xref: /freebsd/sys/dev/nfe/if_nfe.c (revision 995dc984471c92c03daad19a1d35af46c086ef3e)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/ethernet.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net/bpf.h>
52 
53 #include <machine/bus.h>
54 #include <machine/resource.h>
55 #include <sys/bus.h>
56 #include <sys/rman.h>
57 
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 
61 #include <dev/pci/pcireg.h>
62 #include <dev/pci/pcivar.h>
63 
64 #include <dev/nfe/if_nfereg.h>
65 #include <dev/nfe/if_nfevar.h>
66 
67 MODULE_DEPEND(nfe, pci, 1, 1, 1);
68 MODULE_DEPEND(nfe, ether, 1, 1, 1);
69 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
70 
71 /* "device miibus" required.  See GENERIC if you get errors here. */
72 #include "miibus_if.h"
73 
74 static int  nfe_probe(device_t);
75 static int  nfe_attach(device_t);
76 static int  nfe_detach(device_t);
77 static int  nfe_suspend(device_t);
78 static int  nfe_resume(device_t);
79 static int nfe_shutdown(device_t);
80 static void nfe_power(struct nfe_softc *);
81 static int  nfe_miibus_readreg(device_t, int, int);
82 static int  nfe_miibus_writereg(device_t, int, int, int);
83 static void nfe_miibus_statchg(device_t);
84 static void nfe_link_task(void *, int);
85 static void nfe_set_intr(struct nfe_softc *);
86 static __inline void nfe_enable_intr(struct nfe_softc *);
87 static __inline void nfe_disable_intr(struct nfe_softc *);
88 static int  nfe_ioctl(struct ifnet *, u_long, caddr_t);
89 static void nfe_alloc_msix(struct nfe_softc *, int);
90 static int nfe_intr(void *);
91 static void nfe_int_task(void *, int);
92 static void *nfe_jalloc(struct nfe_softc *);
93 static void nfe_jfree(void *, void *);
94 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
95 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
96 static int nfe_newbuf(struct nfe_softc *, int);
97 static int nfe_jnewbuf(struct nfe_softc *, int);
98 static int  nfe_rxeof(struct nfe_softc *, int);
99 static int  nfe_jrxeof(struct nfe_softc *, int);
100 static void nfe_txeof(struct nfe_softc *);
101 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
102 static void nfe_setmulti(struct nfe_softc *);
103 static void nfe_tx_task(void *, int);
104 static void nfe_start(struct ifnet *);
105 static void nfe_watchdog(struct ifnet *);
106 static void nfe_init(void *);
107 static void nfe_init_locked(void *);
108 static void nfe_stop(struct ifnet *);
109 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
110 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
111 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
112 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
113 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
114 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
115 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
116 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
118 static int  nfe_ifmedia_upd(struct ifnet *);
119 static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
120 static void nfe_tick(void *);
121 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
122 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
123 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
124 
125 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
126 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
127 
128 #ifdef NFE_DEBUG
129 static int nfedebug = 0;
130 #define	DPRINTF(sc, ...)	do {				\
131 	if (nfedebug)						\
132 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
133 } while (0)
134 #define	DPRINTFN(sc, n, ...)	do {				\
135 	if (nfedebug >= (n))					\
136 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
137 } while (0)
138 #else
139 #define	DPRINTF(sc, ...)
140 #define	DPRINTFN(sc, n, ...)
141 #endif
142 
143 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
144 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
145 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
146 
147 #define	NFE_JLIST_LOCK(_sc)	mtx_lock(&(_sc)->nfe_jlist_mtx)
148 #define	NFE_JLIST_UNLOCK(_sc)	mtx_unlock(&(_sc)->nfe_jlist_mtx)
149 
150 /* Tunables. */
151 static int msi_disable = 0;
152 static int msix_disable = 0;
153 static int jumbo_disable = 0;
154 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
155 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
156 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
157 
158 static device_method_t nfe_methods[] = {
159 	/* Device interface */
160 	DEVMETHOD(device_probe,		nfe_probe),
161 	DEVMETHOD(device_attach,	nfe_attach),
162 	DEVMETHOD(device_detach,	nfe_detach),
163 	DEVMETHOD(device_suspend,	nfe_suspend),
164 	DEVMETHOD(device_resume,	nfe_resume),
165 	DEVMETHOD(device_shutdown,	nfe_shutdown),
166 
167 	/* bus interface */
168 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
169 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
170 
171 	/* MII interface */
172 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
173 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
174 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
175 
176 	{ NULL, NULL }
177 };
178 
179 static driver_t nfe_driver = {
180 	"nfe",
181 	nfe_methods,
182 	sizeof(struct nfe_softc)
183 };
184 
185 static devclass_t nfe_devclass;
186 
187 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
188 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
189 
190 static struct nfe_type nfe_devs[] = {
191 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
192 	    "NVIDIA nForce MCP Networking Adapter"},
193 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
194 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
195 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
196 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
197 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
198 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
199 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
200 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
201 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
202 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
203 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
204 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
205 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
206 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
207 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
208 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
209 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
210 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
211 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
212 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
213 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
214 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
215 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
216 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
217 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
218 	    "NVIDIA nForce MCP55 Networking Adapter"},
219 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
220 	    "NVIDIA nForce MCP55 Networking Adapter"},
221 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
222 	    "NVIDIA nForce MCP61 Networking Adapter"},
223 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
224 	    "NVIDIA nForce MCP61 Networking Adapter"},
225 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
226 	    "NVIDIA nForce MCP61 Networking Adapter"},
227 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
228 	    "NVIDIA nForce MCP61 Networking Adapter"},
229 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
230 	    "NVIDIA nForce MCP65 Networking Adapter"},
231 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
232 	    "NVIDIA nForce MCP65 Networking Adapter"},
233 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
234 	    "NVIDIA nForce MCP65 Networking Adapter"},
235 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
236 	    "NVIDIA nForce MCP65 Networking Adapter"},
237 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
238 	    "NVIDIA nForce MCP67 Networking Adapter"},
239 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
240 	    "NVIDIA nForce MCP67 Networking Adapter"},
241 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
242 	    "NVIDIA nForce MCP67 Networking Adapter"},
243 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
244 	    "NVIDIA nForce MCP67 Networking Adapter"},
245 	{0, 0, NULL}
246 };
247 
248 
249 /* Probe for supported hardware ID's */
250 static int
251 nfe_probe(device_t dev)
252 {
253 	struct nfe_type *t;
254 
255 	t = nfe_devs;
256 	/* Check for matching PCI DEVICE ID's */
257 	while (t->name != NULL) {
258 		if ((pci_get_vendor(dev) == t->vid_id) &&
259 		    (pci_get_device(dev) == t->dev_id)) {
260 			device_set_desc(dev, t->name);
261 			return (BUS_PROBE_DEFAULT);
262 		}
263 		t++;
264 	}
265 
266 	return (ENXIO);
267 }
268 
269 static void
270 nfe_alloc_msix(struct nfe_softc *sc, int count)
271 {
272 	int rid;
273 
274 	rid = PCIR_BAR(2);
275 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
276 	    &rid, RF_ACTIVE);
277 	if (sc->nfe_msix_res == NULL) {
278 		device_printf(sc->nfe_dev,
279 		    "couldn't allocate MSIX table resource\n");
280 		return;
281 	}
282 	rid = PCIR_BAR(3);
283 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
284 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
285 	if (sc->nfe_msix_pba_res == NULL) {
286 		device_printf(sc->nfe_dev,
287 		    "couldn't allocate MSIX PBA resource\n");
288 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
289 		    sc->nfe_msix_res);
290 		sc->nfe_msix_res = NULL;
291 		return;
292 	}
293 
294 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
295 		if (count == NFE_MSI_MESSAGES) {
296 			if (bootverbose)
297 				device_printf(sc->nfe_dev,
298 				    "Using %d MSIX messages\n", count);
299 			sc->nfe_msix = 1;
300 		} else {
301 			if (bootverbose)
302 				device_printf(sc->nfe_dev,
303 				    "couldn't allocate MSIX\n");
304 			pci_release_msi(sc->nfe_dev);
305 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
306 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
307 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
308 			    PCIR_BAR(2), sc->nfe_msix_res);
309 			sc->nfe_msix_pba_res = NULL;
310 			sc->nfe_msix_res = NULL;
311 		}
312 	}
313 }
314 
315 static int
316 nfe_attach(device_t dev)
317 {
318 	struct nfe_softc *sc;
319 	struct ifnet *ifp;
320 	bus_addr_t dma_addr_max;
321 	int error = 0, i, msic, reg, rid;
322 
323 	sc = device_get_softc(dev);
324 	sc->nfe_dev = dev;
325 
326 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
327 	    MTX_DEF);
328 	mtx_init(&sc->nfe_jlist_mtx, "nfe_jlist_mtx", NULL, MTX_DEF);
329 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
330 	TASK_INIT(&sc->nfe_link_task, 0, nfe_link_task, sc);
331 	SLIST_INIT(&sc->nfe_jfree_listhead);
332 	SLIST_INIT(&sc->nfe_jinuse_listhead);
333 
334 	pci_enable_busmaster(dev);
335 
336 	rid = PCIR_BAR(0);
337 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
338 	    RF_ACTIVE);
339 	if (sc->nfe_res[0] == NULL) {
340 		device_printf(dev, "couldn't map memory resources\n");
341 		mtx_destroy(&sc->nfe_mtx);
342 		return (ENXIO);
343 	}
344 
345 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
346 		uint16_t v, width;
347 
348 		v = pci_read_config(dev, reg + 0x08, 2);
349 		/* Change max. read request size to 4096. */
350 		v &= ~(7 << 12);
351 		v |= (5 << 12);
352 		pci_write_config(dev, reg + 0x08, v, 2);
353 
354 		v = pci_read_config(dev, reg + 0x0c, 2);
355 		/* link capability */
356 		v = (v >> 4) & 0x0f;
357 		width = pci_read_config(dev, reg + 0x12, 2);
358 		/* negotiated link width */
359 		width = (width >> 4) & 0x3f;
360 		if (v != width)
361 			device_printf(sc->nfe_dev,
362 			    "warning, negotiated width of link(x%d) != "
363 			    "max. width of link(x%d)\n", width, v);
364 	}
365 
366 	/* Allocate interrupt */
367 	if (msix_disable == 0 || msi_disable == 0) {
368 		if (msix_disable == 0 &&
369 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
370 			nfe_alloc_msix(sc, msic);
371 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
372 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
373 		    pci_alloc_msi(dev, &msic) == 0) {
374 			if (msic == NFE_MSI_MESSAGES) {
375 				if (bootverbose)
376 					device_printf(dev,
377 					    "Using %d MSI messages\n", msic);
378 				sc->nfe_msi = 1;
379 			} else
380 				pci_release_msi(dev);
381 		}
382 	}
383 
384 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
385 		rid = 0;
386 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
387 		    RF_SHAREABLE | RF_ACTIVE);
388 		if (sc->nfe_irq[0] == NULL) {
389 			device_printf(dev, "couldn't allocate IRQ resources\n");
390 			error = ENXIO;
391 			goto fail;
392 		}
393 	} else {
394 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
395 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
396 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
397 			if (sc->nfe_irq[i] == NULL) {
398 				device_printf(dev,
399 				    "couldn't allocate IRQ resources for "
400 				    "message %d\n", rid);
401 				error = ENXIO;
402 				goto fail;
403 			}
404 		}
405 		/* Map interrupts to vector 0. */
406 		if (sc->nfe_msix != 0) {
407 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
408 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
409 		} else if (sc->nfe_msi != 0) {
410 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
411 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
412 		}
413 	}
414 
415 	/* Set IRQ status/mask register. */
416 	sc->nfe_irq_status = NFE_IRQ_STATUS;
417 	sc->nfe_irq_mask = NFE_IRQ_MASK;
418 	sc->nfe_intrs = NFE_IRQ_WANTED;
419 	sc->nfe_nointrs = 0;
420 	if (sc->nfe_msix != 0) {
421 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
422 		sc->nfe_nointrs = NFE_IRQ_WANTED;
423 	} else if (sc->nfe_msi != 0) {
424 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
425 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
426 	}
427 
428 	sc->nfe_devid = pci_get_device(dev);
429 	sc->nfe_revid = pci_get_revid(dev);
430 	sc->nfe_flags = 0;
431 
432 	switch (sc->nfe_devid) {
433 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
434 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
435 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
436 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
437 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
438 		break;
439 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
440 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
441 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
442 		break;
443 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
444 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
445 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
446 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
447 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
448 		break;
449 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
450 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
451 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
452 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL;
453 		break;
454 
455 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
456 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
457 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
458 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
459 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
460 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
461 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
462 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
463 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
464 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL;
465 		break;
466 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
467 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
468 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
469 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
470 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
471 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL;
472 		break;
473 	}
474 
475 	nfe_power(sc);
476 	/* Check for reversed ethernet address */
477 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
478 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
479 	nfe_get_macaddr(sc, sc->eaddr);
480 	/*
481 	 * Allocate the parent bus DMA tag appropriate for PCI.
