xref: /freebsd/sys/dev/nfe/if_nfe.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/ethernet.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net/bpf.h>
52 
53 #include <machine/bus.h>
54 #include <machine/resource.h>
55 #include <sys/bus.h>
56 #include <sys/rman.h>
57 
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 
61 #include <dev/pci/pcireg.h>
62 #include <dev/pci/pcivar.h>
63 
64 #include <dev/nfe/if_nfereg.h>
65 #include <dev/nfe/if_nfevar.h>
66 
67 MODULE_DEPEND(nfe, pci, 1, 1, 1);
68 MODULE_DEPEND(nfe, ether, 1, 1, 1);
69 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
70 
71 /* "device miibus" required.  See GENERIC if you get errors here. */
72 #include "miibus_if.h"
73 
74 static int  nfe_probe(device_t);
75 static int  nfe_attach(device_t);
76 static int  nfe_detach(device_t);
77 static int  nfe_suspend(device_t);
78 static int  nfe_resume(device_t);
79 static int nfe_shutdown(device_t);
80 static int  nfe_can_use_msix(struct nfe_softc *);
81 static void nfe_power(struct nfe_softc *);
82 static int  nfe_miibus_readreg(device_t, int, int);
83 static int  nfe_miibus_writereg(device_t, int, int, int);
84 static void nfe_miibus_statchg(device_t);
85 static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
86 static void nfe_set_intr(struct nfe_softc *);
87 static __inline void nfe_enable_intr(struct nfe_softc *);
88 static __inline void nfe_disable_intr(struct nfe_softc *);
89 static int  nfe_ioctl(struct ifnet *, u_long, caddr_t);
90 static void nfe_alloc_msix(struct nfe_softc *, int);
91 static int nfe_intr(void *);
92 static void nfe_int_task(void *, int);
93 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
94 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
95 static int nfe_newbuf(struct nfe_softc *, int);
96 static int nfe_jnewbuf(struct nfe_softc *, int);
97 static int  nfe_rxeof(struct nfe_softc *, int, int *);
98 static int  nfe_jrxeof(struct nfe_softc *, int, int *);
99 static void nfe_txeof(struct nfe_softc *);
100 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
101 static void nfe_setmulti(struct nfe_softc *);
102 static void nfe_start(struct ifnet *);
103 static void nfe_start_locked(struct ifnet *);
104 static void nfe_watchdog(struct ifnet *);
105 static void nfe_init(void *);
106 static void nfe_init_locked(void *);
107 static void nfe_stop(struct ifnet *);
108 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
109 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
110 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
111 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
112 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
113 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
114 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
115 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
116 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static int  nfe_ifmedia_upd(struct ifnet *);
118 static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
119 static void nfe_tick(void *);
120 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
121 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
122 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
123 
124 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
125 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
126 static void nfe_sysctl_node(struct nfe_softc *);
127 static void nfe_stats_clear(struct nfe_softc *);
128 static void nfe_stats_update(struct nfe_softc *);
129 static void nfe_set_linkspeed(struct nfe_softc *);
130 static void nfe_set_wol(struct nfe_softc *);
131 
132 #ifdef NFE_DEBUG
133 static int nfedebug = 0;
134 #define	DPRINTF(sc, ...)	do {				\
135 	if (nfedebug)						\
136 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
137 } while (0)
138 #define	DPRINTFN(sc, n, ...)	do {				\
139 	if (nfedebug >= (n))					\
140 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
141 } while (0)
142 #else
143 #define	DPRINTF(sc, ...)
144 #define	DPRINTFN(sc, n, ...)
