xref: /freebsd/sys/dev/nfe/if_nfe.c (revision bb15ca603fa442c72dde3f3cb8b46db6970e3950)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/ethernet.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net/bpf.h>
52 
53 #include <machine/bus.h>
54 #include <machine/resource.h>
55 #include <sys/bus.h>
56 #include <sys/rman.h>
57 
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 
61 #include <dev/pci/pcireg.h>
62 #include <dev/pci/pcivar.h>
63 
64 #include <dev/nfe/if_nfereg.h>
65 #include <dev/nfe/if_nfevar.h>
66 
67 MODULE_DEPEND(nfe, pci, 1, 1, 1);
68 MODULE_DEPEND(nfe, ether, 1, 1, 1);
69 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
70 
71 /* "device miibus" required.  See GENERIC if you get errors here. */
72 #include "miibus_if.h"
73 
74 static int  nfe_probe(device_t);
75 static int  nfe_attach(device_t);
76 static int  nfe_detach(device_t);
77 static int  nfe_suspend(device_t);
78 static int  nfe_resume(device_t);
79 static int nfe_shutdown(device_t);
80 static int  nfe_can_use_msix(struct nfe_softc *);
81 static void nfe_power(struct nfe_softc *);
82 static int  nfe_miibus_readreg(device_t, int, int);
83 static int  nfe_miibus_writereg(device_t, int, int, int);
84 static void nfe_miibus_statchg(device_t);
85 static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
86 static void nfe_set_intr(struct nfe_softc *);
87 static __inline void nfe_enable_intr(struct nfe_softc *);
88 static __inline void nfe_disable_intr(struct nfe_softc *);
89 static int  nfe_ioctl(struct ifnet *, u_long, caddr_t);
90 static void nfe_alloc_msix(struct nfe_softc *, int);
91 static int nfe_intr(void *);
92 static void nfe_int_task(void *, int);
93 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
94 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
95 static int nfe_newbuf(struct nfe_softc *, int);
96 static int nfe_jnewbuf(struct nfe_softc *, int);
97 static int  nfe_rxeof(struct nfe_softc *, int, int *);
98 static int  nfe_jrxeof(struct nfe_softc *, int, int *);
99 static void nfe_txeof(struct nfe_softc *);
100 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
101 static void nfe_setmulti(struct nfe_softc *);
102 static void nfe_start(struct ifnet *);
103 static void nfe_start_locked(struct ifnet *);
104 static void nfe_watchdog(struct ifnet *);
105 static void nfe_init(void *);
106 static void nfe_init_locked(void *);
107 static void nfe_stop(struct ifnet *);
108 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
109 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
110 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
111 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
112 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
113 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
114 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
115 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
116 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static int  nfe_ifmedia_upd(struct ifnet *);
118 static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
119 static void nfe_tick(void *);
120 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
121 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
122 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
123 
124 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
125 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
126 static void nfe_sysctl_node(struct nfe_softc *);
127 static void nfe_stats_clear(struct nfe_softc *);
128 static void nfe_stats_update(struct nfe_softc *);
129 static void nfe_set_linkspeed(struct nfe_softc *);
130 static void nfe_set_wol(struct nfe_softc *);
131 
132 #ifdef NFE_DEBUG
133 static int nfedebug = 0;
134 #define	DPRINTF(sc, ...)	do {				\
135 	if (nfedebug)						\
136 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
137 } while (0)
138 #define	DPRINTFN(sc, n, ...)	do {				\
139 	if (nfedebug >= (n))					\
140 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
141 } while (0)
142 #else
143 #define	DPRINTF(sc, ...)
144 #define	DPRINTFN(sc, n, ...)
145 #endif
146 
147 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
148 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
149 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
150 
151 /* Tunables. */
152 static int msi_disable = 0;
153 static int msix_disable = 0;
154 static int jumbo_disable = 0;
155 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
156 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
157 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
158 
159 static device_method_t nfe_methods[] = {
160 	/* Device interface */
161 	DEVMETHOD(device_probe,		nfe_probe),
162 	DEVMETHOD(device_attach,	nfe_attach),
163 	DEVMETHOD(device_detach,	nfe_detach),
164 	DEVMETHOD(device_suspend,	nfe_suspend),
165 	DEVMETHOD(device_resume,	nfe_resume),
166 	DEVMETHOD(device_shutdown,	nfe_shutdown),
167 
168 	/* MII interface */
169 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
170 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
171 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
172 
173 	DEVMETHOD_END
174 };
175 
176 static driver_t nfe_driver = {
177 	"nfe",
178 	nfe_methods,
179 	sizeof(struct nfe_softc)
180 };
181 
182 static devclass_t nfe_devclass;
183 
184 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
185 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
186 
187 static struct nfe_type nfe_devs[] = {
188 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
189 	    "NVIDIA nForce MCP Networking Adapter"},
190 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
191 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
192 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
193 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
194 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
195 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
196 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
197 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
198 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
199 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
200 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
201 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
202 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
203 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
204 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
205 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
206 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
207 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
208 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
209 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
210 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
211 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
212 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
213 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
214 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
215 	    "NVIDIA nForce MCP55 Networking Adapter"},
216 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
217 	    "NVIDIA nForce MCP55 Networking Adapter"},
218 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
219 	    "NVIDIA nForce MCP61 Networking Adapter"},
220 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
221 	    "NVIDIA nForce MCP61 Networking Adapter"},
222 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
223 	    "NVIDIA nForce MCP61 Networking Adapter"},
224 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
225 	    "NVIDIA nForce MCP61 Networking Adapter"},
226 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
227 	    "NVIDIA nForce MCP65 Networking Adapter"},
228 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
229 	    "NVIDIA nForce MCP65 Networking Adapter"},
230 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
231 	    "NVIDIA nForce MCP65 Networking Adapter"},
232 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
233 	    "NVIDIA nForce MCP65 Networking Adapter"},
234 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
235 	    "NVIDIA nForce MCP67 Networking Adapter"},
236 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
237 	    "NVIDIA nForce MCP67 Networking Adapter"},
238 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
239 	    "NVIDIA nForce MCP67 Networking Adapter"},
240 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
241 	    "NVIDIA nForce MCP67 Networking Adapter"},
242 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
243 	    "NVIDIA nForce MCP73 Networking Adapter"},
244 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
245 	    "NVIDIA nForce MCP73 Networking Adapter"},
246 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
247 	    "NVIDIA nForce MCP73 Networking Adapter"},
248 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
249 	    "NVIDIA nForce MCP73 Networking Adapter"},
250 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
251 	    "NVIDIA nForce MCP77 Networking Adapter"},
252 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
253 	    "NVIDIA nForce MCP77 Networking Adapter"},
254 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
255 	    "NVIDIA nForce MCP77 Networking Adapter"},
256 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
257 	    "NVIDIA nForce MCP77 Networking Adapter"},
258 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
259 	    "NVIDIA nForce MCP79 Networking Adapter"},
260 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
261 	    "NVIDIA nForce MCP79 Networking Adapter"},
262 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
263 	    "NVIDIA nForce MCP79 Networking Adapter"},
264 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
265 	    "NVIDIA nForce MCP79 Networking Adapter"},
266 	{0, 0, NULL}
267 };
268 
269 
270 /* Probe for supported hardware ID's */
271 static int
272 nfe_probe(device_t dev)
273 {
274 	struct nfe_type *t;
275 
276 	t = nfe_devs;
277 	/* Check for matching PCI DEVICE ID's */
278 	while (t->name != NULL) {
279 		if ((pci_get_vendor(dev) == t->vid_id) &&
280 		    (pci_get_device(dev) == t->dev_id)) {
281 			device_set_desc(dev, t->name);
282 			return (BUS_PROBE_DEFAULT);
283 		}
284 		t++;
285 	}
286 
287 	return (ENXIO);
288 }
289 
290 static void
291 nfe_alloc_msix(struct nfe_softc *sc, int count)
292 {
293 	int rid;
294 
295 	rid = PCIR_BAR(2);
296 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
297 	    &rid, RF_ACTIVE);
298 	if (sc->nfe_msix_res == NULL) {
299 		device_printf(sc->nfe_dev,
300 		    "couldn't allocate MSIX table resource\n");
301 		return;
302 	}
303 	rid = PCIR_BAR(3);
304 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
305 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
306 	if (sc->nfe_msix_pba_res == NULL) {
307 		device_printf(sc->nfe_dev,
308 		    "couldn't allocate MSIX PBA resource\n");
309 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
310 		    sc->nfe_msix_res);
311 		sc->nfe_msix_res = NULL;
312 		return;
313 	}
314 
315 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
316 		if (count == NFE_MSI_MESSAGES) {
317 			if (bootverbose)
318 				device_printf(sc->nfe_dev,
319 				    "Using %d MSIX messages\n", count);
320 			sc->nfe_msix = 1;
321 		} else {
322 			if (bootverbose)
323 				device_printf(sc->nfe_dev,
324 				    "couldn't allocate MSIX\n");
325 			pci_release_msi(sc->nfe_dev);
326 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
327 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
328 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
329 			    PCIR_BAR(2), sc->nfe_msix_res);
330 			sc->nfe_msix_pba_res = NULL;
331 			sc->nfe_msix_res = NULL;
332 		}
333 	}
334 }
335 
336 static int
337 nfe_attach(device_t dev)
338 {
339 	struct nfe_softc *sc;
340 	struct ifnet *ifp;
341 	bus_addr_t dma_addr_max;
342 	int error = 0, i, msic, reg, rid;
343 
344 	sc = device_get_softc(dev);
345 	sc->nfe_dev = dev;
346 
347 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
348 	    MTX_DEF);
349 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
350 
351 	pci_enable_busmaster(dev);
352 
353 	rid = PCIR_BAR(0);
354 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
355 	    RF_ACTIVE);
356 	if (sc->nfe_res[0] == NULL) {
357 		device_printf(dev, "couldn't map memory resources\n");
358 		mtx_destroy(&sc->nfe_mtx);
359 		return (ENXIO);
360 	}
361 
362 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
363 		uint16_t v, width;
364 
365 		v = pci_read_config(dev, reg + 0x08, 2);
366 		/* Change max. read request size to 4096. */
367 		v &= ~(7 << 12);
368 		v |= (5 << 12);
369 		pci_write_config(dev, reg + 0x08, v, 2);
370 
371 		v = pci_read_config(dev, reg + 0x0c, 2);
372 		/* link capability */
373 		v = (v >> 4) & 0x0f;
374 		width = pci_read_config(dev, reg + 0x12, 2);
375 		/* negotiated link width */
376 		width = (width >> 4) & 0x3f;
377 		if (v != width)
378 			device_printf(sc->nfe_dev,
379 			    "warning, negotiated width of link(x%d) != "
380 			    "max. width of link(x%d)\n", width, v);
381 	}
382 
383 	if (nfe_can_use_msix(sc) == 0) {
384 		device_printf(sc->nfe_dev,
385 		    "MSI/MSI-X capability black-listed, will use INTx\n");
386 		msix_disable = 1;
387 		msi_disable = 1;
388 	}
389 
390 	/* Allocate interrupt */
391 	if (msix_disable == 0 || msi_disable == 0) {
392 		if (msix_disable == 0 &&
393 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
394 			nfe_alloc_msix(sc, msic);
395 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
396 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
397 		    pci_alloc_msi(dev, &msic) == 0) {
398 			if (msic == NFE_MSI_MESSAGES) {
399 				if (bootverbose)
400 					device_printf(dev,
401 					    "Using %d MSI messages\n", msic);
402 				sc->nfe_msi = 1;
403 			} else
404 				pci_release_msi(dev);
405 		}
406 	}
407 
408 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
409 		rid = 0;
410 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
411 		    RF_SHAREABLE | RF_ACTIVE);
412 		if (sc->nfe_irq[0] == NULL) {
413 			device_printf(dev, "couldn't allocate IRQ resources\n");
414 			error = ENXIO;
415 			goto fail;
416 		}
417 	} else {
418 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
419 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
420 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
421 			if (sc->nfe_irq[i] == NULL) {
422 				device_printf(dev,
423 				    "couldn't allocate IRQ resources for "
424 				    "message %d\n", rid);
425 				error = ENXIO;
426 				goto fail;
427 			}
428 		}
429 		/* Map interrupts to vector 0. */
430 		if (sc->nfe_msix != 0) {
431 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
432 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
433 		} else if (sc->nfe_msi != 0) {
434 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
435 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
436 		}
437 	}
438 
439 	/* Set IRQ status/mask register. */
440 	sc->nfe_irq_status = NFE_IRQ_STATUS;
441 	sc->nfe_irq_mask = NFE_IRQ_MASK;
442 	sc->nfe_intrs = NFE_IRQ_WANTED;
443 	sc->nfe_nointrs = 0;
444 	if (sc->nfe_msix != 0) {
445 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
446 		sc->nfe_nointrs = NFE_IRQ_WANTED;
447 	} else if (sc->nfe_msi != 0) {
448 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
449 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
450 	}
451 
452 	sc->nfe_devid = pci_get_device(dev);
453 	sc->nfe_revid = pci_get_revid(dev);
454 	sc->nfe_flags = 0;
455 
456 	switch (sc->nfe_devid) {
457 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
458 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
459 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
460 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
461 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
462 		break;
463 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
464 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
465 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
466 		break;
467 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
468 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
469 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
470 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
471 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
472 		    NFE_MIB_V1;
473 		break;
474 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
475 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
476 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
477 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
478 		break;
479 
480 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
481 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
482 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
483 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
484 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
485 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
486 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
487 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
488 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
489 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
490 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
491 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
492 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
493 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
494 		break;
495 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
496 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
497 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
498 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
499 		/* XXX flow control */
500 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
501 		    NFE_CORRECT_MACADDR | NFE_MIB_V3;
502 		break;
503 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
504 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
505 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
506 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
507 		/* XXX flow control */
508 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
509 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
510 		break;
511 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
512 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
513 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
514 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
515 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
516 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
517 		    NFE_MIB_V2;
518 		break;
519 	}
520 
521 	nfe_power(sc);
522 	/* Check for reversed ethernet address */
523 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
524 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
525 	nfe_get_macaddr(sc, sc->eaddr);
526 	/*
527 	 * Allocate the parent bus DMA tag appropriate for PCI.