482 	 */
483 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
484 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
485 		dma_addr_max = NFE_DMA_MAXADDR;
486 	error = bus_dma_tag_create(
487 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
488 	    1, 0,				/* alignment, boundary */
489 	    dma_addr_max,			/* lowaddr */
490 	    BUS_SPACE_MAXADDR,			/* highaddr */
491 	    NULL, NULL,				/* filter, filterarg */
492 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
493 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
494 	    0,					/* flags */
495 	    NULL, NULL,				/* lockfunc, lockarg */
496 	    &sc->nfe_parent_tag);
497 	if (error)
498 		goto fail;
499 
500 	ifp = sc->nfe_ifp = if_alloc(IFT_ETHER);
501 	if (ifp == NULL) {
502 		device_printf(dev, "can not if_alloc()\n");
503 		error = ENOSPC;
504 		goto fail;
505 	}
506 	TASK_INIT(&sc->nfe_tx_task, 1, nfe_tx_task, ifp);
507 
508 	/*
509 	 * Allocate Tx and Rx rings.
510 	 */
511 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
512 		goto fail;
513 
514 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
515 		goto fail;
516 
517 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
518 
519 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
520 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
521 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
522 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
523 	    "max number of Rx events to process");
524 
525 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
526 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
527 	    "process_limit", &sc->nfe_process_limit);
528 	if (error == 0) {
529 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
530 		    sc->nfe_process_limit > NFE_PROC_MAX) {
531 			device_printf(dev, "process_limit value out of range; "
532 			    "using default: %d\n", NFE_PROC_DEFAULT);
533 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
534 		}
535 	}
536 
537 	ifp->if_softc = sc;
538 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
539 	ifp->if_mtu = ETHERMTU;
540 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
541 	ifp->if_ioctl = nfe_ioctl;
542 	ifp->if_start = nfe_start;
543 	ifp->if_hwassist = 0;
544 	ifp->if_capabilities = 0;
545 	ifp->if_watchdog = NULL;
546 	ifp->if_init = nfe_init;
547 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_TX_RING_COUNT - 1);
548 	ifp->if_snd.ifq_drv_maxlen = NFE_TX_RING_COUNT - 1;
549 	IFQ_SET_READY(&ifp->if_snd);
550 
551 	if (sc->nfe_flags & NFE_HW_CSUM) {
552 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
553 		ifp->if_hwassist |= NFE_CSUM_FEATURES | CSUM_TSO;
554 	}
555 	ifp->if_capenable = ifp->if_capabilities;
556 
557 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
558 	/* VLAN capability setup. */
559 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
560 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
561 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
562 		if ((ifp->if_capabilities & IFCAP_HWCSUM) != 0)
563 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
564 	}
565 	ifp->if_capenable = ifp->if_capabilities;
566 
567 	/*
568 	 * Tell the upper layer(s) we support long frames.
569 	 * Must appear after the call to ether_ifattach() because
570 	 * ether_ifattach() sets ifi_hdrlen to the default value.
571 	 */
572 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
573 
574 #ifdef DEVICE_POLLING
575 	ifp->if_capabilities |= IFCAP_POLLING;
576 #endif
577 
578 	/* Do MII setup */
579 	if (mii_phy_probe(dev, &sc->nfe_miibus, nfe_ifmedia_upd,
580 	    nfe_ifmedia_sts)) {
581 		device_printf(dev, "MII without any phy!\n");
582 		error = ENXIO;
583 		goto fail;
584 	}
585 	ether_ifattach(ifp, sc->eaddr);
586 
587 	TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
588 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
589 	    taskqueue_thread_enqueue, &sc->nfe_tq);
590 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
591 	    device_get_nameunit(sc->nfe_dev));
592 	error = 0;
593 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
594 		error = bus_setup_intr(dev, sc->nfe_irq[0],
595 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
596 		    &sc->nfe_intrhand[0]);
597 	} else {
598 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
599 			error = bus_setup_intr(dev, sc->nfe_irq[i],
600 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
601 			    &sc->nfe_intrhand[i]);
602 			if (error != 0)
603 				break;
604 		}
605 	}
606 	if (error) {
607 		device_printf(dev, "couldn't set up irq\n");
608 		taskqueue_free(sc->nfe_tq);
609 		sc->nfe_tq = NULL;
610 		ether_ifdetach(ifp);
611 		goto fail;
612 	}
613 
614 fail:
615 	if (error)
616 		nfe_detach(dev);
617 
618 	return (error);
619 }
620 
621 
622 static int
623 nfe_detach(device_t dev)
624 {
625 	struct nfe_softc *sc;
626 	struct ifnet *ifp;
627 	uint8_t eaddr[ETHER_ADDR_LEN];
628 	int i, rid;
629 
630 	sc = device_get_softc(dev);
631 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
632 	ifp = sc->nfe_ifp;
633 
634 #ifdef DEVICE_POLLING
635 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
636 		ether_poll_deregister(ifp);
637 #endif
638 	if (device_is_attached(dev)) {
639 		NFE_LOCK(sc);
640 		nfe_stop(ifp);
641 		ifp->if_flags &= ~IFF_UP;
642 		NFE_UNLOCK(sc);
643 		callout_drain(&sc->nfe_stat_ch);
644 		taskqueue_drain(taskqueue_fast, &sc->nfe_tx_task);
645 		taskqueue_drain(taskqueue_swi, &sc->nfe_link_task);
646 		ether_ifdetach(ifp);
647 	}
648 
649 	if (ifp) {
650 		/* restore ethernet address */
651 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
652 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
653 				eaddr[i] = sc->eaddr[5 - i];
654 			}
655 		} else
656 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
657 		nfe_set_macaddr(sc, eaddr);
658 		if_free(ifp);
659 	}
660 	if (sc->nfe_miibus)
661 		device_delete_child(dev, sc->nfe_miibus);
662 	bus_generic_detach(dev);
663 	if (sc->nfe_tq != NULL) {
664 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
665 		taskqueue_free(sc->nfe_tq);
666 		sc->nfe_tq = NULL;
667 	}
668 
669 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
670 		if (sc->nfe_intrhand[i] != NULL) {
671 			bus_teardown_intr(dev, sc->nfe_irq[i],
672 			    sc->nfe_intrhand[i]);
673 			sc->nfe_intrhand[i] = NULL;
674 		}
675 	}
676 
677 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
678 		if (sc->nfe_irq[0] != NULL)
679 			bus_release_resource(dev, SYS_RES_IRQ, 0,
680 			    sc->nfe_irq[0]);
681 	} else {
682 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
683 			if (sc->nfe_irq[i] != NULL) {
684 				bus_release_resource(dev, SYS_RES_IRQ, rid,
685 				    sc->nfe_irq[i]);
686 				sc->nfe_irq[i] = NULL;
687 			}
688 		}
689 		pci_release_msi(dev);
690 	}
691 	if (sc->nfe_msix_pba_res != NULL) {
692 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
693 		    sc->nfe_msix_pba_res);
694 		sc->nfe_msix_pba_res = NULL;
695 	}
696 	if (sc->nfe_msix_res != NULL) {
697 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
698 		    sc->nfe_msix_res);
699 		sc->nfe_msix_res = NULL;
700 	}
701 	if (sc->nfe_res[0] != NULL) {
702 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
703 		    sc->nfe_res[0]);
704 		sc->nfe_res[0] = NULL;
705 	}
706 
707 	nfe_free_tx_ring(sc, &sc->txq);
708 	nfe_free_rx_ring(sc, &sc->rxq);
709 	nfe_free_jrx_ring(sc, &sc->jrxq);
710 
711 	if (sc->nfe_parent_tag) {
712 		bus_dma_tag_destroy(sc->nfe_parent_tag);
713 		sc->nfe_parent_tag = NULL;
714 	}
715 
716 	mtx_destroy(&sc->nfe_jlist_mtx);
717 	mtx_destroy(&sc->nfe_mtx);
718 
719 	return (0);
720 }
721 
722 
723 static int
724 nfe_suspend(device_t dev)
725 {
726 	struct nfe_softc *sc;
727 
728 	sc = device_get_softc(dev);
729 
730 	NFE_LOCK(sc);
731 	nfe_stop(sc->nfe_ifp);
732 	sc->nfe_suspended = 1;
733 	NFE_UNLOCK(sc);
734 
735 	return (0);
736 }
737 
738 
739 static int
740 nfe_resume(device_t dev)
741 {
742 	struct nfe_softc *sc;
743 	struct ifnet *ifp;
744 
745 	sc = device_get_softc(dev);
746 
747 	NFE_LOCK(sc);
748 	ifp = sc->nfe_ifp;
749 	if (ifp->if_flags & IFF_UP)
750 		nfe_init_locked(sc);
751 	sc->nfe_suspended = 0;
752 	NFE_UNLOCK(sc);
753 
754 	return (0);
755 }
756 
757 
758 /* Take PHY/NIC out of powerdown, from Linux */
759 static void
760 nfe_power(struct nfe_softc *sc)
761 {
762 	uint32_t pwr;
763 
764 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
765 		return;
766 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
767 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
768 	DELAY(100);
769 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
770 	DELAY(100);
771 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
772 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
773 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
774 	if (sc->nfe_revid >= 0xa3 &&
775 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
776 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
777 		pwr |= NFE_PWR2_REVA3;
778 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
779 }
780 
781 
782 static void
783 nfe_miibus_statchg(device_t dev)
784 {
785 	struct nfe_softc *sc;
786 
787 	sc = device_get_softc(dev);
788 	taskqueue_enqueue(taskqueue_swi, &sc->nfe_link_task);
789 }
790 
791 
792 static void
793 nfe_link_task(void *arg, int pending)
794 {
795 	struct nfe_softc *sc;
796 	struct mii_data *mii;
797 	struct ifnet *ifp;
798 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
799 	uint32_t gmask, rxctl, txctl, val;
800 
801 	sc = (struct nfe_softc *)arg;