145 #endif
146 
147 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
148 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
149 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
150 
151 /* Tunables. */
152 static int msi_disable = 0;
153 static int msix_disable = 0;
154 static int jumbo_disable = 0;
155 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
156 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
157 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
158 
159 static device_method_t nfe_methods[] = {
160 	/* Device interface */
161 	DEVMETHOD(device_probe,		nfe_probe),
162 	DEVMETHOD(device_attach,	nfe_attach),
163 	DEVMETHOD(device_detach,	nfe_detach),
164 	DEVMETHOD(device_suspend,	nfe_suspend),
165 	DEVMETHOD(device_resume,	nfe_resume),
166 	DEVMETHOD(device_shutdown,	nfe_shutdown),
167 
168 	/* bus interface */
169 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
170 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
171 
172 	/* MII interface */
173 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
174 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
175 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
176 
177 	{ NULL, NULL }
178 };
179 
180 static driver_t nfe_driver = {
181 	"nfe",
182 	nfe_methods,
183 	sizeof(struct nfe_softc)
184 };
185 
186 static devclass_t nfe_devclass;
187 
188 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
189 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
190 
191 static struct nfe_type nfe_devs[] = {
192 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
193 	    "NVIDIA nForce MCP Networking Adapter"},
194 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
195 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
196 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
197 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
198 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
199 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
200 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
201 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
202 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
203 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
204 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
205 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
206 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
207 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
208 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
209 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
210 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
211 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
212 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
213 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
214 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
215 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
216 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
217 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
218 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
219 	    "NVIDIA nForce MCP55 Networking Adapter"},
220 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
221 	    "NVIDIA nForce MCP55 Networking Adapter"},
222 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
223 	    "NVIDIA nForce MCP61 Networking Adapter"},
224 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
225 	    "NVIDIA nForce MCP61 Networking Adapter"},
226 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
227 	    "NVIDIA nForce MCP61 Networking Adapter"},
228 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
229 	    "NVIDIA nForce MCP61 Networking Adapter"},
230 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
231 	    "NVIDIA nForce MCP65 Networking Adapter"},
232 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
233 	    "NVIDIA nForce MCP65 Networking Adapter"},
234 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
235 	    "NVIDIA nForce MCP65 Networking Adapter"},
236 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
237 	    "NVIDIA nForce MCP65 Networking Adapter"},
238 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
239 	    "NVIDIA nForce MCP67 Networking Adapter"},
240 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
241 	    "NVIDIA nForce MCP67 Networking Adapter"},
242 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
243 	    "NVIDIA nForce MCP67 Networking Adapter"},
244 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
245 	    "NVIDIA nForce MCP67 Networking Adapter"},
246 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
247 	    "NVIDIA nForce MCP73 Networking Adapter"},
248 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
249 	    "NVIDIA nForce MCP73 Networking Adapter"},
250 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
251 	    "NVIDIA nForce MCP73 Networking Adapter"},
252 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
253 	    "NVIDIA nForce MCP73 Networking Adapter"},
254 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
255 	    "NVIDIA nForce MCP77 Networking Adapter"},
256 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
257 	    "NVIDIA nForce MCP77 Networking Adapter"},
258 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