528 	 */
529 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
530 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
531 		dma_addr_max = NFE_DMA_MAXADDR;
532 	error = bus_dma_tag_create(
533 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
534 	    1, 0,				/* alignment, boundary */
535 	    dma_addr_max,			/* lowaddr */
536 	    BUS_SPACE_MAXADDR,			/* highaddr */
537 	    NULL, NULL,				/* filter, filterarg */
538 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
539 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
540 	    0,					/* flags */
541 	    NULL, NULL,				/* lockfunc, lockarg */
542 	    &sc->nfe_parent_tag);
543 	if (error)
544 		goto fail;
545 
546 	ifp = sc->nfe_ifp = if_alloc(IFT_ETHER);
547 	if (ifp == NULL) {
548 		device_printf(dev, "can not if_alloc()\n");
549 		error = ENOSPC;
550 		goto fail;
551 	}
552 
553 	/*
554 	 * Allocate Tx and Rx rings.
555 	 */
556 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
557 		goto fail;
558 
559 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
560 		goto fail;
561 
562 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
563 	/* Create sysctl node. */
564 	nfe_sysctl_node(sc);
565 
566 	ifp->if_softc = sc;
567 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
568 	ifp->if_mtu = ETHERMTU;
569 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
570 	ifp->if_ioctl = nfe_ioctl;
571 	ifp->if_start = nfe_start;
572 	ifp->if_hwassist = 0;
573 	ifp->if_capabilities = 0;
574 	ifp->if_init = nfe_init;
575 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_TX_RING_COUNT - 1);
576 	ifp->if_snd.ifq_drv_maxlen = NFE_TX_RING_COUNT - 1;
577 	IFQ_SET_READY(&ifp->if_snd);
578 
579 	if (sc->nfe_flags & NFE_HW_CSUM) {
580 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
581 		ifp->if_hwassist |= NFE_CSUM_FEATURES | CSUM_TSO;
582 	}
583 	ifp->if_capenable = ifp->if_capabilities;
584 
585 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
586 	/* VLAN capability setup. */
587 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
588 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
589 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
590 		if ((ifp->if_capabilities & IFCAP_HWCSUM) != 0)
591 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM |
592 			    IFCAP_VLAN_HWTSO;
593 	}
594 
595 	if (pci_find_cap(dev, PCIY_PMG, &reg) == 0)
596 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
597 	ifp->if_capenable = ifp->if_capabilities;
598 
599 	/*
600 	 * Tell the upper layer(s) we support long frames.
601 	 * Must appear after the call to ether_ifattach() because
602 	 * ether_ifattach() sets ifi_hdrlen to the default value.
603 	 */
604 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
605 
606 #ifdef DEVICE_POLLING
607 	ifp->if_capabilities |= IFCAP_POLLING;
608 #endif
609 
610 	/* Do MII setup */
611 	error = mii_attach(dev, &sc->nfe_miibus, ifp, nfe_ifmedia_upd,
612 	    nfe_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
613 	    MIIF_DOPAUSE);
614 	if (error != 0) {
615 		device_printf(dev, "attaching PHYs failed\n");
616 		goto fail;
617 	}
618 	ether_ifattach(ifp, sc->eaddr);
619 
620 	TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
621 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
622 	    taskqueue_thread_enqueue, &sc->nfe_tq);
623 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
624 	    device_get_nameunit(sc->nfe_dev));
625 	error = 0;
626 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
627 		error = bus_setup_intr(dev, sc->nfe_irq[0],
628 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
629 		    &sc->nfe_intrhand[0]);
630 	} else {
631 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
632 			error = bus_setup_intr(dev, sc->nfe_irq[i],
633 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
634 			    &sc->nfe_intrhand[i]);
635 			if (error != 0)
636 				break;
637 		}
638 	}
639 	if (error) {
640 		device_printf(dev, "couldn't set up irq\n");
641 		taskqueue_free(sc->nfe_tq);
642 		sc->nfe_tq = NULL;
643 		ether_ifdetach(ifp);
644 		goto fail;
645 	}
646 
647 fail:
648 	if (error)
649 		nfe_detach(dev);
650 
651 	return (error);
652 }
653 
654 
655 static int
656 nfe_detach(device_t dev)
657 {
658 	struct nfe_softc *sc;
659 	struct ifnet *ifp;
660 	uint8_t eaddr[ETHER_ADDR_LEN];
661 	int i, rid;
662 
663 	sc = device_get_softc(dev);
664 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
665 	ifp = sc->nfe_ifp;
666 
667 #ifdef DEVICE_POLLING
668 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
669 		ether_poll_deregister(ifp);
670 #endif
671 	if (device_is_attached(dev)) {
672 		NFE_LOCK(sc);
673 		nfe_stop(ifp);
674 		ifp->if_flags &= ~IFF_UP;
675 		NFE_UNLOCK(sc);
676 		callout_drain(&sc->nfe_stat_ch);
677 		ether_ifdetach(ifp);
678 	}
679 
680 	if (ifp) {
681 		/* restore ethernet address */
682 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
683 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
684 				eaddr[i] = sc->eaddr[5 - i];
685 			}
686 		} else
687 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
688 		nfe_set_macaddr(sc, eaddr);
689 		if_free(ifp);
690 	}
691 	if (sc->nfe_miibus)
692 		device_delete_child(dev, sc->nfe_miibus);
693 	bus_generic_detach(dev);
694 	if (sc->nfe_tq != NULL) {
695 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
696 		taskqueue_free(sc->nfe_tq);
697 		sc->nfe_tq = NULL;
698 	}
699 
700 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
701 		if (sc->nfe_intrhand[i] != NULL) {
702 			bus_teardown_intr(dev, sc->nfe_irq[i],
703 			    sc->nfe_intrhand[i]);
704 			sc->nfe_intrhand[i] = NULL;
705 		}
706 	}
707 
708 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
709 		if (sc->nfe_irq[0] != NULL)
710 			bus_release_resource(dev, SYS_RES_IRQ, 0,
711 			    sc->nfe_irq[0]);
712 	} else {
713 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
714 			if (sc->nfe_irq[i] != NULL) {
715 				bus_release_resource(dev, SYS_RES_IRQ, rid,
716 				    sc->nfe_irq[i]);
717 				sc->nfe_irq[i] = NULL;
718 			}
719 		}
720 		pci_release_msi(dev);
721 	}
722 	if (sc->nfe_msix_pba_res != NULL) {
723 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
724 		    sc->nfe_msix_pba_res);
725 		sc->nfe_msix_pba_res = NULL;
726 	}
727 	if (sc->nfe_msix_res != NULL) {
728 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
729 		    sc->nfe_msix_res);
730 		sc->nfe_msix_res = NULL;
731 	}
732 	if (sc->nfe_res[0] != NULL) {
733 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
734 		    sc->nfe_res[0]);
735 		sc->nfe_res[0] = NULL;
736 	}
737 
738 	nfe_free_tx_ring(sc, &sc->txq);
739 	nfe_free_rx_ring(sc, &sc->rxq);
740 	nfe_free_jrx_ring(sc, &sc->jrxq);
741 
742 	if (sc->nfe_parent_tag) {
743 		bus_dma_tag_destroy(sc->nfe_parent_tag);
744 		sc->nfe_parent_tag = NULL;
745 	}
746 
747 	mtx_destroy(&sc->nfe_mtx);
748 
749 	return (0);
750 }
751 
752 
753 static int
754 nfe_suspend(device_t dev)
755 {
756 	struct nfe_softc *sc;
757 
758 	sc = device_get_softc(dev);
759 
760 	NFE_LOCK(sc);
761 	nfe_stop(sc->nfe_ifp);
762 	nfe_set_wol(sc);
763 	sc->nfe_suspended = 1;
764 	NFE_UNLOCK(sc);
765 
766 	return (0);
767 }
768 
769 
770 static int
771 nfe_resume(device_t dev)
772 {
773 	struct nfe_softc *sc;
774 	struct ifnet *ifp;
775 
776 	sc = device_get_softc(dev);
777 
778 	NFE_LOCK(sc);
779 	nfe_power(sc);
780 	ifp = sc->nfe_ifp;
781 	if (ifp->if_flags & IFF_UP)
782 		nfe_init_locked(sc);
783 	sc->nfe_suspended = 0;
784 	NFE_UNLOCK(sc);
785 
786 	return (0);
787 }
788 
789 
790 static int
791 nfe_can_use_msix(struct nfe_softc *sc)
792 {
793 	static struct msix_blacklist {
794 		char	*maker;
795 		char	*product;
796 	} msix_blacklists[] = {
797 		{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
798 	};
799 
800 	struct msix_blacklist *mblp;
801 	char *maker, *product;
802 	int count, n, use_msix;
803 
804 	/*
805 	 * Search base board manufacturer and product name table
806 	 * to see this system has a known MSI/MSI-X issue.
