_RING_COUNT - 1);
602 	if_setsendqready(ifp);
603 
604 
605 	if (sc->nfe_flags & NFE_HW_CSUM) {
606 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
607 		if_sethwassistbits(ifp, NFE_CSUM_FEATURES | CSUM_TSO, 0);
608 	}
609 	if_setcapenable(ifp, if_getcapabilities(ifp));
610 
611 	sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
612 	/* VLAN capability setup. */
613 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
614 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
615 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0);
616 		if ((if_getcapabilities(ifp) & IFCAP_HWCSUM) != 0)
617 			if_setcapabilitiesbit(ifp,
618 			    (IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO), 0);
619 	}
620 
621 	if (pci_find_cap(dev, PCIY_PMG, &reg) == 0)
622 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
623 	if_setcapenable(ifp, if_getcapabilities(ifp));
624 
625 	/*
626 	 * Tell the upper layer(s) we support long frames.
627 	 * Must appear after the call to ether_ifattach() because
628 	 * ether_ifattach() sets ifi_hdrlen to the default value.
629 	 */
630 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
631 
632 #ifdef DEVICE_POLLING
633 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
634 #endif
635 
636 	/* Do MII setup */
637 	phyloc = MII_PHY_ANY;
638 	if (sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN1 ||
639 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN2 ||
640 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN3 ||
641 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN4) {
642 		if (nfe_detect_msik9(sc) != 0)
643 			phyloc = 0;
644 	}
645 	error = mii_attach(dev, &sc->nfe_miibus, ifp,
646 	    (ifm_change_cb_t)nfe_ifmedia_upd, (ifm_stat_cb_t)nfe_ifmedia_sts,
647 	    BMSR_DEFCAPMASK, phyloc, MII_OFFSET_ANY, MIIF_DOPAUSE);
648 	if (error != 0) {
649 		device_printf(dev, "attaching PHYs failed\n");
650 		goto fail;
651 	}
652 	ether_ifattach(ifp, sc->eaddr);
653 
654 	TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
655 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
656 	    taskqueue_thread_enqueue, &sc->nfe_tq);
657 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
658 	    device_get_nameunit(sc->nfe_dev));
659 	error = 0;
660 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
661 		error = bus_setup_intr(dev, sc->nfe_irq[0],
662 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
663 		    &sc->nfe_intrhand[0]);
664 	} else {
665 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
666 			error = bus_setup_intr(dev, sc->nfe_irq[i],
667 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
668 			    &sc->nfe_intrhand[i]);
669 			if (error != 0)
670 				break;
671 		}
672 	}
673 	if (error) {
674 		device_printf(dev, "couldn't set up irq\n");
675 		taskqueue_free(sc->nfe_tq);
676 		sc->nfe_tq = NULL;
677 		ether_ifdetach(ifp);
678 		goto fail;
679 	}
680 
681 fail:
682 	if (error)
683 		nfe_detach(dev);
684 
685 	return (error);
686 }
687 
688 
689 static int
690 nfe_detach(device_t dev)
691 {
692 	struct nfe_softc *sc;
693 	if_t ifp;
694 	uint8_t eaddr[ETHER_ADDR_LEN];
695 	int i, rid;
696 
697 	sc = device_get_softc(dev);
698 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
699 	ifp = sc->nfe_ifp;
700 
701 #ifdef DEVICE_POLLING
702 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
703 		ether_poll_deregister(ifp);
704 #endif
705 	if (device_is_attached(dev)) {
706 		NFE_LOCK(sc);
707 		nfe_stop(ifp);
708 		if_setflagbits(ifp, 0, IFF_UP);
709 		NFE_UNLOCK(sc);
710 		callout_drain(&sc->nfe_stat_ch);
711 		ether_ifdetach(ifp);
712 	}
713 
714 	if (ifp) {
715 		/* restore ethernet address */
716 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
717 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
718 				eaddr[i] = sc->eaddr[5 - i];
719 			}
720 		} else
721 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
722 		nfe_set_macaddr(sc, eaddr);
723 		if_free(ifp);
724 	}
725 	if (sc->nfe_miibus)
726 		device_delete_child(dev, sc->nfe_miibus);
727 	bus_generic_detach(dev);
728 	if (sc->nfe_tq != NULL) {
729 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
730 		taskqueue_free(sc->nfe_tq);
731 		sc->nfe_tq = NULL;
732 	}
733 
734 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
735 		if (sc->nfe_intrhand[i] != NULL) {
736 			bus_teardown_intr(dev, sc->nfe_irq[i],
737 			    sc->nfe_intrhand[i]);
738 			sc->nfe_intrhand[i] = NULL;
739 		}
740 	}
741 
742 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
743 		if (sc->nfe_irq[0] != NULL)
744 			bus_release_resource(dev, SYS_RES_IRQ, 0,
745 			    sc->nfe_irq[0]);
746 	} else {
747 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
748 			if (sc->nfe_irq[i] != NULL) {
749 				bus_release_resource(dev, SYS_RES_IRQ, rid,
750 				    sc->nfe_irq[i]);
751 				sc->nfe_irq[i] = NULL;
752 			}
753 		}
754 		pci_release_msi(dev);
755 	}
756 	if (sc->nfe_msix_pba_res != NULL) {
757 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
758 		    sc->nfe_msix_pba_res);
759 		sc->nfe_msix_pba_res = NULL;
760 	}
761 	if (sc->nfe_msix_res != NULL) {
762 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
763 		    sc->nfe_msix_res);
764 		sc->nfe_msix_res = NULL;
765 	}
766 	if (sc->nfe_res[0] != NULL) {
767 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
768 		    sc->nfe_res[0]);
769 		sc->nfe_res[0] = NULL;
770 	}
771 
772 	nfe_free_tx_ring(sc, &sc->txq);
773 	nfe_free_rx_ring(sc, &sc->rxq);
774 	nfe_free_jrx_ring(sc, &sc->jrxq);
775 
776 	if (sc->nfe_parent_tag) {
777 		bus_dma_tag_destroy(sc->nfe_parent_tag);
778 		sc->nfe_parent_tag = NULL;
779 	}
780 
781 	mtx_destroy(&sc->nfe_mtx);
782 
783 	return (0);
784 }
785 
786 
787 static int
788 nfe_suspend(device_t dev)
789 {
790 	struct nfe_softc *sc;
791 
792 	sc = device_get_softc(dev);
793 
794 	NFE_LOCK(sc);
795 	nfe_stop(sc->nfe_ifp);
796 	nfe_set_wol(sc);
797 	sc->nfe_suspended = 1;
798 	NFE_UNLOCK(sc);
799 
800 	return (0);
801 }
802 
803 
804 static int
805 nfe_resume(device_t dev)
806 {
807 	struct nfe_softc *sc;
808 	if_t ifp;
809 
810 	sc = device_get_softc(dev);
811 
812 	NFE_LOCK(sc);
813 	nfe_power(sc);
814 	ifp = sc->nfe_ifp;
815 	if (if_getflags(ifp) & IFF_UP)
816 		nfe_init_locked(sc);
817 	sc->nfe_suspended = 0;
818 	NFE_UNLOCK(sc);
819 
820 	return (0);
821 }
822 
823 
824 static int
825 nfe_can_use_msix(struct nfe_softc *sc)
826 {
827 	static struct msix_blacklist {
828 		char	*maker;
829 		char	*product;
830 	} msix_blacklists[] = {
831 		{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
832 	};
833 
834 	struct msix_blacklist *mblp;
835 	char *maker, *product;
836 	int count, n, use_msix;
837 
838 	/*
839 	 * Search base board manufacturer and product name table
840 	 * to see this system has a known MSI/MSI-X issue.
