xref: /freebsd/sys/dev/nfe/if_nfe.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/ethernet.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net/bpf.h>
52 
53 #include <machine/bus.h>
54 #include <machine/resource.h>
55 #include <sys/bus.h>
56 #include <sys/rman.h>
57 
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 
61 #include <dev/pci/pcireg.h>
62 #include <dev/pci/pcivar.h>
63 
64 #include <dev/nfe/if_nfereg.h>
65 #include <dev/nfe/if_nfevar.h>
66 
67 MODULE_DEPEND(nfe, pci, 1, 1, 1);
68 MODULE_DEPEND(nfe, ether, 1, 1, 1);
69 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
70 
71 /* "device miibus" required.  See GENERIC if you get errors here. */
72 #include "miibus_if.h"
73 
74 static int  nfe_probe(device_t);
75 static int  nfe_attach(device_t);
76 static int  nfe_detach(device_t);
77 static int  nfe_suspend(device_t);
78 static int  nfe_resume(device_t);
79 static int nfe_shutdown(device_t);
80 static int  nfe_can_use_msix(struct nfe_softc *);
81 static void nfe_power(struct nfe_softc *);
82 static int  nfe_miibus_readreg(device_t, int, int);
83 static int  nfe_miibus_writereg(device_t, int, int, int);
84 static void nfe_miibus_statchg(device_t);
85 static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
86 static void nfe_set_intr(struct nfe_softc *);
87 static __inline void nfe_enable_intr(struct nfe_softc *);
88 static __inline void nfe_disable_intr(struct nfe_softc *);
89 static int  nfe_ioctl(struct ifnet *, u_long, caddr_t);
90 static void nfe_alloc_msix(struct nfe_softc *, int);
91 static int nfe_intr(void *);
92 static void nfe_int_task(void *, int);
93 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
94 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
95 static int nfe_newbuf(struct nfe_softc *, int);
96 static int nfe_jnewbuf(struct nfe_softc *, int);
97 static int  nfe_rxeof(struct nfe_softc *, int, int *);
98 static int  nfe_jrxeof(struct nfe_softc *, int, int *);
99 static void nfe_txeof(struct nfe_softc *);
100 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
101 static void nfe_setmulti(struct nfe_softc *);
102 static void nfe_start(struct ifnet *);
103 static void nfe_start_locked(struct ifnet *);
104 static void nfe_watchdog(struct ifnet *);
105 static void nfe_init(void *);
106 static void nfe_init_locked(void *);
107 static void nfe_stop(struct ifnet *);
108 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
109 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
110 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
111 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
112 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
113 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
114 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
115 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
116 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static int  nfe_ifmedia_upd(struct ifnet *);
118 static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
119 static void nfe_tick(void *);
120 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
121 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
122 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
123 
124 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
125 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
126 static void nfe_sysctl_node(struct nfe_softc *);
127 static void nfe_stats_clear(struct nfe_softc *);
128 static void nfe_stats_update(struct nfe_softc *);
129 static void nfe_set_linkspeed(struct nfe_softc *);
130 static void nfe_set_wol(struct nfe_softc *);
131 
132 #ifdef NFE_DEBUG
133 static int nfedebug = 0;
134 #define	DPRINTF(sc, ...)	do {				\
135 	if (nfedebug)						\
136 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
137 } while (0)
138 #define	DPRINTFN(sc, n, ...)	do {				\
139 	if (nfedebug >= (n))					\
140 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
141 } while (0)
142 #else
143 #define	DPRINTF(sc, ...)
144 #define	DPRINTFN(sc, n, ...)
145 #endif
146 
147 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
148 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
149 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
150 
151 /* Tunables. */
152 static int msi_disable = 0;
153 static int msix_disable = 0;
154 static int jumbo_disable = 0;
155 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
156 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
157 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
158 
159 static device_method_t nfe_methods[] = {
160 	/* Device interface */
161 	DEVMETHOD(device_probe,		nfe_probe),
162 	DEVMETHOD(device_attach,	nfe_attach),
163 	DEVMETHOD(device_detach,	nfe_detach),
164 	DEVMETHOD(device_suspend,	nfe_suspend),
165 	DEVMETHOD(device_resume,	nfe_resume),
166 	DEVMETHOD(device_shutdown,	nfe_shutdown),
167 
168 	/* MII interface */
169 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
170 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
171 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
172 
173 	DEVMETHOD_END
174 };
175 
176 static driver_t nfe_driver = {
177 	"nfe",
178 	nfe_methods,
179 	sizeof(struct nfe_softc)
180 };
181 
182 static devclass_t nfe_devclass;
183 
184 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
185 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
186 
187 static struct nfe_type nfe_devs[] = {
188 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
189 	    "NVIDIA nForce MCP Networking Adapter"},
190 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
191 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
192 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
193 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
194 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
195 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
196 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
197 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
198 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
199 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
200 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
201 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
202 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
203 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
204 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
205 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
206 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
207 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
208 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
209 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
210 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
211 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
212 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
213 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
214 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
215 	    "NVIDIA nForce MCP55 Networking Adapter"},
216 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
217 	    "NVIDIA nForce MCP55 Networking Adapter"},
218 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
219 	    "NVIDIA nForce MCP61 Networking Adapter"},
220 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
221 	    "NVIDIA nForce MCP61 Networking Adapter"},
222 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
223 	    "NVIDIA nForce MCP61 Networking Adapter"},
224 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
225 	    "NVIDIA nForce MCP61 Networking Adapter"},
226 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
227 	    "NVIDIA nForce MCP65 Networking Adapter"},
228 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
229 	    "NVIDIA nForce MCP65 Networking Adapter"},
230 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
231 	    "NVIDIA nForce MCP65 Networking Adapter"},
232 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
233 	    "NVIDIA nForce MCP65 Networking Adapter"},
234 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
235 	    "NVIDIA nForce MCP67 Networking Adapter"},
236 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
237 	    "NVIDIA nForce MCP67 Networking Adapter"},
238 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
239 	    "NVIDIA nForce MCP67 Networking Adapter"},
240 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
241 	    "NVIDIA nForce MCP67 Networking Adapter"},
242 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
243 	    "NVIDIA nForce MCP73 Networking Adapter"},
244 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
245 	    "NVIDIA nForce MCP73 Networking Adapter"},
246 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
247 	    "NVIDIA nForce MCP73 Networking Adapter"},
248 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
249 	    "NVIDIA nForce MCP73 Networking Adapter"},
250 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
251 	    "NVIDIA nForce MCP77 Networking Adapter"},
252 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
253 	    "NVIDIA nForce MCP77 Networking Adapter"},
254 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
255 	    "NVIDIA nForce MCP77 Networking Adapter"},
256 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
257 	    "NVIDIA nForce MCP77 Networking Adapter"},
258 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
259 	    "NVIDIA nForce MCP79 Networking Adapter"},
260 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
261 	    "NVIDIA nForce MCP79 Networking Adapter"},
262 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
263 	    "NVIDIA nForce MCP79 Networking Adapter"},
264 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
265 	    "NVIDIA nForce MCP79 Networking Adapter"},
266 	{0, 0, NULL}
267 };
268 
269 
270 /* Probe for supported hardware ID's */
271 static int
272 nfe_probe(device_t dev)
273 {
274 	struct nfe_type *t;
275 
276 	t = nfe_devs;
277 	/* Check for matching PCI DEVICE ID's */
278 	while (t->name != NULL) {
279 		if ((pci_get_vendor(dev) == t->vid_id) &&
280 		    (pci_get_device(dev) == t->dev_id)) {
281 			device_set_desc(dev, t->name);
282 			return (BUS_PROBE_DEFAULT);
283 		}
284 		t++;
285 	}
286 
287 	return (ENXIO);
288 }
289 
290 static void
291 nfe_alloc_msix(struct nfe_softc *sc, int count)
292 {
293 	int rid;
294 
295 	rid = PCIR_BAR(2);
296 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
297 	    &rid, RF_ACTIVE);
298 	if (sc->nfe_msix_res == NULL) {
299 		device_printf(sc->nfe_dev,
300 		    "couldn't allocate MSIX table resource\n");
301 		return;
302 	}
303 	rid = PCIR_BAR(3);
304 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
305 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
306 	if (sc->nfe_msix_pba_res == NULL) {
307 		device_printf(sc->nfe_dev,
308 		    "couldn't allocate MSIX PBA resource\n");
309 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
310 		    sc->nfe_msix_res);
311 		sc->nfe_msix_res = NULL;
312 		return;
313 	}
314 
315 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
316 		if (count == NFE_MSI_MESSAGES) {
317 			if (bootverbose)
318 				device_printf(sc->nfe_dev,
319 				    "Using %d MSIX messages\n", count);
320 			sc->nfe_msix = 1;
321 		} else {
322 			if (bootverbose)
323 				device_printf(sc->nfe_dev,
324 				    "couldn't allocate MSIX\n");
325 			pci_release_msi(sc->nfe_dev);
326 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
327 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
328 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
329 			    PCIR_BAR(2), sc->nfe_msix_res);
330 			sc->nfe_msix_pba_res = NULL;
331 			sc->nfe_msix_res = NULL;
332 		}
333 	}
334 }
335 
336 static int
337 nfe_attach(device_t dev)
338 {
339 	struct nfe_softc *sc;
340 	struct ifnet *ifp;
341 	bus_addr_t dma_addr_max;
342 	int error = 0, i, msic, reg, rid;
343 
344 	sc = device_get_softc(dev);
345 	sc->nfe_dev = dev;
346 
347 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
348 	    MTX_DEF);
349 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
350 
351 	pci_enable_busmaster(dev);
352 
353 	rid = PCIR_BAR(0);
354 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
355 	    RF_ACTIVE);
356 	if (sc->nfe_res[0] == NULL) {
357 		device_printf(dev, "couldn't map memory resources\n");
358 		mtx_destroy(&sc->nfe_mtx);
359 		return (ENXIO);
360 	}
361 
362 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
363 		uint16_t v, width;
364 
365 		v = pci_read_config(dev, reg + 0x08, 2);
366 		/* Change max. read request size to 4096. */
367 		v &= ~(7 << 12);
368 		v |= (5 << 12);
369 		pci_write_config(dev, reg + 0x08, v, 2);
370 
371 		v = pci_read_config(dev, reg + 0x0c, 2);
372 		/* link capability */
373 		v = (v >> 4) & 0x0f;
374 		width = pci_read_config(dev, reg + 0x12, 2);
375 		/* negotiated link width */
376 		width = (width >> 4) & 0x3f;
377 		if (v != width)
378 			device_printf(sc->nfe_dev,
379 			    "warning, negotiated width of link(x%d) != "
380 			    "max. width of link(x%d)\n", width, v);
381 	}
382 
383 	if (nfe_can_use_msix(sc) == 0) {
384 		device_printf(sc->nfe_dev,
385 		    "MSI/MSI-X capability black-listed, will use INTx\n");
386 		msix_disable = 1;
387 		msi_disable = 1;
388 	}
389 
390 	/* Allocate interrupt */
391 	if (msix_disable == 0 || msi_disable == 0) {
392 		if (msix_disable == 0 &&
393 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
394 			nfe_alloc_msix(sc, msic);
395 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
396 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
397 		    pci_alloc_msi(dev, &msic) == 0) {
398 			if (msic == NFE_MSI_MESSAGES) {
399 				if (bootverbose)
400 					device_printf(dev,
401 					    "Using %d MSI messages\n", msic);
402 				sc->nfe_msi = 1;
403 			} else
404 				pci_release_msi(dev);
405 		}
406 	}
407 
408 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
409 		rid = 0;
410 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
411 		    RF_SHAREABLE | RF_ACTIVE);
412 		if (sc->nfe_irq[0] == NULL) {
413 			device_printf(dev, "couldn't allocate IRQ resources\n");
414 			error = ENXIO;
415 			goto fail;
416 		}
417 	} else {
418 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
419 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
420 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
421 			if (sc->nfe_irq[i] == NULL) {
422 				device_printf(dev,
423 				    "couldn't allocate IRQ resources for "
424 				    "message %d\n", rid);
425 				error = ENXIO;
426 				goto fail;
427 			}
428 		}
429 		/* Map interrupts to vector 0. */
430 		if (sc->nfe_msix != 0) {
431 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
432 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
433 		} else if (sc->nfe_msi != 0) {
434 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
435 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
436 		}
437 	}
438 
439 	/* Set IRQ status/mask register. */
440 	sc->nfe_irq_status = NFE_IRQ_STATUS;
441 	sc->nfe_irq_mask = NFE_IRQ_MASK;
442 	sc->nfe_intrs = NFE_IRQ_WANTED;
443 	sc->nfe_nointrs = 0;
444 	if (sc->nfe_msix != 0) {
445 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
446 		sc->nfe_nointrs = NFE_IRQ_WANTED;
447 	} else if (sc->nfe_msi != 0) {
448 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
449 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
450 	}
451 
452 	sc->nfe_devid = pci_get_device(dev);
453 	sc->nfe_revid = pci_get_revid(dev);
454 	sc->nfe_flags = 0;
455 
456 	switch (sc->nfe_devid) {
457 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
458 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
459 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
460 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
461 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
462 		break;
463 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
464 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
465 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
466 		break;
467 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
468 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
469 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
470 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
471 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
472 		    NFE_MIB_V1;
473 		break;
474 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
475 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
476 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
477 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
478 		break;
479 
480 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
481 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
482 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
483 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
484 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
485 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
486 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
487 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
488 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
489 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
490 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
491 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
492 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
493 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
494 		break;
495 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
496 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
497 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
498 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
499 		/* XXX flow control */
500 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
501 		    NFE_CORRECT_MACADDR | NFE_MIB_V3;
502 		break;
503 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
504 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
505 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
506 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
507 		/* XXX flow control */
508 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
509 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
510 		break;
511 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
512 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
513 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
514 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
515 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
516 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
517 		    NFE_MIB_V2;
518 		break;
519 	}
520 
521 	nfe_power(sc);
522 	/* Check for reversed ethernet address */
523 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
524 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
525 	nfe_get_macaddr(sc, sc->eaddr);
526 	/*
527 	 * Allocate the parent bus DMA tag appropriate for PCI.