259 	    "NVIDIA nForce MCP77 Networking Adapter"},
260 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
261 	    "NVIDIA nForce MCP77 Networking Adapter"},
262 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
263 	    "NVIDIA nForce MCP79 Networking Adapter"},
264 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
265 	    "NVIDIA nForce MCP79 Networking Adapter"},
266 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
267 	    "NVIDIA nForce MCP79 Networking Adapter"},
268 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
269 	    "NVIDIA nForce MCP79 Networking Adapter"},
270 	{0, 0, NULL}
271 };
272 
273 
274 /* Probe for supported hardware ID's */
275 static int
276 nfe_probe(device_t dev)
277 {
278 	struct nfe_type *t;
279 
280 	t = nfe_devs;
281 	/* Check for matching PCI DEVICE ID's */
282 	while (t->name != NULL) {
283 		if ((pci_get_vendor(dev) == t->vid_id) &&
284 		    (pci_get_device(dev) == t->dev_id)) {
285 			device_set_desc(dev, t->name);
286 			return (BUS_PROBE_DEFAULT);
287 		}
288 		t++;
289 	}
290 
291 	return (ENXIO);
292 }
293 
294 static void
295 nfe_alloc_msix(struct nfe_softc *sc, int count)
296 {
297 	int rid;
298 
299 	rid = PCIR_BAR(2);
300 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
301 	    &rid, RF_ACTIVE);
302 	if (sc->nfe_msix_res == NULL) {
303 		device_printf(sc->nfe_dev,
304 		    "couldn't allocate MSIX table resource\n");
305 		return;
306 	}
307 	rid = PCIR_BAR(3);
308 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
309 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
310 	if (sc->nfe_msix_pba_res == NULL) {
311 		device_printf(sc->nfe_dev,
312 		    "couldn't allocate MSIX PBA resource\n");
313 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
314 		    sc->nfe_msix_res);
315 		sc->nfe_msix_res = NULL;
316 		return;
317 	}
318 
319 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
320 		if (count == NFE_MSI_MESSAGES) {
321 			if (bootverbose)
322 				device_printf(sc->nfe_dev,
323 				    "Using %d MSIX messages\n", count);
324 			sc->nfe_msix = 1;
325 		} else {
326 			if (bootverbose)
327 				device_printf(sc->nfe_dev,
328 				    "couldn't allocate MSIX\n");
329 			pci_release_msi(sc->nfe_dev);
330 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
331 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
332 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
333 			    PCIR_BAR(2), sc->nfe_msix_res);
334 			sc->nfe_msix_pba_res = NULL;
335 			sc->nfe_msix_res = NULL;
336 		}
337 	}
338 }
339 
340 static int
341 nfe_attach(device_t dev)
342 {
343 	struct nfe_softc *sc;
344 	struct ifnet *ifp;
345 	bus_addr_t dma_addr_max;
346 	int error = 0, i, msic, reg, rid;
347 
348 	sc = device_get_softc(dev);
349 	sc->nfe_dev = dev;
350 
351 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
352 	    MTX_DEF);
353 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
354 
355 	pci_enable_busmaster(dev);
356 
357 	rid = PCIR_BAR(0);
358 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
359 	    RF_ACTIVE);
360 	if (sc->nfe_res[0] == NULL) {
361 		device_printf(dev, "couldn't map memory resources\n");
362 		mtx_destroy(&sc->nfe_mtx);
363 		return (ENXIO);
364 	}
365 
366 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
367 		uint16_t v, width;
368 
369 		v = pci_read_config(dev, reg + 0x08, 2);
370 		/* Change max. read request size to 4096. */
371 		v &= ~(7 << 12);
372 		v |= (5 << 12);
373 		pci_write_config(dev, reg + 0x08, v, 2);
374 
375 		v = pci_read_config(dev, reg + 0x0c, 2);
376 		/* link capability */
377 		v = (v >> 4) & 0x0f;
378 		width = pci_read_config(dev, reg + 0x12, 2);
379 		/* negotiated link width */
380 		width = (width >> 4) & 0x3f;
381 		if (v != width)
382 			device_printf(sc->nfe_dev,
383 			    "warning, negotiated width of link(x%d) != "
384 			    "max. width of link(x%d)\n", width, v);
385 	}
386 
387 	if (nfe_can_use_msix(sc) == 0) {
388 		device_printf(sc->nfe_dev,
389 		    "MSI/MSI-X capability black-listed, will use INTx\n");
390 		msix_disable = 1;
391 		msi_disable = 1;
392 	}
393 
394 	/* Allocate interrupt */
395 	if (msix_disable == 0 || msi_disable == 0) {
396 		if (msix_disable == 0 &&
397 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
398 			nfe_alloc_msix(sc, msic);
399 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
400 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
401 		    pci_alloc_msi(dev, &msic) == 0) {
402 			if (msic == NFE_MSI_MESSAGES) {
403 				if (bootverbose)
404 					device_printf(dev,
405 					    "Using %d MSI messages\n", msic);
406 				sc->nfe_msi = 1;
407 			} else
408 				pci_release_msi(dev);
409 		}
410 	}
411 
412 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
413 		rid = 0;
414 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
415 		    RF_SHAREABLE | RF_ACTIVE);
416 		if (sc->nfe_irq[0] == NULL) {
417 			device_printf(dev, "couldn't allocate IRQ resources\n");
418 			error = ENXIO;
419 			goto fail;
420 		}
421 	} else {
422 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
423 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
424 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
425 			if (sc->nfe_irq[i] == NULL) {
426 				device_printf(dev,
427 				    "couldn't allocate IRQ resources for "