807 	 */
808 	maker = getenv("smbios.planar.maker");
809 	product = getenv("smbios.planar.product");
810 	use_msix = 1;
811 	if (maker != NULL && product != NULL) {
812 		count = sizeof(msix_blacklists) / sizeof(msix_blacklists[0]);
813 		mblp = msix_blacklists;
814 		for (n = 0; n < count; n++) {
815 			if (strcmp(maker, mblp->maker) == 0 &&
816 			    strcmp(product, mblp->product) == 0) {
817 				use_msix = 0;
818 				break;
819 			}
820 			mblp++;
821 		}
822 	}
823 	if (maker != NULL)
824 		freeenv(maker);
825 	if (product != NULL)
826 		freeenv(product);
827 
828 	return (use_msix);
829 }
830 
831 
832 /* Take PHY/NIC out of powerdown, from Linux */
833 static void
834 nfe_power(struct nfe_softc *sc)
835 {
836 	uint32_t pwr;
837 
838 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
839 		return;
840 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
841 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
842 	DELAY(100);
843 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
844 	DELAY(100);
845 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
846 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
847 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
848 	if (sc->nfe_revid >= 0xa3 &&
849 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
850 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
851 		pwr |= NFE_PWR2_REVA3;
852 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
853 }
854 
855 
856 static void
857 nfe_miibus_statchg(device_t dev)
858 {
859 	struct nfe_softc *sc;
860 	struct mii_data *mii;
861 	struct ifnet *ifp;
862 	uint32_t rxctl, txctl;
863 
864 	sc = device_get_softc(dev);
865 
866 	mii = device_get_softc(sc->nfe_miibus);
867 	ifp = sc->nfe_ifp;
868 
869 	sc->nfe_link = 0;
870 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
871 	    (IFM_ACTIVE | IFM_AVALID)) {
872 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
873 		case IFM_10_T:
874 		case IFM_100_TX:
875 		case IFM_1000_T:
876 			sc->nfe_link = 1;
877 			break;
878 		default:
879 			break;
880 		}
881 	}
882 
883 	nfe_mac_config(sc, mii);
884 	txctl = NFE_READ(sc, NFE_TX_CTL);
885 	rxctl = NFE_READ(sc, NFE_RX_CTL);
886 	if (sc->nfe_link != 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
887 		txctl |= NFE_TX_START;
888 		rxctl |= NFE_RX_START;
889 	} else {
890 		txctl &= ~NFE_TX_START;
891 		rxctl &= ~NFE_RX_START;
892 	}
893 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
894 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
895 }
896 
897 
898 static void
899 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
900 {
901 	uint32_t link, misc, phy, seed;
902 	uint32_t val;
903 
904 	NFE_LOCK_ASSERT(sc);
905 
906 	phy = NFE_READ(sc, NFE_PHY_IFACE);
907 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
908 
909 	seed = NFE_READ(sc, NFE_RNDSEED);
910 	seed &= ~NFE_SEED_MASK;
911 
912 	misc = NFE_MISC1_MAGIC;
913 	link = NFE_MEDIA_SET;
914 
915 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
916 		phy  |= NFE_PHY_HDX;	/* half-duplex */
917 		misc |= NFE_MISC1_HDX;
918 	}
919 
920 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
921 	case IFM_1000_T:	/* full-duplex only */
922 		link |= NFE_MEDIA_1000T;
923 		seed |= NFE_SEED_1000T;
924 		phy  |= NFE_PHY_1000T;
925 		break;
926 	case IFM_100_TX:
927 		link |= NFE_MEDIA_100TX;
928 		seed |= NFE_SEED_100TX;
929 		phy  |= NFE_PHY_100TX;
930 		break;
931 	case IFM_10_T:
932 		link |= NFE_MEDIA_10T;
933 		seed |= NFE_SEED_10T;
934 		break;
935 	}
936 
937 	if ((phy & 0x10000000) != 0) {
938 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
939 			val = NFE_R1_MAGIC_1000;
940 		else
941 			val = NFE_R1_MAGIC_10_100;
942 	} else
943 		val = NFE_R1_MAGIC_DEFAULT;
944 	NFE_WRITE(sc, NFE_SETUP_R1, val);
945 
946 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
947 
948 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
949 	NFE_WRITE(sc, NFE_MISC1, misc);
950 	NFE_WRITE(sc, NFE_LINKSPEED, link);
951 
952 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
953 		/* It seems all hardwares supports Rx pause frames. */
954 		val = NFE_READ(sc, NFE_RXFILTER);
955 		if ((IFM_OPTIONS(mii->mii_media_active) &
956 		    IFM_ETH_RXPAUSE) != 0)
957 			val |= NFE_PFF_RX_PAUSE;
958 		else
959 			val &= ~NFE_PFF_RX_PAUSE;
960 		NFE_WRITE(sc, NFE_RXFILTER, val);
961 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
962 			val = NFE_READ(sc, NFE_MISC1);
963 			if ((IFM_OPTIONS(mii->mii_media_active) &
964 			    IFM_ETH_TXPAUSE) != 0) {
965 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
966 				    NFE_TX_PAUSE_FRAME_ENABLE);
967 				val |= NFE_MISC1_TX_PAUSE;
968 			} else {
969 				val &= ~NFE_MISC1_TX_PAUSE;
970 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
971 				    NFE_TX_PAUSE_FRAME_DISABLE);
972 			}
973 			NFE_WRITE(sc, NFE_MISC1, val);
974 		}
975 	} else {
976 		/* disable rx/tx pause frames */
977 		val = NFE_READ(sc, NFE_RXFILTER);
978 		val &= ~NFE_PFF_RX_PAUSE;
979 		NFE_WRITE(sc, NFE_RXFILTER, val);
980 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
981 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
982 			    NFE_TX_PAUSE_FRAME_DISABLE);
983 			val = NFE_READ(sc, NFE_MISC1);
984 			val &= ~NFE_MISC1_TX_PAUSE;
985 			NFE_WRITE(sc, NFE_MISC1, val);
986 		}
987 	}
988 }
989 
990 
991 static int
992 nfe_miibus_readreg(device_t dev, int phy, int reg)
993 {
994 	struct nfe_softc *sc = device_get_softc(dev);
995 	uint32_t val;
996 	int ntries;
997 
998 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
999 
1000 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1001 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1002 		DELAY(100);
1003 	}
1004 
1005 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
1006 
1007 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1008 		DELAY(100);
1009 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1010 			break;
1011 	}
1012 	if (ntries == NFE_TIMEOUT) {
1013 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
1014 		return 0;
1015 	}
1016 
1017 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
1018 		DPRINTFN(sc, 2, "could not read PHY\n");
1019 		return 0;
1020 	}
1021 
1022 	val = NFE_READ(sc, NFE_PHY_DATA);
1023 	if (val != 0xffffffff && val != 0)
1024 		sc->mii_phyaddr = phy;
1025 
1026 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
1027 
1028 	return (val);
1029 }
1030 
1031 
1032 static int
1033 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
1034 {
1035 	struct nfe_softc *sc = device_get_softc(dev);
1036 	uint32_t ctl;
1037 	int ntries;
1038 
1039 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1040 
1041 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1042 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1043 		DELAY(100);
1044 	}
1045 
1046 	NFE_WRITE(sc, NFE_PHY_DATA, val);
1047 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
1048 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
1049 
1050 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1051 		DELAY(100);
1052 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1053 			break;
1054 	}
1055 #ifdef NFE_DEBUG
1056 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
1057 		device_printf(sc->nfe_dev, "could not write to PHY\n");
1058 #endif
1059 	return (0);
1060 }
1061 
1062 struct nfe_dmamap_arg {
1063 	bus_addr_t nfe_busaddr;
1064 };
1065 
1066 static int
1067 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1068 {
1069 	struct nfe_dmamap_arg ctx;
1070 	struct nfe_rx_data *data;
1071 	void *desc;
1072 	int i, error, descsize;
1073 
1074 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1075 		desc = ring->desc64;
1076 		descsize = sizeof (struct nfe_desc64);
1077 	} else {
1078 		desc = ring->desc32;
1079 		descsize = sizeof (struct nfe_desc32);
1080 	}
1081 
1082 	ring->cur = ring->next = 0;
1083 
1084 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1085 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1086 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1087 	    BUS_SPACE_MAXADDR,			/* highaddr */
1088 	    NULL, NULL,				/* filter, filterarg */
1089 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1090 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1091 	    0,					/* flags */
1092 	    NULL, NULL,				/* lockfunc, lockarg */
1093 	    &ring->rx_desc_tag);
1094 	if (error != 0) {
1095 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1096 		goto fail;
1097 	}
1098 
1099 	/* allocate memory to desc */
1100 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1101 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1102 	if (error != 0) {
1103 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1104 		goto fail;
1105 	}
1106 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1107 		ring->desc64 = desc;
1108 	else
1109 		ring->desc32 = desc;
1110 
1111 	/* map desc to device visible address space */
1112 	ctx.nfe_busaddr = 0;
1113 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1114 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1115 	if (error != 0) {
1116 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1117 		goto fail;
1118 	}
1119 	ring->physaddr = ctx.nfe_busaddr;
1120 
1121 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1122 	    1, 0,			/* alignment, boundary */
1123 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1124 	    BUS_SPACE_MAXADDR,		/* highaddr */
1125 	    NULL, NULL,			/* filter, filterarg */
1126 	    MCLBYTES, 1,		/* maxsize, nsegments */
1127 	    MCLBYTES,			/* maxsegsize */
1128 	    0,				/* flags */
1129 	    NULL, NULL,			/* lockfunc, lockarg */
1130 	    &ring->rx_data_tag);
1131 	if (error != 0) {
1132 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1133 		goto fail;
1134 	}
1135 
1136 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1137 	if (error != 0) {
1138 		device_printf(sc->nfe_dev,
1139 		    "could not create Rx DMA spare map\n");
1140 		goto fail;
1141 	}
1142 
1143 	/*
1144 	 * Pre-allocate Rx buffers and populate Rx ring.
1145 	 */
1146 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1147 		data = &sc->rxq.data[i];
1148 		data->rx_data_map = NULL;
1149 		data->m = NULL;
1150 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1151 		    &data->rx_data_map);
1152 		if (error != 0) {
1153 			device_printf(sc->nfe_dev,
1154 			    "could not create Rx DMA map\n");
1155 			goto fail;
1156 		}
1157 	}
1158 
1159 fail:
1160 	return (error);
1161 }
1162 
1163 
1164 static void
1165 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1166 {
1167 	struct nfe_dmamap_arg ctx;
1168 	struct nfe_rx_data *data;
1169 	void *desc;
1170 	int i, error, descsize;
1171 
1172 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1173 		return;
1174 	if (jumbo_disable != 0) {
1175 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1176 		sc->nfe_jumbo_disable = 1;
1177 		return;
1178 	}
1179 
1180 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1181 		desc = ring->jdesc64;
1182 		descsize = sizeof (struct nfe_desc64);
1183 	} else {
1184 		desc = ring->jdesc32;
1185 		descsize = sizeof (struct nfe_desc32);
1186 	}
1187 
1188 	ring->jcur = ring->jnext = 0;
1189 
1190 	/* Create DMA tag for jumbo Rx ring. */
1191 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1192 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1193 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1194 	    BUS_SPACE_MAXADDR,			/* highaddr */
1195 	    NULL, NULL,				/* filter, filterarg */
1196 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1197 	    1, 					/* nsegments */
1198 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1199 	    0,					/* flags */
1200 	    NULL, NULL,				/* lockfunc, lockarg */
1201 	    &ring->jrx_desc_tag);
1202 	if (error != 0) {
1203 		device_printf(sc->nfe_dev,
1204 		    "could not create jumbo ring DMA tag\n");
1205 		goto fail;
1206 	}
1207 
1208 	/* Create DMA tag for jumbo Rx buffers. */
1209 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1210 	    1, 0,				/* alignment, boundary */
1211 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1212 	    BUS_SPACE_MAXADDR,			/* highaddr */
1213 	    NULL, NULL,				/* filter, filterarg */
1214 	    MJUM9BYTES,				/* maxsize */
1215 	    1,					/* nsegments */
1216 	    MJUM9BYTES,				/* maxsegsize */
1217 	    0,					/* flags */
1218 	    NULL, NULL,				/* lockfunc, lockarg */
1219 	    &ring->jrx_data_tag);
1220 	if (error != 0) {
1221 		device_printf(sc->nfe_dev,
1222 		    "could not create jumbo Rx buffer DMA tag\n");
1223 		goto fail;
1224 	}
1225 
1226 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1227 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1228 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1229 	if (error != 0) {
1230 		device_printf(sc->nfe_dev,
1231 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1232 		goto fail;
1233 	}
1234 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1235 		ring->jdesc64 = desc;
1236 	else
1237 		ring->jdesc32 = desc;
1238 
1239 	ctx.nfe_busaddr = 0;
1240 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1241 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1242 	if (error != 0) {
1243 		device_printf(sc->nfe_dev,
1244 		    "could not load DMA'able memory for jumbo Rx ring\n");
1245 		goto fail;
1246 	}
1247 	ring->jphysaddr = ctx.nfe_busaddr;
1248 
1249 	/* Create DMA maps for jumbo Rx buffers. */
1250 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1251 	if (error != 0) {
1252 		device_printf(sc->nfe_dev,
1253 		    "could not create jumbo Rx DMA spare map\n");
1254 		goto fail;
1255 	}
1256 
1257 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1258 		data = &sc->jrxq.jdata[i];
1259 		data->rx_data_map = NULL;
1260 		data->m = NULL;
1261 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1262 		    &data->rx_data_map);
1263 		if (error != 0) {
1264 			device_printf(sc->nfe_dev,
1265 			    "could not create jumbo Rx DMA map\n");
1266 			goto fail;
1267 		}
1268 	}
1269 
1270 	return;
1271 
1272 fail:
1273 	/*
1274 	 * Running without jumbo frame support is ok for most cases
1275 	 * so don't fail on creating dma tag/map for jumbo frame.