802 
803 	NFE_LOCK(sc);
804 
805 	mii = device_get_softc(sc->nfe_miibus);
806 	ifp = sc->nfe_ifp;
807 	if (mii == NULL || ifp == NULL) {
808 		NFE_UNLOCK(sc);
809 		return;
810 	}
811 
812 	if (mii->mii_media_status & IFM_ACTIVE) {
813 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
814 			sc->nfe_link = 1;
815 	} else
816 		sc->nfe_link = 0;
817 
818 	phy = NFE_READ(sc, NFE_PHY_IFACE);
819 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
820 
821 	seed = NFE_READ(sc, NFE_RNDSEED);
822 	seed &= ~NFE_SEED_MASK;
823 
824 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) {
825 		phy  |= NFE_PHY_HDX;	/* half-duplex */
826 		misc |= NFE_MISC1_HDX;
827 	}
828 
829 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
830 	case IFM_1000_T:	/* full-duplex only */
831 		link |= NFE_MEDIA_1000T;
832 		seed |= NFE_SEED_1000T;
833 		phy  |= NFE_PHY_1000T;
834 		break;
835 	case IFM_100_TX:
836 		link |= NFE_MEDIA_100TX;
837 		seed |= NFE_SEED_100TX;
838 		phy  |= NFE_PHY_100TX;
839 		break;
840 	case IFM_10_T:
841 		link |= NFE_MEDIA_10T;
842 		seed |= NFE_SEED_10T;
843 		break;
844 	}
845 
846 	if ((phy & 0x10000000) != 0) {
847 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
848 			val = NFE_R1_MAGIC_1000;
849 		else
850 			val = NFE_R1_MAGIC_10_100;
851 	} else
852 		val = NFE_R1_MAGIC_DEFAULT;
853 	NFE_WRITE(sc, NFE_SETUP_R1, val);
854 
855 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
856 
857 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
858 	NFE_WRITE(sc, NFE_MISC1, misc);
859 	NFE_WRITE(sc, NFE_LINKSPEED, link);
860 
861 	gmask = mii->mii_media_active & IFM_GMASK;
862 	if ((gmask & IFM_FDX) != 0) {
863 		/* It seems all hardwares supports Rx pause frames. */
864 		val = NFE_READ(sc, NFE_RXFILTER);
865 		if ((gmask & IFM_FLAG0) != 0)
866 			val |= NFE_PFF_RX_PAUSE;
867 		else
868 			val &= ~NFE_PFF_RX_PAUSE;
869 		NFE_WRITE(sc, NFE_RXFILTER, val);
870 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
871 			val = NFE_READ(sc, NFE_MISC1);
872 			if ((gmask & IFM_FLAG1) != 0) {
873 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
874 				    NFE_TX_PAUSE_FRAME_ENABLE);
875 				val |= NFE_MISC1_TX_PAUSE;
876 			} else {
877 				val &= ~NFE_MISC1_TX_PAUSE;
878 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
879 				    NFE_TX_PAUSE_FRAME_DISABLE);
880 			}
881 			NFE_WRITE(sc, NFE_MISC1, val);
882 		}
883 	} else {
884 		/* disable rx/tx pause frames */
885 		val = NFE_READ(sc, NFE_RXFILTER);
886 		val &= ~NFE_PFF_RX_PAUSE;
887 		NFE_WRITE(sc, NFE_RXFILTER, val);
888 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
889 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
890 			    NFE_TX_PAUSE_FRAME_DISABLE);
891 			val = NFE_READ(sc, NFE_MISC1);
892 			val &= ~NFE_MISC1_TX_PAUSE;
893 			NFE_WRITE(sc, NFE_MISC1, val);
894 		}
895 	}
896 
897 	txctl = NFE_READ(sc, NFE_TX_CTL);
898 	rxctl = NFE_READ(sc, NFE_RX_CTL);
899 	if (sc->nfe_link != 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
900 		txctl |= NFE_TX_START;
901 		rxctl |= NFE_RX_START;
902 	} else {
903 		txctl &= ~NFE_TX_START;
904 		rxctl &= ~NFE_RX_START;
905 	}
906 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
907 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
908 
909 	NFE_UNLOCK(sc);
910 }
911 
912 
913 static int
914 nfe_miibus_readreg(device_t dev, int phy, int reg)
915 {
916 	struct nfe_softc *sc = device_get_softc(dev);
917 	uint32_t val;
918 	int ntries;
919 
920 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
921 
922 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
923 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
924 		DELAY(100);
925 	}
926 
927 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
928 
929 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
930 		DELAY(100);
931 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
932 			break;
933 	}
934 	if (ntries == NFE_TIMEOUT) {
935 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
936 		return 0;
937 	}
938 
939 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
940 		DPRINTFN(sc, 2, "could not read PHY\n");
941 		return 0;
942 	}
943 
944 	val = NFE_READ(sc, NFE_PHY_DATA);
945 	if (val != 0xffffffff && val != 0)
946 		sc->mii_phyaddr = phy;
947 
948 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
949 
950 	return (val);
951 }
952 
953 
954 static int
955 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
956 {
957 	struct nfe_softc *sc = device_get_softc(dev);
958 	uint32_t ctl;
959 	int ntries;
960 
961 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
962 
963 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
964 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
965 		DELAY(100);
966 	}
967 
968 	NFE_WRITE(sc, NFE_PHY_DATA, val);
969 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
970 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
971 
972 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
973 		DELAY(100);
974 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
975 			break;
976 	}
977 #ifdef NFE_DEBUG
978 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
979 		device_printf(sc->nfe_dev, "could not write to PHY\n");
980 #endif
981 	return (0);
982 }
983 
984 /*
985  * Allocate a jumbo buffer.
986  */
987 static void *
988 nfe_jalloc(struct nfe_softc *sc)
989 {
990 	struct nfe_jpool_entry *entry;
991 
992 	NFE_JLIST_LOCK(sc);
993 
994 	entry = SLIST_FIRST(&sc->nfe_jfree_listhead);
995 
996 	if (entry == NULL) {
997 		NFE_JLIST_UNLOCK(sc);
998 		return (NULL);
999 	}
1000 
1001 	SLIST_REMOVE_HEAD(&sc->nfe_jfree_listhead, jpool_entries);
1002 	SLIST_INSERT_HEAD(&sc->nfe_jinuse_listhead, entry, jpool_entries);
1003 
1004 	NFE_JLIST_UNLOCK(sc);
1005 
1006 	return (sc->jrxq.jslots[entry->slot]);
1007 }
1008 
1009 /*
1010  * Release a jumbo buffer.
1011  */
1012 static void
1013 nfe_jfree(void *buf, void *args)
1014 {
1015 	struct nfe_softc *sc;
1016 	struct nfe_jpool_entry *entry;
1017 	int i;
1018 
1019 	/* Extract the softc struct pointer. */
1020 	sc = (struct nfe_softc *)args;
1021 	KASSERT(sc != NULL, ("%s: can't find softc pointer!", __func__));
1022 
1023 	NFE_JLIST_LOCK(sc);
1024 	/* Calculate the slot this buffer belongs to. */
1025 	i = ((vm_offset_t)buf
1026 	     - (vm_offset_t)sc->jrxq.jpool) / NFE_JLEN;
1027 	KASSERT(i >= 0 && i < NFE_JSLOTS,
1028 	    ("%s: asked to free buffer that we don't manage!", __func__));
1029 
1030 	entry = SLIST_FIRST(&sc->nfe_jinuse_listhead);
1031 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
1032 	entry->slot = i;
1033 	SLIST_REMOVE_HEAD(&sc->nfe_jinuse_listhead, jpool_entries);
1034 	SLIST_INSERT_HEAD(&sc->nfe_jfree_listhead, entry, jpool_entries);
1035 	if (SLIST_EMPTY(&sc->nfe_jinuse_listhead))
1036 		wakeup(sc);
1037 
1038 	NFE_JLIST_UNLOCK(sc);
1039 }
1040 
1041 struct nfe_dmamap_arg {
1042 	bus_addr_t nfe_busaddr;
1043 };
1044 
1045 static int
1046 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1047 {
1048 	struct nfe_dmamap_arg ctx;
1049 	struct nfe_rx_data *data;
1050 	void *desc;
1051 	int i, error, descsize;
1052 
1053 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1054 		desc = ring->desc64;
1055 		descsize = sizeof (struct nfe_desc64);
1056 	} else {
1057 		desc = ring->desc32;
1058 		descsize = sizeof (struct nfe_desc32);
1059 	}
1060 
1061 	ring->cur = ring->next = 0;
1062 
1063 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1064 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1065 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1066 	    BUS_SPACE_MAXADDR,			/* highaddr */
1067 	    NULL, NULL,				/* filter, filterarg */
1068 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1069 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1070 	    0,					/* flags */
1071 	    NULL, NULL,				/* lockfunc, lockarg */
1072 	    &ring->rx_desc_tag);
1073 	if (error != 0) {
1074 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1075 		goto fail;
1076 	}
1077 
1078 	/* allocate memory to desc */
1079 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1080 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1081 	if (error != 0) {
1082 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1083 		goto fail;
1084 	}
1085 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1086 		ring->desc64 = desc;
1087 	else
1088 		ring->desc32 = desc;
1089 
1090 	/* map desc to device visible address space */
1091 	ctx.nfe_busaddr = 0;
1092 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1093 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1094 	if (error != 0) {
1095 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1096 		goto fail;
1097 	}
1098 	ring->physaddr = ctx.nfe_busaddr;
1099 
1100 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1101 	    1, 0,			/* alignment, boundary */
1102 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1103 	    BUS_SPACE_MAXADDR,		/* highaddr */
1104 	    NULL, NULL,			/* filter, filterarg */
1105 	    MCLBYTES, 1,		/* maxsize, nsegments */
1106 	    MCLBYTES,			/* maxsegsize */
1107 	    0,				/* flags */
1108 	    NULL, NULL,			/* lockfunc, lockarg */
1109 	    &ring->rx_data_tag);
1110 	if (error != 0) {
1111 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1112 		goto fail;
1113 	}
1114 
1115 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1116 	if (error != 0) {
1117 		device_printf(sc->nfe_dev,
1118 		    "could not create Rx DMA spare map\n");
1119 		goto fail;
1120 	}
1121 
1122 	/*
1123 	 * Pre-allocate Rx buffers and populate Rx ring.