428 				    "message %d\n", rid);
429 				error = ENXIO;
430 				goto fail;
431 			}
432 		}
433 		/* Map interrupts to vector 0. */
434 		if (sc->nfe_msix != 0) {
435 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
436 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
437 		} else if (sc->nfe_msi != 0) {
438 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
439 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
440 		}
441 	}
442 
443 	/* Set IRQ status/mask register. */
444 	sc->nfe_irq_status = NFE_IRQ_STATUS;
445 	sc->nfe_irq_mask = NFE_IRQ_MASK;
446 	sc->nfe_intrs = NFE_IRQ_WANTED;
447 	sc->nfe_nointrs = 0;
448 	if (sc->nfe_msix != 0) {
449 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
450 		sc->nfe_nointrs = NFE_IRQ_WANTED;
451 	} else if (sc->nfe_msi != 0) {
452 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
453 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
454 	}
455 
456 	sc->nfe_devid = pci_get_device(dev);
457 	sc->nfe_revid = pci_get_revid(dev);
458 	sc->nfe_flags = 0;
459 
460 	switch (sc->nfe_devid) {
461 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
462 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
463 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
464 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
465 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
466 		break;
467 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
468 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
469 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
470 		break;
471 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
472 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
473 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
474 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
475 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
476 		    NFE_MIB_V1;
477 		break;
478 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
479 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
480 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
481 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
482 		break;
483 
484 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
485 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
486 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
487 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
488 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
489 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
490 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
491 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
492 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
493 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
494 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
495 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
496 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
497 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
498 		break;
499 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
500 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
501 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
502 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
503 		/* XXX flow control */
504 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
505 		    NFE_CORRECT_MACADDR | NFE_MIB_V3;
506 		break;
507 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
508 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
509 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
510 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
511 		/* XXX flow control */
512 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
513 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
514 		break;
515 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
516 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
517 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
518 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
519 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
520 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
521 		    NFE_MIB_V2;
522 		break;
523 	}
524 
525 	nfe_power(sc);
526 	/* Check for reversed ethernet address */
527 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
528 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
529 	nfe_get_macaddr(sc, sc->eaddr);
530 	/*
531 	 * Allocate the parent bus DMA tag appropriate for PCI.
532 	 */
533 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
534 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
535 		dma_addr_max = NFE_DMA_MAXADDR;
536 	error = bus_dma_tag_create(
537 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
538 	    1, 0,				/* alignment, boundary */
539 	    dma_addr_max,			/* lowaddr */
540 	    BUS_SPACE_MAXADDR,			/* highaddr */
541 	    NULL, NULL,				/* filter, filterarg */
542 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
543 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
544 	    0,					/* flags */
545 	    NULL, NULL,				/* lockfunc, lockarg */
546 	    &sc->nfe_parent_tag);
547 	if (error)
548 		goto fail;
549 
550 	ifp = sc->nfe_ifp = if_alloc(IFT_ETHER);
551 	if (ifp == NULL) {
552 		device_printf(dev, "can not if_alloc()\n");
553 		error = ENOSPC;
554 		goto fail;
555 	}
556 
557 	/*
558 	 * Allocate Tx and Rx rings.