1276 	 */
1277 	nfe_free_jrx_ring(sc, ring);
1278 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1279 	    "resource shortage\n");
1280 	sc->nfe_jumbo_disable = 1;
1281 }
1282 
1283 
1284 static int
1285 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1286 {
1287 	void *desc;
1288 	size_t descsize;
1289 	int i;
1290 
1291 	ring->cur = ring->next = 0;
1292 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1293 		desc = ring->desc64;
1294 		descsize = sizeof (struct nfe_desc64);
1295 	} else {
1296 		desc = ring->desc32;
1297 		descsize = sizeof (struct nfe_desc32);
1298 	}
1299 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1300 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1301 		if (nfe_newbuf(sc, i) != 0)
1302 			return (ENOBUFS);
1303 	}
1304 
1305 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1306 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1307 
1308 	return (0);
1309 }
1310 
1311 
1312 static int
1313 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1314 {
1315 	void *desc;
1316 	size_t descsize;
1317 	int i;
1318 
1319 	ring->jcur = ring->jnext = 0;
1320 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1321 		desc = ring->jdesc64;
1322 		descsize = sizeof (struct nfe_desc64);
1323 	} else {
1324 		desc = ring->jdesc32;
1325 		descsize = sizeof (struct nfe_desc32);
1326 	}
1327 	bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
1328 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1329 		if (nfe_jnewbuf(sc, i) != 0)
1330 			return (ENOBUFS);
1331 	}
1332 
1333 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1334 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1335 
1336 	return (0);
1337 }
1338 
1339 
1340 static void
1341 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1342 {
1343 	struct nfe_rx_data *data;
1344 	void *desc;
1345 	int i, descsize;
1346 
1347 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1348 		desc = ring->desc64;
1349 		descsize = sizeof (struct nfe_desc64);
1350 	} else {
1351 		desc = ring->desc32;
1352 		descsize = sizeof (struct nfe_desc32);
1353 	}
1354 
1355 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1356 		data = &ring->data[i];
1357 		if (data->rx_data_map != NULL) {
1358 			bus_dmamap_destroy(ring->rx_data_tag,
1359 			    data->rx_data_map);
1360 			data->rx_data_map = NULL;
1361 		}
1362 		if (data->m != NULL) {
1363 			m_freem(data->m);
1364 			data->m = NULL;
1365 		}
1366 	}
1367 	if (ring->rx_data_tag != NULL) {
1368 		if (ring->rx_spare_map != NULL) {
1369 			bus_dmamap_destroy(ring->rx_data_tag,
1370 			    ring->rx_spare_map);
1371 			ring->rx_spare_map = NULL;
1372 		}
1373 		bus_dma_tag_destroy(ring->rx_data_tag);
1374 		ring->rx_data_tag = NULL;
1375 	}
1376 
1377 	if (desc != NULL) {
1378 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1379 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1380 		ring->desc64 = NULL;
1381 		ring->desc32 = NULL;
1382 		ring->rx_desc_map = NULL;
1383 	}
1384 	if (ring->rx_desc_tag != NULL) {
1385 		bus_dma_tag_destroy(ring->rx_desc_tag);
1386 		ring->rx_desc_tag = NULL;
1387 	}
1388 }
1389 
1390 
1391 static void
1392 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1393 {
1394 	struct nfe_rx_data *data;
1395 	void *desc;
1396 	int i, descsize;
1397 
1398 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1399 		return;
1400 
1401 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1402 		desc = ring->jdesc64;
1403 		descsize = sizeof (struct nfe_desc64);
1404 	} else {
1405 		desc = ring->jdesc32;
1406 		descsize = sizeof (struct nfe_desc32);
1407 	}
1408 
1409 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1410 		data = &ring->jdata[i];
1411 		if (data->rx_data_map != NULL) {
1412 			bus_dmamap_destroy(ring->jrx_data_tag,
1413 			    data->rx_data_map);
1414 			data->rx_data_map = NULL;
1415 		}
1416 		if (data->m != NULL) {
1417 			m_freem(data->m);
1418 			data->m = NULL;
1419 		}
1420 	}
1421 	if (ring->jrx_data_tag != NULL) {
1422 		if (ring->jrx_spare_map != NULL) {
1423 			bus_dmamap_destroy(ring->jrx_data_tag,
1424 			    ring->jrx_spare_map);
1425 			ring->jrx_spare_map = NULL;
1426 		}
1427 		bus_dma_tag_destroy(ring->jrx_data_tag);
1428 		ring->jrx_data_tag = NULL;
1429 	}
1430 
1431 	if (desc != NULL) {
1432 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1433 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1434 		ring->jdesc64 = NULL;
1435 		ring->jdesc32 = NULL;
1436 		ring->jrx_desc_map = NULL;
1437 	}
1438 
1439 	if (ring->jrx_desc_tag != NULL) {
1440 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1441 		ring->jrx_desc_tag = NULL;
1442 	}
1443 }
1444 
1445 
1446 static int
1447 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1448 {
1449 	struct nfe_dmamap_arg ctx;
1450 	int i, error;
1451 	void *desc;
1452 	int descsize;
1453 
1454 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1455 		desc = ring->desc64;
1456 		descsize = sizeof (struct nfe_desc64);
1457 	} else {
1458 		desc = ring->desc32;
1459 		descsize = sizeof (struct nfe_desc32);
1460 	}
1461 
1462 	ring->queued = 0;
1463 	ring->cur = ring->next = 0;
1464 
1465 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1466 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1467 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1468 	    BUS_SPACE_MAXADDR,			/* highaddr */
1469 	    NULL, NULL,				/* filter, filterarg */
1470 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1471 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1472 	    0,					/* flags */
1473 	    NULL, NULL,				/* lockfunc, lockarg */
1474 	    &ring->tx_desc_tag);
1475 	if (error != 0) {
1476 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1477 		goto fail;
1478 	}
1479 
1480 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1481 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1482 	if (error != 0) {
1483 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1484 		goto fail;
1485 	}
1486 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1487 		ring->desc64 = desc;
1488 	else
1489 		ring->desc32 = desc;
1490 
1491 	ctx.nfe_busaddr = 0;
1492 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1493 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1494 	if (error != 0) {
1495 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1496 		goto fail;
1497 	}
1498 	ring->physaddr = ctx.nfe_busaddr;
1499 
1500 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1501 	    1, 0,
1502 	    BUS_SPACE_MAXADDR,
1503 	    BUS_SPACE_MAXADDR,
1504 	    NULL, NULL,
1505 	    NFE_TSO_MAXSIZE,
1506 	    NFE_MAX_SCATTER,
1507 	    NFE_TSO_MAXSGSIZE,
1508 	    0,
1509 	    NULL, NULL,
1510 	    &ring->tx_data_tag);
1511 	if (error != 0) {
1512 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1513 		goto fail;
1514 	}
1515 
1516 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1517 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1518 		    &ring->data[i].tx_data_map);
1519 		if (error != 0) {
1520 			device_printf(sc->nfe_dev,
1521 			    "could not create Tx DMA map\n");
1522 			goto fail;
1523 		}
1524 	}
1525 
1526 fail:
1527 	return (error);
1528 }
1529 
1530 
1531 static void
1532 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1533 {
1534 	void *desc;
1535 	size_t descsize;
1536 
1537 	sc->nfe_force_tx = 0;
1538 	ring->queued = 0;
1539 	ring->cur = ring->next = 0;
1540 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1541 		desc = ring->desc64;
1542 		descsize = sizeof (struct nfe_desc64);
1543 	} else {
1544 		desc = ring->desc32;
1545 		descsize = sizeof (struct nfe_desc32);
1546 	}
1547 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1548 
1549 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1550 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1551 }
1552 
1553 
1554 static void
1555 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1556 {
1557 	struct nfe_tx_data *data;
1558 	void *desc;
1559 	int i, descsize;
1560 
1561 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1562 		desc = ring->desc64;
1563 		descsize = sizeof (struct nfe_desc64);
1564 	} else {
1565 		desc = ring->desc32;
1566 		descsize = sizeof (struct nfe_desc32);
1567 	}
1568 
1569 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1570 		data = &ring->data[i];
1571 
1572 		if (data->m != NULL) {
1573 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1574 			    BUS_DMASYNC_POSTWRITE);
1575 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1576 			m_freem(data->m);
1577 			data->m = NULL;
1578 		}
1579 		if (data->tx_data_map != NULL) {
1580 			bus_dmamap_destroy(ring->tx_data_tag,
1581 			    data->tx_data_map);
1582 			data->tx_data_map = NULL;
1583 		}
1584 	}
1585 
1586 	if (ring->tx_data_tag != NULL) {
1587 		bus_dma_tag_destroy(ring->tx_data_tag);
1588 		ring->tx_data_tag = NULL;
1589 	}
1590 
1591 	if (desc != NULL) {
1592 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1593 		    BUS_DMASYNC_POSTWRITE);
1594 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1595 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1596 		ring->desc64 = NULL;
1597 		ring->desc32 = NULL;
1598 		ring->tx_desc_map = NULL;
1599 		bus_dma_tag_destroy(ring->tx_desc_tag);
1600 		ring->tx_desc_tag = NULL;
1601 	}
1602 }
1603 
1604 #ifdef DEVICE_POLLING
1605 static poll_handler_t nfe_poll;
1606 
1607 
1608 static int
1609 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1610 {
1611 	struct nfe_softc *sc = ifp->if_softc;
1612 	uint32_t r;
1613 	int rx_npkts = 0;
1614 
1615 	NFE_LOCK(sc);
1616 
1617 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1618 		NFE_UNLOCK(sc);
1619 		return (rx_npkts);
1620 	}
1621 
1622 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1623 		rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
1624 	else
1625 		rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
1626 	nfe_txeof(sc);
1627 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1628 		nfe_start_locked(ifp);
1629 
1630 	if (cmd == POLL_AND_CHECK_STATUS) {
1631 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1632 			NFE_UNLOCK(sc);
1633 			return (rx_npkts);
1634 		}
1635 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1636 
1637 		if (r & NFE_IRQ_LINK) {
1638 			NFE_READ(sc, NFE_PHY_STATUS);
1639 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1640 			DPRINTF(sc, "link state changed\n");
1641 		}
1642 	}
1643 	NFE_UNLOCK(sc);
1644 	return (rx_npkts);
1645 }
1646 #endif /* DEVICE_POLLING */
1647 
1648 static void
1649 nfe_set_intr(struct nfe_softc *sc)
1650 {
1651 
1652 	if (sc->nfe_msi != 0)
1653 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1654 }
1655 
1656 
1657 /* In MSIX, a write to mask reegisters behaves as XOR. */
1658 static __inline void
1659 nfe_enable_intr(struct nfe_softc *sc)
1660 {
1661 
1662 	if (sc->nfe_msix != 0) {
1663 		/* XXX Should have a better way to enable interrupts! */
1664 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1665 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1666 	} else
1667 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1668 }
1669 
1670 
1671 static __inline void
1672 nfe_disable_intr(struct nfe_softc *sc)
1673 {
1674 
1675 	if (sc->nfe_msix != 0) {
1676 		/* XXX Should have a better way to disable interrupts! */
1677 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1678 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1679 	} else
1680 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1681 }
1682 
1683 
1684 static int
1685 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1686 {
1687 	struct nfe_softc *sc;
1688 	struct ifreq *ifr;
1689 	struct mii_data *mii;
1690 	int error, init, mask;
1691 
1692 	sc = ifp->if_softc;
1693 	ifr = (struct ifreq *) data;
1694 	error = 0;
1695 	init = 0;
1696 	switch (cmd) {
1697 	case SIOCSIFMTU:
1698 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1699 			error = EINVAL;
1700 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1701 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1702 			    (sc->nfe_jumbo_disable != 0)) &&
1703 			    ifr->ifr_mtu > ETHERMTU)
1704 				error = EINVAL;
1705 			else {
1706 				NFE_LOCK(sc);
1707 				ifp->if_mtu = ifr->ifr_mtu;
1708 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1709 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1710 					nfe_init_locked(sc);
1711 				}
1712 				NFE_UNLOCK(sc);
1713 			}
1714 		}
1715 		break;
1716 	case SIOCSIFFLAGS:
1717 		NFE_LOCK(sc);
1718 		if (ifp->if_flags & IFF_UP) {
1719 			/*
1720 			 * If only the PROMISC or ALLMULTI flag changes, then
1721 			 * don't do a full re-init of the chip, just update
1722 			 * the Rx filter.