841 	 */
842 	maker = kern_getenv("smbios.planar.maker");
843 	product = kern_getenv("smbios.planar.product");
844 	use_msix = 1;
845 	if (maker != NULL && product != NULL) {
846 		count = sizeof(msix_blacklists) / sizeof(msix_blacklists[0]);
847 		mblp = msix_blacklists;
848 		for (n = 0; n < count; n++) {
849 			if (strcmp(maker, mblp->maker) == 0 &&
850 			    strcmp(product, mblp->product) == 0) {
851 				use_msix = 0;
852 				break;
853 			}
854 			mblp++;
855 		}
856 	}
857 	if (maker != NULL)
858 		freeenv(maker);
859 	if (product != NULL)
860 		freeenv(product);
861 
862 	return (use_msix);
863 }
864 
865 
866 /* Take PHY/NIC out of powerdown, from Linux */
867 static void
868 nfe_power(struct nfe_softc *sc)
869 {
870 	uint32_t pwr;
871 
872 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
873 		return;
874 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
875 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
876 	DELAY(100);
877 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
878 	DELAY(100);
879 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
880 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
881 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
882 	if (sc->nfe_revid >= 0xa3 &&
883 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
884 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
885 		pwr |= NFE_PWR2_REVA3;
886 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
887 }
888 
889 
890 static void
891 nfe_miibus_statchg(device_t dev)
892 {
893 	struct nfe_softc *sc;
894 	struct mii_data *mii;
895 	if_t ifp;
896 	uint32_t rxctl, txctl;
897 
898 	sc = device_get_softc(dev);
899 
900 	mii = device_get_softc(sc->nfe_miibus);
901 	ifp = sc->nfe_ifp;
902 
903 	sc->nfe_link = 0;
904 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
905 	    (IFM_ACTIVE | IFM_AVALID)) {
906 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
907 		case IFM_10_T:
908 		case IFM_100_TX:
909 		case IFM_1000_T:
910 			sc->nfe_link = 1;
911 			break;
912 		default:
913 			break;
914 		}
915 	}
916 
917 	nfe_mac_config(sc, mii);
918 	txctl = NFE_READ(sc, NFE_TX_CTL);
919 	rxctl = NFE_READ(sc, NFE_RX_CTL);
920 	if (sc->nfe_link != 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
921 		txctl |= NFE_TX_START;
922 		rxctl |= NFE_RX_START;
923 	} else {
924 		txctl &= ~NFE_TX_START;
925 		rxctl &= ~NFE_RX_START;
926 	}
927 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
928 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
929 }
930 
931 
932 static void
933 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
934 {
935 	uint32_t link, misc, phy, seed;
936 	uint32_t val;
937 
938 	NFE_LOCK_ASSERT(sc);
939 
940 	phy = NFE_READ(sc, NFE_PHY_IFACE);
941 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
942 
943 	seed = NFE_READ(sc, NFE_RNDSEED);
944 	seed &= ~NFE_SEED_MASK;
945 
946 	misc = NFE_MISC1_MAGIC;
947 	link = NFE_MEDIA_SET;
948 
949 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
950 		phy  |= NFE_PHY_HDX;	/* half-duplex */
951 		misc |= NFE_MISC1_HDX;
952 	}
953 
954 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
955 	case IFM_1000_T:	/* full-duplex only */
956 		link |= NFE_MEDIA_1000T;
957 		seed |= NFE_SEED_1000T;
958 		phy  |= NFE_PHY_1000T;
959 		break;
960 	case IFM_100_TX:
961 		link |= NFE_MEDIA_100TX;
962 		seed |= NFE_SEED_100TX;
963 		phy  |= NFE_PHY_100TX;
964 		break;
965 	case IFM_10_T:
966 		link |= NFE_MEDIA_10T;
967 		seed |= NFE_SEED_10T;
968 		break;
969 	}
970 
971 	if ((phy & 0x10000000) != 0) {
972 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
973 			val = NFE_R1_MAGIC_1000;
974 		else
975 			val = NFE_R1_MAGIC_10_100;
976 	} else
977 		val = NFE_R1_MAGIC_DEFAULT;
978 	NFE_WRITE(sc, NFE_SETUP_R1, val);
979 
980 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
981 
982 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
983 	NFE_WRITE(sc, NFE_MISC1, misc);
984 	NFE_WRITE(sc, NFE_LINKSPEED, link);
985 
986 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
987 		/* It seems all hardwares supports Rx pause frames. */
988 		val = NFE_READ(sc, NFE_RXFILTER);
989 		if ((IFM_OPTIONS(mii->mii_media_active) &
990 		    IFM_ETH_RXPAUSE) != 0)
991 			val |= NFE_PFF_RX_PAUSE;
992 		else
993 			val &= ~NFE_PFF_RX_PAUSE;
994 		NFE_WRITE(sc, NFE_RXFILTER, val);
995 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
996 			val = NFE_READ(sc, NFE_MISC1);
997 			if ((IFM_OPTIONS(mii->mii_media_active) &
998 			    IFM_ETH_TXPAUSE) != 0) {
999 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1000 				    NFE_TX_PAUSE_FRAME_ENABLE);
1001 				val |= NFE_MISC1_TX_PAUSE;
1002 			} else {
1003 				val &= ~NFE_MISC1_TX_PAUSE;
1004 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1005 				    NFE_TX_PAUSE_FRAME_DISABLE);
1006 			}
1007 			NFE_WRITE(sc, NFE_MISC1, val);
1008 		}
1009 	} else {
1010 		/* disable rx/tx pause frames */
1011 		val = NFE_READ(sc, NFE_RXFILTER);
1012 		val &= ~NFE_PFF_RX_PAUSE;
1013 		NFE_WRITE(sc, NFE_RXFILTER, val);
1014 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
1015 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1016 			    NFE_TX_PAUSE_FRAME_DISABLE);
1017 			val = NFE_READ(sc, NFE_MISC1);
1018 			val &= ~NFE_MISC1_TX_PAUSE;
1019 			NFE_WRITE(sc, NFE_MISC1, val);
1020 		}
1021 	}
1022 }
1023 
1024 
1025 static int
1026 nfe_miibus_readreg(device_t dev, int phy, int reg)
1027 {
1028 	struct nfe_softc *sc = device_get_softc(dev);
1029 	uint32_t val;
1030 	int ntries;
1031 
1032 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1033 
1034 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1035 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1036 		DELAY(100);
1037 	}
1038 
1039 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
1040 
1041 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1042 		DELAY(100);
1043 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1044 			break;
1045 	}
1046 	if (ntries == NFE_TIMEOUT) {
1047 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
1048 		return 0;
1049 	}
1050 
1051 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
1052 		DPRINTFN(sc, 2, "could not read PHY\n");
1053 		return 0;
1054 	}
1055 
1056 	val = NFE_READ(sc, NFE_PHY_DATA);
1057 	if (val != 0xffffffff && val != 0)
1058 		sc->mii_phyaddr = phy;
1059 
1060 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
1061 
1062 	return (val);
1063 }
1064 
1065 
1066 static int
1067 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
1068 {
1069 	struct nfe_softc *sc = device_get_softc(dev);
1070 	uint32_t ctl;
1071 	int ntries;
1072 
1073 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1074 
1075 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1076 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1077 		DELAY(100);
1078 	}
1079 
1080 	NFE_WRITE(sc, NFE_PHY_DATA, val);
1081 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
1082 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
1083 
1084 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1085 		DELAY(100);
1086 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1087 			break;
1088 	}
1089 #ifdef NFE_DEBUG
1090 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
1091 		device_printf(sc->nfe_dev, "could not write to PHY\n");
1092 #endif
1093 	return (0);
1094 }
1095 
1096 struct nfe_dmamap_arg {
1097 	bus_addr_t nfe_busaddr;
1098 };
1099 
1100 static int
1101 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1102 {
1103 	struct nfe_dmamap_arg ctx;
1104 	struct nfe_rx_data *data;
1105 	void *desc;
1106 	int i, error, descsize;
1107 
1108 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1109 		desc = ring->desc64;
1110 		descsize = sizeof (struct nfe_desc64);
1111 	} else {
1112 		desc = ring->desc32;
1113 		descsize = sizeof (struct nfe_desc32);
1114 	}
1115 
1116 	ring->cur = ring->next = 0;
1117 
1118 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1119 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1120 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1121 	    BUS_SPACE_MAXADDR,			/* highaddr */
1122 	    NULL, NULL,				/* filter, filterarg */
1123 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1124 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1125 	    0,					/* flags */
1126 	    NULL, NULL,				/* lockfunc, lockarg */
1127 	    &ring->rx_desc_tag);
1128 	if (error != 0) {
1129 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1130 		goto fail;
1131 	}
1132 
1133 	/* allocate memory to desc */
1134 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1135 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1136 	if (error != 0) {
1137 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1138 		goto fail;
1139 	}
1140 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1141 		ring->desc64 = desc;
1142 	else
1143 		ring->desc32 = desc;
1144 
1145 	/* map desc to device visible address space */
1146 	ctx.nfe_busaddr = 0;
1147 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1148 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1149 	if (error != 0) {
1150 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1151 		goto fail;
1152 	}
1153 	ring->physaddr = ctx.nfe_busaddr;
1154 
1155 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1156 	    1, 0,			/* alignment, boundary */
1157 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1158 	    BUS_SPACE_MAXADDR,		/* highaddr */
1159 	    NULL, NULL,			/* filter, filterarg */
1160 	    MCLBYTES, 1,		/* maxsize, nsegments */
1161 	    MCLBYTES,			/* maxsegsize */
1162 	    0,				/* flags */
1163 	    NULL, NULL,			/* lockfunc, lockarg */
1164 	    &ring->rx_data_tag);
1165 	if (error != 0) {
1166 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1167 		goto fail;
1168 	}
1169 
1170 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1171 	if (error != 0) {
1172 		device_printf(sc->nfe_dev,
1173 		    "could not create Rx DMA spare map\n");
1174 		goto fail;
1175 	}
1176 
1177 	/*
1178 	 * Pre-allocate Rx buffers and populate Rx ring.
1179 	 */
1180 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1181 		data = &sc->rxq.data[i];
1182 		data->rx_data_map = NULL;
1183 		data->m = NULL;
1184 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1185 		    &data->rx_data_map);
1186 		if (error != 0) {
1187 			device_printf(sc->nfe_dev,
1188 			    "could not create Rx DMA map\n");
1189 			goto fail;
1190 		}
1191 	}
1192 
1193 fail:
1194 	return (error);
1195 }
1196 
1197 
1198 static void
1199 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1200 {
1201 	struct nfe_dmamap_arg ctx;
1202 	struct nfe_rx_data *data;
1203 	void *desc;
1204 	int i, error, descsize;
1205 
1206 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1207 		return;
1208 	if (jumbo_disable != 0) {
1209 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1210 		sc->nfe_jumbo_disable = 1;
1211 		return;
1212 	}
1213 
1214 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1215 		desc = ring->jdesc64;
1216 		descsize = sizeof (struct nfe_desc64);
1217 	} else {
1218 		desc = ring->jdesc32;
1219 		descsize = sizeof (struct nfe_desc32);
1220 	}
1221 
1222 	ring->jcur = ring->jnext = 0;
1223 
1224 	/* Create DMA tag for jumbo Rx ring. */
1225 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1226 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1227 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1228 	    BUS_SPACE_MAXADDR,			/* highaddr */
1229 	    NULL, NULL,				/* filter, filterarg */
1230 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1231 	    1, 					/* nsegments */
1232 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1233 	    0,					/* flags */
1234 	    NULL, NULL,				/* lockfunc, lockarg */
1235 	    &ring->jrx_desc_tag);
1236 	if (error != 0) {
1237 		device_printf(sc->nfe_dev,
1238 		    "could not create jumbo ring DMA tag\n");
1239 		goto fail;
1240 	}
1241 
1242 	/* Create DMA tag for jumbo Rx buffers. */
1243 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1244 	    1, 0,				/* alignment, boundary */
1245 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1246 	    BUS_SPACE_MAXADDR,			/* highaddr */
1247 	    NULL, NULL,				/* filter, filterarg */
1248 	    MJUM9BYTES,				/* maxsize */
1249 	    1,					/* nsegments */
1250 	    MJUM9BYTES,				/* maxsegsize */
1251 	    0,					/* flags */
1252 	    NULL, NULL,				/* lockfunc, lockarg */
1253 	    &ring->jrx_data_tag);
1254 	if (error != 0) {
1255 		device_printf(sc->nfe_dev,
1256 		    "could not create jumbo Rx buffer DMA tag\n");
1257 		goto fail;
1258 	}
1259 
1260 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1261 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1262 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1263 	if (error != 0) {
1264 		device_printf(sc->nfe_dev,
1265 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1266 		goto fail;
1267 	}
1268 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1269 		ring->jdesc64 = desc;
1270 	else
1271 		ring->jdesc32 = desc;
1272 
1273 	ctx.nfe_busaddr = 0;
1274 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1275 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1276 	if (error != 0) {
1277 		device_printf(sc->nfe_dev,
1278 		    "could not load DMA'able memory for jumbo Rx ring\n");
1279 		goto fail;
1280 	}
1281 	ring->jphysaddr = ctx.nfe_busaddr;
1282 
1283 	/* Create DMA maps for jumbo Rx buffers. */
1284 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1285 	if (error != 0) {
1286 		device_printf(sc->nfe_dev,
1287 		    "could not create jumbo Rx DMA spare map\n");
1288 		goto fail;
1289 	}
1290 
1291 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1292 		data = &sc->jrxq.jdata[i];
1293 		data->rx_data_map = NULL;
1294 		data->m = NULL;
1295 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1296 		    &data->rx_data_map);
1297 		if (error != 0) {
1298 			device_printf(sc->nfe_dev,
1299 			    "could not create jumbo Rx DMA map\n");
1300 			goto fail;
1301 		}
1302 	}
1303 
1304 	return;
1305 
1306 fail:
1307 	/*
1308 	 * Running without jumbo frame support is ok for most cases
1309 	 * so don't fail on creating dma tag/map for jumbo frame.