559 	 */
560 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
561 		goto fail;
562 
563 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
564 		goto fail;
565 
566 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
567 	/* Create sysctl node. */
568 	nfe_sysctl_node(sc);
569 
570 	ifp->if_softc = sc;
571 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
572 	ifp->if_mtu = ETHERMTU;
573 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
574 	ifp->if_ioctl = nfe_ioctl;
575 	ifp->if_start = nfe_start;
576 	ifp->if_hwassist = 0;
577 	ifp->if_capabilities = 0;
578 	ifp->if_init = nfe_init;
579 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_TX_RING_COUNT - 1);
580 	ifp->if_snd.ifq_drv_maxlen = NFE_TX_RING_COUNT - 1;
581 	IFQ_SET_READY(&ifp->if_snd);
582 
583 	if (sc->nfe_flags & NFE_HW_CSUM) {
584 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
585 		ifp->if_hwassist |= NFE_CSUM_FEATURES | CSUM_TSO;
586 	}
587 	ifp->if_capenable = ifp->if_capabilities;
588 
589 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
590 	/* VLAN capability setup. */
591 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
592 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
593 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
594 		if ((ifp->if_capabilities & IFCAP_HWCSUM) != 0)
595 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM |
596 			    IFCAP_VLAN_HWTSO;
597 	}
598 
599 	if (pci_find_cap(dev, PCIY_PMG, &reg) == 0)
600 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
601 	ifp->if_capenable = ifp->if_capabilities;
602 
603 	/*
604 	 * Tell the upper layer(s) we support long frames.
605 	 * Must appear after the call to ether_ifattach() because
606 	 * ether_ifattach() sets ifi_hdrlen to the default value.
607 	 */
608 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
609 
610 #ifdef DEVICE_POLLING
611 	ifp->if_capabilities |= IFCAP_POLLING;
612 #endif
613 
614 	/* Do MII setup */
615 	error = mii_attach(dev, &sc->nfe_miibus, ifp, nfe_ifmedia_upd,
616 	    nfe_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
617 	    MIIF_DOPAUSE);
618 	if (error != 0) {
619 		device_printf(dev, "attaching PHYs failed\n");
620 		goto fail;
621 	}
622 	ether_ifattach(ifp, sc->eaddr);
623 
624 	TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
625 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
626 	    taskqueue_thread_enqueue, &sc->nfe_tq);
627 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
628 	    device_get_nameunit(sc->nfe_dev));
629 	error = 0;
630 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
631 		error = bus_setup_intr(dev, sc->nfe_irq[0],
632 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
633 		    &sc->nfe_intrhand[0]);
634 	} else {
635 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
636 			error = bus_setup_intr(dev, sc->nfe_irq[i],
637 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
638 			    &sc->nfe_intrhand[i]);
639 			if (error != 0)
640 				break;
641 		}
642 	}
643 	if (error) {
644 		device_printf(dev, "couldn't set up irq\n");
645 		taskqueue_free(sc->nfe_tq);
646 		sc->nfe_tq = NULL;
647 		ether_ifdetach(ifp);
648 		goto fail;
649 	}
650 
651 fail:
652 	if (error)
653 		nfe_detach(dev);
654 
655 	return (error);
656 }
657 
658 
659 static int
660 nfe_detach(device_t dev)
661 {
662 	struct nfe_softc *sc;
663 	struct ifnet *ifp;
664 	uint8_t eaddr[ETHER_ADDR_LEN];
665 	int i, rid;
666 
667 	sc = device_get_softc(dev);
668 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
669 	ifp = sc->nfe_ifp;