1723 			 */
1724 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1725 			    ((ifp->if_flags ^ sc->nfe_if_flags) &
1726 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1727 				nfe_setmulti(sc);
1728 			else
1729 				nfe_init_locked(sc);
1730 		} else {
1731 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1732 				nfe_stop(ifp);
1733 		}
1734 		sc->nfe_if_flags = ifp->if_flags;
1735 		NFE_UNLOCK(sc);
1736 		error = 0;
1737 		break;
1738 	case SIOCADDMULTI:
1739 	case SIOCDELMULTI:
1740 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1741 			NFE_LOCK(sc);
1742 			nfe_setmulti(sc);
1743 			NFE_UNLOCK(sc);
1744 			error = 0;
1745 		}
1746 		break;
1747 	case SIOCSIFMEDIA:
1748 	case SIOCGIFMEDIA:
1749 		mii = device_get_softc(sc->nfe_miibus);
1750 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1751 		break;
1752 	case SIOCSIFCAP:
1753 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1754 #ifdef DEVICE_POLLING
1755 		if ((mask & IFCAP_POLLING) != 0) {
1756 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1757 				error = ether_poll_register(nfe_poll, ifp);
1758 				if (error)
1759 					break;
1760 				NFE_LOCK(sc);
1761 				nfe_disable_intr(sc);
1762 				ifp->if_capenable |= IFCAP_POLLING;
1763 				NFE_UNLOCK(sc);
1764 			} else {
1765 				error = ether_poll_deregister(ifp);
1766 				/* Enable interrupt even in error case */
1767 				NFE_LOCK(sc);
1768 				nfe_enable_intr(sc);
1769 				ifp->if_capenable &= ~IFCAP_POLLING;
1770 				NFE_UNLOCK(sc);
1771 			}
1772 		}
1773 #endif /* DEVICE_POLLING */
1774 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1775 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1776 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1777 		if ((mask & IFCAP_TXCSUM) != 0 &&
1778 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1779 			ifp->if_capenable ^= IFCAP_TXCSUM;
1780 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1781 				ifp->if_hwassist |= NFE_CSUM_FEATURES;
1782 			else
1783 				ifp->if_hwassist &= ~NFE_CSUM_FEATURES;
1784 		}
1785 		if ((mask & IFCAP_RXCSUM) != 0 &&
1786 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1787 			ifp->if_capenable ^= IFCAP_RXCSUM;
1788 			init++;
1789 		}
1790 		if ((mask & IFCAP_TSO4) != 0 &&
1791 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1792 			ifp->if_capenable ^= IFCAP_TSO4;
1793 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1794 				ifp->if_hwassist |= CSUM_TSO;
1795 			else
1796 				ifp->if_hwassist &= ~CSUM_TSO;
1797 		}
1798 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1799 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1800 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1801 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1802 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1803 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1804 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1805 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1806 			init++;
1807 		}
1808 		/*
1809 		 * XXX
1810 		 * It seems that VLAN stripping requires Rx checksum offload.
1811 		 * Unfortunately FreeBSD has no way to disable only Rx side
1812 		 * VLAN stripping. So when we know Rx checksum offload is
1813 		 * disabled turn entire hardware VLAN assist off.
1814 		 */
1815 		if ((ifp->if_capenable & IFCAP_RXCSUM) == 0) {
1816 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
1817 				init++;
1818 			ifp->if_capenable &= ~(IFCAP_VLAN_HWTAGGING |
1819 			    IFCAP_VLAN_HWTSO);
1820 		}
1821 		if (init > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1822 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1823 			nfe_init(sc);
1824 		}
1825 		VLAN_CAPABILITIES(ifp);
1826 		break;
1827 	default:
1828 		error = ether_ioctl(ifp, cmd, data);
1829 		break;
1830 	}
1831 
1832 	return (error);
1833 }
1834 
1835 
1836 static int
1837 nfe_intr(void *arg)
1838 {
1839 	struct nfe_softc *sc;
1840 	uint32_t status;
1841 
1842 	sc = (struct nfe_softc *)arg;
1843 
1844 	status = NFE_READ(sc, sc->nfe_irq_status);
1845 	if (status == 0 || status == 0xffffffff)
1846 		return (FILTER_STRAY);
1847 	nfe_disable_intr(sc);
1848 	taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1849 
1850 	return (FILTER_HANDLED);
1851 }
1852 
1853 
1854 static void
1855 nfe_int_task(void *arg, int pending)
1856 {
1857 	struct nfe_softc *sc = arg;
1858 	struct ifnet *ifp = sc->nfe_ifp;
1859 	uint32_t r;
1860 	int domore;
1861 
1862 	NFE_LOCK(sc);
1863 
1864 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1865 		nfe_enable_intr(sc);
1866 		NFE_UNLOCK(sc);
1867 		return;	/* not for us */
1868 	}
1869 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1870 
1871 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1872 
1873 #ifdef DEVICE_POLLING
1874 	if (ifp->if_capenable & IFCAP_POLLING) {
1875 		NFE_UNLOCK(sc);
1876 		return;
1877 	}
1878 #endif
1879 
1880 	if (r & NFE_IRQ_LINK) {
1881 		NFE_READ(sc, NFE_PHY_STATUS);
1882 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1883 		DPRINTF(sc, "link state changed\n");
1884 	}
1885 
1886 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1887 		NFE_UNLOCK(sc);
1888 		nfe_disable_intr(sc);
1889 		return;
1890 	}
1891 
1892 	domore = 0;
1893 	/* check Rx ring */
1894 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1895 		domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
1896 	else
1897 		domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
1898 	/* check Tx ring */
1899 	nfe_txeof(sc);
1900 
1901 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1902 		nfe_start_locked(ifp);
1903 
1904 	NFE_UNLOCK(sc);
1905 
1906 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1907 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1908 		return;
1909 	}
1910 
1911 	/* Reenable interrupts. */
1912 	nfe_enable_intr(sc);
1913 }
1914 
1915 
1916 static __inline void
1917 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1918 {
1919 	struct nfe_desc32 *desc32;
1920 	struct nfe_desc64 *desc64;
1921 	struct nfe_rx_data *data;
1922 	struct mbuf *m;
1923 
1924 	data = &sc->rxq.data[idx];
1925 	m = data->m;
1926 
1927 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1928 		desc64 = &sc->rxq.desc64[idx];
1929 		/* VLAN packet may have overwritten it. */
1930 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1931 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1932 		desc64->length = htole16(m->m_len);
1933 		desc64->flags = htole16(NFE_RX_READY);
1934 	} else {
1935 		desc32 = &sc->rxq.desc32[idx];
1936 		desc32->length = htole16(m->m_len);
1937 		desc32->flags = htole16(NFE_RX_READY);
1938 	}
1939 }
1940 
1941 
1942 static __inline void
1943 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1944 {
1945 	struct nfe_desc32 *desc32;
1946 	struct nfe_desc64 *desc64;
1947 	struct nfe_rx_data *data;
1948 	struct mbuf *m;
1949 
1950 	data = &sc->jrxq.jdata[idx];
1951 	m = data->m;
1952 
1953 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1954 		desc64 = &sc->jrxq.jdesc64[idx];
1955 		/* VLAN packet may have overwritten it. */
1956 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1957 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1958 		desc64->length = htole16(m->m_len);
1959 		desc64->flags = htole16(NFE_RX_READY);
1960 	} else {
1961 		desc32 = &sc->jrxq.jdesc32[idx];
1962 		desc32->length = htole16(m->m_len);
1963 		desc32->flags = htole16(NFE_RX_READY);
1964 	}
1965 }
1966 
1967 
1968 static int
1969 nfe_newbuf(struct nfe_softc *sc, int idx)
1970 {
1971 	struct nfe_rx_data *data;
1972 	struct nfe_desc32 *desc32;
1973 	struct nfe_desc64 *desc64;
1974 	struct mbuf *m;
1975 	bus_dma_segment_t segs[1];
1976 	bus_dmamap_t map;
1977 	int nsegs;
1978 
1979 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1980 	if (m == NULL)
1981 		return (ENOBUFS);
1982 
1983 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1984 	m_adj(m, ETHER_ALIGN);
1985 
1986 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
1987 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
1988 		m_freem(m);
1989 		return (ENOBUFS);
1990 	}
1991 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1992 
1993 	data = &sc->rxq.data[idx];
1994 	if (data->m != NULL) {
1995 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
1996 		    BUS_DMASYNC_POSTREAD);
1997 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
1998 	}
1999 	map = data->rx_data_map;
2000 	data->rx_data_map = sc->rxq.rx_spare_map;
2001 	sc->rxq.rx_spare_map = map;
2002 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2003 	    BUS_DMASYNC_PREREAD);
2004 	data->paddr = segs[0].ds_addr;
2005 	data->m = m;
2006 	/* update mapping address in h/w descriptor */
2007 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2008 		desc64 = &sc->rxq.desc64[idx];
2009 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2010 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2011 		desc64->length = htole16(segs[0].ds_len);
2012 		desc64->flags = htole16(NFE_RX_READY);
2013 	} else {
2014 		desc32 = &sc->rxq.desc32[idx];
2015 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2016 		desc32->length = htole16(segs[0].ds_len);
2017 		desc32->flags = htole16(NFE_RX_READY);
2018 	}
2019 
2020 	return (0);
2021 }
2022 
2023 
2024 static int
2025 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2026 {
2027 	struct nfe_rx_data *data;
2028 	struct nfe_desc32 *desc32;
2029 	struct nfe_desc64 *desc64;
2030 	struct mbuf *m;
2031 	bus_dma_segment_t segs[1];
2032 	bus_dmamap_t map;
2033 	int nsegs;
2034 
2035 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2036 	if (m == NULL)
2037 		return (ENOBUFS);
2038 	if ((m->m_flags & M_EXT) == 0) {
2039 		m_freem(m);
2040 		return (ENOBUFS);
2041 	}
2042 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
2043 	m_adj(m, ETHER_ALIGN);
2044 
2045 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2046 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2047 		m_freem(m);
2048 		return (ENOBUFS);
2049 	}
2050 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2051 
2052 	data = &sc->jrxq.jdata[idx];
2053 	if (data->m != NULL) {
2054 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2055 		    BUS_DMASYNC_POSTREAD);
2056 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2057 	}
2058 	map = data->rx_data_map;
2059 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2060 	sc->jrxq.jrx_spare_map = map;
2061 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2062 	    BUS_DMASYNC_PREREAD);
2063 	data->paddr = segs[0].ds_addr;
2064 	data->m = m;
2065 	/* update mapping address in h/w descriptor */
2066 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2067 		desc64 = &sc->jrxq.jdesc64[idx];
2068 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2069 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2070 		desc64->length = htole16(segs[0].ds_len);
2071 		desc64->flags = htole16(NFE_RX_READY);
2072 	} else {
2073 		desc32 = &sc->jrxq.jdesc32[idx];
2074 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2075 		desc32->length = htole16(segs[0].ds_len);
2076 		desc32->flags = htole16(NFE_RX_READY);
2077 	}
2078 
2079 	return (0);
2080 }
2081 
2082 
2083 static int
2084 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2085 {
2086 	struct ifnet *ifp = sc->nfe_ifp;
2087 	struct nfe_desc32 *desc32;
2088 	struct nfe_desc64 *desc64;
2089 	struct nfe_rx_data *data;
2090 	struct mbuf *m;
2091 	uint16_t flags;
2092 	int len, prog, rx_npkts;
2093 	uint32_t vtag = 0;
2094 
2095 	rx_npkts = 0;
2096 	NFE_LOCK_ASSERT(sc);
2097 
2098 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2099 	    BUS_DMASYNC_POSTREAD);
2100 
2101 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2102 		if (count <= 0)
2103 			break;
2104 		count--;
2105 
2106 		data = &sc->rxq.data[sc->rxq.cur];
2107 
2108 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2109 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2110 			vtag = le32toh(desc64->physaddr[1]);
2111 			flags = le16toh(desc64->flags);
2112 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2113 		} else {
2114 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2115 			flags = le16toh(desc32->flags);