1124 	 */
1125 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1126 		data = &sc->rxq.data[i];
1127 		data->rx_data_map = NULL;
1128 		data->m = NULL;
1129 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1130 		    &data->rx_data_map);
1131 		if (error != 0) {
1132 			device_printf(sc->nfe_dev,
1133 			    "could not create Rx DMA map\n");
1134 			goto fail;
1135 		}
1136 	}
1137 
1138 fail:
1139 	return (error);
1140 }
1141 
1142 
1143 static void
1144 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1145 {
1146 	struct nfe_dmamap_arg ctx;
1147 	struct nfe_rx_data *data;
1148 	void *desc;
1149 	struct nfe_jpool_entry *entry;
1150 	uint8_t *ptr;
1151 	int i, error, descsize;
1152 
1153 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1154 		return;
1155 	if (jumbo_disable != 0) {
1156 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1157 		sc->nfe_jumbo_disable = 1;
1158 		return;
1159 	}
1160 
1161 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1162 		desc = ring->jdesc64;
1163 		descsize = sizeof (struct nfe_desc64);
1164 	} else {
1165 		desc = ring->jdesc32;
1166 		descsize = sizeof (struct nfe_desc32);
1167 	}
1168 
1169 	ring->jcur = ring->jnext = 0;
1170 
1171 	/* Create DMA tag for jumbo Rx ring. */
1172 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1173 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1174 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1175 	    BUS_SPACE_MAXADDR,			/* highaddr */
1176 	    NULL, NULL,				/* filter, filterarg */
1177 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1178 	    1, 					/* nsegments */
1179 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1180 	    0,					/* flags */
1181 	    NULL, NULL,				/* lockfunc, lockarg */
1182 	    &ring->jrx_desc_tag);
1183 	if (error != 0) {
1184 		device_printf(sc->nfe_dev,
1185 		    "could not create jumbo ring DMA tag\n");
1186 		goto fail;
1187 	}
1188 
1189 	/* Create DMA tag for jumbo buffer blocks. */
1190 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1191 	    PAGE_SIZE, 0,			/* alignment, boundary */
1192 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1193 	    BUS_SPACE_MAXADDR,			/* highaddr */
1194 	    NULL, NULL,				/* filter, filterarg */
1195 	    NFE_JMEM,				/* maxsize */
1196 	    1, 					/* nsegments */
1197 	    NFE_JMEM,				/* maxsegsize */
1198 	    0,					/* flags */
1199 	    NULL, NULL,				/* lockfunc, lockarg */
1200 	    &ring->jrx_jumbo_tag);
1201 	if (error != 0) {
1202 		device_printf(sc->nfe_dev,
1203 		    "could not create jumbo Rx buffer block DMA tag\n");
1204 		goto fail;
1205 	}
1206 
1207 	/* Create DMA tag for jumbo Rx buffers. */
1208 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1209 	    PAGE_SIZE, 0,			/* alignment, boundary */
1210 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1211 	    BUS_SPACE_MAXADDR,			/* highaddr */
1212 	    NULL, NULL,				/* filter, filterarg */
1213 	    NFE_JLEN,				/* maxsize */
1214 	    1,					/* nsegments */
1215 	    NFE_JLEN,				/* maxsegsize */
1216 	    0,					/* flags */
1217 	    NULL, NULL,				/* lockfunc, lockarg */
1218 	    &ring->jrx_data_tag);
1219 	if (error != 0) {
1220 		device_printf(sc->nfe_dev,
1221 		    "could not create jumbo Rx buffer DMA tag\n");
1222 		goto fail;
1223 	}
1224 
1225 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1226 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1227 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1228 	if (error != 0) {
1229 		device_printf(sc->nfe_dev,
1230 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1231 		goto fail;
1232 	}
1233 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1234 		ring->jdesc64 = desc;
1235 	else
1236 		ring->jdesc32 = desc;
1237 
1238 	ctx.nfe_busaddr = 0;
1239 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1240 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1241 	if (error != 0) {
1242 		device_printf(sc->nfe_dev,
1243 		    "could not load DMA'able memory for jumbo Rx ring\n");
1244 		goto fail;
1245 	}
1246 	ring->jphysaddr = ctx.nfe_busaddr;
1247 
1248 	/* Create DMA maps for jumbo Rx buffers. */
1249 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1250 	if (error != 0) {
1251 		device_printf(sc->nfe_dev,
1252 		    "could not create jumbo Rx DMA spare map\n");
1253 		goto fail;
1254 	}
1255 
1256 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1257 		data = &sc->jrxq.jdata[i];
1258 		data->rx_data_map = NULL;
1259 		data->m = NULL;
1260 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1261 		    &data->rx_data_map);
1262 		if (error != 0) {
1263 			device_printf(sc->nfe_dev,
1264 			    "could not create jumbo Rx DMA map\n");
1265 			goto fail;
1266 		}
1267 	}
1268 
1269 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
1270 	error = bus_dmamem_alloc(ring->jrx_jumbo_tag, (void **)&ring->jpool,
1271 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1272 	    &ring->jrx_jumbo_map);
1273 	if (error != 0) {
1274 		device_printf(sc->nfe_dev,
1275 		    "could not allocate DMA'able memory for jumbo pool\n");
1276 		goto fail;
1277 	}
1278 
1279 	ctx.nfe_busaddr = 0;
1280 	error = bus_dmamap_load(ring->jrx_jumbo_tag, ring->jrx_jumbo_map,
1281 	    ring->jpool, NFE_JMEM, nfe_dma_map_segs, &ctx, 0);
1282 	if (error != 0) {
1283 		device_printf(sc->nfe_dev,
1284 		    "could not load DMA'able memory for jumbo pool\n");
1285 		goto fail;
1286 	}
1287 
1288 	/*
1289 	 * Now divide it up into 9K pieces and save the addresses
1290 	 * in an array.
1291 	 */
1292 	ptr = ring->jpool;
1293 	for (i = 0; i < NFE_JSLOTS; i++) {
1294 		ring->jslots[i] = ptr;
1295 		ptr += NFE_JLEN;
1296 		entry = malloc(sizeof(struct nfe_jpool_entry), M_DEVBUF,
1297 		    M_WAITOK);
1298 		if (entry == NULL) {
1299 			device_printf(sc->nfe_dev,
1300 			    "no memory for jumbo buffers!\n");
1301 			error = ENOMEM;
1302 			goto fail;
1303 		}
1304 		entry->slot = i;
1305 		SLIST_INSERT_HEAD(&sc->nfe_jfree_listhead, entry,
1306 		    jpool_entries);
1307 	}
1308 
1309 	return;
1310 
1311 fail:
1312 	/*
1313 	 * Running without jumbo frame support is ok for most cases
1314 	 * so don't fail on creating dma tag/map for jumbo frame.
1315 	 */
1316 	nfe_free_jrx_ring(sc, ring);
1317 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1318 	    "resource shortage\n");
1319 	sc->nfe_jumbo_disable = 1;
1320 }
1321 
1322 
1323 static int
1324 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1325 {
1326 	void *desc;
1327 	size_t descsize;
1328 	int i;
1329 
1330 	ring->cur = ring->next = 0;
1331 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1332 		desc = ring->desc64;
1333 		descsize = sizeof (struct nfe_desc64);
1334 	} else {
1335 		desc = ring->desc32;
1336 		descsize = sizeof (struct nfe_desc32);
1337 	}
1338 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1339 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1340 		if (nfe_newbuf(sc, i) != 0)
1341 			return (ENOBUFS);
1342 	}
1343 
1344 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1345 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1346 
1347 	return (0);
1348 }
1349 
1350 
1351 static int
1352 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1353 {
1354 	void *desc;
1355 	size_t descsize;
1356 	int i;
1357 
1358 	ring->jcur = ring->jnext = 0;
1359 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1360 		desc = ring->jdesc64;
1361 		descsize = sizeof (struct nfe_desc64);
1362 	} else {
1363 		desc = ring->jdesc32;
1364 		descsize = sizeof (struct nfe_desc32);
1365 	}
1366 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1367 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1368 		if (nfe_jnewbuf(sc, i) != 0)
1369 			return (ENOBUFS);
1370 	}
1371 
1372 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1373 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1374 
1375 	return (0);
1376 }
1377 
1378 
1379 static void
1380 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1381 {
1382 	struct nfe_rx_data *data;
1383 	void *desc;
1384 	int i, descsize;
1385 
1386 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1387 		desc = ring->desc64;
1388 		descsize = sizeof (struct nfe_desc64);
1389 	} else {
1390 		desc = ring->desc32;
1391 		descsize = sizeof (struct nfe_desc32);
1392 	}
1393 
1394 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1395 		data = &ring->data[i];
1396 		if (data->rx_data_map != NULL) {
1397 			bus_dmamap_destroy(ring->rx_data_tag,
1398 			    data->rx_data_map);
1399 			data->rx_data_map = NULL;
1400 		}
1401 		if (data->m != NULL) {
1402 			m_freem(data->m);
1403 			data->m = NULL;
1404 		}
1405 	}
1406 	if (ring->rx_data_tag != NULL) {
1407 		if (ring->rx_spare_map != NULL) {
1408 			bus_dmamap_destroy(ring->rx_data_tag,
1409 			    ring->rx_spare_map);
1410 			ring->rx_spare_map = NULL;
1411 		}
1412 		bus_dma_tag_destroy(ring->rx_data_tag);
1413 		ring->rx_data_tag = NULL;
1414 	}
1415 
1416 	if (desc != NULL) {
1417 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1418 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1419 		ring->desc64 = NULL;
1420 		ring->desc32 = NULL;
1421 		ring->rx_desc_map = NULL;
1422 	}
1423 	if (ring->rx_desc_tag != NULL) {
1424 		bus_dma_tag_destroy(ring->rx_desc_tag);
1425 		ring->rx_desc_tag = NULL;
1426 	}
1427 }
1428 
1429 
1430 static void
1431 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1432 {
1433 	struct nfe_jpool_entry *entry;
1434 	struct nfe_rx_data *data;
1435 	void *desc;
1436 	int i, descsize;
1437 
1438 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1439 		return;
1440 
1441 	NFE_JLIST_LOCK(sc);
1442 	while ((entry = SLIST_FIRST(&sc->nfe_jinuse_listhead))) {
1443 		device_printf(sc->nfe_dev,
1444 		    "asked to free buffer that is in use!\n");
1445 		SLIST_REMOVE_HEAD(&sc->nfe_jinuse_listhead, jpool_entries);
1446 		SLIST_INSERT_HEAD(&sc->nfe_jfree_listhead, entry,
1447 		    jpool_entries);
1448 	}
1449 
1450 	while (!SLIST_EMPTY(&sc->nfe_jfree_listhead)) {
1451 		entry = SLIST_FIRST(&sc->nfe_jfree_listhead);
1452 		SLIST_REMOVE_HEAD(&sc->nfe_jfree_listhead, jpool_entries);
1453 		free(entry, M_DEVBUF);
1454 	}
1455         NFE_JLIST_UNLOCK(sc);
1456 
1457 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1458 		desc = ring->jdesc64;
1459 		descsize = sizeof (struct nfe_desc64);
1460 	} else {
1461 		desc = ring->jdesc32;
1462 		descsize = sizeof (struct nfe_desc32);
1463 	}
1464 
1465 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1466 		data = &ring->jdata[i];
1467 		if (data->rx_data_map != NULL) {
1468 			bus_dmamap_destroy(ring->jrx_data_tag,
1469 			    data->rx_data_map);
1470 			data->rx_data_map = NULL;
1471 		}
1472 		if (data->m != NULL) {
1473 			m_freem(data->m);
1474 			data->m = NULL;
1475 		}
1476 	}
1477 	if (ring->jrx_data_tag != NULL) {
1478 		if (ring->jrx_spare_map != NULL) {
1479 			bus_dmamap_destroy(ring->jrx_data_tag,
1480 			    ring->jrx_spare_map);
1481 			ring->jrx_spare_map = NULL;
1482 		}
1483 		bus_dma_tag_destroy(ring->jrx_data_tag);