1310 	 */
1311 	nfe_free_jrx_ring(sc, ring);
1312 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1313 	    "resource shortage\n");
1314 	sc->nfe_jumbo_disable = 1;
1315 }
1316 
1317 
1318 static int
1319 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1320 {
1321 	void *desc;
1322 	size_t descsize;
1323 	int i;
1324 
1325 	ring->cur = ring->next = 0;
1326 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1327 		desc = ring->desc64;
1328 		descsize = sizeof (struct nfe_desc64);
1329 	} else {
1330 		desc = ring->desc32;
1331 		descsize = sizeof (struct nfe_desc32);
1332 	}
1333 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1334 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1335 		if (nfe_newbuf(sc, i) != 0)
1336 			return (ENOBUFS);
1337 	}
1338 
1339 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1340 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1341 
1342 	return (0);
1343 }
1344 
1345 
1346 static int
1347 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1348 {
1349 	void *desc;
1350 	size_t descsize;
1351 	int i;
1352 
1353 	ring->jcur = ring->jnext = 0;
1354 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1355 		desc = ring->jdesc64;
1356 		descsize = sizeof (struct nfe_desc64);
1357 	} else {
1358 		desc = ring->jdesc32;
1359 		descsize = sizeof (struct nfe_desc32);
1360 	}
1361 	bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
1362 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1363 		if (nfe_jnewbuf(sc, i) != 0)
1364 			return (ENOBUFS);
1365 	}
1366 
1367 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1368 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1369 
1370 	return (0);
1371 }
1372 
1373 
1374 static void
1375 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1376 {
1377 	struct nfe_rx_data *data;
1378 	void *desc;
1379 	int i;
1380 
1381 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1382 		desc = ring->desc64;
1383 	else
1384 		desc = ring->desc32;
1385 
1386 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1387 		data = &ring->data[i];
1388 		if (data->rx_data_map != NULL) {
1389 			bus_dmamap_destroy(ring->rx_data_tag,
1390 			    data->rx_data_map);
1391 			data->rx_data_map = NULL;
1392 		}
1393 		if (data->m != NULL) {
1394 			m_freem(data->m);
1395 			data->m = NULL;
1396 		}
1397 	}
1398 	if (ring->rx_data_tag != NULL) {
1399 		if (ring->rx_spare_map != NULL) {
1400 			bus_dmamap_destroy(ring->rx_data_tag,
1401 			    ring->rx_spare_map);
1402 			ring->rx_spare_map = NULL;
1403 		}
1404 		bus_dma_tag_destroy(ring->rx_data_tag);
1405 		ring->rx_data_tag = NULL;
1406 	}
1407 
1408 	if (desc != NULL) {
1409 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1410 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1411 		ring->desc64 = NULL;
1412 		ring->desc32 = NULL;
1413 	}
1414 	if (ring->rx_desc_tag != NULL) {
1415 		bus_dma_tag_destroy(ring->rx_desc_tag);
1416 		ring->rx_desc_tag = NULL;
1417 	}
1418 }
1419 
1420 
1421 static void
1422 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1423 {
1424 	struct nfe_rx_data *data;
1425 	void *desc;
1426 	int i, descsize;
1427 
1428 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1429 		return;
1430 
1431 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1432 		desc = ring->jdesc64;
1433 		descsize = sizeof (struct nfe_desc64);
1434 	} else {
1435 		desc = ring->jdesc32;
1436 		descsize = sizeof (struct nfe_desc32);
1437 	}
1438 
1439 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1440 		data = &ring->jdata[i];
1441 		if (data->rx_data_map != NULL) {
1442 			bus_dmamap_destroy(ring->jrx_data_tag,
1443 			    data->rx_data_map);
1444 			data->rx_data_map = NULL;
1445 		}
1446 		if (data->m != NULL) {
1447 			m_freem(data->m);
1448 			data->m = NULL;
1449 		}
1450 	}
1451 	if (ring->jrx_data_tag != NULL) {
1452 		if (ring->jrx_spare_map != NULL) {
1453 			bus_dmamap_destroy(ring->jrx_data_tag,
1454 			    ring->jrx_spare_map);
1455 			ring->jrx_spare_map = NULL;
1456 		}
1457 		bus_dma_tag_destroy(ring->jrx_data_tag);
1458 		ring->jrx_data_tag = NULL;
1459 	}
1460 
1461 	if (desc != NULL) {
1462 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1463 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1464 		ring->jdesc64 = NULL;
1465 		ring->jdesc32 = NULL;
1466 	}
1467 
1468 	if (ring->jrx_desc_tag != NULL) {
1469 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1470 		ring->jrx_desc_tag = NULL;
1471 	}
1472 }
1473 
1474 
1475 static int
1476 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1477 {
1478 	struct nfe_dmamap_arg ctx;
1479 	int i, error;
1480 	void *desc;
1481 	int descsize;
1482 
1483 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1484 		desc = ring->desc64;
1485 		descsize = sizeof (struct nfe_desc64);
1486 	} else {
1487 		desc = ring->desc32;
1488 		descsize = sizeof (struct nfe_desc32);
1489 	}
1490 
1491 	ring->queued = 0;
1492 	ring->cur = ring->next = 0;
1493 
1494 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1495 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1496 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1497 	    BUS_SPACE_MAXADDR,			/* highaddr */
1498 	    NULL, NULL,				/* filter, filterarg */
1499 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1500 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1501 	    0,					/* flags */
1502 	    NULL, NULL,				/* lockfunc, lockarg */
1503 	    &ring->tx_desc_tag);
1504 	if (error != 0) {
1505 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1506 		goto fail;
1507 	}
1508 
1509 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1510 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1511 	if (error != 0) {
1512 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1513 		goto fail;
1514 	}
1515 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1516 		ring->desc64 = desc;
1517 	else
1518 		ring->desc32 = desc;
1519 
1520 	ctx.nfe_busaddr = 0;
1521 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1522 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1523 	if (error != 0) {
1524 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1525 		goto fail;
1526 	}
1527 	ring->physaddr = ctx.nfe_busaddr;
1528 
1529 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1530 	    1, 0,
1531 	    BUS_SPACE_MAXADDR,
1532 	    BUS_SPACE_MAXADDR,
1533 	    NULL, NULL,
1534 	    NFE_TSO_MAXSIZE,
1535 	    NFE_MAX_SCATTER,
1536 	    NFE_TSO_MAXSGSIZE,
1537 	    0,
1538 	    NULL, NULL,
1539 	    &ring->tx_data_tag);
1540 	if (error != 0) {
1541 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1542 		goto fail;
1543 	}
1544 
1545 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1546 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1547 		    &ring->data[i].tx_data_map);
1548 		if (error != 0) {
1549 			device_printf(sc->nfe_dev,
1550 			    "could not create Tx DMA map\n");
1551 			goto fail;
1552 		}
1553 	}
1554 
1555 fail:
1556 	return (error);
1557 }
1558 
1559 
1560 static void
1561 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1562 {
1563 	void *desc;
1564 	size_t descsize;
1565 
1566 	sc->nfe_force_tx = 0;
1567 	ring->queued = 0;
1568 	ring->cur = ring->next = 0;
1569 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1570 		desc = ring->desc64;
1571 		descsize = sizeof (struct nfe_desc64);
1572 	} else {
1573 		desc = ring->desc32;
1574 		descsize = sizeof (struct nfe_desc32);
1575 	}
1576 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1577 
1578 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1579 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1580 }
1581 
1582 
1583 static void
1584 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1585 {
1586 	struct nfe_tx_data *data;
1587 	void *desc;
1588 	int i, descsize;
1589 
1590 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1591 		desc = ring->desc64;
1592 		descsize = sizeof (struct nfe_desc64);
1593 	} else {
1594 		desc = ring->desc32;
1595 		descsize = sizeof (struct nfe_desc32);
1596 	}
1597 
1598 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1599 		data = &ring->data[i];
1600 
1601 		if (data->m != NULL) {
1602 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1603 			    BUS_DMASYNC_POSTWRITE);
1604 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1605 			m_freem(data->m);
1606 			data->m = NULL;
1607 		}
1608 		if (data->tx_data_map != NULL) {
1609 			bus_dmamap_destroy(ring->tx_data_tag,
1610 			    data->tx_data_map);
1611 			data->tx_data_map = NULL;
1612 		}
1613 	}
1614 
1615 	if (ring->tx_data_tag != NULL) {
1616 		bus_dma_tag_destroy(ring->tx_data_tag);
1617 		ring->tx_data_tag = NULL;
1618 	}
1619 
1620 	if (desc != NULL) {
1621 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1622 		    BUS_DMASYNC_POSTWRITE);
1623 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1624 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1625 		ring->desc64 = NULL;
1626 		ring->desc32 = NULL;
1627 		bus_dma_tag_destroy(ring->tx_desc_tag);
1628 		ring->tx_desc_tag = NULL;
1629 	}
1630 }
1631 
1632 #ifdef DEVICE_POLLING
1633 static poll_handler_t nfe_poll;
1634 
1635 
1636 static int
1637 nfe_poll(if_t ifp, enum poll_cmd cmd, int count)
1638 {
1639 	struct nfe_softc *sc = if_getsoftc(ifp);
1640 	uint32_t r;
1641 	int rx_npkts = 0;
1642 
1643 	NFE_LOCK(sc);
1644 
1645 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1646 		NFE_UNLOCK(sc);
1647 		return (rx_npkts);
1648 	}
1649 
1650 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1651 		rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
1652 	else
1653 		rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
1654 	nfe_txeof(sc);
1655 	if (!if_sendq_empty(ifp))
1656 		nfe_start_locked(ifp);
1657 
1658 	if (cmd == POLL_AND_CHECK_STATUS) {
1659 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1660 			NFE_UNLOCK(sc);
1661 			return (rx_npkts);
1662 		}
1663 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1664 
1665 		if (r & NFE_IRQ_LINK) {
1666 			NFE_READ(sc, NFE_PHY_STATUS);
1667 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1668 			DPRINTF(sc, "link state changed\n");
1669 		}
1670 	}
1671 	NFE_UNLOCK(sc);
1672 	return (rx_npkts);
1673 }
1674 #endif /* DEVICE_POLLING */
1675 
1676 static void
1677 nfe_set_intr(struct nfe_softc *sc)
1678 {
1679 
1680 	if (sc->nfe_msi != 0)
1681 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1682 }
1683 
1684 
1685 /* In MSIX, a write to mask reegisters behaves as XOR. */
1686 static __inline void