2116 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2117 		}
2118 
2119 		if (flags & NFE_RX_READY)
2120 			break;
2121 		prog++;
2122 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2123 			if (!(flags & NFE_RX_VALID_V1)) {
2124 				ifp->if_ierrors++;
2125 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2126 				continue;
2127 			}
2128 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2129 				flags &= ~NFE_RX_ERROR;
2130 				len--;	/* fix buffer length */
2131 			}
2132 		} else {
2133 			if (!(flags & NFE_RX_VALID_V2)) {
2134 				ifp->if_ierrors++;
2135 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2136 				continue;
2137 			}
2138 
2139 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2140 				flags &= ~NFE_RX_ERROR;
2141 				len--;	/* fix buffer length */
2142 			}
2143 		}
2144 
2145 		if (flags & NFE_RX_ERROR) {
2146 			ifp->if_ierrors++;
2147 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2148 			continue;
2149 		}
2150 
2151 		m = data->m;
2152 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2153 			ifp->if_iqdrops++;
2154 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2155 			continue;
2156 		}
2157 
2158 		if ((vtag & NFE_RX_VTAG) != 0 &&
2159 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2160 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2161 			m->m_flags |= M_VLANTAG;
2162 		}
2163 
2164 		m->m_pkthdr.len = m->m_len = len;
2165 		m->m_pkthdr.rcvif = ifp;
2166 
2167 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2168 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2169 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2170 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2171 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2172 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2173 					m->m_pkthdr.csum_flags |=
2174 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2175 					m->m_pkthdr.csum_data = 0xffff;
2176 				}
2177 			}
2178 		}
2179 
2180 		ifp->if_ipackets++;
2181 
2182 		NFE_UNLOCK(sc);
2183 		(*ifp->if_input)(ifp, m);
2184 		NFE_LOCK(sc);
2185 		rx_npkts++;
2186 	}
2187 
2188 	if (prog > 0)
2189 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2190 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2191 
2192 	if (rx_npktsp != NULL)
2193 		*rx_npktsp = rx_npkts;
2194 	return (count > 0 ? 0 : EAGAIN);
2195 }
2196 
2197 
2198 static int
2199 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2200 {
2201 	struct ifnet *ifp = sc->nfe_ifp;
2202 	struct nfe_desc32 *desc32;
2203 	struct nfe_desc64 *desc64;
2204 	struct nfe_rx_data *data;
2205 	struct mbuf *m;
2206 	uint16_t flags;
2207 	int len, prog, rx_npkts;
2208 	uint32_t vtag = 0;
2209 
2210 	rx_npkts = 0;
2211 	NFE_LOCK_ASSERT(sc);
2212 
2213 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2214 	    BUS_DMASYNC_POSTREAD);
2215 
2216 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2217 	    vtag = 0) {
2218 		if (count <= 0)
2219 			break;
2220 		count--;
2221 
2222 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2223 
2224 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2225 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2226 			vtag = le32toh(desc64->physaddr[1]);
2227 			flags = le16toh(desc64->flags);
2228 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2229 		} else {
2230 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2231 			flags = le16toh(desc32->flags);
2232 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2233 		}
2234 
2235 		if (flags & NFE_RX_READY)
2236 			break;
2237 		prog++;
2238 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2239 			if (!(flags & NFE_RX_VALID_V1)) {
2240 				ifp->if_ierrors++;
2241 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2242 				continue;
2243 			}
2244 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2245 				flags &= ~NFE_RX_ERROR;
2246 				len--;	/* fix buffer length */
2247 			}
2248 		} else {
2249 			if (!(flags & NFE_RX_VALID_V2)) {
2250 				ifp->if_ierrors++;
2251 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2252 				continue;
2253 			}
2254 
2255 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2256 				flags &= ~NFE_RX_ERROR;
2257 				len--;	/* fix buffer length */
2258 			}
2259 		}
2260 
2261 		if (flags & NFE_RX_ERROR) {
2262 			ifp->if_ierrors++;
2263 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2264 			continue;
2265 		}
2266 
2267 		m = data->m;
2268 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2269 			ifp->if_iqdrops++;
2270 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2271 			continue;
2272 		}
2273 
2274 		if ((vtag & NFE_RX_VTAG) != 0 &&
2275 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2276 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2277 			m->m_flags |= M_VLANTAG;
2278 		}
2279 
2280 		m->m_pkthdr.len = m->m_len = len;
2281 		m->m_pkthdr.rcvif = ifp;
2282 
2283 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2284 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2285 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2286 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2287 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2288 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2289 					m->m_pkthdr.csum_flags |=
2290 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2291 					m->m_pkthdr.csum_data = 0xffff;
2292 				}
2293 			}
2294 		}
2295 
2296 		ifp->if_ipackets++;
2297 
2298 		NFE_UNLOCK(sc);
2299 		(*ifp->if_input)(ifp, m);
2300 		NFE_LOCK(sc);
2301 		rx_npkts++;
2302 	}
2303 
2304 	if (prog > 0)
2305 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2306 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2307 
2308 	if (rx_npktsp != NULL)
2309 		*rx_npktsp = rx_npkts;
2310 	return (count > 0 ? 0 : EAGAIN);
2311 }
2312 
2313 
2314 static void
2315 nfe_txeof(struct nfe_softc *sc)
2316 {
2317 	struct ifnet *ifp = sc->nfe_ifp;
2318 	struct nfe_desc32 *desc32;
2319 	struct nfe_desc64 *desc64;
2320 	struct nfe_tx_data *data = NULL;
2321 	uint16_t flags;
2322 	int cons, prog;
2323 
2324 	NFE_LOCK_ASSERT(sc);
2325 
2326 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2327 	    BUS_DMASYNC_POSTREAD);
2328 
2329 	prog = 0;
2330 	for (cons = sc->txq.next; cons != sc->txq.cur;
2331 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2332 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2333 			desc64 = &sc->txq.desc64[cons];
2334 			flags = le16toh(desc64->flags);
2335 		} else {
2336 			desc32 = &sc->txq.desc32[cons];
2337 			flags = le16toh(desc32->flags);
2338 		}
2339 
2340 		if (flags & NFE_TX_VALID)
2341 			break;
2342 
2343 		prog++;
2344 		sc->txq.queued--;
2345 		data = &sc->txq.data[cons];
2346 
2347 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2348 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2349 				continue;
2350 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2351 				device_printf(sc->nfe_dev,
2352 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2353 
2354 				ifp->if_oerrors++;
2355 			} else
2356 				ifp->if_opackets++;
2357 		} else {
2358 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2359 				continue;
2360 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2361 				device_printf(sc->nfe_dev,
2362 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2363 				ifp->if_oerrors++;
2364 			} else
2365 				ifp->if_opackets++;
2366 		}
2367 
2368 		/* last fragment of the mbuf chain transmitted */
2369 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2370 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2371 		    BUS_DMASYNC_POSTWRITE);
2372 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2373 		m_freem(data->m);
2374 		data->m = NULL;
2375 	}
2376 
2377 	if (prog > 0) {
2378 		sc->nfe_force_tx = 0;
2379 		sc->txq.next = cons;
2380 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2381 		if (sc->txq.queued == 0)
2382 			sc->nfe_watchdog_timer = 0;
2383 	}
2384 }
2385 
2386 static int
2387 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2388 {
2389 	struct nfe_desc32 *desc32 = NULL;
2390 	struct nfe_desc64 *desc64 = NULL;
2391 	bus_dmamap_t map;
2392 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2393 	int error, i, nsegs, prod, si;
2394 	uint32_t tso_segsz;
2395 	uint16_t cflags, flags;
2396 	struct mbuf *m;
2397 
2398 	prod = si = sc->txq.cur;
2399 	map = sc->txq.data[prod].tx_data_map;
2400 
2401 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2402 	    &nsegs, BUS_DMA_NOWAIT);
2403 	if (error == EFBIG) {
2404 		m = m_collapse(*m_head, M_DONTWAIT, NFE_MAX_SCATTER);
2405 		if (m == NULL) {
2406 			m_freem(*m_head);
2407 			*m_head = NULL;
2408 			return (ENOBUFS);
2409 		}
2410 		*m_head = m;
2411 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2412 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2413 		if (error != 0) {
2414 			m_freem(*m_head);
2415 			*m_head = NULL;
2416 			return (ENOBUFS);
2417 		}
2418 	} else if (error != 0)
2419 		return (error);
2420 	if (nsegs == 0) {
2421 		m_freem(*m_head);
2422 		*m_head = NULL;
2423 		return (EIO);
2424 	}
2425 
2426 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2427 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2428 		return (ENOBUFS);
2429 	}
2430 
2431 	m = *m_head;
2432 	cflags = flags = 0;
2433 	tso_segsz = 0;
2434 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2435 		tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2436 		    NFE_TX_TSO_SHIFT;
2437 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2438 		cflags |= NFE_TX_TSO;
2439 	} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2440 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2441 			cflags |= NFE_TX_IP_CSUM;
2442 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2443 			cflags |= NFE_TX_TCP_UDP_CSUM;
2444 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2445 			cflags |= NFE_TX_TCP_UDP_CSUM;
2446 	}
2447 
2448 	for (i = 0; i < nsegs; i++) {
2449 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2450 			desc64 = &sc->txq.desc64[prod];
2451 			desc64->physaddr[0] =
2452 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2453 			desc64->physaddr[1] =
2454 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2455 			desc64->vtag = 0;
2456 			desc64->length = htole16(segs[i].ds_len - 1);
2457 			desc64->flags = htole16(flags);
2458 		} else {
2459 			desc32 = &sc->txq.desc32[prod];
2460 			desc32->physaddr =
2461 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2462 			desc32->length = htole16(segs[i].ds_len - 1);
2463 			desc32->flags = htole16(flags);
2464 		}
2465 
2466 		/*
2467 		 * Setting of the valid bit in the first descriptor is
2468 		 * deferred until the whole chain is fully setup.
2469 		 */
2470 		flags |= NFE_TX_VALID;
2471 
2472 		sc->txq.queued++;
2473 		NFE_INC(prod, NFE_TX_RING_COUNT);
2474 	}
2475 
2476 	/*
2477 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2478 	 * csum flags, vtag and TSO belong to the first fragment only.
2479 	 */
2480 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2481 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2482 		desc64 = &sc->txq.desc64[si];
2483 		if ((m->m_flags & M_VLANTAG) != 0)
2484 			desc64->vtag = htole32(NFE_TX_VTAG |
2485 			    m->m_pkthdr.ether_vtag);
2486 		if (tso_segsz != 0) {
2487 			/*
2488 			 * XXX
2489 			 * The following indicates the descriptor element
2490 			 * is a 32bit quantity.
2491 			 */
2492 			desc64->length |= htole16((uint16_t)tso_segsz);
2493 			desc64->flags |= htole16(tso_segsz >> 16);
2494 		}
2495 		/*
2496 		 * finally, set the valid/checksum/TSO bit in the first
2497 		 * descriptor.
2498 		 */
2499 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2500 	} else {
2501 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2502 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2503 		else
2504 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2505 		desc32 = &sc->txq.desc32[si];
2506 		if (tso_segsz != 0) {
2507 			/*
2508 			 * XXX
2509 			 * The following indicates the descriptor element
2510 			 * is a 32bit quantity.