1484 		ring->jrx_data_tag = NULL;
1485 	}
1486 
1487 	if (desc != NULL) {
1488 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1489 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1490 		ring->jdesc64 = NULL;
1491 		ring->jdesc32 = NULL;
1492 		ring->jrx_desc_map = NULL;
1493 	}
1494 	/* Destroy jumbo buffer block. */
1495 	if (ring->jrx_jumbo_map != NULL)
1496 		bus_dmamap_unload(ring->jrx_jumbo_tag, ring->jrx_jumbo_map);
1497 	if (ring->jrx_jumbo_map != NULL) {
1498 		bus_dmamem_free(ring->jrx_jumbo_tag, ring->jpool,
1499 		    ring->jrx_jumbo_map);
1500 		ring->jpool = NULL;
1501 		ring->jrx_jumbo_map = NULL;
1502 	}
1503 	if (ring->jrx_desc_tag != NULL) {
1504 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1505 		ring->jrx_desc_tag = NULL;
1506 	}
1507 }
1508 
1509 
1510 static int
1511 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1512 {
1513 	struct nfe_dmamap_arg ctx;
1514 	int i, error;
1515 	void *desc;
1516 	int descsize;
1517 
1518 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1519 		desc = ring->desc64;
1520 		descsize = sizeof (struct nfe_desc64);
1521 	} else {
1522 		desc = ring->desc32;
1523 		descsize = sizeof (struct nfe_desc32);
1524 	}
1525 
1526 	ring->queued = 0;
1527 	ring->cur = ring->next = 0;
1528 
1529 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1530 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1531 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1532 	    BUS_SPACE_MAXADDR,			/* highaddr */
1533 	    NULL, NULL,				/* filter, filterarg */
1534 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1535 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1536 	    0,					/* flags */
1537 	    NULL, NULL,				/* lockfunc, lockarg */
1538 	    &ring->tx_desc_tag);
1539 	if (error != 0) {
1540 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1541 		goto fail;
1542 	}
1543 
1544 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1545 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1546 	if (error != 0) {
1547 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1548 		goto fail;
1549 	}
1550 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1551 		ring->desc64 = desc;
1552 	else
1553 		ring->desc32 = desc;
1554 
1555 	ctx.nfe_busaddr = 0;
1556 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1557 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1558 	if (error != 0) {
1559 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1560 		goto fail;
1561 	}
1562 	ring->physaddr = ctx.nfe_busaddr;
1563 
1564 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1565 	    1, 0,
1566 	    BUS_SPACE_MAXADDR,
1567 	    BUS_SPACE_MAXADDR,
1568 	    NULL, NULL,
1569 	    NFE_TSO_MAXSIZE,
1570 	    NFE_MAX_SCATTER,
1571 	    NFE_TSO_MAXSGSIZE,
1572 	    0,
1573 	    NULL, NULL,
1574 	    &ring->tx_data_tag);
1575 	if (error != 0) {
1576 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1577 		goto fail;
1578 	}
1579 
1580 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1581 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1582 		    &ring->data[i].tx_data_map);
1583 		if (error != 0) {
1584 			device_printf(sc->nfe_dev,
1585 			    "could not create Tx DMA map\n");
1586 			goto fail;
1587 		}
1588 	}
1589 
1590 fail:
1591 	return (error);
1592 }
1593 
1594 
1595 static void
1596 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1597 {
1598 	void *desc;
1599 	size_t descsize;
1600 
1601 	sc->nfe_force_tx = 0;
1602 	ring->queued = 0;
1603 	ring->cur = ring->next = 0;
1604 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1605 		desc = ring->desc64;
1606 		descsize = sizeof (struct nfe_desc64);
1607 	} else {
1608 		desc = ring->desc32;
1609 		descsize = sizeof (struct nfe_desc32);
1610 	}
1611 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1612 
1613 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1614 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1615 }
1616 
1617 
1618 static void
1619 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1620 {
1621 	struct nfe_tx_data *data;
1622 	void *desc;
1623 	int i, descsize;
1624 
1625 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1626 		desc = ring->desc64;
1627 		descsize = sizeof (struct nfe_desc64);
1628 	} else {
1629 		desc = ring->desc32;
1630 		descsize = sizeof (struct nfe_desc32);
1631 	}
1632 
1633 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1634 		data = &ring->data[i];
1635 
1636 		if (data->m != NULL) {
1637 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1638 			    BUS_DMASYNC_POSTWRITE);
1639 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1640 			m_freem(data->m);
1641 			data->m = NULL;
1642 		}
1643 		if (data->tx_data_map != NULL) {
1644 			bus_dmamap_destroy(ring->tx_data_tag,
1645 			    data->tx_data_map);
1646 			data->tx_data_map = NULL;
1647 		}
1648 	}
1649 
1650 	if (ring->tx_data_tag != NULL) {
1651 		bus_dma_tag_destroy(ring->tx_data_tag);
1652 		ring->tx_data_tag = NULL;
1653 	}
1654 
1655 	if (desc != NULL) {
1656 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1657 		    BUS_DMASYNC_POSTWRITE);
1658 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1659 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1660 		ring->desc64 = NULL;
1661 		ring->desc32 = NULL;
1662 		ring->tx_desc_map = NULL;
1663 		bus_dma_tag_destroy(ring->tx_desc_tag);
1664 		ring->tx_desc_tag = NULL;
1665 	}
1666 }
1667 
1668 #ifdef DEVICE_POLLING
1669 static poll_handler_t nfe_poll;
1670 
1671 
1672 static void
1673 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1674 {
1675 	struct nfe_softc *sc = ifp->if_softc;
1676 	uint32_t r;
1677 
1678 	NFE_LOCK(sc);
1679 
1680 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1681 		NFE_UNLOCK(sc);
1682 		return;
1683 	}
1684 
1685 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1686 		nfe_jrxeof(sc, count);
1687 	else
1688 		nfe_rxeof(sc, count);
1689 	nfe_txeof(sc);
1690 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1691 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task);
1692 
1693 	if (cmd == POLL_AND_CHECK_STATUS) {
1694 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1695 			NFE_UNLOCK(sc);
1696 			return;
1697 		}
1698 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1699 
1700 		if (r & NFE_IRQ_LINK) {
1701 			NFE_READ(sc, NFE_PHY_STATUS);
1702 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1703 			DPRINTF(sc, "link state changed\n");
1704 		}
1705 	}
1706 	NFE_UNLOCK(sc);
1707 }
1708 #endif /* DEVICE_POLLING */
1709 
1710 static void
1711 nfe_set_intr(struct nfe_softc *sc)
1712 {
1713 
1714 	if (sc->nfe_msi != 0)
1715 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1716 }
1717 
1718 
1719 /* In MSIX, a write to mask reegisters behaves as XOR. */
1720 static __inline void
1721 nfe_enable_intr(struct nfe_softc *sc)
1722 {
1723 
1724 	if (sc->nfe_msix != 0) {
1725 		/* XXX Should have a better way to enable interrupts! */
1726 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1727 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1728 	} else
1729 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1730 }
1731 
1732 
1733 static __inline void
1734 nfe_disable_intr(struct nfe_softc *sc)
1735 {
1736 
1737 	if (sc->nfe_msix != 0) {
1738 		/* XXX Should have a better way to disable interrupts! */
1739 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1740 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1741 	} else
1742 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1743 }
1744 
1745 
1746 static int
1747 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1748 {
1749 	struct nfe_softc *sc;
1750 	struct ifreq *ifr;
1751 	struct mii_data *mii;
1752 	int error, init, mask;
1753 
1754 	sc = ifp->if_softc;
1755 	ifr = (struct ifreq *) data;
1756 	error = 0;
1757 	init = 0;
1758 	switch (cmd) {
1759 	case SIOCSIFMTU:
1760 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1761 			error = EINVAL;
1762 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1763 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1764 			    (sc->nfe_jumbo_disable != 0)) &&
1765 			    ifr->ifr_mtu > ETHERMTU)
1766 				error = EINVAL;
1767 			else {
1768 				NFE_LOCK(sc);
1769 				ifp->if_mtu = ifr->ifr_mtu;
1770 				if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1771 					nfe_init_locked(sc);
1772 				NFE_UNLOCK(sc);
1773 			}
1774 		}
1775 		break;
1776 	case SIOCSIFFLAGS:
1777 		NFE_LOCK(sc);
1778 		if (ifp->if_flags & IFF_UP) {
1779 			/*
1780 			 * If only the PROMISC or ALLMULTI flag changes, then
1781 			 * don't do a full re-init of the chip, just update
1782 			 * the Rx filter.
1783 			 */
1784 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1785 			    ((ifp->if_flags ^ sc->nfe_if_flags) &
1786 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1787 				nfe_setmulti(sc);
1788 			else
1789 				nfe_init_locked(sc);
1790 		} else {
1791 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1792 				nfe_stop(ifp);
1793 		}
1794 		sc->nfe_if_flags = ifp->if_flags;
1795 		NFE_UNLOCK(sc);
1796 		error = 0;
1797 		break;
1798 	case SIOCADDMULTI:
1799 	case SIOCDELMULTI:
1800 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1801 			NFE_LOCK(sc);
1802 			nfe_setmulti(sc);
1803 			NFE_UNLOCK(sc);
1804 			error = 0;
1805 		}
1806 		break;
1807 	case SIOCSIFMEDIA:
1808 	case SIOCGIFMEDIA:
1809 		mii = device_get_softc(sc->nfe_miibus);
1810 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1811 		break;
1812 	case SIOCSIFCAP:
1813 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1814 #ifdef DEVICE_POLLING
1815 		if ((mask & IFCAP_POLLING) != 0) {
1816 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1817 				error = ether_poll_register(nfe_poll, ifp);
1818 				if (error)
1819 					break;
1820 				NFE_LOCK(sc);
1821 				nfe_disable_intr(sc);
1822 				ifp->if_capenable |= IFCAP_POLLING;
1823 				NFE_UNLOCK(sc);
1824 			} else {
1825 				error = ether_poll_deregister(ifp);
1826 				/* Enable interrupt even in error case */
1827 				NFE_LOCK(sc);
1828 				nfe_enable_intr(sc);
1829 				ifp->if_capenable &= ~IFCAP_POLLING;
1830 				NFE_UNLOCK(sc);
1831 			}
1832 		}
1833 #endif /* DEVICE_POLLING */
1834 		if ((sc->nfe_flags & NFE_HW_CSUM) != 0 &&
1835 		    (mask & IFCAP_HWCSUM) != 0) {
1836 			ifp->if_capenable ^= IFCAP_HWCSUM;
1837 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
1838 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
1839 				ifp->if_hwassist |= NFE_CSUM_FEATURES;
1840 			else
1841 				ifp->if_hwassist &= ~NFE_CSUM_FEATURES;
1842 			init++;
1843 		}
1844 		if ((sc->nfe_flags & NFE_HW_VLAN) != 0 &&
1845 		    (mask & IFCAP_VLAN_HWTAGGING) != 0) {
1846 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1847 			init++;
1848 		}
1849 		/*
1850 		 * XXX
1851 		 * It seems that VLAN stripping requires Rx checksum offload.
1852 		 * Unfortunately FreeBSD has no way to disable only Rx side
1853 		 * VLAN stripping. So when we know Rx checksum offload is
1854 		 * disabled turn entire hardware VLAN assist off.