528 	 */
529 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
530 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
531 		dma_addr_max = NFE_DMA_MAXADDR;
532 	error = bus_dma_tag_create(
533 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
534 	    1, 0,				/* alignment, boundary */
535 	    dma_addr_max,			/* lowaddr */
536 	    BUS_SPACE_MAXADDR,			/* highaddr */
537 	    NULL, NULL,				/* filter, filterarg */
538 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
539 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
540 	    0,					/* flags */
541 	    NULL, NULL,				/* lockfunc, lockarg */
542 	    &sc->nfe_parent_tag);
543 	if (error)
544 		goto fail;
545 
546 	ifp = sc->nfe_ifp = if_alloc(IFT_ETHER);
547 	if (ifp == NULL) {
548 		device_printf(dev, "can not if_alloc()\n");
549 		error = ENOSPC;
550 		goto fail;
551 	}
552 
553 	/*
554 	 * Allocate Tx and Rx rings.
555 	 */
556 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
557 		goto fail;
558 
559 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
560 		goto fail;
561 
562 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
563 	/* Create sysctl node. */
564 	nfe_sysctl_node(sc);
565 
566 	ifp->if_softc = sc;
567 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
568 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
569 	ifp->if_ioctl = nfe_ioctl;
570 	ifp->if_start = nfe_start;
571 	ifp->if_hwassist = 0;
572 	ifp->if_capabilities = 0;
573 	ifp->if_init = nfe_init;
574 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_TX_RING_COUNT - 1);
575 	ifp->if_snd.ifq_drv_maxlen = NFE_TX_RING_COUNT - 1;
576 	IFQ_SET_READY(&ifp->if_snd);
577 
578 	if (sc->nfe_flags & NFE_HW_CSUM) {
579 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
580 		ifp->if_hwassist |= NFE_CSUM_FEATURES | CSUM_TSO;
581 	}
582 	ifp->if_capenable = ifp->if_capabilities;
583 
584 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
585 	/* VLAN capability setup. */
586 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
587 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
588 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
589 		if ((ifp->if_capabilities & IFCAP_HWCSUM) != 0)
590 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM |
591 			    IFCAP_VLAN_HWTSO;
592 	}
593 
594 	if (pci_find_cap(dev, PCIY_PMG, &reg) == 0)
595 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
596 	ifp->if_capenable = ifp->if_capabilities;
597 
598 	/*
599 	 * Tell the upper layer(s) we support long frames.
600 	 * Must appear after the call to ether_ifattach() because
601 	 * ether_ifattach() sets ifi_hdrlen to the default value.
602 	 */
603 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
604 
605 #ifdef DEVICE_POLLING
606 	ifp->if_capabilities |= IFCAP_POLLING;
607 #endif
608 
609 	/* Do MII setup */
610 	error = mii_attach(dev, &sc->nfe_miibus, ifp, nfe_ifmedia_upd,
611 	    nfe_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
612 	    MIIF_DOPAUSE);
613 	if (error != 0) {
614 		device_printf(dev, "attaching PHYs failed\n");
615 		goto fail;
616 	}
617 	ether_ifattach(ifp, sc->eaddr);
618 
619 	TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
620 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
621 	    taskqueue_thread_enqueue, &sc->nfe_tq);
622 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
623 	    device_get_nameunit(sc->nfe_dev));
624 	error = 0;
625 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
626 		error = bus_setup_intr(dev, sc->nfe_irq[0],
627 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
628 		    &sc->nfe_intrhand[0]);
629 	} else {
630 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
631 			error = bus_setup_intr(dev, sc->nfe_irq[i],
632 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
633 			    &sc->nfe_intrhand[i]);
634 			if (error != 0)
635 				break;
636 		}
637 	}
638 	if (error) {
639 		device_printf(dev, "couldn't set up irq\n");
640 		taskqueue_free(sc->nfe_tq);
641 		sc->nfe_tq = NULL;
642 		ether_ifdetach(ifp);
643 		goto fail;
644 	}
645 
646 fail:
647 	if (error)
648 		nfe_detach(dev);
649 
650 	return (error);
651 }
652 
653 
654 static int
655 nfe_detach(device_t dev)
656 {
657 	struct nfe_softc *sc;
658 	struct ifnet *ifp;
659 	uint8_t eaddr[ETHER_ADDR_LEN];
660 	int i, rid;
661 
662 	sc = device_get_softc(dev);
663 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
664 	ifp = sc->nfe_ifp;
665 
666 #ifdef DEVICE_POLLING
667 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
668 		ether_poll_deregister(ifp);
669 #endif
670 	if (device_is_attached(dev)) {
671 		NFE_LOCK(sc);
672 		nfe_stop(ifp);
673 		ifp->if_flags &= ~IFF_UP;
674 		NFE_UNLOCK(sc);
675 		callout_drain(&sc->nfe_stat_ch);
676 		ether_ifdetach(ifp);
677 	}
678 
679 	if (ifp) {
680 		/* restore ethernet address */
681 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
682 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
683 				eaddr[i] = sc->eaddr[5 - i];
684 			}
685 		} else
686 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
687 		nfe_set_macaddr(sc, eaddr);
688 		if_free(ifp);
689 	}
690 	if (sc->nfe_miibus)
691 		device_delete_child(dev, sc->nfe_miibus);
692 	bus_generic_detach(dev);
693 	if (sc->nfe_tq != NULL) {
694 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
695 		taskqueue_free(sc->nfe_tq);
696 		sc->nfe_tq = NULL;
697 	}
698 
699 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
700 		if (sc->nfe_intrhand[i] != NULL) {
701 			bus_teardown_intr(dev, sc->nfe_irq[i],
702 			    sc->nfe_intrhand[i]);
703 			sc->nfe_intrhand[i] = NULL;
704 		}
705 	}
706 
707 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
708 		if (sc->nfe_irq[0] != NULL)
709 			bus_release_resource(dev, SYS_RES_IRQ, 0,
710 			    sc->nfe_irq[0]);
711 	} else {
712 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
713 			if (sc->nfe_irq[i] != NULL) {
714 				bus_release_resource(dev, SYS_RES_IRQ, rid,
715 				    sc->nfe_irq[i]);
716 				sc->nfe_irq[i] = NULL;
717 			}
718 		}
719 		pci_release_msi(dev);
720 	}
721 	if (sc->nfe_msix_pba_res != NULL) {
722 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
723 		    sc->nfe_msix_pba_res);
724 		sc->nfe_msix_pba_res = NULL;
725 	}
726 	if (sc->nfe_msix_res != NULL) {
727 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
728 		    sc->nfe_msix_res);
729 		sc->nfe_msix_res = NULL;
730 	}
731 	if (sc->nfe_res[0] != NULL) {
732 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
733 		    sc->nfe_res[0]);
734 		sc->nfe_res[0] = NULL;
735 	}
736 
737 	nfe_free_tx_ring(sc, &sc->txq);
738 	nfe_free_rx_ring(sc, &sc->rxq);
739 	nfe_free_jrx_ring(sc, &sc->jrxq);
740 
741 	if (sc->nfe_parent_tag) {
742 		bus_dma_tag_destroy(sc->nfe_parent_tag);
743 		sc->nfe_parent_tag = NULL;
744 	}
745 
746 	mtx_destroy(&sc->nfe_mtx);
747 
748 	return (0);
749 }
750 
751 
752 static int
753 nfe_suspend(device_t dev)
754 {
755 	struct nfe_softc *sc;
756 
757 	sc = device_get_softc(dev);
758 
759 	NFE_LOCK(sc);
760 	nfe_stop(sc->nfe_ifp);
761 	nfe_set_wol(sc);
762 	sc->nfe_suspended = 1;
763 	NFE_UNLOCK(sc);
764 
765 	return (0);
766 }
767 
768 
769 static int
770 nfe_resume(device_t dev)
771 {
772 	struct nfe_softc *sc;
773 	struct ifnet *ifp;
774 
775 	sc = device_get_softc(dev);
776 
777 	NFE_LOCK(sc);
778 	nfe_power(sc);
779 	ifp = sc->nfe_ifp;
780 	if (ifp->if_flags & IFF_UP)
781 		nfe_init_locked(sc);
782 	sc->nfe_suspended = 0;
783 	NFE_UNLOCK(sc);
784 
785 	return (0);
786 }
787 
788 
789 static int
790 nfe_can_use_msix(struct nfe_softc *sc)
791 {
792 	static struct msix_blacklist {
793 		char	*maker;
794 		char	*product;
795 	} msix_blacklists[] = {
796 		{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
797 	};
798 
799 	struct msix_blacklist *mblp;
800 	char *maker, *product;
801 	int count, n, use_msix;
802 
803 	/*
804 	 * Search base board manufacturer and product name table
805 	 * to see this system has a known MSI/MSI-X issue.