2511 			 */
2512 			desc32->length |= htole16((uint16_t)tso_segsz);
2513 			desc32->flags |= htole16(tso_segsz >> 16);
2514 		}
2515 		/*
2516 		 * finally, set the valid/checksum/TSO bit in the first
2517 		 * descriptor.
2518 		 */
2519 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2520 	}
2521 
2522 	sc->txq.cur = prod;
2523 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2524 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2525 	sc->txq.data[prod].tx_data_map = map;
2526 	sc->txq.data[prod].m = m;
2527 
2528 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2529 
2530 	return (0);
2531 }
2532 
2533 
2534 static void
2535 nfe_setmulti(struct nfe_softc *sc)
2536 {
2537 	struct ifnet *ifp = sc->nfe_ifp;
2538 	struct ifmultiaddr *ifma;
2539 	int i;
2540 	uint32_t filter;
2541 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2542 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2543 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2544 	};
2545 
2546 	NFE_LOCK_ASSERT(sc);
2547 
2548 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2549 		bzero(addr, ETHER_ADDR_LEN);
2550 		bzero(mask, ETHER_ADDR_LEN);
2551 		goto done;
2552 	}
2553 
2554 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2555 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2556 
2557 	if_maddr_rlock(ifp);
2558 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2559 		u_char *addrp;
2560 
2561 		if (ifma->ifma_addr->sa_family != AF_LINK)
2562 			continue;
2563 
2564 		addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2565 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
2566 			u_int8_t mcaddr = addrp[i];
2567 			addr[i] &= mcaddr;
2568 			mask[i] &= ~mcaddr;
2569 		}
2570 	}
2571 	if_maddr_runlock(ifp);
2572 
2573 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2574 		mask[i] |= addr[i];
2575 	}
2576 
2577 done:
2578 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2579 
2580 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2581 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2582 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2583 	    addr[5] <<  8 | addr[4]);
2584 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2585 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2586 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2587 	    mask[5] <<  8 | mask[4]);
2588 
2589 	filter = NFE_READ(sc, NFE_RXFILTER);
2590 	filter &= NFE_PFF_RX_PAUSE;
2591 	filter |= NFE_RXFILTER_MAGIC;
2592 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2593 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2594 }
2595 
2596 
2597 static void
2598 nfe_start(struct ifnet *ifp)
2599 {
2600 	struct nfe_softc *sc = ifp->if_softc;
2601 
2602 	NFE_LOCK(sc);
2603 	nfe_start_locked(ifp);
2604 	NFE_UNLOCK(sc);
2605 }
2606 
2607 static void
2608 nfe_start_locked(struct ifnet *ifp)
2609 {
2610 	struct nfe_softc *sc = ifp->if_softc;
2611 	struct mbuf *m0;
2612 	int enq;
2613 
2614 	NFE_LOCK_ASSERT(sc);
2615 
2616 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2617 	    IFF_DRV_RUNNING || sc->nfe_link == 0)
2618 		return;
2619 
2620 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2621 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2622 		if (m0 == NULL)
2623 			break;
2624 
2625 		if (nfe_encap(sc, &m0) != 0) {
2626 			if (m0 == NULL)
2627 				break;
2628 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2629 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2630 			break;
2631 		}
2632 		enq++;
2633 		ETHER_BPF_MTAP(ifp, m0);
2634 	}
2635 
2636 	if (enq > 0) {
2637 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2638 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2639 
2640 		/* kick Tx */
2641 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2642 
2643 		/*
2644 		 * Set a timeout in case the chip goes out to lunch.
2645 		 */
2646 		sc->nfe_watchdog_timer = 5;
2647 	}
2648 }
2649 
2650 
2651 static void
2652 nfe_watchdog(struct ifnet *ifp)
2653 {
2654 	struct nfe_softc *sc = ifp->if_softc;
2655 
2656 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2657 		return;
2658 
2659 	/* Check if we've lost Tx completion interrupt. */
2660 	nfe_txeof(sc);
2661 	if (sc->txq.queued == 0) {
2662 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2663 		    "-- recovering\n");
2664 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2665 			nfe_start_locked(ifp);
2666 		return;
2667 	}
2668 	/* Check if we've lost start Tx command. */
2669 	sc->nfe_force_tx++;
2670 	if (sc->nfe_force_tx <= 3) {
2671 		/*
2672 		 * If this is the case for watchdog timeout, the following
2673 		 * code should go to nfe_txeof().
2674 		 */
2675 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2676 		return;
2677 	}
2678 	sc->nfe_force_tx = 0;
2679 
2680 	if_printf(ifp, "watchdog timeout\n");
2681 
2682 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2683 	ifp->if_oerrors++;
2684 	nfe_init_locked(sc);
2685 }
2686 
2687 
2688 static void
2689 nfe_init(void *xsc)
2690 {
2691 	struct nfe_softc *sc = xsc;
2692 
2693 	NFE_LOCK(sc);
2694 	nfe_init_locked(sc);
2695 	NFE_UNLOCK(sc);
2696 }
2697 
2698 
2699 static void
2700 nfe_init_locked(void *xsc)
2701 {
2702 	struct nfe_softc *sc = xsc;
2703 	struct ifnet *ifp = sc->nfe_ifp;
2704 	struct mii_data *mii;
2705 	uint32_t val;
2706 	int error;
2707 
2708 	NFE_LOCK_ASSERT(sc);
2709 
2710 	mii = device_get_softc(sc->nfe_miibus);
2711 
2712 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2713 		return;
2714 
2715 	nfe_stop(ifp);
2716 
2717 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
2718 
2719 	nfe_init_tx_ring(sc, &sc->txq);
2720 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2721 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2722 	else
2723 		error = nfe_init_rx_ring(sc, &sc->rxq);
2724 	if (error != 0) {
2725 		device_printf(sc->nfe_dev,
2726 		    "initialization failed: no memory for rx buffers\n");
2727 		nfe_stop(ifp);
2728 		return;
2729 	}
2730 
2731 	val = 0;
2732 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2733 		val |= NFE_MAC_ADDR_INORDER;
2734 	NFE_WRITE(sc, NFE_TX_UNK, val);
2735 	NFE_WRITE(sc, NFE_STATUS, 0);
2736 
2737 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2738 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2739 
2740 	sc->rxtxctl = NFE_RXTX_BIT2;
2741 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2742 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2743 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2744 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2745 
2746 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2747 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2748 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2749 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2750 
2751 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2752 	DELAY(10);
2753 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2754 
2755 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2756 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2757 	else
2758 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2759 
2760 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2761 
2762 	/* set MAC address */
2763 	nfe_set_macaddr(sc, IF_LLADDR(ifp));
2764 
2765 	/* tell MAC where rings are in memory */
2766 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2767 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2768 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2769 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2770 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2771 	} else {
2772 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2773 		    NFE_ADDR_HI(sc->rxq.physaddr));
2774 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2775 		    NFE_ADDR_LO(sc->rxq.physaddr));
2776 	}
2777 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2778 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2779 
2780 	NFE_WRITE(sc, NFE_RING_SIZE,
2781 	    (NFE_RX_RING_COUNT - 1) << 16 |
2782 	    (NFE_TX_RING_COUNT - 1));
2783 
2784 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2785 
2786 	/* force MAC to wakeup */
2787 	val = NFE_READ(sc, NFE_PWR_STATE);
2788 	if ((val & NFE_PWR_WAKEUP) == 0)
2789 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2790 	DELAY(10);
2791 	val = NFE_READ(sc, NFE_PWR_STATE);
2792 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2793 
2794 #if 1
2795 	/* configure interrupts coalescing/mitigation */
2796 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2797 #else
2798 	/* no interrupt mitigation: one interrupt per packet */
2799 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2800 #endif
2801 
2802 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2803 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2804 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2805 
2806 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2807 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2808 
2809 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2810 	/* Disable WOL. */
2811 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
2812 
2813 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2814 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2815 	DELAY(10);
2816 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2817 
2818 	/* set Rx filter */
2819 	nfe_setmulti(sc);
2820 
2821 	/* enable Rx */
2822 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2823 
2824 	/* enable Tx */
2825 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2826 
2827 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2828 
2829 	/* Clear hardware stats. */
2830 	nfe_stats_clear(sc);
2831 
2832 #ifdef DEVICE_POLLING
2833 	if (ifp->if_capenable & IFCAP_POLLING)
2834 		nfe_disable_intr(sc);
2835 	else
2836 #endif
2837 	nfe_set_intr(sc);
2838 	nfe_enable_intr(sc); /* enable interrupts */
2839 
2840 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2841 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2842 
2843 	sc->nfe_link = 0;
2844 	mii_mediachg(mii);
2845 
2846 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2847 }
2848 
2849 
2850 static void
2851 nfe_stop(struct ifnet *ifp)
2852 {
2853 	struct nfe_softc *sc = ifp->if_softc;
2854 	struct nfe_rx_ring *rx_ring;
2855 	struct nfe_jrx_ring *jrx_ring;
2856 	struct nfe_tx_ring *tx_ring;
2857 	struct nfe_rx_data *rdata;
2858 	struct nfe_tx_data *tdata;
2859 	int i;
2860 
2861 	NFE_LOCK_ASSERT(sc);
2862 
2863 	sc->nfe_watchdog_timer = 0;
2864 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2865 
2866 	callout_stop(&sc->nfe_stat_ch);
2867 
2868 	/* abort Tx */
2869 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2870 
2871 	/* disable Rx */
2872 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2873 
2874 	/* disable interrupts */
2875 	nfe_disable_intr(sc);
2876 
2877 	sc->nfe_link = 0;
2878 
2879 	/* free Rx and Tx mbufs still in the queues. */
2880 	rx_ring = &sc->rxq;
2881 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2882 		rdata = &rx_ring->data[i];
2883 		if (rdata->m != NULL) {
2884 			bus_dmamap_sync(rx_ring->rx_data_tag,
2885 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2886 			bus_dmamap_unload(rx_ring->rx_data_tag,
2887 			    rdata->rx_data_map);
2888 			m_freem(rdata->m);
2889 			rdata->m = NULL;
2890 		}
2891 	}
2892 
2893 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2894 		jrx_ring = &sc->jrxq;
2895 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2896 			rdata = &jrx_ring->jdata[i];
2897 			if (rdata->m != NULL) {
2898 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2899 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2900 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2901 				    rdata->rx_data_map);
2902 				m_freem(rdata->m);
2903 				rdata->m = NULL;
2904 			}
2905 		}
2906 	}
2907 
2908 	tx_ring = &sc->txq;
2909 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2910 		tdata = &tx_ring->data[i];
2911 		if (tdata->m != NULL) {
2912 			bus_dmamap_sync(tx_ring->tx_data_tag,
2913 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2914 			bus_dmamap_unload(tx_ring->tx_data_tag,
2915 			    tdata->tx_data_map);
2916 			m_freem(tdata->m);
2917 			tdata->m = NULL;
2918 		}
2919 	}
2920 	/* Update hardware stats. */
2921 	nfe_stats_update(sc);
2922 }
2923 
2924 
2925 static int
2926 nfe_ifmedia_upd(struct ifnet *ifp)
2927 {
2928 	struct nfe_softc *sc = ifp->if_softc;
2929 	struct mii_data *mii;
2930 
2931 	NFE_LOCK(sc);
2932 	mii = device_get_softc(sc->nfe_miibus);
2933 	mii_mediachg(mii);
2934 	NFE_UNLOCK(sc);
2935 
2936 	return (0);
2937 }
2938 
2939 
2940 static void
2941 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2942 {
2943 	struct nfe_softc *sc;
2944 	struct mii_data *mii;
2945 
2946 	sc = ifp->if_softc;
2947 
2948 	NFE_LOCK(sc);
2949 	mii = device_get_softc(sc->nfe_miibus);
2950 	mii_pollstat(mii);
2951 
2952 	ifmr->ifm_active = mii->mii_media_active;
2953 	ifmr->ifm_status = mii->mii_media_status;
2954 	NFE_UNLOCK(sc);
2955 }
2956 
2957 
2958 void
2959 nfe_tick(void *xsc)
2960 {
2961 	struct nfe_softc *sc;
2962 	struct mii_data *mii;
2963 	struct ifnet *ifp;
2964 
2965 	sc = (struct nfe_softc *)xsc;
2966 
2967 	NFE_LOCK_ASSERT(sc);
2968 
2969 	ifp = sc->nfe_ifp;
2970 
2971 	mii = device_get_softc(sc->nfe_miibus);
2972 	mii_tick(mii);
2973 	nfe_stats_update(sc);
2974 	nfe_watchdog(ifp);
2975 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2976 }
2977 
2978 
2979 static int
2980 nfe_shutdown(device_t dev)
2981 {
2982 
2983 	return (nfe_suspend(dev));
2984 }
2985 
2986 
2987 static void
2988 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2989 {
2990 	uint32_t val;
2991 
2992 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
2993 		val = NFE_READ(sc, NFE_MACADDR_LO);
2994 		addr[0] = (val >> 8) & 0xff;
2995 		addr[1] = (val & 0xff);
2996 
2997 		val = NFE_READ(sc, NFE_MACADDR_HI);
2998 		addr[2] = (val >> 24) & 0xff;
2999 		addr[3] = (val >> 16) & 0xff;
3000 		addr[4] = (val >>  8) & 0xff;
3001 		addr[5] = (val & 0xff);
3002 	} else {
3003 		val = NFE_READ(sc, NFE_MACADDR_LO);
3004 		addr[5] = (val >> 8) & 0xff;
3005 		addr[4] = (val & 0xff);
3006 
3007 		val = NFE_READ(sc, NFE_MACADDR_HI);
3008 		addr[3] = (val >> 24) & 0xff;
3009 		addr[2] = (val >> 16) & 0xff;
3010 		addr[1] = (val >>  8) & 0xff;
3011 		addr[0] = (val & 0xff);
3012 	}
3013 }
3014 
3015 
3016 static void
3017 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3018 {
3019 
3020 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3021 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3022 	    addr[1] << 8 | addr[0]);
3023 }
3024 
3025 
3026 /*
3027  * Map a single buffer address.