1855 		 */
1856 		if ((sc->nfe_flags & (NFE_HW_CSUM | NFE_HW_VLAN)) ==
1857 		    (NFE_HW_CSUM | NFE_HW_VLAN)) {
1858 			if ((ifp->if_capenable & IFCAP_RXCSUM) == 0)
1859 				ifp->if_capenable &= ~IFCAP_VLAN_HWTAGGING;
1860 		}
1861 
1862 		if ((sc->nfe_flags & NFE_HW_CSUM) != 0 &&
1863 		    (mask & IFCAP_TSO4) != 0) {
1864 			ifp->if_capenable ^= IFCAP_TSO4;
1865 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
1866 			    (IFCAP_TSO4 & ifp->if_capabilities) != 0)
1867 				ifp->if_hwassist |= CSUM_TSO;
1868 			else
1869 				ifp->if_hwassist &= ~CSUM_TSO;
1870 		}
1871 
1872 		if (init > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1873 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1874 			nfe_init(sc);
1875 		}
1876 		if ((sc->nfe_flags & NFE_HW_VLAN) != 0)
1877 			VLAN_CAPABILITIES(ifp);
1878 		break;
1879 	default:
1880 		error = ether_ioctl(ifp, cmd, data);
1881 		break;
1882 	}
1883 
1884 	return (error);
1885 }
1886 
1887 
1888 static int
1889 nfe_intr(void *arg)
1890 {
1891 	struct nfe_softc *sc;
1892 	uint32_t status;
1893 
1894 	sc = (struct nfe_softc *)arg;
1895 
1896 	status = NFE_READ(sc, sc->nfe_irq_status);
1897 	if (status == 0 || status == 0xffffffff)
1898 		return (FILTER_STRAY);
1899 	nfe_disable_intr(sc);
1900 	taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1901 
1902 	return (FILTER_HANDLED);
1903 }
1904 
1905 
1906 static void
1907 nfe_int_task(void *arg, int pending)
1908 {
1909 	struct nfe_softc *sc = arg;
1910 	struct ifnet *ifp = sc->nfe_ifp;
1911 	uint32_t r;
1912 	int domore;
1913 
1914 	NFE_LOCK(sc);
1915 
1916 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1917 		nfe_enable_intr(sc);
1918 		NFE_UNLOCK(sc);
1919 		return;	/* not for us */
1920 	}
1921 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1922 
1923 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1924 
1925 #ifdef DEVICE_POLLING
1926 	if (ifp->if_capenable & IFCAP_POLLING) {
1927 		NFE_UNLOCK(sc);
1928 		return;
1929 	}
1930 #endif
1931 
1932 	if (r & NFE_IRQ_LINK) {
1933 		NFE_READ(sc, NFE_PHY_STATUS);
1934 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1935 		DPRINTF(sc, "link state changed\n");
1936 	}
1937 
1938 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1939 		NFE_UNLOCK(sc);
1940 		nfe_enable_intr(sc);
1941 		return;
1942 	}
1943 
1944 	domore = 0;
1945 	/* check Rx ring */
1946 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1947 		domore = nfe_jrxeof(sc, sc->nfe_process_limit);
1948 	else
1949 		domore = nfe_rxeof(sc, sc->nfe_process_limit);
1950 	/* check Tx ring */
1951 	nfe_txeof(sc);
1952 
1953 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1954 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task);
1955 
1956 	NFE_UNLOCK(sc);
1957 
1958 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1959 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1960 		return;
1961 	}
1962 
1963 	/* Reenable interrupts. */
1964 	nfe_enable_intr(sc);
1965 }
1966 
1967 
1968 static __inline void
1969 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1970 {
1971 	struct nfe_desc32 *desc32;
1972 	struct nfe_desc64 *desc64;
1973 	struct nfe_rx_data *data;
1974 	struct mbuf *m;
1975 
1976 	data = &sc->rxq.data[idx];
1977 	m = data->m;
1978 
1979 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1980 		desc64 = &sc->rxq.desc64[idx];
1981 		/* VLAN packet may have overwritten it. */
1982 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1983 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1984 		desc64->length = htole16(m->m_len);
1985 		desc64->flags = htole16(NFE_RX_READY);
1986 	} else {
1987 		desc32 = &sc->rxq.desc32[idx];
1988 		desc32->length = htole16(m->m_len);
1989 		desc32->flags = htole16(NFE_RX_READY);
1990 	}
1991 }
1992 
1993 
1994 static __inline void
1995 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1996 {
1997 	struct nfe_desc32 *desc32;
1998 	struct nfe_desc64 *desc64;
1999 	struct nfe_rx_data *data;
2000 	struct mbuf *m;
2001 
2002 	data = &sc->jrxq.jdata[idx];
2003 	m = data->m;
2004 
2005 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2006 		desc64 = &sc->jrxq.jdesc64[idx];
2007 		/* VLAN packet may have overwritten it. */
2008 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
2009 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
2010 		desc64->length = htole16(m->m_len);
2011 		desc64->flags = htole16(NFE_RX_READY);
2012 	} else {
2013 		desc32 = &sc->jrxq.jdesc32[idx];
2014 		desc32->length = htole16(m->m_len);
2015 		desc32->flags = htole16(NFE_RX_READY);
2016 	}
2017 }
2018 
2019 
2020 static int
2021 nfe_newbuf(struct nfe_softc *sc, int idx)
2022 {
2023 	struct nfe_rx_data *data;
2024 	struct nfe_desc32 *desc32;
2025 	struct nfe_desc64 *desc64;
2026 	struct mbuf *m;
2027 	bus_dma_segment_t segs[1];
2028 	bus_dmamap_t map;
2029 	int nsegs;
2030 
2031 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2032 	if (m == NULL)
2033 		return (ENOBUFS);
2034 
2035 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2036 	m_adj(m, ETHER_ALIGN);
2037 
2038 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
2039 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2040 		m_freem(m);
2041 		return (ENOBUFS);
2042 	}
2043 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2044 
2045 	data = &sc->rxq.data[idx];
2046 	if (data->m != NULL) {
2047 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2048 		    BUS_DMASYNC_POSTREAD);
2049 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
2050 	}
2051 	map = data->rx_data_map;
2052 	data->rx_data_map = sc->rxq.rx_spare_map;
2053 	sc->rxq.rx_spare_map = map;
2054 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2055 	    BUS_DMASYNC_PREREAD);
2056 	data->paddr = segs[0].ds_addr;
2057 	data->m = m;
2058 	/* update mapping address in h/w descriptor */
2059 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2060 		desc64 = &sc->rxq.desc64[idx];
2061 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2062 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2063 		desc64->length = htole16(segs[0].ds_len);
2064 		desc64->flags = htole16(NFE_RX_READY);
2065 	} else {
2066 		desc32 = &sc->rxq.desc32[idx];
2067 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2068 		desc32->length = htole16(segs[0].ds_len);
2069 		desc32->flags = htole16(NFE_RX_READY);
2070 	}
2071 
2072 	return (0);
2073 }
2074 
2075 
2076 static int
2077 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2078 {
2079 	struct nfe_rx_data *data;
2080 	struct nfe_desc32 *desc32;
2081 	struct nfe_desc64 *desc64;
2082 	struct mbuf *m;
2083 	bus_dma_segment_t segs[1];
2084 	bus_dmamap_t map;
2085 	int nsegs;
2086 	void *buf;
2087 
2088 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2089 	if (m == NULL)
2090 		return (ENOBUFS);
2091 	buf = nfe_jalloc(sc);
2092 	if (buf == NULL) {
2093 		m_freem(m);
2094 		return (ENOBUFS);
2095 	}
2096 	/* Attach the buffer to the mbuf. */
2097 	MEXTADD(m, buf, NFE_JLEN, nfe_jfree, buf, (struct nfe_softc *)sc, 0,
2098 	    EXT_NET_DRV);
2099 	if ((m->m_flags & M_EXT) == 0) {
2100 		m_freem(m);
2101 		return (ENOBUFS);
2102 	}
2103 	m->m_pkthdr.len = m->m_len = NFE_JLEN;
2104 	m_adj(m, ETHER_ALIGN);
2105 
2106 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2107 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2108 		m_freem(m);
2109 		return (ENOBUFS);
2110 	}
2111 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2112 
2113 	data = &sc->jrxq.jdata[idx];
2114 	if (data->m != NULL) {
2115 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2116 		    BUS_DMASYNC_POSTREAD);
2117 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2118 	}
2119 	map = data->rx_data_map;
2120 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2121 	sc->jrxq.jrx_spare_map = map;
2122 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2123 	    BUS_DMASYNC_PREREAD);
2124 	data->paddr = segs[0].ds_addr;
2125 	data->m = m;
2126 	/* update mapping address in h/w descriptor */
2127 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2128 		desc64 = &sc->jrxq.jdesc64[idx];
2129 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2130 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2131 		desc64->length = htole16(segs[0].ds_len);
2132 		desc64->flags = htole16(NFE_RX_READY);
2133 	} else {
2134 		desc32 = &sc->jrxq.jdesc32[idx];
2135 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2136 		desc32->length = htole16(segs[0].ds_len);
2137 		desc32->flags = htole16(NFE_RX_READY);
2138 	}
2139 
2140 	return (0);
2141 }
2142 
2143 
2144 static int
2145 nfe_rxeof(struct nfe_softc *sc, int count)
2146 {
2147 	struct ifnet *ifp = sc->nfe_ifp;
2148 	struct nfe_desc32 *desc32;
2149 	struct nfe_desc64 *desc64;
2150 	struct nfe_rx_data *data;
2151 	struct mbuf *m;
2152 	uint16_t flags;
2153 	int len, prog;
2154 	uint32_t vtag = 0;
2155 
2156 	NFE_LOCK_ASSERT(sc);
2157 
2158 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2159 	    BUS_DMASYNC_POSTREAD);
2160 
2161 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2162 		if (count <= 0)
2163 			break;
2164 		count--;
2165 
2166 		data = &sc->rxq.data[sc->rxq.cur];
2167 
2168 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2169 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2170 			vtag = le32toh(desc64->physaddr[1]);
2171 			flags = le16toh(desc64->flags);
2172 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2173 		} else {
2174 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2175 			flags = le16toh(desc32->flags);
2176 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2177 		}
2178 
2179 		if (flags & NFE_RX_READY)
2180 			break;
2181 		prog++;
2182 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2183 			if (!(flags & NFE_RX_VALID_V1)) {
2184 				ifp->if_ierrors++;
2185 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2186 				continue;
2187 			}
2188 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2189 				flags &= ~NFE_RX_ERROR;
2190 				len--;	/* fix buffer length */
2191 			}
2192 		} else {
2193 			if (!(flags & NFE_RX_VALID_V2)) {
2194 				ifp->if_ierrors++;
2195 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2196 				continue;
2197 			}
2198 
2199 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2200 				flags &= ~NFE_RX_ERROR;
2201 				len--;	/* fix buffer length */
2202 			}
2203 		}
2204 
2205 		if (flags & NFE_RX_ERROR) {
2206 			ifp->if_ierrors++;
2207 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2208 			continue;
2209 		}
2210 
2211 		m = data->m;
2212 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2213 			ifp->if_iqdrops++;
2214 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2215 			continue;
2216 		}
2217 
2218 		if ((vtag & NFE_RX_VTAG) != 0 &&
2219 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2220 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2221 			m->m_flags |= M_VLANTAG;
2222 		}
2223 
2224 		m->m_pkthdr.len = m->m_len = len;
2225 		m->m_pkthdr.rcvif = ifp;
2226 
2227 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2228 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2229 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2230 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2231 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2232 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2233 					m->m_pkthdr.csum_flags |=
2234 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2235 					m->m_pkthdr.csum_data = 0xffff;
2236 				}
2237 			}
2238 		}
2239 
2240 		ifp->if_ipackets++;
2241 
2242 		NFE_UNLOCK(sc);
2243 		(*ifp->if_input)(ifp, m);
2244 		NFE_LOCK(sc);
2245 	}
2246 
2247 	if (prog > 0)
2248 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2249 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2250 
2251 	return (count > 0 ? 0 : EAGAIN);
2252 }
2253 
2254 
2255 static int
2256 nfe_jrxeof(struct nfe_softc *sc, int count)
2257 {
2258 	struct ifnet *ifp = sc->nfe_ifp;
2259 	struct nfe_desc32 *desc32;
2260 	struct nfe_desc64 *desc64;
2261 	struct nfe_rx_data *data;
2262 	struct mbuf *m;
2263 	uint16_t flags;
2264 	int len, prog;
2265 	uint32_t vtag = 0;
2266 
2267 	NFE_LOCK_ASSERT(sc);
2268 
2269 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2270 	    BUS_DMASYNC_POSTREAD);
2271 
2272 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2273 	    vtag = 0) {
2274 		if (count <= 0)
2275 			break;
2276 		count--;
2277 
2278 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2279 
2280 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2281 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2282 			vtag = le32toh(desc64->physaddr[1]);