806 	 */
807 	maker = getenv("smbios.planar.maker");
808 	product = getenv("smbios.planar.product");
809 	use_msix = 1;
810 	if (maker != NULL && product != NULL) {
811 		count = sizeof(msix_blacklists) / sizeof(msix_blacklists[0]);
812 		mblp = msix_blacklists;
813 		for (n = 0; n < count; n++) {
814 			if (strcmp(maker, mblp->maker) == 0 &&
815 			    strcmp(product, mblp->product) == 0) {
816 				use_msix = 0;
817 				break;
818 			}
819 			mblp++;
820 		}
821 	}
822 	if (maker != NULL)
823 		freeenv(maker);
824 	if (product != NULL)
825 		freeenv(product);
826 
827 	return (use_msix);
828 }
829 
830 
831 /* Take PHY/NIC out of powerdown, from Linux */
832 static void
833 nfe_power(struct nfe_softc *sc)
834 {
835 	uint32_t pwr;
836 
837 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
838 		return;
839 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
840 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
841 	DELAY(100);
842 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
843 	DELAY(100);
844 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
845 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
846 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
847 	if (sc->nfe_revid >= 0xa3 &&
848 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
849 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
850 		pwr |= NFE_PWR2_REVA3;
851 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
852 }
853 
854 
855 static void
856 nfe_miibus_statchg(device_t dev)
857 {
858 	struct nfe_softc *sc;
859 	struct mii_data *mii;
860 	struct ifnet *ifp;
861 	uint32_t rxctl, txctl;
862 
863 	sc = device_get_softc(dev);
864 
865 	mii = device_get_softc(sc->nfe_miibus);
866 	ifp = sc->nfe_ifp;
867 
868 	sc->nfe_link = 0;
869 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
870 	    (IFM_ACTIVE | IFM_AVALID)) {
871 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
872 		case IFM_10_T:
873 		case IFM_100_TX:
874 		case IFM_1000_T:
875 			sc->nfe_link = 1;
876 			break;
877 		default:
878 			break;
879 		}
880 	}
881 
882 	nfe_mac_config(sc, mii);
883 	txctl = NFE_READ(sc, NFE_TX_CTL);
884 	rxctl = NFE_READ(sc, NFE_RX_CTL);
885 	if (sc->nfe_link != 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
886 		txctl |= NFE_TX_START;
887 		rxctl |= NFE_RX_START;
888 	} else {
889 		txctl &= ~NFE_TX_START;
890 		rxctl &= ~NFE_RX_START;
891 	}
892 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
893 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
894 }
895 
896 
897 static void
898 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
899 {
900 	uint32_t link, misc, phy, seed;
901 	uint32_t val;
902 
903 	NFE_LOCK_ASSERT(sc);
904 
905 	phy = NFE_READ(sc, NFE_PHY_IFACE);
906 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
907 
908 	seed = NFE_READ(sc, NFE_RNDSEED);
909 	seed &= ~NFE_SEED_MASK;
910 
911 	misc = NFE_MISC1_MAGIC;
912 	link = NFE_MEDIA_SET;
913 
914 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
915 		phy  |= NFE_PHY_HDX;	/* half-duplex */
916 		misc |= NFE_MISC1_HDX;
917 	}
918 
919 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
920 	case IFM_1000_T:	/* full-duplex only */
921 		link |= NFE_MEDIA_1000T;
922 		seed |= NFE_SEED_1000T;
923 		phy  |= NFE_PHY_1000T;
924 		break;
925 	case IFM_100_TX:
926 		link |= NFE_MEDIA_100TX;
927 		seed |= NFE_SEED_100TX;
928 		phy  |= NFE_PHY_100TX;
929 		break;
930 	case IFM_10_T:
931 		link |= NFE_MEDIA_10T;
932 		seed |= NFE_SEED_10T;
933 		break;
934 	}
935 
936 	if ((phy & 0x10000000) != 0) {
937 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
938 			val = NFE_R1_MAGIC_1000;
939 		else
940 			val = NFE_R1_MAGIC_10_100;
941 	} else
942 		val = NFE_R1_MAGIC_DEFAULT;
943 	NFE_WRITE(sc, NFE_SETUP_R1, val);
944 
945 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
946 
947 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
948 	NFE_WRITE(sc, NFE_MISC1, misc);
949 	NFE_WRITE(sc, NFE_LINKSPEED, link);
950 
951 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
952 		/* It seems all hardwares supports Rx pause frames. */
953 		val = NFE_READ(sc, NFE_RXFILTER);
954 		if ((IFM_OPTIONS(mii->mii_media_active) &
955 		    IFM_ETH_RXPAUSE) != 0)
956 			val |= NFE_PFF_RX_PAUSE;
957 		else
958 			val &= ~NFE_PFF_RX_PAUSE;
959 		NFE_WRITE(sc, NFE_RXFILTER, val);
960 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
961 			val = NFE_READ(sc, NFE_MISC1);
962 			if ((IFM_OPTIONS(mii->mii_media_active) &
963 			    IFM_ETH_TXPAUSE) != 0) {
964 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
965 				    NFE_TX_PAUSE_FRAME_ENABLE);
966 				val |= NFE_MISC1_TX_PAUSE;
967 			} else {
968 				val &= ~NFE_MISC1_TX_PAUSE;
969 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
970 				    NFE_TX_PAUSE_FRAME_DISABLE);
971 			}
972 			NFE_WRITE(sc, NFE_MISC1, val);
973 		}
974 	} else {
975 		/* disable rx/tx pause frames */
976 		val = NFE_READ(sc, NFE_RXFILTER);
977 		val &= ~NFE_PFF_RX_PAUSE;
978 		NFE_WRITE(sc, NFE_RXFILTER, val);
979 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
980 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
981 			    NFE_TX_PAUSE_FRAME_DISABLE);
982 			val = NFE_READ(sc, NFE_MISC1);
983 			val &= ~NFE_MISC1_TX_PAUSE;
984 			NFE_WRITE(sc, NFE_MISC1, val);
985 		}
986 	}
987 }
988 
989 
990 static int
991 nfe_miibus_readreg(device_t dev, int phy, int reg)
992 {
993 	struct nfe_softc *sc = device_get_softc(dev);
994 	uint32_t val;
995 	int ntries;
996 
997 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
998 
999 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1000 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1001 		DELAY(100);
1002 	}
1003 
1004 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
1005 
1006 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1007 		DELAY(100);
1008 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1009 			break;
1010 	}
1011 	if (ntries == NFE_TIMEOUT) {
1012 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
1013 		return 0;
1014 	}
1015 
1016 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
1017 		DPRINTFN(sc, 2, "could not read PHY\n");
1018 		return 0;
1019 	}
1020 
1021 	val = NFE_READ(sc, NFE_PHY_DATA);
1022 	if (val != 0xffffffff && val != 0)
1023 		sc->mii_phyaddr = phy;
1024 
1025 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
1026 
1027 	return (val);
1028 }
1029 
1030 
1031 static int
1032 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
1033 {
1034 	struct nfe_softc *sc = device_get_softc(dev);
1035 	uint32_t ctl;
1036 	int ntries;
1037 
1038 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1039 
1040 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1041 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1042 		DELAY(100);
1043 	}
1044 
1045 	NFE_WRITE(sc, NFE_PHY_DATA, val);
1046 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
1047 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
1048 
1049 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1050 		DELAY(100);
1051 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1052 			break;
1053 	}
1054 #ifdef NFE_DEBUG
1055 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
1056 		device_printf(sc->nfe_dev, "could not write to PHY\n");
1057 #endif
1058 	return (0);
1059 }
1060 
1061 struct nfe_dmamap_arg {
1062 	bus_addr_t nfe_busaddr;
1063 };
1064 
1065 static int
1066 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1067 {
1068 	struct nfe_dmamap_arg ctx;
1069 	struct nfe_rx_data *data;
1070 	void *desc;
1071 	int i, error, descsize;
1072 
1073 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1074 		desc = ring->desc64;
1075 		descsize = sizeof (struct nfe_desc64);
1076 	} else {
1077 		desc = ring->desc32;
1078 		descsize = sizeof (struct nfe_desc32);
1079 	}
1080 
1081 	ring->cur = ring->next = 0;
1082 
1083 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1084 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1085 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1086 	    BUS_SPACE_MAXADDR,			/* highaddr */
1087 	    NULL, NULL,				/* filter, filterarg */
1088 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1089 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1090 	    0,					/* flags */
1091 	    NULL, NULL,				/* lockfunc, lockarg */
1092 	    &ring->rx_desc_tag);
1093 	if (error != 0) {
1094 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1095 		goto fail;
1096 	}
1097 
1098 	/* allocate memory to desc */
1099 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1100 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1101 	if (error != 0) {
1102 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1103 		goto fail;
1104 	}
1105 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1106 		ring->desc64 = desc;
1107 	else
1108 		ring->desc32 = desc;
1109 
1110 	/* map desc to device visible address space */
1111 	ctx.nfe_busaddr = 0;
1112 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1113 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1114 	if (error != 0) {
1115 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1116 		goto fail;
1117 	}
1118 	ring->physaddr = ctx.nfe_busaddr;
1119 
1120 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1121 	    1, 0,			/* alignment, boundary */
1122 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1123 	    BUS_SPACE_MAXADDR,		/* highaddr */
1124 	    NULL, NULL,			/* filter, filterarg */
1125 	    MCLBYTES, 1,		/* maxsize, nsegments */
1126 	    MCLBYTES,			/* maxsegsize */
1127 	    0,				/* flags */
1128 	    NULL, NULL,			/* lockfunc, lockarg */
1129 	    &ring->rx_data_tag);
1130 	if (error != 0) {
1131 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1132 		goto fail;
1133 	}
1134 
1135 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1136 	if (error != 0) {
1137 		device_printf(sc->nfe_dev,
1138 		    "could not create Rx DMA spare map\n");
1139 		goto fail;
1140 	}
1141 
1142 	/*
1143 	 * Pre-allocate Rx buffers and populate Rx ring.
1144 	 */
1145 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1146 		data = &sc->rxq.data[i];
1147 		data->rx_data_map = NULL;
1148 		data->m = NULL;
1149 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1150 		    &data->rx_data_map);
1151 		if (error != 0) {
1152 			device_printf(sc->nfe_dev,
1153 			    "could not create Rx DMA map\n");
1154 			goto fail;
1155 		}
1156 	}
1157 
1158 fail:
1159 	return (error);
1160 }
1161 
1162 
1163 static void
1164 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1165 {
1166 	struct nfe_dmamap_arg ctx;
1167 	struct nfe_rx_data *data;
1168 	void *desc;
1169 	int i, error, descsize;
1170 
1171 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1172 		return;
1173 	if (jumbo_disable != 0) {
1174 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1175 		sc->nfe_jumbo_disable = 1;
1176 		return;
1177 	}
1178 
1179 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1180 		desc = ring->jdesc64;
1181 		descsize = sizeof (struct nfe_desc64);
1182 	} else {
1183 		desc = ring->jdesc32;
1184 		descsize = sizeof (struct nfe_desc32);
1185 	}
1186 
1187 	ring->jcur = ring->jnext = 0;
1188 
1189 	/* Create DMA tag for jumbo Rx ring. */
1190 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1191 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1192 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1193 	    BUS_SPACE_MAXADDR,			/* highaddr */
1194 	    NULL, NULL,				/* filter, filterarg */
1195 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1196 	    1, 					/* nsegments */
1197 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1198 	    0,					/* flags */
1199 	    NULL, NULL,				/* lockfunc, lockarg */
1200 	    &ring->jrx_desc_tag);
1201 	if (error != 0) {
1202 		device_printf(sc->nfe_dev,
1203 		    "could not create jumbo ring DMA tag\n");
1204 		goto fail;
1205 	}
1206 
1207 	/* Create DMA tag for jumbo Rx buffers. */
1208 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1209 	    1, 0,				/* alignment, boundary */
1210 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1211 	    BUS_SPACE_MAXADDR,			/* highaddr */
1212 	    NULL, NULL,				/* filter, filterarg */
1213 	    MJUM9BYTES,				/* maxsize */
1214 	    1,					/* nsegments */
1215 	    MJUM9BYTES,				/* maxsegsize */
1216 	    0,					/* flags */
1217 	    NULL, NULL,				/* lockfunc, lockarg */
1218 	    &ring->jrx_data_tag);
1219 	if (error != 0) {
1220 		device_printf(sc->nfe_dev,
1221 		    "could not create jumbo Rx buffer DMA tag\n");
1222 		goto fail;
1223 	}
1224 
1225 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1226 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1227 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1228 	if (error != 0) {
1229 		device_printf(sc->nfe_dev,
1230 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1231 		goto fail;
1232 	}
1233 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1234 		ring->jdesc64 = desc;
1235 	else
1236 		ring->jdesc32 = desc;
1237 
1238 	ctx.nfe_busaddr = 0;
1239 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1240 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1241 	if (error != 0) {
1242 		device_printf(sc->nfe_dev,
1243 		    "could not load DMA'able memory for jumbo Rx ring\n");
1244 		goto fail;
1245 	}
1246 	ring->jphysaddr = ctx.nfe_busaddr;
1247 
1248 	/* Create DMA maps for jumbo Rx buffers. */
1249 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1250 	if (error != 0) {
1251 		device_printf(sc->nfe_dev,
1252 		    "could not create jumbo Rx DMA spare map\n");
1253 		goto fail;
1254 	}
1255 
1256 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1257 		data = &sc->jrxq.jdata[i];
1258 		data->rx_data_map = NULL;
1259 		data->m = NULL;
1260 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1261 		    &data->rx_data_map);
1262 		if (error != 0) {
1263 			device_printf(sc->nfe_dev,
1264 			    "could not create jumbo Rx DMA map\n");
1265 			goto fail;
1266 		}
1267 	}
1268 
1269 	return;
1270 
1271 fail:
1272 	/*
1273 	 * Running without jumbo frame support is ok for most cases
1274 	 * so don't fail on creating dma tag/map for jumbo frame.