1687 nfe_enable_intr(struct nfe_softc *sc)
1688 {
1689 
1690 	if (sc->nfe_msix != 0) {
1691 		/* XXX Should have a better way to enable interrupts! */
1692 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1693 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1694 	} else
1695 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1696 }
1697 
1698 
1699 static __inline void
1700 nfe_disable_intr(struct nfe_softc *sc)
1701 {
1702 
1703 	if (sc->nfe_msix != 0) {
1704 		/* XXX Should have a better way to disable interrupts! */
1705 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1706 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1707 	} else
1708 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1709 }
1710 
1711 
1712 static int
1713 nfe_ioctl(if_t ifp, u_long cmd, caddr_t data)
1714 {
1715 	struct nfe_softc *sc;
1716 	struct ifreq *ifr;
1717 	struct mii_data *mii;
1718 	int error, init, mask;
1719 
1720 	sc = if_getsoftc(ifp);
1721 	ifr = (struct ifreq *) data;
1722 	error = 0;
1723 	init = 0;
1724 	switch (cmd) {
1725 	case SIOCSIFMTU:
1726 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1727 			error = EINVAL;
1728 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1729 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1730 			    (sc->nfe_jumbo_disable != 0)) &&
1731 			    ifr->ifr_mtu > ETHERMTU)
1732 				error = EINVAL;
1733 			else {
1734 				NFE_LOCK(sc);
1735 				if_setmtu(ifp, ifr->ifr_mtu);
1736 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1737 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1738 					nfe_init_locked(sc);
1739 				}
1740 				NFE_UNLOCK(sc);
1741 			}
1742 		}
1743 		break;
1744 	case SIOCSIFFLAGS:
1745 		NFE_LOCK(sc);
1746 		if (if_getflags(ifp) & IFF_UP) {
1747 			/*
1748 			 * If only the PROMISC or ALLMULTI flag changes, then
1749 			 * don't do a full re-init of the chip, just update
1750 			 * the Rx filter.
1751 			 */
1752 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) &&
1753 			    ((if_getflags(ifp) ^ sc->nfe_if_flags) &
1754 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1755 				nfe_setmulti(sc);
1756 			else
1757 				nfe_init_locked(sc);
1758 		} else {
1759 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1760 				nfe_stop(ifp);
1761 		}
1762 		sc->nfe_if_flags = if_getflags(ifp);
1763 		NFE_UNLOCK(sc);
1764 		error = 0;
1765 		break;
1766 	case SIOCADDMULTI:
1767 	case SIOCDELMULTI:
1768 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1769 			NFE_LOCK(sc);
1770 			nfe_setmulti(sc);
1771 			NFE_UNLOCK(sc);
1772 			error = 0;
1773 		}
1774 		break;
1775 	case SIOCSIFMEDIA:
1776 	case SIOCGIFMEDIA:
1777 		mii = device_get_softc(sc->nfe_miibus);
1778 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1779 		break;
1780 	case SIOCSIFCAP:
1781 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1782 #ifdef DEVICE_POLLING
1783 		if ((mask & IFCAP_POLLING) != 0) {
1784 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1785 				error = ether_poll_register(nfe_poll, ifp);
1786 				if (error)
1787 					break;
1788 				NFE_LOCK(sc);
1789 				nfe_disable_intr(sc);
1790 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1791 				NFE_UNLOCK(sc);
1792 			} else {
1793 				error = ether_poll_deregister(ifp);
1794 				/* Enable interrupt even in error case */
1795 				NFE_LOCK(sc);
1796 				nfe_enable_intr(sc);
1797 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1798 				NFE_UNLOCK(sc);
1799 			}
1800 		}
1801 #endif /* DEVICE_POLLING */
1802 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1803 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1804 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1805 		if ((mask & IFCAP_TXCSUM) != 0 &&
1806 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1807 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1808 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1809 				if_sethwassistbits(ifp, NFE_CSUM_FEATURES, 0);
1810 			else
1811 				if_sethwassistbits(ifp, 0, NFE_CSUM_FEATURES);
1812 		}
1813 		if ((mask & IFCAP_RXCSUM) != 0 &&
1814 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1815 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1816 			init++;
1817 		}
1818 		if ((mask & IFCAP_TSO4) != 0 &&
1819 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1820 			if_togglecapenable(ifp, IFCAP_TSO4);
1821 			if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
1822 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1823 			else
1824 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1825 		}
1826 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1827 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1828 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1829 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1830 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1831 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1832 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1833 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1834 			init++;
1835 		}
1836 		/*
1837 		 * XXX
1838 		 * It seems that VLAN stripping requires Rx checksum offload.
1839 		 * Unfortunately FreeBSD has no way to disable only Rx side
1840 		 * VLAN stripping. So when we know Rx checksum offload is
1841 		 * disabled turn entire hardware VLAN assist off.
1842 		 */
1843 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) == 0) {
1844 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
1845 				init++;
1846 			if_setcapenablebit(ifp, 0,
1847 			    (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO));
1848 		}
1849 		if (init > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1850 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1851 			nfe_init(sc);
1852 		}
1853 		if_vlancap(ifp);
1854 		break;
1855 	default:
1856 		error = ether_ioctl(ifp, cmd, data);
1857 		break;
1858 	}
1859 
1860 	return (error);
1861 }
1862 
1863 
1864 static int
1865 nfe_intr(void *arg)
1866 {
1867 	struct nfe_softc *sc;
1868 	uint32_t status;
1869 
1870 	sc = (struct nfe_softc *)arg;
1871 
1872 	status = NFE_READ(sc, sc->nfe_irq_status);
1873 	if (status == 0 || status == 0xffffffff)
1874 		return (FILTER_STRAY);
1875 	nfe_disable_intr(sc);
1876 	taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1877 
1878 	return (FILTER_HANDLED);
1879 }
1880 
1881 
1882 static void
1883 nfe_int_task(void *arg, int pending)
1884 {
1885 	struct nfe_softc *sc = arg;
1886 	if_t ifp = sc->nfe_ifp;
1887 	uint32_t r;
1888 	int domore;
1889 
1890 	NFE_LOCK(sc);
1891 
1892 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1893 		nfe_enable_intr(sc);
1894 		NFE_UNLOCK(sc);
1895 		return;	/* not for us */
1896 	}
1897 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1898 
1899 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1900 
1901 #ifdef DEVICE_POLLING
1902 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1903 		NFE_UNLOCK(sc);
1904 		return;
1905 	}
1906 #endif
1907 
1908 	if (r & NFE_IRQ_LINK) {
1909 		NFE_READ(sc, NFE_PHY_STATUS);
1910 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1911 		DPRINTF(sc, "link state changed\n");
1912 	}
1913 
1914 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1915 		NFE_UNLOCK(sc);
1916 		nfe_disable_intr(sc);
1917 		return;
1918 	}
1919 
1920 	domore = 0;
1921 	/* check Rx ring */
1922 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1923 		domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
1924 	else
1925 		domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
1926 	/* check Tx ring */
1927 	nfe_txeof(sc);
1928 
1929 	if (!if_sendq_empty(ifp))
1930 		nfe_start_locked(ifp);
1931 
1932 	NFE_UNLOCK(sc);
1933 
1934 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1935 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1936 		return;
1937 	}
1938 
1939 	/* Reenable interrupts. */
1940 	nfe_enable_intr(sc);
1941 }
1942 
1943 
1944 static __inline void
1945 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1946 {
1947 	struct nfe_desc32 *desc32;
1948 	struct nfe_desc64 *desc64;
1949 	struct nfe_rx_data *data;
1950 	struct mbuf *m;
1951 
1952 	data = &sc->rxq.data[idx];
1953 	m = data->m;
1954 
1955 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1956 		desc64 = &sc->rxq.desc64[idx];
1957 		/* VLAN packet may have overwritten it. */
1958 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1959 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1960 		desc64->length = htole16(m->m_len);
1961 		desc64->flags = htole16(NFE_RX_READY);
1962 	} else {
1963 		desc32 = &sc->rxq.desc32[idx];
1964 		desc32->length = htole16(m->m_len);
1965 		desc32->flags = htole16(NFE_RX_READY);
1966 	}
1967 }
1968 
1969 
1970 static __inline void
1971 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1972 {
1973 	struct nfe_desc32 *desc32;
1974 	struct nfe_desc64 *desc64;
1975 	struct nfe_rx_data *data;
1976 	struct mbuf *m;
1977 
1978 	data = &sc->jrxq.jdata[idx];
1979 	m = data->m;
1980 
1981 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1982 		desc64 = &sc->jrxq.jdesc64[idx];
1983 		/* VLAN packet may have overwritten it. */
1984 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1985 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1986 		desc64->length = htole16(m->m_len);
1987 		desc64->flags = htole16(NFE_RX_READY);
1988 	} else {
1989 		desc32 = &sc->jrxq.jdesc32[idx];
1990 		desc32->length = htole16(m->m_len);
1991 		desc32->flags = htole16(NFE_RX_READY);
1992 	}
1993 }
1994 
1995 
1996 static int
1997 nfe_newbuf(struct nfe_softc *sc, int idx)
1998 {
1999 	struct nfe_rx_data *data;
2000 	struct nfe_desc32 *desc32;
2001 	struct nfe_desc64 *desc64;
2002 	struct mbuf *m;
2003 	bus_dma_segment_t segs[1];
2004 	bus_dmamap_t map;
2005 	int nsegs;
2006 
2007 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2008 	if (m == NULL)
2009 		return (ENOBUFS);
2010 
2011 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2012 	m_adj(m, ETHER_ALIGN);
2013 
2014 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
2015 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2016 		m_freem(m);
2017 		return (ENOBUFS);
2018 	}
2019 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2020 
2021 	data = &sc->rxq.data[idx];
2022 	if (data->m != NULL) {
2023 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2024 		    BUS_DMASYNC_POSTREAD);
2025 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
2026 	}
2027 	map = data->rx_data_map;
2028 	data->rx_data_map = sc->rxq.rx_spare_map;
2029 	sc->rxq.rx_spare_map = map;