2283 			flags = le16toh(desc64->flags);
2284 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2285 		} else {
2286 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2287 			flags = le16toh(desc32->flags);
2288 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2289 		}
2290 
2291 		if (flags & NFE_RX_READY)
2292 			break;
2293 		prog++;
2294 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2295 			if (!(flags & NFE_RX_VALID_V1)) {
2296 				ifp->if_ierrors++;
2297 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2298 				continue;
2299 			}
2300 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2301 				flags &= ~NFE_RX_ERROR;
2302 				len--;	/* fix buffer length */
2303 			}
2304 		} else {
2305 			if (!(flags & NFE_RX_VALID_V2)) {
2306 				ifp->if_ierrors++;
2307 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2308 				continue;
2309 			}
2310 
2311 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2312 				flags &= ~NFE_RX_ERROR;
2313 				len--;	/* fix buffer length */
2314 			}
2315 		}
2316 
2317 		if (flags & NFE_RX_ERROR) {
2318 			ifp->if_ierrors++;
2319 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2320 			continue;
2321 		}
2322 
2323 		m = data->m;
2324 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2325 			ifp->if_iqdrops++;
2326 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2327 			continue;
2328 		}
2329 
2330 		if ((vtag & NFE_RX_VTAG) != 0 &&
2331 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2332 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2333 			m->m_flags |= M_VLANTAG;
2334 		}
2335 
2336 		m->m_pkthdr.len = m->m_len = len;
2337 		m->m_pkthdr.rcvif = ifp;
2338 
2339 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2340 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2341 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2342 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2343 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2344 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2345 					m->m_pkthdr.csum_flags |=
2346 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2347 					m->m_pkthdr.csum_data = 0xffff;
2348 				}
2349 			}
2350 		}
2351 
2352 		ifp->if_ipackets++;
2353 
2354 		NFE_UNLOCK(sc);
2355 		(*ifp->if_input)(ifp, m);
2356 		NFE_LOCK(sc);
2357 	}
2358 
2359 	if (prog > 0)
2360 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2361 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2362 
2363 	return (count > 0 ? 0 : EAGAIN);
2364 }
2365 
2366 
2367 static void
2368 nfe_txeof(struct nfe_softc *sc)
2369 {
2370 	struct ifnet *ifp = sc->nfe_ifp;
2371 	struct nfe_desc32 *desc32;
2372 	struct nfe_desc64 *desc64;
2373 	struct nfe_tx_data *data = NULL;
2374 	uint16_t flags;
2375 	int cons, prog;
2376 
2377 	NFE_LOCK_ASSERT(sc);
2378 
2379 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2380 	    BUS_DMASYNC_POSTREAD);
2381 
2382 	prog = 0;
2383 	for (cons = sc->txq.next; cons != sc->txq.cur;
2384 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2385 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2386 			desc64 = &sc->txq.desc64[cons];
2387 			flags = le16toh(desc64->flags);
2388 		} else {
2389 			desc32 = &sc->txq.desc32[cons];
2390 			flags = le16toh(desc32->flags);
2391 		}
2392 
2393 		if (flags & NFE_TX_VALID)
2394 			break;
2395 
2396 		prog++;
2397 		sc->txq.queued--;
2398 		data = &sc->txq.data[cons];
2399 
2400 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2401 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2402 				continue;
2403 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2404 				device_printf(sc->nfe_dev,
2405 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2406 
2407 				ifp->if_oerrors++;
2408 			} else
2409 				ifp->if_opackets++;
2410 		} else {
2411 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2412 				continue;
2413 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2414 				device_printf(sc->nfe_dev,
2415 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2416 				ifp->if_oerrors++;
2417 			} else
2418 				ifp->if_opackets++;
2419 		}
2420 
2421 		/* last fragment of the mbuf chain transmitted */
2422 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2423 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2424 		    BUS_DMASYNC_POSTWRITE);
2425 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2426 		m_freem(data->m);
2427 		data->m = NULL;
2428 	}
2429 
2430 	if (prog > 0) {
2431 		sc->nfe_force_tx = 0;
2432 		sc->txq.next = cons;
2433 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2434 		if (sc->txq.queued == 0)
2435 			sc->nfe_watchdog_timer = 0;
2436 	}
2437 }
2438 
2439 static int
2440 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2441 {
2442 	struct nfe_desc32 *desc32 = NULL;
2443 	struct nfe_desc64 *desc64 = NULL;
2444 	bus_dmamap_t map;
2445 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2446 	int error, i, nsegs, prod, si;
2447 	uint32_t tso_segsz;
2448 	uint16_t cflags, flags;
2449 	struct mbuf *m;
2450 
2451 	prod = si = sc->txq.cur;
2452 	map = sc->txq.data[prod].tx_data_map;
2453 
2454 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2455 	    &nsegs, BUS_DMA_NOWAIT);
2456 	if (error == EFBIG) {
2457 		m = m_collapse(*m_head, M_DONTWAIT, NFE_MAX_SCATTER);
2458 		if (m == NULL) {
2459 			m_freem(*m_head);
2460 			*m_head = NULL;
2461 			return (ENOBUFS);
2462 		}
2463 		*m_head = m;
2464 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2465 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2466 		if (error != 0) {
2467 			m_freem(*m_head);
2468 			*m_head = NULL;
2469 			return (ENOBUFS);
2470 		}
2471 	} else if (error != 0)
2472 		return (error);
2473 	if (nsegs == 0) {
2474 		m_freem(*m_head);
2475 		*m_head = NULL;
2476 		return (EIO);
2477 	}
2478 
2479 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2480 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2481 		return (ENOBUFS);
2482 	}
2483 
2484 	m = *m_head;
2485 	cflags = flags = 0;
2486 	tso_segsz = 0;
2487 	if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2488 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2489 			cflags |= NFE_TX_IP_CSUM;
2490 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2491 			cflags |= NFE_TX_TCP_UDP_CSUM;
2492 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2493 			cflags |= NFE_TX_TCP_UDP_CSUM;
2494 	}
2495 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2496 		tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2497 		    NFE_TX_TSO_SHIFT;
2498 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2499 		cflags |= NFE_TX_TSO;
2500 	}
2501 
2502 	for (i = 0; i < nsegs; i++) {
2503 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2504 			desc64 = &sc->txq.desc64[prod];
2505 			desc64->physaddr[0] =
2506 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2507 			desc64->physaddr[1] =
2508 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2509 			desc64->vtag = 0;
2510 			desc64->length = htole16(segs[i].ds_len - 1);
2511 			desc64->flags = htole16(flags);
2512 		} else {
2513 			desc32 = &sc->txq.desc32[prod];
2514 			desc32->physaddr =
2515 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2516 			desc32->length = htole16(segs[i].ds_len - 1);
2517 			desc32->flags = htole16(flags);
2518 		}
2519 
2520 		/*
2521 		 * Setting of the valid bit in the first descriptor is
2522 		 * deferred until the whole chain is fully setup.
2523 		 */
2524 		flags |= NFE_TX_VALID;
2525 
2526 		sc->txq.queued++;
2527 		NFE_INC(prod, NFE_TX_RING_COUNT);
2528 	}
2529 
2530 	/*
2531 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2532 	 * csum flags, vtag and TSO belong to the first fragment only.
2533 	 */
2534 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2535 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2536 		desc64 = &sc->txq.desc64[si];
2537 		if ((m->m_flags & M_VLANTAG) != 0)
2538 			desc64->vtag = htole32(NFE_TX_VTAG |
2539 			    m->m_pkthdr.ether_vtag);
2540 		if (tso_segsz != 0) {
2541 			/*
2542 			 * XXX
2543 			 * The following indicates the descriptor element
2544 			 * is a 32bit quantity.
2545 			 */
2546 			desc64->length |= htole16((uint16_t)tso_segsz);
2547 			desc64->flags |= htole16(tso_segsz >> 16);
2548 		}
2549 		/*
2550 		 * finally, set the valid/checksum/TSO bit in the first
2551 		 * descriptor.
2552 		 */
2553 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2554 	} else {
2555 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2556 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2557 		else
2558 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2559 		desc32 = &sc->txq.desc32[si];
2560 		if (tso_segsz != 0) {
2561 			/*
2562 			 * XXX
2563 			 * The following indicates the descriptor element
2564 			 * is a 32bit quantity.
2565 			 */
2566 			desc32->length |= htole16((uint16_t)tso_segsz);
2567 			desc32->flags |= htole16(tso_segsz >> 16);
2568 		}
2569 		/*
2570 		 * finally, set the valid/checksum/TSO bit in the first
2571 		 * descriptor.
2572 		 */
2573 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2574 	}
2575 
2576 	sc->txq.cur = prod;
2577 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2578 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2579 	sc->txq.data[prod].tx_data_map = map;
2580 	sc->txq.data[prod].m = m;
2581 
2582 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2583 
2584 	return (0);
2585 }
2586 
2587 
2588 static void
2589 nfe_setmulti(struct nfe_softc *sc)
2590 {
2591 	struct ifnet *ifp = sc->nfe_ifp;
2592 	struct ifmultiaddr *ifma;
2593 	int i;
2594 	uint32_t filter;
2595 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2596 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2597 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2598 	};
2599 
2600 	NFE_LOCK_ASSERT(sc);
2601 
2602 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2603 		bzero(addr, ETHER_ADDR_LEN);
2604 		bzero(mask, ETHER_ADDR_LEN);
2605 		goto done;
2606 	}
2607 
2608 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2609 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2610 
2611 	IF_ADDR_LOCK(ifp);
2612 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2613 		u_char *addrp;
2614 
2615 		if (ifma->ifma_addr->sa_family != AF_LINK)
2616 			continue;
2617 
2618 		addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2619 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
2620 			u_int8_t mcaddr = addrp[i];
2621 			addr[i] &= mcaddr;
2622 			mask[i] &= ~mcaddr;
2623 		}
2624 	}
2625 	IF_ADDR_UNLOCK(ifp);
2626 
2627 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2628 		mask[i] |= addr[i];
2629 	}
2630 
2631 done:
2632 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2633 
2634 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2635 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2636 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2637 	    addr[5] <<  8 | addr[4]);
2638 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2639 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2640 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2641 	    mask[5] <<  8 | mask[4]);
2642 
2643 	filter = NFE_READ(sc, NFE_RXFILTER);
2644 	filter &= NFE_PFF_RX_PAUSE;
2645 	filter |= NFE_RXFILTER_MAGIC;
2646 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2647 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2648 }
2649 
2650 
2651 static void
2652 nfe_tx_task(void *arg, int pending)
2653 {
2654 	struct ifnet *ifp;
2655 
2656 	ifp = (struct ifnet *)arg;
2657 	nfe_start(ifp);
2658 }
2659 
2660 
2661 static void
2662 nfe_start(struct ifnet *ifp)
2663 {
2664 	struct nfe_softc *sc = ifp->if_softc;
2665 	struct mbuf *m0;
2666 	int enq;
2667 
2668 	NFE_LOCK(sc);
2669 
2670 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2671 	    IFF_DRV_RUNNING || sc->nfe_link == 0) {
2672 		NFE_UNLOCK(sc);
2673 		return;
2674 	}
2675 
2676 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2677 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2678 		if (m0 == NULL)
2679 			break;
2680 
2681 		if (nfe_encap(sc, &m0) != 0) {
2682 			if (m0 == NULL)
2683 				break;
2684 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2685 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2686 			break;
2687 		}
2688 		enq++;
2689 		ETHER_BPF_MTAP(ifp, m0);
2690 	}
2691 
2692 	if (enq > 0) {
2693 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2694 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2695 
2696 		/* kick Tx */
2697 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2698 
2699 		/*
2700 		 * Set a timeout in case the chip goes out to lunch.