1275 	 */
1276 	nfe_free_jrx_ring(sc, ring);
1277 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1278 	    "resource shortage\n");
1279 	sc->nfe_jumbo_disable = 1;
1280 }
1281 
1282 
1283 static int
1284 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1285 {
1286 	void *desc;
1287 	size_t descsize;
1288 	int i;
1289 
1290 	ring->cur = ring->next = 0;
1291 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1292 		desc = ring->desc64;
1293 		descsize = sizeof (struct nfe_desc64);
1294 	} else {
1295 		desc = ring->desc32;
1296 		descsize = sizeof (struct nfe_desc32);
1297 	}
1298 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1299 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1300 		if (nfe_newbuf(sc, i) != 0)
1301 			return (ENOBUFS);
1302 	}
1303 
1304 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1305 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1306 
1307 	return (0);
1308 }
1309 
1310 
1311 static int
1312 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1313 {
1314 	void *desc;
1315 	size_t descsize;
1316 	int i;
1317 
1318 	ring->jcur = ring->jnext = 0;
1319 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1320 		desc = ring->jdesc64;
1321 		descsize = sizeof (struct nfe_desc64);
1322 	} else {
1323 		desc = ring->jdesc32;
1324 		descsize = sizeof (struct nfe_desc32);
1325 	}
1326 	bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
1327 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1328 		if (nfe_jnewbuf(sc, i) != 0)
1329 			return (ENOBUFS);
1330 	}
1331 
1332 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1333 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1334 
1335 	return (0);
1336 }
1337 
1338 
1339 static void
1340 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1341 {
1342 	struct nfe_rx_data *data;
1343 	void *desc;
1344 	int i, descsize;
1345 
1346 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1347 		desc = ring->desc64;
1348 		descsize = sizeof (struct nfe_desc64);
1349 	} else {
1350 		desc = ring->desc32;
1351 		descsize = sizeof (struct nfe_desc32);
1352 	}
1353 
1354 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1355 		data = &ring->data[i];
1356 		if (data->rx_data_map != NULL) {
1357 			bus_dmamap_destroy(ring->rx_data_tag,
1358 			    data->rx_data_map);
1359 			data->rx_data_map = NULL;
1360 		}
1361 		if (data->m != NULL) {
1362 			m_freem(data->m);
1363 			data->m = NULL;
1364 		}
1365 	}
1366 	if (ring->rx_data_tag != NULL) {
1367 		if (ring->rx_spare_map != NULL) {
1368 			bus_dmamap_destroy(ring->rx_data_tag,
1369 			    ring->rx_spare_map);
1370 			ring->rx_spare_map = NULL;
1371 		}
1372 		bus_dma_tag_destroy(ring->rx_data_tag);
1373 		ring->rx_data_tag = NULL;
1374 	}
1375 
1376 	if (desc != NULL) {
1377 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1378 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1379 		ring->desc64 = NULL;
1380 		ring->desc32 = NULL;
1381 		ring->rx_desc_map = NULL;
1382 	}
1383 	if (ring->rx_desc_tag != NULL) {
1384 		bus_dma_tag_destroy(ring->rx_desc_tag);
1385 		ring->rx_desc_tag = NULL;
1386 	}
1387 }
1388 
1389 
1390 static void
1391 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1392 {
1393 	struct nfe_rx_data *data;
1394 	void *desc;
1395 	int i, descsize;
1396 
1397 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1398 		return;
1399 
1400 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1401 		desc = ring->jdesc64;
1402 		descsize = sizeof (struct nfe_desc64);
1403 	} else {
1404 		desc = ring->jdesc32;
1405 		descsize = sizeof (struct nfe_desc32);
1406 	}
1407 
1408 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1409 		data = &ring->jdata[i];
1410 		if (data->rx_data_map != NULL) {
1411 			bus_dmamap_destroy(ring->jrx_data_tag,
1412 			    data->rx_data_map);
1413 			data->rx_data_map = NULL;
1414 		}
1415 		if (data->m != NULL) {
1416 			m_freem(data->m);
1417 			data->m = NULL;
1418 		}
1419 	}
1420 	if (ring->jrx_data_tag != NULL) {
1421 		if (ring->jrx_spare_map != NULL) {
1422 			bus_dmamap_destroy(ring->jrx_data_tag,
1423 			    ring->jrx_spare_map);
1424 			ring->jrx_spare_map = NULL;
1425 		}
1426 		bus_dma_tag_destroy(ring->jrx_data_tag);
1427 		ring->jrx_data_tag = NULL;
1428 	}
1429 
1430 	if (desc != NULL) {
1431 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1432 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1433 		ring->jdesc64 = NULL;
1434 		ring->jdesc32 = NULL;
1435 		ring->jrx_desc_map = NULL;
1436 	}
1437 
1438 	if (ring->jrx_desc_tag != NULL) {
1439 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1440 		ring->jrx_desc_tag = NULL;
1441 	}
1442 }
1443 
1444 
1445 static int
1446 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1447 {
1448 	struct nfe_dmamap_arg ctx;
1449 	int i, error;
1450 	void *desc;
1451 	int descsize;
1452 
1453 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1454 		desc = ring->desc64;
1455 		descsize = sizeof (struct nfe_desc64);
1456 	} else {
1457 		desc = ring->desc32;
1458 		descsize = sizeof (struct nfe_desc32);
1459 	}
1460 
1461 	ring->queued = 0;
1462 	ring->cur = ring->next = 0;
1463 
1464 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1465 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1466 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1467 	    BUS_SPACE_MAXADDR,			/* highaddr */
1468 	    NULL, NULL,				/* filter, filterarg */
1469 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1470 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1471 	    0,					/* flags */
1472 	    NULL, NULL,				/* lockfunc, lockarg */
1473 	    &ring->tx_desc_tag);
1474 	if (error != 0) {
1475 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1476 		goto fail;
1477 	}
1478 
1479 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1480 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1481 	if (error != 0) {
1482 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1483 		goto fail;
1484 	}
1485 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1486 		ring->desc64 = desc;
1487 	else
1488 		ring->desc32 = desc;
1489 
1490 	ctx.nfe_busaddr = 0;
1491 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1492 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1493 	if (error != 0) {
1494 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1495 		goto fail;
1496 	}
1497 	ring->physaddr = ctx.nfe_busaddr;
1498 
1499 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1500 	    1, 0,
1501 	    BUS_SPACE_MAXADDR,
1502 	    BUS_SPACE_MAXADDR,
1503 	    NULL, NULL,
1504 	    NFE_TSO_MAXSIZE,
1505 	    NFE_MAX_SCATTER,
1506 	    NFE_TSO_MAXSGSIZE,
1507 	    0,
1508 	    NULL, NULL,
1509 	    &ring->tx_data_tag);
1510 	if (error != 0) {
1511 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1512 		goto fail;
1513 	}
1514 
1515 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1516 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1517 		    &ring->data[i].tx_data_map);
1518 		if (error != 0) {
1519 			device_printf(sc->nfe_dev,
1520 			    "could not create Tx DMA map\n");
1521 			goto fail;
1522 		}
1523 	}
1524 
1525 fail:
1526 	return (error);
1527 }
1528 
1529 
1530 static void
1531 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1532 {
1533 	void *desc;
1534 	size_t descsize;
1535 
1536 	sc->nfe_force_tx = 0;
1537 	ring->queued = 0;
1538 	ring->cur = ring->next = 0;
1539 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1540 		desc = ring->desc64;
1541 		descsize = sizeof (struct nfe_desc64);
1542 	} else {
1543 		desc = ring->desc32;
1544 		descsize = sizeof (struct nfe_desc32);
1545 	}
1546 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1547 
1548 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1549 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1550 }
1551 
1552 
1553 static void
1554 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1555 {
1556 	struct nfe_tx_data *data;
1557 	void *desc;
1558 	int i, descsize;
1559 
1560 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1561 		desc = ring->desc64;
1562 		descsize = sizeof (struct nfe_desc64);
1563 	} else {
1564 		desc = ring->desc32;
1565 		descsize = sizeof (struct nfe_desc32);
1566 	}
1567 
1568 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1569 		data = &ring->data[i];
1570 
1571 		if (data->m != NULL) {
1572 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1573 			    BUS_DMASYNC_POSTWRITE);
1574 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1575 			m_freem(data->m);
1576 			data->m = NULL;
1577 		}
1578 		if (data->tx_data_map != NULL) {
1579 			bus_dmamap_destroy(ring->tx_data_tag,
1580 			    data->tx_data_map);
1581 			data->tx_data_map = NULL;
1582 		}
1583 	}
1584 
1585 	if (ring->tx_data_tag != NULL) {
1586 		bus_dma_tag_destroy(ring->tx_data_tag);
1587 		ring->tx_data_tag = NULL;
1588 	}
1589 
1590 	if (desc != NULL) {
1591 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1592 		    BUS_DMASYNC_POSTWRITE);
1593 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1594 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1595 		ring->desc64 = NULL;
1596 		ring->desc32 = NULL;
1597 		ring->tx_desc_map = NULL;
1598 		bus_dma_tag_destroy(ring->tx_desc_tag);
1599 		ring->tx_desc_tag = NULL;
1600 	}
1601 }
1602 
1603 #ifdef DEVICE_POLLING
1604 static poll_handler_t nfe_poll;
1605 
1606 
1607 static int
1608 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1609 {
1610 	struct nfe_softc *sc = ifp->if_softc;
1611 	uint32_t r;
1612 	int rx_npkts = 0;
1613 
1614 	NFE_LOCK(sc);
1615 
1616 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1617 		NFE_UNLOCK(sc);
1618 		return (rx_npkts);
1619 	}
1620 
1621 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1622 		rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
1623 	else
1624 		rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
1625 	nfe_txeof(sc);
1626 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1627 		nfe_start_locked(ifp);
1628 
1629 	if (cmd == POLL_AND_CHECK_STATUS) {
1630 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1631 			NFE_UNLOCK(sc);
1632 			return (rx_npkts);
1633 		}
1634 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1635 
1636 		if (r & NFE_IRQ_LINK) {
1637 			NFE_READ(sc, NFE_PHY_STATUS);
1638 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1639 			DPRINTF(sc, "link state changed\n");
1640 		}
1641 	}
1642 	NFE_UNLOCK(sc);
1643 	return (rx_npkts);
1644 }
1645 #endif /* DEVICE_POLLING */
1646 
1647 static void
1648 nfe_set_intr(struct nfe_softc *sc)
1649 {
1650 
1651 	if (sc->nfe_msi != 0)
1652 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1653 }
1654 
1655 
1656 /* In MSIX, a write to mask reegisters behaves as XOR. */
1657 static __inline void
1658 nfe_enable_intr(struct nfe_softc *sc)
1659 {
1660 
1661 	if (sc->nfe_msix != 0) {
1662 		/* XXX Should have a better way to enable interrupts! */
1663 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1664 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1665 	} else
1666 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1667 }
1668 
1669 
1670 static __inline void
1671 nfe_disable_intr(struct nfe_softc *sc)
1672 {
1673 
1674 	if (sc->nfe_msix != 0) {
1675 		/* XXX Should have a better way to disable interrupts! */
1676 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1677 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1678 	} else
1679 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1680 }
1681 
1682 
1683 static int
1684 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1685 {
1686 	struct nfe_softc *sc;
1687 	struct ifreq *ifr;
1688 	struct mii_data *mii;
1689 	int error, init, mask;
1690 
1691 	sc = ifp->if_softc;
1692 	ifr = (struct ifreq *) data;
1693 	error = 0;
1694 	init = 0;
1695 	switch (cmd) {
1696 	case SIOCSIFMTU:
1697 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1698 			error = EINVAL;
1699 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1700 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1701 			    (sc->nfe_jumbo_disable != 0)) &&
1702 			    ifr->ifr_mtu > ETHERMTU)
1703 				error = EINVAL;
1704 			else {
1705 				NFE_LOCK(sc);
1706 				ifp->if_mtu = ifr->ifr_mtu;
1707 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1708 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1709 					nfe_init_locked(sc);
1710 				}
1711 				NFE_UNLOCK(sc);
1712 			}
1713 		}
1714 		break;
1715 	case SIOCSIFFLAGS:
1716 		NFE_LOCK(sc);
1717 		if (ifp->if_flags & IFF_UP) {
1718 			/*
1719 			 * If only the PROMISC or ALLMULTI flag changes, then
1720 			 * don't do a full re-init of the chip, just update
1721 			 * the Rx filter.