670 
671 #ifdef DEVICE_POLLING
672 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
673 		ether_poll_deregister(ifp);
674 #endif
675 	if (device_is_attached(dev)) {
676 		NFE_LOCK(sc);
677 		nfe_stop(ifp);
678 		ifp->if_flags &= ~IFF_UP;
679 		NFE_UNLOCK(sc);
680 		callout_drain(&sc->nfe_stat_ch);
681 		ether_ifdetach(ifp);
682 	}
683 
684 	if (ifp) {
685 		/* restore ethernet address */
686 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
687 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
688 				eaddr[i] = sc->eaddr[5 - i];
689 			}
690 		} else
691 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
692 		nfe_set_macaddr(sc, eaddr);
693 		if_free(ifp);
694 	}
695 	if (sc->nfe_miibus)
696 		device_delete_child(dev, sc->nfe_miibus);
697 	bus_generic_detach(dev);
698 	if (sc->nfe_tq != NULL) {
699 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
700 		taskqueue_free(sc->nfe_tq);
701 		sc->nfe_tq = NULL;
702 	}
703 
704 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
705 		if (sc->nfe_intrhand[i] != NULL) {
706 			bus_teardown_intr(dev, sc->nfe_irq[i],
707 			    sc->nfe_intrhand[i]);
708 			sc->nfe_intrhand[i] = NULL;
709 		}
710 	}
711 
712 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
713 		if (sc->nfe_irq[0] != NULL)
714 			bus_release_resource(dev, SYS_RES_IRQ, 0,
715 			    sc->nfe_irq[0]);
716 	} else {
717 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
718 			if (sc->nfe_irq[i] != NULL) {
719 				bus_release_resource(dev, SYS_RES_IRQ, rid,
720 				    sc->nfe_irq[i]);
721 				sc->nfe_irq[i] = NULL;
722 			}
723 		}
724 		pci_release_msi(dev);
725 	}
726 	if (sc->nfe_msix_pba_res != NULL) {
727 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
728 		    sc->nfe_msix_pba_res);
729 		sc->nfe_msix_pba_res = NULL;
730 	}
731 	if (sc->nfe_msix_res != NULL) {
732 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
733 		    sc->nfe_msix_res);
734 		sc->nfe_msix_res = NULL;
735 	}
736 	if (sc->nfe_res[0] != NULL) {
737 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
738 		    sc->nfe_res[0]);
739 		sc->nfe_res[0] = NULL;
740 	}
741 
742 	nfe_free_tx_ring(sc, &sc->txq);
743 	nfe_free_rx_ring(sc, &sc->rxq);
744 	nfe_free_jrx_ring(sc, &sc->jrxq);
745 
746 	if (sc->nfe_parent_tag) {
747 		bus_dma_tag_destroy(sc->nfe_parent_tag);
748 		sc->nfe_parent_tag = NULL;
749 	}
750 
751 	mtx_destroy(&sc->nfe_mtx);
752 
753 	return (0);
754 }
755 
756 
757 static int
758 nfe_suspend(device_t dev)
759 {
760 	struct nfe_softc *sc;
761 
762 	sc = device_get_softc(dev);
763 
764 	NFE_LOCK(sc);
765 	nfe_stop(sc->nfe_ifp);
766 	nfe_set_wol(sc);
767 	sc->nfe_suspended = 1;
768 	NFE_UNLOCK(sc);
769 
770 	return (0);
771 }
772 
773 
774 static int
775 nfe_resume(device_t dev)
776 {
777 	struct nfe_softc *sc;
778 	struct ifnet *ifp;
779 
780 	sc = device_get_softc(dev);
781 
782 	NFE_LOCK(sc);
783 	nfe_power(sc);
784 	ifp = sc->nfe_ifp;
785 	if (ifp->if_flags & IFF_UP)
786 		nfe_init_locked(sc);
787 	sc->nfe_suspended = 0;
788 	NFE_UNLOCK(sc);
789 
790 	return (0);
791 }
792 
793 
794 static int
795 nfe_can_use_msix(struct nfe_softc *sc)
796 {
797 	static struct msix_blacklist {
798 		char	*maker;
799 		char	*product;
800 	} msix_blacklists[] = {
801 		{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
802 	};
803 
804 	struct msix_blacklist *mblp;
805 	char *maker, *product;
806 	int count, n, use_msix;
807 
808 	/*
809 	 * Search base board manufacturer and product name table
810 	 * to see this system has a known MSI/MSI-X issue.