2701 		 */
2702 		sc->nfe_watchdog_timer = 5;
2703 	}
2704 
2705 	NFE_UNLOCK(sc);
2706 }
2707 
2708 
2709 static void
2710 nfe_watchdog(struct ifnet *ifp)
2711 {
2712 	struct nfe_softc *sc = ifp->if_softc;
2713 
2714 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2715 		return;
2716 
2717 	/* Check if we've lost Tx completion interrupt. */
2718 	nfe_txeof(sc);
2719 	if (sc->txq.queued == 0) {
2720 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2721 		    "-- recovering\n");
2722 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2723 			taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task);
2724 		return;
2725 	}
2726 	/* Check if we've lost start Tx command. */
2727 	sc->nfe_force_tx++;
2728 	if (sc->nfe_force_tx <= 3) {
2729 		/*
2730 		 * If this is the case for watchdog timeout, the following
2731 		 * code should go to nfe_txeof().
2732 		 */
2733 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2734 		return;
2735 	}
2736 	sc->nfe_force_tx = 0;
2737 
2738 	if_printf(ifp, "watchdog timeout\n");
2739 
2740 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2741 	ifp->if_oerrors++;
2742 	nfe_init_locked(sc);
2743 }
2744 
2745 
2746 static void
2747 nfe_init(void *xsc)
2748 {
2749 	struct nfe_softc *sc = xsc;
2750 
2751 	NFE_LOCK(sc);
2752 	nfe_init_locked(sc);
2753 	NFE_UNLOCK(sc);
2754 }
2755 
2756 
2757 static void
2758 nfe_init_locked(void *xsc)
2759 {
2760 	struct nfe_softc *sc = xsc;
2761 	struct ifnet *ifp = sc->nfe_ifp;
2762 	struct mii_data *mii;
2763 	uint32_t val;
2764 	int error;
2765 
2766 	NFE_LOCK_ASSERT(sc);
2767 
2768 	mii = device_get_softc(sc->nfe_miibus);
2769 
2770 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2771 		return;
2772 
2773 	nfe_stop(ifp);
2774 
2775 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
2776 
2777 	nfe_init_tx_ring(sc, &sc->txq);
2778 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2779 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2780 	else
2781 		error = nfe_init_rx_ring(sc, &sc->rxq);
2782 	if (error != 0) {
2783 		device_printf(sc->nfe_dev,
2784 		    "initialization failed: no memory for rx buffers\n");
2785 		nfe_stop(ifp);
2786 		return;
2787 	}
2788 
2789 	val = 0;
2790 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2791 		val |= NFE_MAC_ADDR_INORDER;
2792 	NFE_WRITE(sc, NFE_TX_UNK, val);
2793 	NFE_WRITE(sc, NFE_STATUS, 0);
2794 
2795 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2796 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2797 
2798 	sc->rxtxctl = NFE_RXTX_BIT2;
2799 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2800 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2801 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2802 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2803 
2804 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2805 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2806 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2807 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2808 
2809 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2810 	DELAY(10);
2811 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2812 
2813 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2814 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2815 	else
2816 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2817 
2818 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2819 
2820 	/* set MAC address */
2821 	nfe_set_macaddr(sc, IF_LLADDR(ifp));
2822 
2823 	/* tell MAC where rings are in memory */
2824 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2825 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2826 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2827 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2828 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2829 	} else {
2830 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2831 		    NFE_ADDR_HI(sc->rxq.physaddr));
2832 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2833 		    NFE_ADDR_LO(sc->rxq.physaddr));
2834 	}
2835 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2836 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2837 
2838 	NFE_WRITE(sc, NFE_RING_SIZE,
2839 	    (NFE_RX_RING_COUNT - 1) << 16 |
2840 	    (NFE_TX_RING_COUNT - 1));
2841 
2842 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2843 
2844 	/* force MAC to wakeup */
2845 	val = NFE_READ(sc, NFE_PWR_STATE);
2846 	if ((val & NFE_PWR_WAKEUP) == 0)
2847 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2848 	DELAY(10);
2849 	val = NFE_READ(sc, NFE_PWR_STATE);
2850 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2851 
2852 #if 1
2853 	/* configure interrupts coalescing/mitigation */
2854 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2855 #else
2856 	/* no interrupt mitigation: one interrupt per packet */
2857 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2858 #endif
2859 
2860 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2861 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2862 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2863 
2864 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2865 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2866 
2867 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2868 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
2869 
2870 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2871 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2872 	DELAY(10);
2873 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2874 
2875 	/* set Rx filter */
2876 	nfe_setmulti(sc);
2877 
2878 	/* enable Rx */
2879 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2880 
2881 	/* enable Tx */
2882 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2883 
2884 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2885 
2886 #ifdef DEVICE_POLLING
2887 	if (ifp->if_capenable & IFCAP_POLLING)
2888 		nfe_disable_intr(sc);
2889 	else
2890 #endif
2891 	nfe_set_intr(sc);
2892 	nfe_enable_intr(sc); /* enable interrupts */
2893 
2894 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2895 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2896 
2897 	sc->nfe_link = 0;
2898 	mii_mediachg(mii);
2899 
2900 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2901 }
2902 
2903 
2904 static void
2905 nfe_stop(struct ifnet *ifp)
2906 {
2907 	struct nfe_softc *sc = ifp->if_softc;
2908 	struct nfe_rx_ring *rx_ring;
2909 	struct nfe_jrx_ring *jrx_ring;
2910 	struct nfe_tx_ring *tx_ring;
2911 	struct nfe_rx_data *rdata;
2912 	struct nfe_tx_data *tdata;
2913 	int i;
2914 
2915 	NFE_LOCK_ASSERT(sc);
2916 
2917 	sc->nfe_watchdog_timer = 0;
2918 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2919 
2920 	callout_stop(&sc->nfe_stat_ch);
2921 
2922 	/* abort Tx */
2923 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2924 
2925 	/* disable Rx */
2926 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2927 
2928 	/* disable interrupts */
2929 	nfe_disable_intr(sc);
2930 
2931 	sc->nfe_link = 0;
2932 
2933 	/* free Rx and Tx mbufs still in the queues. */
2934 	rx_ring = &sc->rxq;
2935 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2936 		rdata = &rx_ring->data[i];
2937 		if (rdata->m != NULL) {
2938 			bus_dmamap_sync(rx_ring->rx_data_tag,
2939 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2940 			bus_dmamap_unload(rx_ring->rx_data_tag,
2941 			    rdata->rx_data_map);
2942 			m_freem(rdata->m);
2943 			rdata->m = NULL;
2944 		}
2945 	}
2946 
2947 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2948 		jrx_ring = &sc->jrxq;
2949 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2950 			rdata = &jrx_ring->jdata[i];
2951 			if (rdata->m != NULL) {
2952 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2953 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2954 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2955 				    rdata->rx_data_map);
2956 				m_freem(rdata->m);
2957 				rdata->m = NULL;
2958 			}
2959 		}
2960 	}
2961 
2962 	tx_ring = &sc->txq;
2963 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2964 		tdata = &tx_ring->data[i];
2965 		if (tdata->m != NULL) {
2966 			bus_dmamap_sync(tx_ring->tx_data_tag,
2967 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2968 			bus_dmamap_unload(tx_ring->tx_data_tag,
2969 			    tdata->tx_data_map);
2970 			m_freem(tdata->m);
2971 			tdata->m = NULL;
2972 		}
2973 	}
2974 }
2975 
2976 
2977 static int
2978 nfe_ifmedia_upd(struct ifnet *ifp)
2979 {
2980 	struct nfe_softc *sc = ifp->if_softc;
2981 	struct mii_data *mii;
2982 
2983 	NFE_LOCK(sc);
2984 	mii = device_get_softc(sc->nfe_miibus);
2985 	mii_mediachg(mii);
2986 	NFE_UNLOCK(sc);
2987 
2988 	return (0);
2989 }
2990 
2991 
2992 static void
2993 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2994 {
2995 	struct nfe_softc *sc;
2996 	struct mii_data *mii;
2997 
2998 	sc = ifp->if_softc;
2999 
3000 	NFE_LOCK(sc);
3001 	mii = device_get_softc(sc->nfe_miibus);
3002 	mii_pollstat(mii);
3003 	NFE_UNLOCK(sc);
3004 
3005 	ifmr->ifm_active = mii->mii_media_active;
3006 	ifmr->ifm_status = mii->mii_media_status;
3007 }
3008 
3009 
3010 void
3011 nfe_tick(void *xsc)
3012 {
3013 	struct nfe_softc *sc;
3014 	struct mii_data *mii;
3015 	struct ifnet *ifp;
3016 
3017 	sc = (struct nfe_softc *)xsc;
3018 
3019 	NFE_LOCK_ASSERT(sc);
3020 
3021 	ifp = sc->nfe_ifp;
3022 
3023 	mii = device_get_softc(sc->nfe_miibus);
3024 	mii_tick(mii);
3025 	nfe_watchdog(ifp);
3026 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
3027 }
3028 
3029 
3030 static int
3031 nfe_shutdown(device_t dev)
3032 {
3033 	struct nfe_softc *sc;
3034 	struct ifnet *ifp;
3035 
3036 	sc = device_get_softc(dev);
3037 
3038 	NFE_LOCK(sc);
3039 	ifp = sc->nfe_ifp;
3040 	nfe_stop(ifp);
3041 	/* nfe_reset(sc); */
3042 	NFE_UNLOCK(sc);
3043 
3044 	return (0);
3045 }
3046 
3047 
3048 static void
3049 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
3050 {
3051 	uint32_t val;
3052 
3053 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
3054 		val = NFE_READ(sc, NFE_MACADDR_LO);
3055 		addr[0] = (val >> 8) & 0xff;
3056 		addr[1] = (val & 0xff);
3057 
3058 		val = NFE_READ(sc, NFE_MACADDR_HI);
3059 		addr[2] = (val >> 24) & 0xff;
3060 		addr[3] = (val >> 16) & 0xff;
3061 		addr[4] = (val >>  8) & 0xff;
3062 		addr[5] = (val & 0xff);
3063 	} else {
3064 		val = NFE_READ(sc, NFE_MACADDR_LO);
3065 		addr[5] = (val >> 8) & 0xff;
3066 		addr[4] = (val & 0xff);
3067 
3068 		val = NFE_READ(sc, NFE_MACADDR_HI);
3069 		addr[3] = (val >> 24) & 0xff;
3070 		addr[2] = (val >> 16) & 0xff;
3071 		addr[1] = (val >>  8) & 0xff;
3072 		addr[0] = (val & 0xff);
3073 	}
3074 }
3075 
3076 
3077 static void
3078 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3079 {
3080 
3081 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3082 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3083 	    addr[1] << 8 | addr[0]);
3084 }
3085 
3086 
3087 /*
3088  * Map a single buffer address.
3089  */
3090 
3091 static void
3092 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3093 {
3094 	struct nfe_dmamap_arg *ctx;
3095 
3096 	if (error != 0)
3097 		return;
3098 
3099 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3100 
3101 	ctx = (struct nfe_dmamap_arg *)arg;
3102 	ctx->nfe_busaddr = segs[0].ds_addr;
3103 }
3104 
3105 
3106 static int
3107 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3108 {
3109 	int error, value;
3110 
3111 	if (!arg1)
3112 		return (EINVAL);
3113 	value = *(int *)arg1;
3114 	error = sysctl_handle_int(oidp, &value, 0, req);
3115 	if (error || !req->newptr)
3116 		return (error);
3117 	if (value < low || value > high)
3118 		return (EINVAL);
3119 	*(int *)arg1 = value;
3120 
3121 	return (0);
3122 }
3123 
3124 
3125 static int
3126 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3127 {
3128 
3129 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3130 	    NFE_PROC_MAX));
3131 }
3132