1722 			 */
1723 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1724 			    ((ifp->if_flags ^ sc->nfe_if_flags) &
1725 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1726 				nfe_setmulti(sc);
1727 			else
1728 				nfe_init_locked(sc);
1729 		} else {
1730 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1731 				nfe_stop(ifp);
1732 		}
1733 		sc->nfe_if_flags = ifp->if_flags;
1734 		NFE_UNLOCK(sc);
1735 		error = 0;
1736 		break;
1737 	case SIOCADDMULTI:
1738 	case SIOCDELMULTI:
1739 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1740 			NFE_LOCK(sc);
1741 			nfe_setmulti(sc);
1742 			NFE_UNLOCK(sc);
1743 			error = 0;
1744 		}
1745 		break;
1746 	case SIOCSIFMEDIA:
1747 	case SIOCGIFMEDIA:
1748 		mii = device_get_softc(sc->nfe_miibus);
1749 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1750 		break;
1751 	case SIOCSIFCAP:
1752 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1753 #ifdef DEVICE_POLLING
1754 		if ((mask & IFCAP_POLLING) != 0) {
1755 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1756 				error = ether_poll_register(nfe_poll, ifp);
1757 				if (error)
1758 					break;
1759 				NFE_LOCK(sc);
1760 				nfe_disable_intr(sc);
1761 				ifp->if_capenable |= IFCAP_POLLING;
1762 				NFE_UNLOCK(sc);
1763 			} else {
1764 				error = ether_poll_deregister(ifp);
1765 				/* Enable interrupt even in error case */
1766 				NFE_LOCK(sc);
1767 				nfe_enable_intr(sc);
1768 				ifp->if_capenable &= ~IFCAP_POLLING;
1769 				NFE_UNLOCK(sc);
1770 			}
1771 		}
1772 #endif /* DEVICE_POLLING */
1773 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1774 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1775 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1776 		if ((mask & IFCAP_TXCSUM) != 0 &&
1777 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1778 			ifp->if_capenable ^= IFCAP_TXCSUM;
1779 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1780 				ifp->if_hwassist |= NFE_CSUM_FEATURES;
1781 			else
1782 				ifp->if_hwassist &= ~NFE_CSUM_FEATURES;
1783 		}
1784 		if ((mask & IFCAP_RXCSUM) != 0 &&
1785 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1786 			ifp->if_capenable ^= IFCAP_RXCSUM;
1787 			init++;
1788 		}
1789 		if ((mask & IFCAP_TSO4) != 0 &&
1790 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1791 			ifp->if_capenable ^= IFCAP_TSO4;
1792 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1793 				ifp->if_hwassist |= CSUM_TSO;
1794 			else
1795 				ifp->if_hwassist &= ~CSUM_TSO;
1796 		}
1797 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1798 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1799 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1800 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1801 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1802 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1803 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1804 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1805 			init++;
1806 		}
1807 		/*
1808 		 * XXX
1809 		 * It seems that VLAN stripping requires Rx checksum offload.
1810 		 * Unfortunately FreeBSD has no way to disable only Rx side
1811 		 * VLAN stripping. So when we know Rx checksum offload is
1812 		 * disabled turn entire hardware VLAN assist off.
1813 		 */
1814 		if ((ifp->if_capenable & IFCAP_RXCSUM) == 0) {
1815 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
1816 				init++;
1817 			ifp->if_capenable &= ~(IFCAP_VLAN_HWTAGGING |
1818 			    IFCAP_VLAN_HWTSO);
1819 		}
1820 		if (init > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1821 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1822 			nfe_init(sc);
1823 		}
1824 		VLAN_CAPABILITIES(ifp);
1825 		break;
1826 	default:
1827 		error = ether_ioctl(ifp, cmd, data);
1828 		break;
1829 	}
1830 
1831 	return (error);
1832 }
1833 
1834 
1835 static int
1836 nfe_intr(void *arg)
1837 {
1838 	struct nfe_softc *sc;
1839 	uint32_t status;
1840 
1841 	sc = (struct nfe_softc *)arg;
1842 
1843 	status = NFE_READ(sc, sc->nfe_irq_status);
1844 	if (status == 0 || status == 0xffffffff)
1845 		return (FILTER_STRAY);
1846 	nfe_disable_intr(sc);
1847 	taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1848 
1849 	return (FILTER_HANDLED);
1850 }
1851 
1852 
1853 static void
1854 nfe_int_task(void *arg, int pending)
1855 {
1856 	struct nfe_softc *sc = arg;
1857 	struct ifnet *ifp = sc->nfe_ifp;
1858 	uint32_t r;
1859 	int domore;
1860 
1861 	NFE_LOCK(sc);
1862 
1863 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1864 		nfe_enable_intr(sc);
1865 		NFE_UNLOCK(sc);
1866 		return;	/* not for us */
1867 	}
1868 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1869 
1870 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1871 
1872 #ifdef DEVICE_POLLING
1873 	if (ifp->if_capenable & IFCAP_POLLING) {
1874 		NFE_UNLOCK(sc);
1875 		return;
1876 	}
1877 #endif
1878 
1879 	if (r & NFE_IRQ_LINK) {
1880 		NFE_READ(sc, NFE_PHY_STATUS);
1881 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1882 		DPRINTF(sc, "link state changed\n");
1883 	}
1884 
1885 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1886 		NFE_UNLOCK(sc);
1887 		nfe_disable_intr(sc);
1888 		return;
1889 	}
1890 
1891 	domore = 0;
1892 	/* check Rx ring */
1893 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1894 		domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
1895 	else
1896 		domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
1897 	/* check Tx ring */
1898 	nfe_txeof(sc);
1899 
1900 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1901 		nfe_start_locked(ifp);
1902 
1903 	NFE_UNLOCK(sc);
1904 
1905 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1906 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1907 		return;
1908 	}
1909 
1910 	/* Reenable interrupts. */
1911 	nfe_enable_intr(sc);
1912 }
1913 
1914 
1915 static __inline void
1916 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1917 {
1918 	struct nfe_desc32 *desc32;
1919 	struct nfe_desc64 *desc64;
1920 	struct nfe_rx_data *data;
1921 	struct mbuf *m;
1922 
1923 	data = &sc->rxq.data[idx];
1924 	m = data->m;
1925 
1926 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1927 		desc64 = &sc->rxq.desc64[idx];
1928 		/* VLAN packet may have overwritten it. */
1929 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1930 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1931 		desc64->length = htole16(m->m_len);
1932 		desc64->flags = htole16(NFE_RX_READY);
1933 	} else {
1934 		desc32 = &sc->rxq.desc32[idx];
1935 		desc32->length = htole16(m->m_len);
1936 		desc32->flags = htole16(NFE_RX_READY);
1937 	}
1938 }
1939 
1940 
1941 static __inline void
1942 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1943 {
1944 	struct nfe_desc32 *desc32;
1945 	struct nfe_desc64 *desc64;
1946 	struct nfe_rx_data *data;
1947 	struct mbuf *m;
1948 
1949 	data = &sc->jrxq.jdata[idx];
1950 	m = data->m;
1951 
1952 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1953 		desc64 = &sc->jrxq.jdesc64[idx];
1954 		/* VLAN packet may have overwritten it. */
1955 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1956 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1957 		desc64->length = htole16(m->m_len);
1958 		desc64->flags = htole16(NFE_RX_READY);
1959 	} else {
1960 		desc32 = &sc->jrxq.jdesc32[idx];
1961 		desc32->length = htole16(m->m_len);
1962 		desc32->flags = htole16(NFE_RX_READY);
1963 	}
1964 }
1965 
1966 
1967 static int
1968 nfe_newbuf(struct nfe_softc *sc, int idx)
1969 {
1970 	struct nfe_rx_data *data;
1971 	struct nfe_desc32 *desc32;
1972 	struct nfe_desc64 *desc64;
1973 	struct mbuf *m;
1974 	bus_dma_segment_t segs[1];
1975 	bus_dmamap_t map;
1976 	int nsegs;
1977 
1978 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1979 	if (m == NULL)
1980 		return (ENOBUFS);
1981 
1982 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1983 	m_adj(m, ETHER_ALIGN);
1984 
1985 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
1986 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
1987 		m_freem(m);
1988 		return (ENOBUFS);
1989 	}
1990 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1991 
1992 	data = &sc->rxq.data[idx];
1993 	if (data->m != NULL) {
1994 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
1995 		    BUS_DMASYNC_POSTREAD);
1996 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
1997 	}
1998 	map = data->rx_data_map;
1999 	data->rx_data_map = sc->rxq.rx_spare_map;
2000 	sc->rxq.rx_spare_map = map;
2001 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2002 	    BUS_DMASYNC_PREREAD);
2003 	data->paddr = segs[0].ds_addr;
2004 	data->m = m;
2005 	/* update mapping address in h/w descriptor */
2006 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2007 		desc64 = &sc->rxq.desc64[idx];
2008 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2009 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2010 		desc64->length = htole16(segs[0].ds_len);
2011 		desc64->flags = htole16(NFE_RX_READY);
2012 	} else {
2013 		desc32 = &sc->rxq.desc32[idx];
2014 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2015 		desc32->length = htole16(segs[0].ds_len);
2016 		desc32->flags = htole16(NFE_RX_READY);
2017 	}
2018 
2019 	return (0);
2020 }
2021 
2022 
2023 static int
2024 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2025 {
2026 	struct nfe_rx_data *data;
2027 	struct nfe_desc32 *desc32;
2028 	struct nfe_desc64 *desc64;
2029 	struct mbuf *m;
2030 	bus_dma_segment_t segs[1];
2031 	bus_dmamap_t map;
2032 	int nsegs;
2033 
2034 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2035 	if (m == NULL)
2036 		return (ENOBUFS);
2037 	if ((m->m_flags & M_EXT) == 0) {
2038 		m_freem(m);
2039 		return (ENOBUFS);
2040 	}
2041 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
2042 	m_adj(m, ETHER_ALIGN);
2043 
2044 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2045 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2046 		m_freem(m);
2047 		return (ENOBUFS);
2048 	}
2049 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2050 
2051 	data = &sc->jrxq.jdata[idx];
2052 	if (data->m != NULL) {
2053 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2054 		    BUS_DMASYNC_POSTREAD);
2055 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2056 	}
2057 	map = data->rx_data_map;
2058 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2059 	sc->jrxq.jrx_spare_map = map;
2060 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2061 	    BUS_DMASYNC_PREREAD);
2062 	data->paddr = segs[0].ds_addr;
2063 	data->m = m;
2064 	/* update mapping address in h/w descriptor */
2065 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2066 		desc64 = &sc->jrxq.jdesc64[idx];
2067 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2068 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2069 		desc64->length = htole16(segs[0].ds_len);
2070 		desc64->flags = htole16(NFE_RX_READY);
2071 	} else {
2072 		desc32 = &sc->jrxq.jdesc32[idx];
2073 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2074 		desc32->length = htole16(segs[0].ds_len);
2075 		desc32->flags = htole16(NFE_RX_READY);
2076 	}
2077 
2078 	return (0);
2079 }
2080 
2081 
2082 static int
2083 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2084 {
2085 	struct ifnet *ifp = sc->nfe_ifp;
2086 	struct nfe_desc32 *desc32;
2087 	struct nfe_desc64 *desc64;
2088 	struct nfe_rx_data *data;
2089 	struct mbuf *m;
2090 	uint16_t flags;
2091 	int len, prog, rx_npkts;
2092 	uint32_t vtag = 0;
2093 
2094 	rx_npkts = 0;
2095 	NFE_LOCK_ASSERT(sc);
2096 
2097 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2098 	    BUS_DMASYNC_POSTREAD);
2099 
2100 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2101 		if (count <= 0)
2102 			break;
2103 		count--;
2104 
2105 		data = &sc->rxq.data[sc->rxq.cur];
2106 
2107 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2108 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2109 			vtag = le32toh(desc64->physaddr[1]);
2110 			flags = le16toh(desc64->flags);
2111 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2112 		} else {
2113 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2114 			flags = le16toh(desc32->flags);