811 	 */
812 	maker = getenv("smbios.planar.maker");
813 	product = getenv("smbios.planar.product");
814 	use_msix = 1;
815 	if (maker != NULL && product != NULL) {
816 		count = sizeof(msix_blacklists) / sizeof(msix_blacklists[0]);
817 		mblp = msix_blacklists;
818 		for (n = 0; n < count; n++) {
819 			if (strcmp(maker, mblp->maker) == 0 &&
820 			    strcmp(product, mblp->product) == 0) {
821 				use_msix = 0;
822 				break;
823 			}
824 			mblp++;
825 		}
826 	}
827 	if (maker != NULL)
828 		freeenv(maker);
829 	if (product != NULL)
830 		freeenv(product);
831 
832 	return (use_msix);
833 }
834 
835 
836 /* Take PHY/NIC out of powerdown, from Linux */
837 static void
838 nfe_power(struct nfe_softc *sc)
839 {
840 	uint32_t pwr;
841 
842 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
843 		return;
844 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
845 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
846 	DELAY(100);
847 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
848 	DELAY(100);
849 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
850 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
851 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
852 	if (sc->nfe_revid >= 0xa3 &&
853 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
854 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
855 		pwr |= NFE_PWR2_REVA3;
856 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
857 }
858 
859 
860 static void
861 nfe_miibus_statchg(device_t dev)
862 {
863 	struct nfe_softc *sc;
864 	struct mii_data *mii;
865 	struct ifnet *ifp;
866 	uint32_t rxctl, txctl;
867 
868 	sc = device_get_softc(dev);
869 
870 	mii = device_get_softc(sc->nfe_miibus);
871 	ifp = sc->nfe_ifp;
872 
873 	sc->nfe_link = 0;
874 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
875 	    (IFM_ACTIVE | IFM_AVALID)) {
876 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
877 		case IFM_10_T:
878 		case IFM_100_TX:
879 		case IFM_1000_T:
880 			sc->nfe_link = 1;
881 			break;
882 		default:
883 			break;
884 		}
885 	}
886 
887 	nfe_mac_config(sc, mii);
888 	txctl = NFE_READ(sc, NFE_TX_CTL);
889 	rxctl = NFE_READ(sc, NFE_RX_CTL);
890 	if (sc->nfe_link != 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
891 		txctl |= NFE_TX_START;
892 		rxctl |= NFE_RX_START;
893 	} else {
894 		txctl &= ~NFE_TX_START;
895 		rxctl &= ~NFE_RX_START;
896 	}
897 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
898 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
899 }
900 
901 
902 static void
903 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
904 {
905 	uint32_t link, misc, phy, seed;
906 	uint32_t val;
907 
908 	NFE_LOCK_ASSERT(sc);
909 
910 	phy = NFE_READ(sc, NFE_PHY_IFACE);
911 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
912 
913 	seed = NFE_READ(sc, NFE_RNDSEED);
914 	seed &= ~NFE_SEED_MASK;
915 
916 	misc = NFE_MISC1_MAGIC;
917 	link = NFE_MEDIA_SET;
918 
919 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
920 		phy  |= NFE_PHY_HDX;	/* half-duplex */
921 		misc |= NFE_MISC1_HDX;
922 	}
923 
924 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
925 	case IFM_1000_T:	/* full-duplex only */
926 		link |= NFE_MEDIA_1000T;
927 		seed |= NFE_SEED_1000T;
928 		phy  |= NFE_PHY_1000T;
929 		break;
930 	case IFM_100_TX:
931 		link |= NFE_MEDIA_100TX;
932 		seed |= NFE_SEED_100TX;
933 		phy  |= NFE_PHY_100TX;
934 		break;
935 	case IFM_10_T:
936 		link |= NFE_MEDIA_10T;
937 		seed |= NFE_SEED_10T;
938 		break;
939 	}
940 
941 	if ((phy & 0x10000000) != 0) {
942 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
943 			val = NFE_R1_MAGIC_1000;
944 		else
945 			val = NFE_R1_MAGIC_10_100;
946 	} else
947 		val = NFE_R1_MAGIC_DEFAULT;