2030 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2031 	    BUS_DMASYNC_PREREAD);
2032 	data->paddr = segs[0].ds_addr;
2033 	data->m = m;
2034 	/* update mapping address in h/w descriptor */
2035 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2036 		desc64 = &sc->rxq.desc64[idx];
2037 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2038 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2039 		desc64->length = htole16(segs[0].ds_len);
2040 		desc64->flags = htole16(NFE_RX_READY);
2041 	} else {
2042 		desc32 = &sc->rxq.desc32[idx];
2043 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2044 		desc32->length = htole16(segs[0].ds_len);
2045 		desc32->flags = htole16(NFE_RX_READY);
2046 	}
2047 
2048 	return (0);
2049 }
2050 
2051 
2052 static int
2053 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2054 {
2055 	struct nfe_rx_data *data;
2056 	struct nfe_desc32 *desc32;
2057 	struct nfe_desc64 *desc64;
2058 	struct mbuf *m;
2059 	bus_dma_segment_t segs[1];
2060 	bus_dmamap_t map;
2061 	int nsegs;
2062 
2063 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2064 	if (m == NULL)
2065 		return (ENOBUFS);
2066 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
2067 	m_adj(m, ETHER_ALIGN);
2068 
2069 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2070 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2071 		m_freem(m);
2072 		return (ENOBUFS);
2073 	}
2074 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2075 
2076 	data = &sc->jrxq.jdata[idx];
2077 	if (data->m != NULL) {
2078 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2079 		    BUS_DMASYNC_POSTREAD);
2080 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2081 	}
2082 	map = data->rx_data_map;
2083 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2084 	sc->jrxq.jrx_spare_map = map;
2085 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2086 	    BUS_DMASYNC_PREREAD);
2087 	data->paddr = segs[0].ds_addr;
2088 	data->m = m;
2089 	/* update mapping address in h/w descriptor */
2090 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2091 		desc64 = &sc->jrxq.jdesc64[idx];
2092 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2093 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2094 		desc64->length = htole16(segs[0].ds_len);
2095 		desc64->flags = htole16(NFE_RX_READY);
2096 	} else {
2097 		desc32 = &sc->jrxq.jdesc32[idx];
2098 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2099 		desc32->length = htole16(segs[0].ds_len);
2100 		desc32->flags = htole16(NFE_RX_READY);
2101 	}
2102 
2103 	return (0);
2104 }
2105 
2106 
2107 static int
2108 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2109 {
2110 	if_t ifp = sc->nfe_ifp;
2111 	struct nfe_desc32 *desc32;
2112 	struct nfe_desc64 *desc64;
2113 	struct nfe_rx_data *data;
2114 	struct mbuf *m;
2115 	uint16_t flags;
2116 	int len, prog, rx_npkts;
2117 	uint32_t vtag = 0;
2118 
2119 	rx_npkts = 0;
2120 	NFE_LOCK_ASSERT(sc);
2121 
2122 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2123 	    BUS_DMASYNC_POSTREAD);
2124 
2125 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2126 		if (count <= 0)
2127 			break;
2128 		count--;
2129 
2130 		data = &sc->rxq.data[sc->rxq.cur];
2131 
2132 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2133 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2134 			vtag = le32toh(desc64->physaddr[1]);
2135 			flags = le16toh(desc64->flags);
2136 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2137 		} else {
2138 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2139 			flags = le16toh(desc32->flags);
2140 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2141 		}
2142 
2143 		if (flags & NFE_RX_READY)
2144 			break;
2145 		prog++;
2146 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2147 			if (!(flags & NFE_RX_VALID_V1)) {
2148 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2149 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2150 				continue;
2151 			}
2152 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2153 				flags &= ~NFE_RX_ERROR;
2154 				len--;	/* fix buffer length */
2155 			}
2156 		} else {
2157 			if (!(flags & NFE_RX_VALID_V2)) {
2158 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2159 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2160 				continue;
2161 			}
2162 
2163 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2164 				flags &= ~NFE_RX_ERROR;
2165 				len--;	/* fix buffer length */
2166 			}
2167 		}
2168 
2169 		if (flags & NFE_RX_ERROR) {
2170 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2171 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2172 			continue;
2173 		}
2174 
2175 		m = data->m;
2176 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2177 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2178 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2179 			continue;
2180 		}
2181 
2182 		if ((vtag & NFE_RX_VTAG) != 0 &&
2183 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2184 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2185 			m->m_flags |= M_VLANTAG;
2186 		}
2187 
2188 		m->m_pkthdr.len = m->m_len = len;
2189 		m->m_pkthdr.rcvif = ifp;
2190 
2191 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
2192 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2193 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2194 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2195 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2196 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2197 					m->m_pkthdr.csum_flags |=
2198 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2199 					m->m_pkthdr.csum_data = 0xffff;
2200 				}
2201 			}
2202 		}
2203 
2204 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2205 
2206 		NFE_UNLOCK(sc);
2207 		if_input(ifp, m);
2208 		NFE_LOCK(sc);
2209 		rx_npkts++;
2210 	}
2211 
2212 	if (prog > 0)
2213 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2214 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2215 
2216 	if (rx_npktsp != NULL)
2217 		*rx_npktsp = rx_npkts;
2218 	return (count > 0 ? 0 : EAGAIN);
2219 }
2220 
2221 
2222 static int
2223 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2224 {
2225 	if_t ifp = sc->nfe_ifp;
2226 	struct nfe_desc32 *desc32;
2227 	struct nfe_desc64 *desc64;
2228 	struct nfe_rx_data *data;
2229 	struct mbuf *m;
2230 	uint16_t flags;
2231 	int len, prog, rx_npkts;
2232 	uint32_t vtag = 0;
2233 
2234 	rx_npkts = 0;
2235 	NFE_LOCK_ASSERT(sc);
2236 
2237 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2238 	    BUS_DMASYNC_POSTREAD);
2239 
2240 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2241 	    vtag = 0) {
2242 		if (count <= 0)
2243 			break;
2244 		count--;
2245 
2246 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2247 
2248 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2249 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2250 			vtag = le32toh(desc64->physaddr[1]);
2251 			flags = le16toh(desc64->flags);
2252 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2253 		} else {
2254 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2255 			flags = le16toh(desc32->flags);
2256 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2257 		}
2258 
2259 		if (flags & NFE_RX_READY)
2260 			break;
2261 		prog++;
2262 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2263 			if (!(flags & NFE_RX_VALID_V1)) {
2264 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2265 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2266 				continue;
2267 			}
2268 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2269 				flags &= ~NFE_RX_ERROR;
2270 				len--;	/* fix buffer length */
2271 			}
2272 		} else {
2273 			if (!(flags & NFE_RX_VALID_V2)) {
2274 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2275 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2276 				continue;
2277 			}
2278 
2279 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2280 				flags &= ~NFE_RX_ERROR;
2281 				len--;	/* fix buffer length */
2282 			}
2283 		}
2284 
2285 		if (flags & NFE_RX_ERROR) {
2286 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2287 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2288 			continue;
2289 		}
2290 
2291 		m = data->m;
2292 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2293 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2294 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2295 			continue;
2296 		}
2297 
2298 		if ((vtag & NFE_RX_VTAG) != 0 &&
2299 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2300 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2301 			m->m_flags |= M_VLANTAG;
2302 		}
2303 
2304 		m->m_pkthdr.len = m->m_len = len;
2305 		m->m_pkthdr.rcvif = ifp;
2306 
2307 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
2308 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2309 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2310 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2311 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2312 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2313 					m->m_pkthdr.csum_flags |=
2314 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2315 					m->m_pkthdr.csum_data = 0xffff;
2316 				}
2317 			}
2318 		}
2319 
2320 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2321 
2322 		NFE_UNLOCK(sc);
2323 		if_input(ifp, m);
2324 		NFE_LOCK(sc);
2325 		rx_npkts++;
2326 	}
2327 
2328 	if (prog > 0)
2329 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2330 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2331 
2332 	if (rx_npktsp != NULL)
2333 		*rx_npktsp = rx_npkts;
2334 	return (count > 0 ? 0 : EAGAIN);
2335 }
2336 
2337 
2338 static void
2339 nfe_txeof(struct nfe_softc *sc)
2340 {
2341 	if_t ifp = sc->nfe_ifp;
2342 	struct nfe_desc32 *desc32;
2343 	struct nfe_desc64 *desc64;
2344 	struct nfe_tx_data *data = NULL;
2345 	uint16_t flags;
2346 	int cons, prog;
2347 
2348 	NFE_LOCK_ASSERT(sc);
2349 
2350 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2351 	    BUS_DMASYNC_POSTREAD);
2352 
2353 	prog = 0;
2354 	for (cons = sc->txq.next; cons != sc->txq.cur;
2355 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2356 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2357 			desc64 = &sc->txq.desc64[cons];
2358 			flags = le16toh(desc64->flags);
2359 		} else {
2360 			desc32 = &sc->txq.desc32[cons];
2361 			flags = le16toh(desc32->flags);
2362 		}
2363 
2364 		if (flags & NFE_TX_VALID)
2365 			break;
2366 
2367 		prog++;