2115 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2116 		}
2117 
2118 		if (flags & NFE_RX_READY)
2119 			break;
2120 		prog++;
2121 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2122 			if (!(flags & NFE_RX_VALID_V1)) {
2123 				ifp->if_ierrors++;
2124 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2125 				continue;
2126 			}
2127 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2128 				flags &= ~NFE_RX_ERROR;
2129 				len--;	/* fix buffer length */
2130 			}
2131 		} else {
2132 			if (!(flags & NFE_RX_VALID_V2)) {
2133 				ifp->if_ierrors++;
2134 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2135 				continue;
2136 			}
2137 
2138 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2139 				flags &= ~NFE_RX_ERROR;
2140 				len--;	/* fix buffer length */
2141 			}
2142 		}
2143 
2144 		if (flags & NFE_RX_ERROR) {
2145 			ifp->if_ierrors++;
2146 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2147 			continue;
2148 		}
2149 
2150 		m = data->m;
2151 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2152 			ifp->if_iqdrops++;
2153 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2154 			continue;
2155 		}
2156 
2157 		if ((vtag & NFE_RX_VTAG) != 0 &&
2158 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2159 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2160 			m->m_flags |= M_VLANTAG;
2161 		}
2162 
2163 		m->m_pkthdr.len = m->m_len = len;
2164 		m->m_pkthdr.rcvif = ifp;
2165 
2166 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2167 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2168 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2169 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2170 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2171 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2172 					m->m_pkthdr.csum_flags |=
2173 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2174 					m->m_pkthdr.csum_data = 0xffff;
2175 				}
2176 			}
2177 		}
2178 
2179 		ifp->if_ipackets++;
2180 
2181 		NFE_UNLOCK(sc);
2182 		(*ifp->if_input)(ifp, m);
2183 		NFE_LOCK(sc);
2184 		rx_npkts++;
2185 	}
2186 
2187 	if (prog > 0)
2188 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2189 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2190 
2191 	if (rx_npktsp != NULL)
2192 		*rx_npktsp = rx_npkts;
2193 	return (count > 0 ? 0 : EAGAIN);
2194 }
2195 
2196 
2197 static int
2198 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2199 {
2200 	struct ifnet *ifp = sc->nfe_ifp;
2201 	struct nfe_desc32 *desc32;
2202 	struct nfe_desc64 *desc64;
2203 	struct nfe_rx_data *data;
2204 	struct mbuf *m;
2205 	uint16_t flags;
2206 	int len, prog, rx_npkts;
2207 	uint32_t vtag = 0;
2208 
2209 	rx_npkts = 0;
2210 	NFE_LOCK_ASSERT(sc);
2211 
2212 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2213 	    BUS_DMASYNC_POSTREAD);
2214 
2215 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2216 	    vtag = 0) {
2217 		if (count <= 0)
2218 			break;
2219 		count--;
2220 
2221 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2222 
2223 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2224 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2225 			vtag = le32toh(desc64->physaddr[1]);
2226 			flags = le16toh(desc64->flags);
2227 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2228 		} else {
2229 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2230 			flags = le16toh(desc32->flags);
2231 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2232 		}
2233 
2234 		if (flags & NFE_RX_READY)
2235 			break;
2236 		prog++;
2237 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2238 			if (!(flags & NFE_RX_VALID_V1)) {
2239 				ifp->if_ierrors++;
2240 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2241 				continue;
2242 			}
2243 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2244 				flags &= ~NFE_RX_ERROR;
2245 				len--;	/* fix buffer length */
2246 			}
2247 		} else {
2248 			if (!(flags & NFE_RX_VALID_V2)) {
2249 				ifp->if_ierrors++;
2250 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2251 				continue;
2252 			}
2253 
2254 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2255 				flags &= ~NFE_RX_ERROR;
2256 				len--;	/* fix buffer length */
2257 			}
2258 		}
2259 
2260 		if (flags & NFE_RX_ERROR) {
2261 			ifp->if_ierrors++;
2262 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2263 			continue;
2264 		}
2265 
2266 		m = data->m;
2267 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2268 			ifp->if_iqdrops++;
2269 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2270 			continue;
2271 		}
2272 
2273 		if ((vtag & NFE_RX_VTAG) != 0 &&
2274 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2275 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2276 			m->m_flags |= M_VLANTAG;
2277 		}
2278 
2279 		m->m_pkthdr.len = m->m_len = len;
2280 		m->m_pkthdr.rcvif = ifp;
2281 
2282 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2283 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2284 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2285 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2286 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2287 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2288 					m->m_pkthdr.csum_flags |=
2289 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2290 					m->m_pkthdr.csum_data = 0xffff;
2291 				}
2292 			}
2293 		}
2294 
2295 		ifp->if_ipackets++;
2296 
2297 		NFE_UNLOCK(sc);
2298 		(*ifp->if_input)(ifp, m);
2299 		NFE_LOCK(sc);
2300 		rx_npkts++;
2301 	}
2302 
2303 	if (prog > 0)
2304 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2305 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2306 
2307 	if (rx_npktsp != NULL)
2308 		*rx_npktsp = rx_npkts;
2309 	return (count > 0 ? 0 : EAGAIN);
2310 }
2311 
2312 
2313 static void
2314 nfe_txeof(struct nfe_softc *sc)
2315 {
2316 	struct ifnet *ifp = sc->nfe_ifp;
2317 	struct nfe_desc32 *desc32;
2318 	struct nfe_desc64 *desc64;
2319 	struct nfe_tx_data *data = NULL;
2320 	uint16_t flags;
2321 	int cons, prog;
2322 
2323 	NFE_LOCK_ASSERT(sc);
2324 
2325 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2326 	    BUS_DMASYNC_POSTREAD);
2327 
2328 	prog = 0;
2329 	for (cons = sc->txq.next; cons != sc->txq.cur;
2330 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2331 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2332 			desc64 = &sc->txq.desc64[cons];
2333 			flags = le16toh(desc64->flags);
2334 		} else {
2335 			desc32 = &sc->txq.desc32[cons];
2336 			flags = le16toh(desc32->flags);
2337 		}
2338 
2339 		if (flags & NFE_TX_VALID)
2340 			break;
2341 
2342 		prog++;
2343 		sc->txq.queued--;
2344 		data = &sc->txq.data[cons];
2345 
2346 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2347 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2348 				continue;
2349 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2350 				device_printf(sc->nfe_dev,
2351 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2352 
2353 				ifp->if_oerrors++;
2354 			} else
2355 				ifp->if_opackets++;
2356 		} else {
2357 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2358 				continue;
2359 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2360 				device_printf(sc->nfe_dev,
2361 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2362 				ifp->if_oerrors++;
2363 			} else
2364 				ifp->if_opackets++;
2365 		}
2366 
2367 		/* last fragment of the mbuf chain transmitted */
2368 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2369 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2370 		    BUS_DMASYNC_POSTWRITE);
2371 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2372 		m_freem(data->m);
2373 		data->m = NULL;
2374 	}
2375 
2376 	if (prog > 0) {
2377 		sc->nfe_force_tx = 0;
2378 		sc->txq.next = cons;
2379 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2380 		if (sc->txq.queued == 0)
2381 			sc->nfe_watchdog_timer = 0;
2382 	}
2383 }
2384 
2385 static int
2386 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2387 {
2388 	struct nfe_desc32 *desc32 = NULL;
2389 	struct nfe_desc64 *desc64 = NULL;
2390 	bus_dmamap_t map;
2391 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2392 	int error, i, nsegs, prod, si;
2393 	uint32_t tsosegsz;
2394 	uint16_t cflags, flags;
2395 	struct mbuf *m;
2396 
2397 	prod = si = sc->txq.cur;
2398 	map = sc->txq.data[prod].tx_data_map;
2399 
2400 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2401 	    &nsegs, BUS_DMA_NOWAIT);
2402 	if (error == EFBIG) {
2403 		m = m_collapse(*m_head, M_NOWAIT, NFE_MAX_SCATTER);
2404 		if (m == NULL) {
2405 			m_freem(*m_head);
2406 			*m_head = NULL;
2407 			return (ENOBUFS);
2408 		}
2409 		*m_head = m;
2410 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2411 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2412 		if (error != 0) {
2413 			m_freem(*m_head);
2414 			*m_head = NULL;
2415 			return (ENOBUFS);
2416 		}
2417 	} else if (error != 0)
2418 		return (error);
2419 	if (nsegs == 0) {
2420 		m_freem(*m_head);
2421 		*m_head = NULL;
2422 		return (EIO);
2423 	}
2424 
2425 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2426 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2427 		return (ENOBUFS);
2428 	}
2429 
2430 	m = *m_head;
2431 	cflags = flags = 0;
2432 	tsosegsz = 0;
2433 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2434 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2435 		    NFE_TX_TSO_SHIFT;
2436 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2437 		cflags |= NFE_TX_TSO;
2438 	} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2439 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2440 			cflags |= NFE_TX_IP_CSUM;
2441 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2442 			cflags |= NFE_TX_TCP_UDP_CSUM;
2443 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2444 			cflags |= NFE_TX_TCP_UDP_CSUM;
2445 	}
2446 
2447 	for (i = 0; i < nsegs; i++) {
2448 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2449 			desc64 = &sc->txq.desc64[prod];
2450 			desc64->physaddr[0] =
2451 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2452 			desc64->physaddr[1] =
2453 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2454 			desc64->vtag = 0;
2455 			desc64->length = htole16(segs[i].ds_len - 1);
2456 			desc64->flags = htole16(flags);
2457 		} else {
2458 			desc32 = &sc->txq.desc32[prod];
2459 			desc32->physaddr =
2460 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2461 			desc32->length = htole16(segs[i].ds_len - 1);
2462 			desc32->flags = htole16(flags);
2463 		}
2464 
2465 		/*
2466 		 * Setting of the valid bit in the first descriptor is
2467 		 * deferred until the whole chain is fully setup.
2468 		 */
2469 		flags |= NFE_TX_VALID;
2470 
2471 		sc->txq.queued++;
2472 		NFE_INC(prod, NFE_TX_RING_COUNT);
2473 	}
2474 
2475 	/*
2476 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2477 	 * csum flags, vtag and TSO belong to the first fragment only.
2478 	 */
2479 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2480 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2481 		desc64 = &sc->txq.desc64[si];
2482 		if ((m->m_flags & M_VLANTAG) != 0)
2483 			desc64->vtag = htole32(NFE_TX_VTAG |
2484 			    m->m_pkthdr.ether_vtag);
2485 		if (tsosegsz != 0) {
2486 			/*
2487 			 * XXX
2488 			 * The following indicates the descriptor element
2489 			 * is a 32bit quantity.
2490 			 */
2491 			desc64->length |= htole16((uint16_t)tsosegsz);
2492 			desc64->flags |= htole16(tsosegsz >> 16);
2493 		}
2494 		/*
2495 		 * finally, set the valid/checksum/TSO bit in the first
2496 		 * descriptor.
2497 		 */
2498 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2499 	} else {
2500 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2501 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2502 		else
2503 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2504 		desc32 = &sc->txq.desc32[si];
2505 		if (tsosegsz != 0) {
2506 			/*
2507 			 * XXX
2508 			 * The following indicates the descriptor element
2509 			 * is a 32bit quantity.