3028  */
3029 
3030 static void
3031 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3032 {
3033 	struct nfe_dmamap_arg *ctx;
3034 
3035 	if (error != 0)
3036 		return;
3037 
3038 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3039 
3040 	ctx = (struct nfe_dmamap_arg *)arg;
3041 	ctx->nfe_busaddr = segs[0].ds_addr;
3042 }
3043 
3044 
3045 static int
3046 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3047 {
3048 	int error, value;
3049 
3050 	if (!arg1)
3051 		return (EINVAL);
3052 	value = *(int *)arg1;
3053 	error = sysctl_handle_int(oidp, &value, 0, req);
3054 	if (error || !req->newptr)
3055 		return (error);
3056 	if (value < low || value > high)
3057 		return (EINVAL);
3058 	*(int *)arg1 = value;
3059 
3060 	return (0);
3061 }
3062 
3063 
3064 static int
3065 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3066 {
3067 
3068 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3069 	    NFE_PROC_MAX));
3070 }
3071 
3072 
3073 #define	NFE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
3074 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3075 #define	NFE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
3076 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
3077 
3078 static void
3079 nfe_sysctl_node(struct nfe_softc *sc)
3080 {
3081 	struct sysctl_ctx_list *ctx;
3082 	struct sysctl_oid_list *child, *parent;
3083 	struct sysctl_oid *tree;
3084 	struct nfe_hw_stats *stats;
3085 	int error;
3086 
3087 	stats = &sc->nfe_stats;
3088 	ctx = device_get_sysctl_ctx(sc->nfe_dev);
3089 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
3090 	SYSCTL_ADD_PROC(ctx, child,
3091 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
3092 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
3093 	    "max number of Rx events to process");
3094 
3095 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
3096 	error = resource_int_value(device_get_name(sc->nfe_dev),
3097 	    device_get_unit(sc->nfe_dev), "process_limit",
3098 	    &sc->nfe_process_limit);
3099 	if (error == 0) {
3100 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
3101 		    sc->nfe_process_limit > NFE_PROC_MAX) {
3102 			device_printf(sc->nfe_dev,
3103 			    "process_limit value out of range; "
3104 			    "using default: %d\n", NFE_PROC_DEFAULT);
3105 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
3106 		}
3107 	}
3108 
3109 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3110 		return;
3111 
3112 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3113 	    NULL, "NFE statistics");
3114 	parent = SYSCTL_CHILDREN(tree);
3115 
3116 	/* Rx statistics. */
3117 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3118 	    NULL, "Rx MAC statistics");
3119 	child = SYSCTL_CHILDREN(tree);
3120 
3121 	NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
3122 	    &stats->rx_frame_errors, "Framing Errors");
3123 	NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
3124 	    &stats->rx_extra_bytes, "Extra Bytes");
3125 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3126 	    &stats->rx_late_cols, "Late Collisions");
3127 	NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
3128 	    &stats->rx_runts, "Runts");
3129 	NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
3130 	    &stats->rx_jumbos, "Jumbos");
3131 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
3132 	    &stats->rx_fifo_overuns, "FIFO Overruns");
3133 	NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
3134 	    &stats->rx_crc_errors, "CRC Errors");
3135 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
3136 	    &stats->rx_fae, "Frame Alignment Errors");
3137 	NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
3138 	    &stats->rx_len_errors, "Length Errors");
3139 	NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3140 	    &stats->rx_unicast, "Unicast Frames");
3141 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3142 	    &stats->rx_multicast, "Multicast Frames");
3143 	NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3144 	    &stats->rx_broadcast, "Broadcast Frames");
3145 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3146 		NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3147 		    &stats->rx_octets, "Octets");
3148 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3149 		    &stats->rx_pause, "Pause frames");
3150 		NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
3151 		    &stats->rx_drops, "Drop frames");
3152 	}
3153 
3154 	/* Tx statistics. */
3155 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3156 	    NULL, "Tx MAC statistics");
3157 	child = SYSCTL_CHILDREN(tree);
3158 	NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3159 	    &stats->tx_octets, "Octets");
3160 	NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
3161 	    &stats->tx_zero_rexmits, "Zero Retransmits");
3162 	NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
3163 	    &stats->tx_one_rexmits, "One Retransmits");
3164 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
3165 	    &stats->tx_multi_rexmits, "Multiple Retransmits");
3166 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3167 	    &stats->tx_late_cols, "Late Collisions");
3168 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
3169 	    &stats->tx_fifo_underuns, "FIFO Underruns");
3170 	NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
3171 	    &stats->tx_carrier_losts, "Carrier Losts");
3172 	NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
3173 	    &stats->tx_excess_deferals, "Excess Deferrals");
3174 	NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
3175 	    &stats->tx_retry_errors, "Retry Errors");
3176 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3177 		NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
3178 		    &stats->tx_deferals, "Deferrals");
3179 		NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
3180 		    &stats->tx_frames, "Frames");
3181 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3182 		    &stats->tx_pause, "Pause Frames");
3183 	}
3184 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3185 		NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3186 		    &stats->tx_deferals, "Unicast Frames");
3187 		NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3188 		    &stats->tx_frames, "Multicast Frames");
3189 		NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3190 		    &stats->tx_pause, "Broadcast Frames");
3191 	}
3192 }
3193 
3194 #undef NFE_SYSCTL_STAT_ADD32
3195 #undef NFE_SYSCTL_STAT_ADD64
3196 
3197 static void
3198 nfe_stats_clear(struct nfe_softc *sc)
3199 {
3200 	int i, mib_cnt;
3201 
3202 	if ((sc->nfe_flags & NFE_MIB_V1) != 0)
3203 		mib_cnt = NFE_NUM_MIB_STATV1;
3204 	else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
3205 		mib_cnt = NFE_NUM_MIB_STATV2;
3206 	else
3207 		return;
3208 
3209 	for (i = 0; i < mib_cnt; i += sizeof(uint32_t))
3210 		NFE_READ(sc, NFE_TX_OCTET + i);
3211 
3212 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3213 		NFE_READ(sc, NFE_TX_UNICAST);
3214 		NFE_READ(sc, NFE_TX_MULTICAST);
3215 		NFE_READ(sc, NFE_TX_BROADCAST);
3216 	}
3217 }
3218 
3219 static void
3220 nfe_stats_update(struct nfe_softc *sc)
3221 {
3222 	struct nfe_hw_stats *stats;
3223 
3224 	NFE_LOCK_ASSERT(sc);
3225 
3226 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3227 		return;
3228 
3229 	stats = &sc->nfe_stats;
3230 	stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
3231 	stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
3232 	stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
3233 	stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
3234 	stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
3235 	stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
3236 	stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
3237 	stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
3238 	stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
3239 	stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
3240 	stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
3241 	stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
3242 	stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
3243 	stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
3244 	stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
3245 	stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
3246 	stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
3247 	stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
3248 	stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
3249 	stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
3250 	stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
3251 
3252 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3253 		stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
3254 		stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
3255 		stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
3256 		stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
3257 		stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
3258 		stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
3259 	}
3260 
3261 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3262 		stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
3263 		stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
3264 		stats->rx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
3265 	}
3266 }
3267 
3268 
3269 static void
3270 nfe_set_linkspeed(struct nfe_softc *sc)
3271 {
3272 	struct mii_softc *miisc;
3273 	struct mii_data *mii;
3274 	int aneg, i, phyno;
3275 
3276 	NFE_LOCK_ASSERT(sc);
3277 
3278 	mii = device_get_softc(sc->nfe_miibus);
3279 	mii_pollstat(mii);
3280 	aneg = 0;
3281 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3282 	    (IFM_ACTIVE | IFM_AVALID)) {
3283 		switch IFM_SUBTYPE(mii->mii_media_active) {
3284 		case IFM_10_T:
3285 		case IFM_100_TX:
3286 			return;
3287 		case IFM_1000_T:
3288 			aneg++;
3289 			break;
3290 		default:
3291 			break;
3292 		}
3293 	}
3294 	miisc = LIST_FIRST(&mii->mii_phys);
3295 	phyno = miisc->mii_phy;
3296 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3297 		PHY_RESET(miisc);
3298 	nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
3299 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3300 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3301 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3302 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
3303 	DELAY(1000);
3304 	if (aneg != 0) {
3305 		/*
3306 		 * Poll link state until nfe(4) get a 10/100Mbps link.
3307 		 */
3308 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3309 			mii_pollstat(mii);
3310 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3311 			    == (IFM_ACTIVE | IFM_AVALID)) {
3312 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3313 				case IFM_10_T:
3314 				case IFM_100_TX:
3315 					nfe_mac_config(sc, mii);
3316 					return;
3317 				default:
3318 					break;
3319 				}
3320 			}
3321 			NFE_UNLOCK(sc);
3322 			pause("nfelnk", hz);
3323 			NFE_LOCK(sc);
3324 		}
3325 		if (i == MII_ANEGTICKS_GIGE)
3326 			device_printf(sc->nfe_dev,
3327 			    "establishing a link failed, WOL may not work!");
3328 	}
3329 	/*
3330 	 * No link, force MAC to have 100Mbps, full-duplex link.
3331 	 * This is the last resort and may/may not work.
3332 	 */
3333 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3334 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3335 	nfe_mac_config(sc, mii);
3336 }
3337 
3338 
3339 static void
3340 nfe_set_wol(struct nfe_softc *sc)
3341 {
3342 	struct ifnet *ifp;
3343 	uint32_t wolctl;
3344 	int pmc;
3345 	uint16_t pmstat;
3346 
3347 	NFE_LOCK_ASSERT(sc);
3348 
3349 	if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
3350 		return;
3351 	ifp = sc->nfe_ifp;
3352 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3353 		wolctl = NFE_WOL_MAGIC;
3354 	else
3355 		wolctl = 0;
3356 	NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
3357 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
3358 		nfe_set_linkspeed(sc);
3359 		if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
3360 			NFE_WRITE(sc, NFE_PWR2_CTL,
3361 			    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
3362 		/* Enable RX. */
3363 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
3364 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
3365 		NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
3366 		    NFE_RX_START);
3367 	}
3368 	/* Request PME if WOL is requested. */
3369 	pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
3370 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3371 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3372 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3373 	pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3374 }
3375