2368 		sc->txq.queued--;
2369 		data = &sc->txq.data[cons];
2370 
2371 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2372 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2373 				continue;
2374 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2375 				device_printf(sc->nfe_dev,
2376 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2377 
2378 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2379 			} else
2380 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2381 		} else {
2382 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2383 				continue;
2384 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2385 				device_printf(sc->nfe_dev,
2386 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2387 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2388 			} else
2389 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2390 		}
2391 
2392 		/* last fragment of the mbuf chain transmitted */
2393 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2394 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2395 		    BUS_DMASYNC_POSTWRITE);
2396 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2397 		m_freem(data->m);
2398 		data->m = NULL;
2399 	}
2400 
2401 	if (prog > 0) {
2402 		sc->nfe_force_tx = 0;
2403 		sc->txq.next = cons;
2404 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2405 		if (sc->txq.queued == 0)
2406 			sc->nfe_watchdog_timer = 0;
2407 	}
2408 }
2409 
2410 static int
2411 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2412 {
2413 	struct nfe_desc32 *desc32 = NULL;
2414 	struct nfe_desc64 *desc64 = NULL;
2415 	bus_dmamap_t map;
2416 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2417 	int error, i, nsegs, prod, si;
2418 	uint32_t tsosegsz;
2419 	uint16_t cflags, flags;
2420 	struct mbuf *m;
2421 
2422 	prod = si = sc->txq.cur;
2423 	map = sc->txq.data[prod].tx_data_map;
2424 
2425 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2426 	    &nsegs, BUS_DMA_NOWAIT);
2427 	if (error == EFBIG) {
2428 		m = m_collapse(*m_head, M_NOWAIT, NFE_MAX_SCATTER);
2429 		if (m == NULL) {
2430 			m_freem(*m_head);
2431 			*m_head = NULL;
2432 			return (ENOBUFS);
2433 		}
2434 		*m_head = m;
2435 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2436 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2437 		if (error != 0) {
2438 			m_freem(*m_head);
2439 			*m_head = NULL;
2440 			return (ENOBUFS);
2441 		}
2442 	} else if (error != 0)
2443 		return (error);
2444 	if (nsegs == 0) {
2445 		m_freem(*m_head);
2446 		*m_head = NULL;
2447 		return (EIO);
2448 	}
2449 
2450 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2451 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2452 		return (ENOBUFS);
2453 	}
2454 
2455 	m = *m_head;
2456 	cflags = flags = 0;
2457 	tsosegsz = 0;
2458 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2459 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2460 		    NFE_TX_TSO_SHIFT;
2461 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2462 		cflags |= NFE_TX_TSO;
2463 	} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2464 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2465 			cflags |= NFE_TX_IP_CSUM;
2466 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2467 			cflags |= NFE_TX_TCP_UDP_CSUM;
2468 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2469 			cflags |= NFE_TX_TCP_UDP_CSUM;
2470 	}
2471 
2472 	for (i = 0; i < nsegs; i++) {
2473 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2474 			desc64 = &sc->txq.desc64[prod];
2475 			desc64->physaddr[0] =
2476 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2477 			desc64->physaddr[1] =
2478 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2479 			desc64->vtag = 0;
2480 			desc64->length = htole16(segs[i].ds_len - 1);
2481 			desc64->flags = htole16(flags);
2482 		} else {
2483 			desc32 = &sc->txq.desc32[prod];
2484 			desc32->physaddr =
2485 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2486 			desc32->length = htole16(segs[i].ds_len - 1);
2487 			desc32->flags = htole16(flags);
2488 		}
2489 
2490 		/*
2491 		 * Setting of the valid bit in the first descriptor is
2492 		 * deferred until the whole chain is fully setup.
2493 		 */
2494 		flags |= NFE_TX_VALID;
2495 
2496 		sc->txq.queued++;
2497 		NFE_INC(prod, NFE_TX_RING_COUNT);
2498 	}
2499 
2500 	/*
2501 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2502 	 * csum flags, vtag and TSO belong to the first fragment only.
2503 	 */
2504 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2505 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2506 		desc64 = &sc->txq.desc64[si];
2507 		if ((m->m_flags & M_VLANTAG) != 0)
2508 			desc64->vtag = htole32(NFE_TX_VTAG |
2509 			    m->m_pkthdr.ether_vtag);
2510 		if (tsosegsz != 0) {
2511 			/*
2512 			 * XXX
2513 			 * The following indicates the descriptor element
2514 			 * is a 32bit quantity.
2515 			 */
2516 			desc64->length |= htole16((uint16_t)tsosegsz);
2517 			desc64->flags |= htole16(tsosegsz >> 16);
2518 		}
2519 		/*
2520 		 * finally, set the valid/checksum/TSO bit in the first
2521 		 * descriptor.
2522 		 */
2523 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2524 	} else {
2525 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2526 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2527 		else
2528 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2529 		desc32 = &sc->txq.desc32[si];
2530 		if (tsosegsz != 0) {
2531 			/*
2532 			 * XXX
2533 			 * The following indicates the descriptor element
2534 			 * is a 32bit quantity.
2535 			 */
2536 			desc32->length |= htole16((uint16_t)tsosegsz);
2537 			desc32->flags |= htole16(tsosegsz >> 16);
2538 		}
2539 		/*
2540 		 * finally, set the valid/checksum/TSO bit in the first
2541 		 * descriptor.
2542 		 */
2543 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2544 	}
2545 
2546 	sc->txq.cur = prod;
2547 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2548 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2549 	sc->txq.data[prod].tx_data_map = map;
2550 	sc->txq.data[prod].m = m;
2551 
2552 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2553 
2554 	return (0);
2555 }
2556 
2557 
2558 static void
2559 nfe_setmulti(struct nfe_softc *sc)
2560 {
2561 	if_t ifp = sc->nfe_ifp;
2562 	int i, mc_count, mcnt;
2563 	uint32_t filter;
2564 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2565 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2566 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2567 	};
2568 	uint8_t *mta;
2569 
2570 	NFE_LOCK_ASSERT(sc);
2571 
2572 	if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2573 		bzero(addr, ETHER_ADDR_LEN);
2574 		bzero(mask, ETHER_ADDR_LEN);
2575 		goto done;
2576 	}
2577 
2578 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2579 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2580 
2581 	mc_count = if_multiaddr_count(ifp, -1);
2582 	mta = malloc(sizeof(uint8_t) * ETHER_ADDR_LEN * mc_count, M_DEVBUF,
2583 	    M_NOWAIT);
2584 
2585 	/* Unable to get memory - process without filtering */
2586 	if (mta == NULL) {
2587 		device_printf(sc->nfe_dev, "nfe_setmulti: failed to allocate"
2588 		    "temp multicast buffer!\n");
2589 
2590 		bzero(addr, ETHER_ADDR_LEN);
2591 		bzero(mask, ETHER_ADDR_LEN);
2592 		goto done;
2593 	};
2594 
2595 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
2596 
2597 	for (i = 0; i < mcnt; i++) {
2598 		uint8_t *addrp;
2599 		int j;
2600 
2601 		addrp = mta + (i * ETHER_ADDR_LEN);
2602 		for (j = 0; j < ETHER_ADDR_LEN; j++) {
2603 			u_int8_t mcaddr = addrp[j];
2604 			addr[j] &= mcaddr;
2605 			mask[j] &= ~mcaddr;
2606 		}
2607 	}
2608 
2609 	free(mta, M_DEVBUF);
2610 
2611 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2612 		mask[i] |= addr[i];
2613 	}
2614 
2615 done:
2616 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2617 
2618 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2619 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2620 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2621 	    addr[5] <<  8 | addr[4]);
2622 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2623 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2624 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2625 	    mask[5] <<  8 | mask[4]);
2626 
2627 	filter = NFE_READ(sc, NFE_RXFILTER);
2628 	filter &= NFE_PFF_RX_PAUSE;
2629 	filter |= NFE_RXFILTER_MAGIC;
2630 	filter |= (if_getflags(ifp) & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2631 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2632 }
2633 
2634 
2635 static void
2636 nfe_start(if_t ifp)
2637 {
2638 	struct nfe_softc *sc = if_getsoftc(ifp);
2639 
2640 	NFE_LOCK(sc);
2641 	nfe_start_locked(ifp);
2642 	NFE_UNLOCK(sc);
2643 }
2644 
2645 static void
2646 nfe_start_locked(if_t ifp)
2647 {
2648 	struct nfe_softc *sc = if_getsoftc(ifp);
2649 	struct mbuf *m0;
2650 	int enq = 0;
2651 
2652 	NFE_LOCK_ASSERT(sc);
2653 
2654 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2655 	    IFF_DRV_RUNNING || sc->nfe_link == 0)
2656 		return;
2657 
2658 	while (!if_sendq_empty(ifp)) {
2659 		m0 = if_dequeue(ifp);
2660 
2661 		if (m0 == NULL)
2662 			break;
2663 
2664 		if (nfe_encap(sc, &m0) != 0) {
2665 			if (m0 == NULL)
2666 				break;
2667 			if_sendq_prepend(ifp, m0);
2668 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2669 			break;
2670 		}
2671 		enq++;
2672 		if_etherbpfmtap(ifp, m0);
2673 	}
2674 
2675 	if (enq > 0) {
2676 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2677 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2678 
2679 		/* kick Tx */
2680 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2681 
2682 		/*
2683 		 * Set a timeout in case the chip goes out to lunch.
2684 		 */
2685 		sc->nfe_watchdog_timer = 5;
2686 	}
2687 }
2688 
2689 
2690 static void
2691 nfe_watchdog(if_t ifp)
2692 {
2693 	struct nfe_softc *sc = if_getsoftc(ifp);
2694 
2695 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2696 		return;
2697 
2698 	/* Check if we've lost Tx completion interrupt. */
2699 	nfe_txeof(sc);
2700 	if (sc->txq.queued == 0) {
2701 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2702 		    "-- recovering\n");
2703 		if (!if_sendq_empty(ifp))
2704 			nfe_start_locked(ifp);
2705 		return;
2706 	}
2707 	/* Check if we've lost start Tx command. */
2708 	sc->nfe_force_tx++;
2709 	if (sc->nfe_force_tx <= 3) {
2710 		/*
2711 		 * If this is the case for watchdog timeout, the following
2712 		 * code should go to nfe_txeof().