2510 			 */
2511 			desc32->length |= htole16((uint16_t)tsosegsz);
2512 			desc32->flags |= htole16(tsosegsz >> 16);
2513 		}
2514 		/*
2515 		 * finally, set the valid/checksum/TSO bit in the first
2516 		 * descriptor.
2517 		 */
2518 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2519 	}
2520 
2521 	sc->txq.cur = prod;
2522 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2523 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2524 	sc->txq.data[prod].tx_data_map = map;
2525 	sc->txq.data[prod].m = m;
2526 
2527 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2528 
2529 	return (0);
2530 }
2531 
2532 
2533 static void
2534 nfe_setmulti(struct nfe_softc *sc)
2535 {
2536 	struct ifnet *ifp = sc->nfe_ifp;
2537 	struct ifmultiaddr *ifma;
2538 	int i;
2539 	uint32_t filter;
2540 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2541 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2542 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2543 	};
2544 
2545 	NFE_LOCK_ASSERT(sc);
2546 
2547 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2548 		bzero(addr, ETHER_ADDR_LEN);
2549 		bzero(mask, ETHER_ADDR_LEN);
2550 		goto done;
2551 	}
2552 
2553 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2554 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2555 
2556 	if_maddr_rlock(ifp);
2557 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2558 		u_char *addrp;
2559 
2560 		if (ifma->ifma_addr->sa_family != AF_LINK)
2561 			continue;
2562 
2563 		addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2564 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
2565 			u_int8_t mcaddr = addrp[i];
2566 			addr[i] &= mcaddr;
2567 			mask[i] &= ~mcaddr;
2568 		}
2569 	}
2570 	if_maddr_runlock(ifp);
2571 
2572 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2573 		mask[i] |= addr[i];
2574 	}
2575 
2576 done:
2577 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2578 
2579 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2580 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2581 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2582 	    addr[5] <<  8 | addr[4]);
2583 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2584 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2585 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2586 	    mask[5] <<  8 | mask[4]);
2587 
2588 	filter = NFE_READ(sc, NFE_RXFILTER);
2589 	filter &= NFE_PFF_RX_PAUSE;
2590 	filter |= NFE_RXFILTER_MAGIC;
2591 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2592 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2593 }
2594 
2595 
2596 static void
2597 nfe_start(struct ifnet *ifp)
2598 {
2599 	struct nfe_softc *sc = ifp->if_softc;
2600 
2601 	NFE_LOCK(sc);
2602 	nfe_start_locked(ifp);
2603 	NFE_UNLOCK(sc);
2604 }
2605 
2606 static void
2607 nfe_start_locked(struct ifnet *ifp)
2608 {
2609 	struct nfe_softc *sc = ifp->if_softc;
2610 	struct mbuf *m0;
2611 	int enq;
2612 
2613 	NFE_LOCK_ASSERT(sc);
2614 
2615 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2616 	    IFF_DRV_RUNNING || sc->nfe_link == 0)
2617 		return;
2618 
2619 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2620 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2621 		if (m0 == NULL)
2622 			break;
2623 
2624 		if (nfe_encap(sc, &m0) != 0) {
2625 			if (m0 == NULL)
2626 				break;
2627 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2628 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2629 			break;
2630 		}
2631 		enq++;
2632 		ETHER_BPF_MTAP(ifp, m0);
2633 	}
2634 
2635 	if (enq > 0) {
2636 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2637 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2638 
2639 		/* kick Tx */
2640 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2641 
2642 		/*
2643 		 * Set a timeout in case the chip goes out to lunch.
2644 		 */
2645 		sc->nfe_watchdog_timer = 5;
2646 	}
2647 }
2648 
2649 
2650 static void
2651 nfe_watchdog(struct ifnet *ifp)
2652 {
2653 	struct nfe_softc *sc = ifp->if_softc;
2654 
2655 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2656 		return;
2657 
2658 	/* Check if we've lost Tx completion interrupt. */
2659 	nfe_txeof(sc);
2660 	if (sc->txq.queued == 0) {
2661 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2662 		    "-- recovering\n");
2663 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2664 			nfe_start_locked(ifp);
2665 		return;
2666 	}
2667 	/* Check if we've lost start Tx command. */
2668 	sc->nfe_force_tx++;
2669 	if (sc->nfe_force_tx <= 3) {
2670 		/*
2671 		 * If this is the case for watchdog timeout, the following
2672 		 * code should go to nfe_txeof().
2673 		 */
2674 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2675 		return;
2676 	}
2677 	sc->nfe_force_tx = 0;
2678 
2679 	if_printf(ifp, "watchdog timeout\n");
2680 
2681 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2682 	ifp->if_oerrors++;
2683 	nfe_init_locked(sc);
2684 }
2685 
2686 
2687 static void
2688 nfe_init(void *xsc)
2689 {
2690 	struct nfe_softc *sc = xsc;
2691 
2692 	NFE_LOCK(sc);
2693 	nfe_init_locked(sc);
2694 	NFE_UNLOCK(sc);
2695 }
2696 
2697 
2698 static void
2699 nfe_init_locked(void *xsc)
2700 {
2701 	struct nfe_softc *sc = xsc;
2702 	struct ifnet *ifp = sc->nfe_ifp;
2703 	struct mii_data *mii;
2704 	uint32_t val;
2705 	int error;
2706 
2707 	NFE_LOCK_ASSERT(sc);
2708 
2709 	mii = device_get_softc(sc->nfe_miibus);
2710 
2711 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2712 		return;
2713 
2714 	nfe_stop(ifp);
2715 
2716 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
2717 
2718 	nfe_init_tx_ring(sc, &sc->txq);
2719 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2720 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2721 	else
2722 		error = nfe_init_rx_ring(sc, &sc->rxq);
2723 	if (error != 0) {
2724 		device_printf(sc->nfe_dev,
2725 		    "initialization failed: no memory for rx buffers\n");
2726 		nfe_stop(ifp);
2727 		return;
2728 	}
2729 
2730 	val = 0;
2731 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2732 		val |= NFE_MAC_ADDR_INORDER;
2733 	NFE_WRITE(sc, NFE_TX_UNK, val);
2734 	NFE_WRITE(sc, NFE_STATUS, 0);
2735 
2736 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2737 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2738 
2739 	sc->rxtxctl = NFE_RXTX_BIT2;
2740 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2741 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2742 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2743 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2744 
2745 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2746 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2747 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2748 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2749 
2750 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2751 	DELAY(10);
2752 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2753 
2754 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2755 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2756 	else
2757 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2758 
2759 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2760 
2761 	/* set MAC address */
2762 	nfe_set_macaddr(sc, IF_LLADDR(ifp));
2763 
2764 	/* tell MAC where rings are in memory */
2765 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2766 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2767 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2768 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2769 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2770 	} else {
2771 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2772 		    NFE_ADDR_HI(sc->rxq.physaddr));
2773 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2774 		    NFE_ADDR_LO(sc->rxq.physaddr));
2775 	}
2776 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2777 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2778 
2779 	NFE_WRITE(sc, NFE_RING_SIZE,
2780 	    (NFE_RX_RING_COUNT - 1) << 16 |
2781 	    (NFE_TX_RING_COUNT - 1));
2782 
2783 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2784 
2785 	/* force MAC to wakeup */
2786 	val = NFE_READ(sc, NFE_PWR_STATE);
2787 	if ((val & NFE_PWR_WAKEUP) == 0)
2788 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2789 	DELAY(10);
2790 	val = NFE_READ(sc, NFE_PWR_STATE);
2791 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2792 
2793 #if 1
2794 	/* configure interrupts coalescing/mitigation */
2795 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2796 #else
2797 	/* no interrupt mitigation: one interrupt per packet */
2798 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2799 #endif
2800 
2801 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2802 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2803 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2804 
2805 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2806 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2807 
2808 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2809 	/* Disable WOL. */
2810 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
2811 
2812 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2813 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2814 	DELAY(10);
2815 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2816 
2817 	/* set Rx filter */
2818 	nfe_setmulti(sc);
2819 
2820 	/* enable Rx */
2821 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2822 
2823 	/* enable Tx */
2824 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2825 
2826 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2827 
2828 	/* Clear hardware stats. */
2829 	nfe_stats_clear(sc);
2830 
2831 #ifdef DEVICE_POLLING
2832 	if (ifp->if_capenable & IFCAP_POLLING)
2833 		nfe_disable_intr(sc);
2834 	else
2835 #endif
2836 	nfe_set_intr(sc);
2837 	nfe_enable_intr(sc); /* enable interrupts */
2838 
2839 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2840 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2841 
2842 	sc->nfe_link = 0;
2843 	mii_mediachg(mii);
2844 
2845 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2846 }
2847 
2848 
2849 static void
2850 nfe_stop(struct ifnet *ifp)
2851 {
2852 	struct nfe_softc *sc = ifp->if_softc;
2853 	struct nfe_rx_ring *rx_ring;
2854 	struct nfe_jrx_ring *jrx_ring;
2855 	struct nfe_tx_ring *tx_ring;
2856 	struct nfe_rx_data *rdata;
2857 	struct nfe_tx_data *tdata;
2858 	int i;
2859 
2860 	NFE_LOCK_ASSERT(sc);
2861 
2862 	sc->nfe_watchdog_timer = 0;
2863 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2864 
2865 	callout_stop(&sc->nfe_stat_ch);
2866 
2867 	/* abort Tx */
2868 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2869 
2870 	/* disable Rx */
2871 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2872 
2873 	/* disable interrupts */
2874 	nfe_disable_intr(sc);
2875 
2876 	sc->nfe_link = 0;
2877 
2878 	/* free Rx and Tx mbufs still in the queues. */
2879 	rx_ring = &sc->rxq;
2880 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2881 		rdata = &rx_ring->data[i];
2882 		if (rdata->m != NULL) {
2883 			bus_dmamap_sync(rx_ring->rx_data_tag,
2884 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2885 			bus_dmamap_unload(rx_ring->rx_data_tag,
2886 			    rdata->rx_data_map);
2887 			m_freem(rdata->m);
2888 			rdata->m = NULL;
2889 		}
2890 	}
2891 
2892 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2893 		jrx_ring = &sc->jrxq;
2894 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2895 			rdata = &jrx_ring->jdata[i];
2896 			if (rdata->m != NULL) {
2897 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2898 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2899 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2900 				    rdata->rx_data_map);
2901 				m_freem(rdata->m);
2902 				rdata->m = NULL;
2903 			}
2904 		}
2905 	}
2906 
2907 	tx_ring = &sc->txq;
2908 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2909 		tdata = &tx_ring->data[i];
2910 		if (tdata->m != NULL) {
2911 			bus_dmamap_sync(tx_ring->tx_data_tag,
2912 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2913 			bus_dmamap_unload(tx_ring->tx_data_tag,
2914 			    tdata->tx_data_map);
2915 			m_freem(tdata->m);
2916 			tdata->m = NULL;
2917 		}
2918 	}
2919 	/* Update hardware stats. */
2920 	nfe_stats_update(sc);
2921 }
2922 
2923 
2924 static int
2925 nfe_ifmedia_upd(struct ifnet *ifp)
2926 {
2927 	struct nfe_softc *sc = ifp->if_softc;
2928 	struct mii_data *mii;
2929 
2930 	NFE_LOCK(sc);
2931 	mii = device_get_softc(sc->nfe_miibus);
2932 	mii_mediachg(mii);
2933 	NFE_UNLOCK(sc);
2934 
2935 	return (0);
2936 }
2937 
2938 
2939 static void
2940 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2941 {
2942 	struct nfe_softc *sc;
2943 	struct mii_data *mii;
2944 
2945 	sc = ifp->if_softc;
2946 
2947 	NFE_LOCK(sc);
2948 	mii = device_get_softc(sc->nfe_miibus);
2949 	mii_pollstat(mii);
2950 
2951 	ifmr->ifm_active = mii->mii_media_active;
2952 	ifmr->ifm_status = mii->mii_media_status;
2953 	NFE_UNLOCK(sc);
2954 }
2955 
2956 
2957 void
2958 nfe_tick(void *xsc)
2959 {
2960 	struct nfe_softc *sc;
2961 	struct mii_data *mii;
2962 	struct ifnet *ifp;
2963 
2964 	sc = (struct nfe_softc *)xsc;
2965 
2966 	NFE_LOCK_ASSERT(sc);
2967 
2968 	ifp = sc->nfe_ifp;
2969 
2970 	mii = device_get_softc(sc->nfe_miibus);
2971 	mii_tick(mii);
2972 	nfe_stats_update(sc);
2973 	nfe_watchdog(ifp);
2974 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2975 }
2976 
2977 
2978 static int
2979 nfe_shutdown(device_t dev)
2980 {
2981 
2982 	return (nfe_suspend(dev));
2983 }
2984 
2985 
2986 static void
2987 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2988 {
2989 	uint32_t val;
2990 
2991 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
2992 		val = NFE_READ(sc, NFE_MACADDR_LO);
2993 		addr[0] = (val >> 8) & 0xff;
2994 		addr[1] = (val & 0xff);
2995 
2996 		val = NFE_READ(sc, NFE_MACADDR_HI);
2997 		addr[2] = (val >> 24) & 0xff;
2998 		addr[3] = (val >> 16) & 0xff;
2999 		addr[4] = (val >>  8) & 0xff;
3000 		addr[5] = (val & 0xff);
3001 	} else {
3002 		val = NFE_READ(sc, NFE_MACADDR_LO);
3003 		addr[5] = (val >> 8) & 0xff;
3004 		addr[4] = (val & 0xff);
3005 
3006 		val = NFE_READ(sc, NFE_MACADDR_HI);
3007 		addr[3] = (val >> 24) & 0xff;
3008 		addr[2] = (val >> 16) & 0xff;
3009 		addr[1] = (val >>  8) & 0xff;
3010 		addr[0] = (val & 0xff);
3011 	}
3012 }
3013 
3014 
3015 static void
3016 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3017 {
3018 
3019 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3020 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3021 	    addr[1] << 8 | addr[0]);
3022 }
3023 
3024 
3025 /*
3026  * Map a single buffer address.
3027  */
3028 
3029 static void
3030 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3031 {
3032 	struct nfe_dmamap_arg *ctx;
3033 
3034 	if (error != 0)
3035 		return;
3036 
3037 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3038 
3039 	ctx = (struct nfe_dmamap_arg *)arg;
3040 	ctx->nfe_busaddr = segs[0].ds_addr;
3041 }
3042 
3043 
3044 static int
3045 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3046 {
3047 	int error, value;
3048 
3049 	if (!arg1)
3050 		return (EINVAL);
3051 	value = *(int *)arg1;
3052 	error = sysctl_handle_int(oidp, &value, 0, req);
3053 	if (error || !req->newptr)
3054 		return (error);
3055 	if (value < low || value > high)
3056 		return (EINVAL);
3057 	*(int *)arg1 = value;
3058 
3059 	return (0);
3060 }
3061 
3062 
3063 static int
3064 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3065 {
3066 
3067 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3068 	    NFE_PROC_MAX));
3069 }
3070 
3071 
3072 #define	NFE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
3073 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3074 #define	NFE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
3075 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
3076 
3077 static void
3078 nfe_sysctl_node(struct nfe_softc *sc)
3079 {
3080 	struct sysctl_ctx_list *ctx;
3081 	struct sysctl_oid_list *child, *parent;
3082 	struct sysctl_oid *tree;
3083 	struct nfe_hw_stats *stats;
3084 	int error;
3085 
3086 	stats = &sc->nfe_stats;
3087 	ctx = device_get_sysctl_ctx(sc->nfe_dev);
3088 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
3089 	SYSCTL_ADD_PROC(ctx, child,
3090 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
3091 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
3092 	    "max number of Rx events to process");
3093 
3094 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
3095 	error = resource_int_value(device_get_name(sc->nfe_dev),
3096 	    device_get_unit(sc->nfe_dev), "process_limit",
3097 	    &sc->nfe_process_limit);
3098 	if (error == 0) {
3099 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
3100 		    sc->nfe_process_limit > NFE_PROC_MAX) {
3101 			device_printf(sc->nfe_dev,
3102 			    "process_limit value out of range; "
3103 			    "using default: %d\n", NFE_PROC_DEFAULT);
3104 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
3105 		}
3106 	}
3107 
3108 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3109 		return;
3110 
3111 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3112 	    NULL, "NFE statistics");
3113 	parent = SYSCTL_CHILDREN(tree);
3114 
3115 	/* Rx statistics. */
3116 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3117 	    NULL, "Rx MAC statistics");
3118 	child = SYSCTL_CHILDREN(tree);
3119 
3120 	NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
3121 	    &stats->rx_frame_errors, "Framing Errors");
3122 	NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
3123 	    &stats->rx_extra_bytes, "Extra Bytes");
3124 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3125 	    &stats->rx_late_cols, "Late Collisions");
3126 	NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
3127 	    &stats->rx_runts, "Runts");
3128 	NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
3129 	    &stats->rx_jumbos, "Jumbos");
3130 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
3131 	    &stats->rx_fifo_overuns, "FIFO Overruns");
3132 	NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
3133 	    &stats->rx_crc_errors, "CRC Errors");
3134 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
3135 	    &stats->rx_fae, "Frame Alignment Errors");
3136 	NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
3137 	    &stats->rx_len_errors, "Length Errors");
3138 	NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3139 	    &stats->rx_unicast, "Unicast Frames");
3140 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3141 	    &stats->rx_multicast, "Multicast Frames");
3142 	NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3143 	    &stats->rx_broadcast, "Broadcast Frames");
3144 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3145 		NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3146 		    &stats->rx_octets, "Octets");
3147 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3148 		    &stats->rx_pause, "Pause frames");
3149 		NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
3150 		    &stats->rx_drops, "Drop frames");
3151 	}
3152 
3153 	/* Tx statistics. */
3154 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3155 	    NULL, "Tx MAC statistics");
3156 	child = SYSCTL_CHILDREN(tree);
3157 	NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3158 	    &stats->tx_octets, "Octets");
3159 	NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
3160 	    &stats->tx_zero_rexmits, "Zero Retransmits");
3161 	NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
3162 	    &stats->tx_one_rexmits, "One Retransmits");
3163 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
3164 	    &stats->tx_multi_rexmits, "Multiple Retransmits");
3165 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3166 	    &stats->tx_late_cols, "Late Collisions");
3167 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
3168 	    &stats->tx_fifo_underuns, "FIFO Underruns");
3169 	NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
3170 	    &stats->tx_carrier_losts, "Carrier Losts");
3171 	NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
3172 	    &stats->tx_excess_deferals, "Excess Deferrals");
3173 	NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
3174 	    &stats->tx_retry_errors, "Retry Errors");
3175 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3176 		NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
3177 		    &stats->tx_deferals, "Deferrals");
3178 		NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
3179 		    &stats->tx_frames, "Frames");
3180 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3181 		    &stats->tx_pause, "Pause Frames");
3182 	}
3183 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3184 		NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3185 		    &stats->tx_deferals, "Unicast Frames");
3186 		NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3187 		    &stats->tx_frames, "Multicast Frames");
3188 		NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3189 		    &stats->tx_pause, "Broadcast Frames");
3190 	}
3191 }
3192 
3193 #undef NFE_SYSCTL_STAT_ADD32
3194 #undef NFE_SYSCTL_STAT_ADD64
3195 
3196 static void
3197 nfe_stats_clear(struct nfe_softc *sc)
3198 {
3199 	int i, mib_cnt;
3200 
3201 	if ((sc->nfe_flags & NFE_MIB_V1) != 0)
3202 		mib_cnt = NFE_NUM_MIB_STATV1;
3203 	else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
3204 		mib_cnt = NFE_NUM_MIB_STATV2;
3205 	else
3206 		return;
3207 
3208 	for (i = 0; i < mib_cnt; i += sizeof(uint32_t))
3209 		NFE_READ(sc, NFE_TX_OCTET + i);
3210 
3211 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3212 		NFE_READ(sc, NFE_TX_UNICAST);
3213 		NFE_READ(sc, NFE_TX_MULTICAST);
3214 		NFE_READ(sc, NFE_TX_BROADCAST);
3215 	}
3216 }
3217 
3218 static void
3219 nfe_stats_update(struct nfe_softc *sc)
3220 {
3221 	struct nfe_hw_stats *stats;
3222 
3223 	NFE_LOCK_ASSERT(sc);
3224 
3225 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3226 		return;
3227 
3228 	stats = &sc->nfe_stats;
3229 	stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
3230 	stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
3231 	stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
3232 	stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
3233 	stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
3234 	stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
3235 	stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
3236 	stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
3237 	stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
3238 	stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
3239 	stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
3240 	stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
3241 	stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
3242 	stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
3243 	stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
3244 	stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
3245 	stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
3246 	stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
3247 	stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
3248 	stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
3249 	stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
3250 
3251 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3252 		stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
3253 		stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
3254 		stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
3255 		stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
3256 		stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
3257 		stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
3258 	}
3259 
3260 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3261 		stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
3262 		stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
3263 		stats->tx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
3264 	}
3265 }
3266 
3267 
3268 static void
3269 nfe_set_linkspeed(struct nfe_softc *sc)
3270 {
3271 	struct mii_softc *miisc;
3272 	struct mii_data *mii;
3273 	int aneg, i, phyno;
3274 
3275 	NFE_LOCK_ASSERT(sc);
3276 
3277 	mii = device_get_softc(sc->nfe_miibus);
3278 	mii_pollstat(mii);
3279 	aneg = 0;
3280 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3281 	    (IFM_ACTIVE | IFM_AVALID)) {
3282 		switch IFM_SUBTYPE(mii->mii_media_active) {
3283 		case IFM_10_T:
3284 		case IFM_100_TX:
3285 			return;
3286 		case IFM_1000_T:
3287 			aneg++;
3288 			break;
3289 		default:
3290 			break;
3291 		}
3292 	}
3293 	miisc = LIST_FIRST(&mii->mii_phys);
3294 	phyno = miisc->mii_phy;
3295 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3296 		PHY_RESET(miisc);
3297 	nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
3298 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3299 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3300 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3301 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
3302 	DELAY(1000);
3303 	if (aneg != 0) {
3304 		/*
3305 		 * Poll link state until nfe(4) get a 10/100Mbps link.
3306 		 */
3307 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3308 			mii_pollstat(mii);
3309 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3310 			    == (IFM_ACTIVE | IFM_AVALID)) {
3311 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3312 				case IFM_10_T:
3313 				case IFM_100_TX:
3314 					nfe_mac_config(sc, mii);
3315 					return;
3316 				default:
3317 					break;
3318 				}
3319 			}
3320 			NFE_UNLOCK(sc);
3321 			pause("nfelnk", hz);
3322 			NFE_LOCK(sc);
3323 		}
3324 		if (i == MII_ANEGTICKS_GIGE)
3325 			device_printf(sc->nfe_dev,
3326 			    "establishing a link failed, WOL may not work!");
3327 	}
3328 	/*
3329 	 * No link, force MAC to have 100Mbps, full-duplex link.
3330 	 * This is the last resort and may/may not work.
3331 	 */
3332 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3333 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3334 	nfe_mac_config(sc, mii);
3335 }
3336 
3337 
3338 static void
3339 nfe_set_wol(struct nfe_softc *sc)
3340 {
3341 	struct ifnet *ifp;
3342 	uint32_t wolctl;
3343 	int pmc;
3344 	uint16_t pmstat;
3345 
3346 	NFE_LOCK_ASSERT(sc);
3347 
3348 	if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
3349 		return;
3350 	ifp = sc->nfe_ifp;
3351 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3352 		wolctl = NFE_WOL_MAGIC;
3353 	else
3354 		wolctl = 0;
3355 	NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
3356 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
3357 		nfe_set_linkspeed(sc);
3358 		if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
3359 			NFE_WRITE(sc, NFE_PWR2_CTL,
3360 			    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
3361 		/* Enable RX. */
3362 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
3363 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
3364 		NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
3365 		    NFE_RX_START);
3366 	}
3367 	/* Request PME if WOL is requested. */
3368 	pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
3369 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3370 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3371 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3372 	pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3373 }
3374