2713 		 */
2714 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2715 		return;
2716 	}
2717 	sc->nfe_force_tx = 0;
2718 
2719 	if_printf(ifp, "watchdog timeout\n");
2720 
2721 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2722 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2723 	nfe_init_locked(sc);
2724 }
2725 
2726 
2727 static void
2728 nfe_init(void *xsc)
2729 {
2730 	struct nfe_softc *sc = xsc;
2731 
2732 	NFE_LOCK(sc);
2733 	nfe_init_locked(sc);
2734 	NFE_UNLOCK(sc);
2735 }
2736 
2737 
2738 static void
2739 nfe_init_locked(void *xsc)
2740 {
2741 	struct nfe_softc *sc = xsc;
2742 	if_t ifp = sc->nfe_ifp;
2743 	struct mii_data *mii;
2744 	uint32_t val;
2745 	int error;
2746 
2747 	NFE_LOCK_ASSERT(sc);
2748 
2749 	mii = device_get_softc(sc->nfe_miibus);
2750 
2751 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2752 		return;
2753 
2754 	nfe_stop(ifp);
2755 
2756 	sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
2757 
2758 	nfe_init_tx_ring(sc, &sc->txq);
2759 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2760 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2761 	else
2762 		error = nfe_init_rx_ring(sc, &sc->rxq);
2763 	if (error != 0) {
2764 		device_printf(sc->nfe_dev,
2765 		    "initialization failed: no memory for rx buffers\n");
2766 		nfe_stop(ifp);
2767 		return;
2768 	}
2769 
2770 	val = 0;
2771 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2772 		val |= NFE_MAC_ADDR_INORDER;
2773 	NFE_WRITE(sc, NFE_TX_UNK, val);
2774 	NFE_WRITE(sc, NFE_STATUS, 0);
2775 
2776 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2777 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2778 
2779 	sc->rxtxctl = NFE_RXTX_BIT2;
2780 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2781 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2782 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2783 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2784 
2785 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2786 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2787 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2788 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2789 
2790 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2791 	DELAY(10);
2792 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2793 
2794 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2795 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2796 	else
2797 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2798 
2799 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2800 
2801 	/* set MAC address */
2802 	nfe_set_macaddr(sc, if_getlladdr(ifp));
2803 
2804 	/* tell MAC where rings are in memory */
2805 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2806 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2807 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2808 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2809 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2810 	} else {
2811 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2812 		    NFE_ADDR_HI(sc->rxq.physaddr));
2813 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2814 		    NFE_ADDR_LO(sc->rxq.physaddr));
2815 	}
2816 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2817 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2818 
2819 	NFE_WRITE(sc, NFE_RING_SIZE,
2820 	    (NFE_RX_RING_COUNT - 1) << 16 |
2821 	    (NFE_TX_RING_COUNT - 1));
2822 
2823 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2824 
2825 	/* force MAC to wakeup */
2826 	val = NFE_READ(sc, NFE_PWR_STATE);
2827 	if ((val & NFE_PWR_WAKEUP) == 0)
2828 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2829 	DELAY(10);
2830 	val = NFE_READ(sc, NFE_PWR_STATE);
2831 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2832 
2833 #if 1
2834 	/* configure interrupts coalescing/mitigation */
2835 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2836 #else
2837 	/* no interrupt mitigation: one interrupt per packet */
2838 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2839 #endif
2840 
2841 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2842 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2843 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2844 
2845 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2846 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2847 
2848 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2849 	/* Disable WOL. */
2850 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
2851 
2852 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2853 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2854 	DELAY(10);
2855 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2856 
2857 	/* set Rx filter */
2858 	nfe_setmulti(sc);
2859 
2860 	/* enable Rx */
2861 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2862 
2863 	/* enable Tx */
2864 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2865 
2866 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2867 
2868 	/* Clear hardware stats. */
2869 	nfe_stats_clear(sc);
2870 
2871 #ifdef DEVICE_POLLING
2872 	if (if_getcapenable(ifp) & IFCAP_POLLING)
2873 		nfe_disable_intr(sc);
2874 	else
2875 #endif
2876 	nfe_set_intr(sc);
2877 	nfe_enable_intr(sc); /* enable interrupts */
2878 
2879 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2880 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2881 
2882 	sc->nfe_link = 0;
2883 	mii_mediachg(mii);
2884 
2885 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2886 }
2887 
2888 
2889 static void
2890 nfe_stop(if_t ifp)
2891 {
2892 	struct nfe_softc *sc = if_getsoftc(ifp);
2893 	struct nfe_rx_ring *rx_ring;
2894 	struct nfe_jrx_ring *jrx_ring;
2895 	struct nfe_tx_ring *tx_ring;
2896 	struct nfe_rx_data *rdata;
2897 	struct nfe_tx_data *tdata;
2898 	int i;
2899 
2900 	NFE_LOCK_ASSERT(sc);
2901 
2902 	sc->nfe_watchdog_timer = 0;
2903 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2904 
2905 	callout_stop(&sc->nfe_stat_ch);
2906 
2907 	/* abort Tx */
2908 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2909 
2910 	/* disable Rx */
2911 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2912 
2913 	/* disable interrupts */
2914 	nfe_disable_intr(sc);
2915 
2916 	sc->nfe_link = 0;
2917 
2918 	/* free Rx and Tx mbufs still in the queues. */
2919 	rx_ring = &sc->rxq;
2920 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2921 		rdata = &rx_ring->data[i];
2922 		if (rdata->m != NULL) {
2923 			bus_dmamap_sync(rx_ring->rx_data_tag,
2924 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2925 			bus_dmamap_unload(rx_ring->rx_data_tag,
2926 			    rdata->rx_data_map);
2927 			m_freem(rdata->m);
2928 			rdata->m = NULL;
2929 		}
2930 	}
2931 
2932 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2933 		jrx_ring = &sc->jrxq;
2934 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2935 			rdata = &jrx_ring->jdata[i];
2936 			if (rdata->m != NULL) {
2937 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2938 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2939 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2940 				    rdata->rx_data_map);
2941 				m_freem(rdata->m);
2942 				rdata->m = NULL;
2943 			}
2944 		}
2945 	}
2946 
2947 	tx_ring = &sc->txq;
2948 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2949 		tdata = &tx_ring->data[i];
2950 		if (tdata->m != NULL) {
2951 			bus_dmamap_sync(tx_ring->tx_data_tag,
2952 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2953 			bus_dmamap_unload(tx_ring->tx_data_tag,
2954 			    tdata->tx_data_map);
2955 			m_freem(tdata->m);
2956 			tdata->m = NULL;
2957 		}
2958 	}
2959 	/* Update hardware stats. */
2960 	nfe_stats_update(sc);
2961 }
2962 
2963 
2964 static int
2965 nfe_ifmedia_upd(if_t ifp)
2966 {
2967 	struct nfe_softc *sc = if_getsoftc(ifp);
2968 	struct mii_data *mii;
2969 
2970 	NFE_LOCK(sc);
2971 	mii = device_get_softc(sc->nfe_miibus);
2972 	mii_mediachg(mii);
2973 	NFE_UNLOCK(sc);
2974 
2975 	return (0);
2976 }
2977 
2978 
2979 static void
2980 nfe_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2981 {
2982 	struct nfe_softc *sc;
2983 	struct mii_data *mii;
2984 
2985 	sc = if_getsoftc(ifp);
2986 
2987 	NFE_LOCK(sc);
2988 	mii = device_get_softc(sc->nfe_miibus);
2989 	mii_pollstat(mii);
2990 
2991 	ifmr->ifm_active = mii->mii_media_active;
2992 	ifmr->ifm_status = mii->mii_media_status;
2993 	NFE_UNLOCK(sc);
2994 }
2995 
2996 
2997 void
2998 nfe_tick(void *xsc)
2999 {
3000 	struct nfe_softc *sc;
3001 	struct mii_data *mii;
3002 	if_t ifp;
3003 
3004 	sc = (struct nfe_softc *)xsc;
3005 
3006 	NFE_LOCK_ASSERT(sc);
3007 
3008 	ifp = sc->nfe_ifp;
3009 
3010 	mii = device_get_softc(sc->nfe_miibus);
3011 	mii_tick(mii);
3012 	nfe_stats_update(sc);
3013 	nfe_watchdog(ifp);
3014 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
3015 }
3016 
3017 
3018 static int
3019 nfe_shutdown(device_t dev)
3020 {
3021 
3022 	return (nfe_suspend(dev));
3023 }
3024 
3025 
3026 static void
3027 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
3028 {
3029 	uint32_t val;
3030 
3031 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
3032 		val = NFE_READ(sc, NFE_MACADDR_LO);
3033 		addr[0] = (val >> 8) & 0xff;
3034 		addr[1] = (val & 0xff);
3035 
3036 		val = NFE_READ(sc, NFE_MACADDR_HI);
3037 		addr[2] = (val >> 24) & 0xff;
3038 		addr[3] = (val >> 16) & 0xff;
3039 		addr[4] = (val >>  8) & 0xff;
3040 		addr[5] = (val & 0xff);
3041 	} else {
3042 		val = NFE_READ(sc, NFE_MACADDR_LO);
3043 		addr[5] = (val >> 8) & 0xff;
3044 		addr[4] = (val & 0xff);
3045 
3046 		val = NFE_READ(sc, NFE_MACADDR_HI);
3047 		addr[3] = (val >> 24) & 0xff;
3048 		addr[2] = (val >> 16) & 0xff;
3049 		addr[1] = (val >>  8) & 0xff;
3050 		addr[0] = (val & 0xff);
3051 	}
3052 }
3053 
3054 
3055 static void
3056 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3057 {
3058 
3059 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3060 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3061 	    addr[1] << 8 | addr[0]);
3062 }
3063 
3064 
3065 /*
3066  * Map a single buffer address.
3067  */
3068 
3069 static void
3070 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3071 {
3072 	struct nfe_dmamap_arg *ctx;
3073 
3074 	if (error != 0)
3075 		return;
3076 
3077 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3078 
3079 	ctx = (struct nfe_dmamap_arg *)arg;
3080 	ctx->nfe_busaddr = segs[0].ds_addr;
3081 }
3082 
3083 
3084 static int
3085 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3086 {
3087 	int error, value;
3088 
3089 	if (!arg1)
3090 		return (EINVAL);
3091 	value = *(int *)arg1;
3092 	error = sysctl_handle_int(oidp, &value, 0, req);
3093 	if (error || !req->newptr)
3094 		return (error);
3095 	if (value < low || value > high)
3096 		return (EINVAL);
3097 	*(int *)arg1 = value;
3098 
3099 	return (0);
3100 }
3101 
3102 
3103 static int
3104 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3105 {
3106 
3107 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3108 	    NFE_PROC_MAX));
3109 }
3110 
3111 
3112 #define	NFE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
3113 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3114 #define	NFE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
3115 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
3116 
3117 static void
3118 nfe_sysctl_node(struct nfe_softc *sc)
3119 {
3120 	struct sysctl_ctx_list *ctx;
3121 	struct sysctl_oid_list *child, *parent;
3122 	struct sysctl_oid *tree;
3123 	struct nfe_hw_stats *stats;
3124 	int error;
3125 
3126 	stats = &sc->nfe_stats;
3127 	ctx = device_get_sysctl_ctx(sc->nfe_dev);
3128 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
3129 	SYSCTL_ADD_PROC(ctx, child,
3130 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
3131 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
3132 	    "max number of Rx events to process");
3133 
3134 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
3135 	error = resource_int_value(device_get_name(sc->nfe_dev),
3136 	    device_get_unit(sc->nfe_dev), "process_limit",
3137 	    &sc->nfe_process_limit);
3138 	if (error == 0) {
3139 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
3140 		    sc->nfe_process_limit > NFE_PROC_MAX) {
3141 			device_printf(sc->nfe_dev,
3142 			    "process_limit value out of range; "
3143 			    "using default: %d\n", NFE_PROC_DEFAULT);
3144 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
3145 		}
3146 	}
3147 
3148 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3149 		return;
3150 
3151 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3152 	    NULL, "NFE statistics");
3153 	parent = SYSCTL_CHILDREN(tree);
3154 
3155 	/* Rx statistics. */
3156 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3157 	    NULL, "Rx MAC statistics");
3158 	child = SYSCTL_CHILDREN(tree);
3159 
3160 	NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
3161 	    &stats->rx_frame_errors, "Framing Errors");
3162 	NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
3163 	    &stats->rx_extra_bytes, "Extra Bytes");
3164 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3165 	    &stats->rx_late_cols, "Late Collisions");
3166 	NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
3167 	    &stats->rx_runts, "Runts");
3168 	NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
3169 	    &stats->rx_jumbos, "Jumbos");
3170 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
3171 	    &stats->rx_fifo_overuns, "FIFO Overruns");
3172 	NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
3173 	    &stats->rx_crc_errors, "CRC Errors");
3174 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
3175 	    &stats->rx_fae, "Frame Alignment Errors");
3176 	NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
3177 	    &stats->rx_len_errors, "Length Errors");
3178 	NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3179 	    &stats->rx_unicast, "Unicast Frames");
3180 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3181 	    &stats->rx_multicast, "Multicast Frames");
3182 	NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3183 	    &stats->rx_broadcast, "Broadcast Frames");
3184 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3185 		NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3186 		    &stats->rx_octets, "Octets");
3187 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3188 		    &stats->rx_pause, "Pause frames");
3189 		NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
3190 		    &stats->rx_drops, "Drop frames");
3191 	}
3192 
3193 	/* Tx statistics. */
3194 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3195 	    NULL, "Tx MAC statistics");
3196 	child = SYSCTL_CHILDREN(tree);
3197 	NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3198 	    &stats->tx_octets, "Octets");
3199 	NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
3200 	    &stats->tx_zero_rexmits, "Zero Retransmits");
3201 	NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
3202 	    &stats->tx_one_rexmits, "One Retransmits");
3203 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
3204 	    &stats->tx_multi_rexmits, "Multiple Retransmits");
3205 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3206 	    &stats->tx_late_cols, "Late Collisions");
3207 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
3208 	    &stats->tx_fifo_underuns, "FIFO Underruns");
3209 	NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
3210 	    &stats->tx_carrier_losts, "Carrier Losts");
3211 	NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
3212 	    &stats->tx_excess_deferals, "Excess Deferrals");
3213 	NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
3214 	    &stats->tx_retry_errors, "Retry Errors");
3215 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3216 		NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
3217 		    &stats->tx_deferals, "Deferrals");
3218 		NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
3219 		    &stats->tx_frames, "Frames");
3220 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3221 		    &stats->tx_pause, "Pause Frames");
3222 	}
3223 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3224 		NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3225 		    &stats->tx_deferals, "Unicast Frames");
3226 		NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3227 		    &stats->tx_frames, "Multicast Frames");
3228 		NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3229 		    &stats->tx_pause, "Broadcast Frames");
3230 	}
3231 }
3232 
3233 #undef NFE_SYSCTL_STAT_ADD32
3234 #undef NFE_SYSCTL_STAT_ADD64
3235 
3236 static void
3237 nfe_stats_clear(struct nfe_softc *sc)
3238 {
3239 	int i, mib_cnt;
3240 
3241 	if ((sc->nfe_flags & NFE_MIB_V1) != 0)
3242 		mib_cnt = NFE_NUM_MIB_STATV1;
3243 	else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
3244 		mib_cnt = NFE_NUM_MIB_STATV2;
3245 	else
3246 		return;
3247 
3248 	for (i = 0; i < mib_cnt; i++)
3249 		NFE_READ(sc, NFE_TX_OCTET + i * sizeof(uint32_t));
3250 
3251 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3252 		NFE_READ(sc, NFE_TX_UNICAST);
3253 		NFE_READ(sc, NFE_TX_MULTICAST);
3254 		NFE_READ(sc, NFE_TX_BROADCAST);
3255 	}
3256 }
3257 
3258 static void
3259 nfe_stats_update(struct nfe_softc *sc)
3260 {
3261 	struct nfe_hw_stats *stats;
3262 
3263 	NFE_LOCK_ASSERT(sc);
3264 
3265 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3266 		return;
3267 
3268 	stats = &sc->nfe_stats;
3269 	stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
3270 	stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
3271 	stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
3272 	stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
3273 	stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
3274 	stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
3275 	stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
3276 	stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
3277 	stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
3278 	stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
3279 	stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
3280 	stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
3281 	stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
3282 	stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
3283 	stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
3284 	stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
3285 	stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
3286 	stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
3287 	stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
3288 	stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
3289 	stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
3290 
3291 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3292 		stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
3293 		stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
3294 		stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
3295 		stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
3296 		stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
3297 		stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
3298 	}
3299 
3300 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3301 		stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
3302 		stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
3303 		stats->tx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
3304 	}
3305 }
3306 
3307 
3308 static void
3309 nfe_set_linkspeed(struct nfe_softc *sc)
3310 {
3311 	struct mii_softc *miisc;
3312 	struct mii_data *mii;
3313 	int aneg, i, phyno;
3314 
3315 	NFE_LOCK_ASSERT(sc);
3316 
3317 	mii = device_get_softc(sc->nfe_miibus);
3318 	mii_pollstat(mii);
3319 	aneg = 0;
3320 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3321 	    (IFM_ACTIVE | IFM_AVALID)) {
3322 		switch IFM_SUBTYPE(mii->mii_media_active) {
3323 		case IFM_10_T:
3324 		case IFM_100_TX:
3325 			return;
3326 		case IFM_1000_T:
3327 			aneg++;
3328 			break;
3329 		default:
3330 			break;
3331 		}
3332 	}
3333 	miisc = LIST_FIRST(&mii->mii_phys);
3334 	phyno = miisc->mii_phy;
3335 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3336 		PHY_RESET(miisc);
3337 	nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
3338 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3339 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3340 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3341 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
3342 	DELAY(1000);
3343 	if (aneg != 0) {
3344 		/*
3345 		 * Poll link state until nfe(4) get a 10/100Mbps link.
3346 		 */
3347 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3348 			mii_pollstat(mii);
3349 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3350 			    == (IFM_ACTIVE | IFM_AVALID)) {
3351 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3352 				case IFM_10_T:
3353 				case IFM_100_TX:
3354 					nfe_mac_config(sc, mii);
3355 					return;
3356 				default:
3357 					break;
3358 				}
3359 			}
3360 			NFE_UNLOCK(sc);
3361 			pause("nfelnk", hz);
3362 			NFE_LOCK(sc);
3363 		}
3364 		if (i == MII_ANEGTICKS_GIGE)
3365 			device_printf(sc->nfe_dev,
3366 			    "establishing a link failed, WOL may not work!");
3367 	}
3368 	/*
3369 	 * No link, force MAC to have 100Mbps, full-duplex link.
3370 	 * This is the last resort and may/may not work.
3371 	 */
3372 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3373 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3374 	nfe_mac_config(sc, mii);
3375 }
3376 
3377 
3378 static void
3379 nfe_set_wol(struct nfe_softc *sc)
3380 {
3381 	if_t ifp;
3382 	uint32_t wolctl;
3383 	int pmc;
3384 	uint16_t pmstat;
3385 
3386 	NFE_LOCK_ASSERT(sc);
3387 
3388 	if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
3389 		return;
3390 	ifp = sc->nfe_ifp;
3391 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
3392 		wolctl = NFE_WOL_MAGIC;
3393 	else
3394 		wolctl = 0;
3395 	NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
3396 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
3397 		nfe_set_linkspeed(sc);
3398 		if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
3399 			NFE_WRITE(sc, NFE_PWR2_CTL,
3400 			    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
3401 		/* Enable RX. */
3402 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
3403 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
3404 		NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
3405 		    NFE_RX_START);
3406 	}
3407 	/* Request PME if WOL is requested. */
3408 	pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
3409 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3410 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3411 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3412 	pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3413 }
3414