948 	NFE_WRITE(sc, NFE_SETUP_R1, val);
949 
950 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
951 
952 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
953 	NFE_WRITE(sc, NFE_MISC1, misc);
954 	NFE_WRITE(sc, NFE_LINKSPEED, link);
955 
956 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
957 		/* It seems all hardwares supports Rx pause frames. */
958 		val = NFE_READ(sc, NFE_RXFILTER);
959 		if ((IFM_OPTIONS(mii->mii_media_active) &
960 		    IFM_ETH_RXPAUSE) != 0)
961 			val |= NFE_PFF_RX_PAUSE;
962 		else
963 			val &= ~NFE_PFF_RX_PAUSE;
964 		NFE_WRITE(sc, NFE_RXFILTER, val);
965 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
966 			val = NFE_READ(sc, NFE_MISC1);
967 			if ((IFM_OPTIONS(mii->mii_media_active) &
968 			    IFM_ETH_TXPAUSE) != 0) {
969 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
970 				    NFE_TX_PAUSE_FRAME_ENABLE);
971 				val |= NFE_MISC1_TX_PAUSE;
972 			} else {
973 				val &= ~NFE_MISC1_TX_PAUSE;
974 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
975 				    NFE_TX_PAUSE_FRAME_DISABLE);
976 			}
977 			NFE_WRITE(sc, NFE_MISC1, val);
978 		}
979 	} else {
980 		/* disable rx/tx pause frames */
981 		val = NFE_READ(sc, NFE_RXFILTER);
982 		val &= ~NFE_PFF_RX_PAUSE;
983 		NFE_WRITE(sc, NFE_RXFILTER, val);
984 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
985 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
986 			    NFE_TX_PAUSE_FRAME_DISABLE);
987 			val = NFE_READ(sc, NFE_MISC1);
988 			val &= ~NFE_MISC1_TX_PAUSE;
989 			NFE_WRITE(sc, NFE_MISC1, val);
990 		}
991 	}
992 }
993 
994 
995 static int
996 nfe_miibus_readreg(device_t dev, int phy, int reg)
997 {
998 	struct nfe_softc *sc = device_get_softc(dev);
999 	uint32_t val;
1000 	int ntries;
1001 
1002 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1003 
1004 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1005 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1006 		DELAY(100);
1007 	}
1008 
1009 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
1010 
1011 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1012 		DELAY(100);
1013 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1014 			break;
1015 	}
1016 	if (ntries == NFE_TIMEOUT) {
1017 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
1018 		return 0;
1019 	}
1020 
1021 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
1022 		DPRINTFN(sc, 2, "could not read PHY\n");
1023 		return 0;
1024 	}
1025 
1026 	val = NFE_READ(sc, NFE_PHY_DATA);
1027 	if (val != 0xffffffff && val != 0)
1028 		sc->mii_phyaddr = phy;
1029 
1030 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
1031 
1032 	return (val);
1033 }
1034 
1035 
1036 static int
1037 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
1038 {
1039 	struct nfe_softc *sc = device_get_softc(dev);
1040 	uint32_t ctl;
1041 	int ntries;
1042 
1043 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1044 
1045 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1046 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1047 		DELAY(100);
1048 	}
1049 
1050 	NFE_WRITE(sc, NFE_PHY_DATA, val);
1051 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
1052 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
1053 
1054 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1055 		DELAY(100);
1056 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1057 			break;
1058 	}
1059 #ifdef NFE_DEBUG
1060 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
1061 		device_printf(sc->nfe_dev, "could not write to PHY\n");
1062 #endif
1063 	return (0);
1064 }
1065 
1066 struct nfe_dmamap_arg {
1067 	bus_addr_t nfe_busaddr;
1068 };
1069 
1070 static int
1071 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1072 {
1073 	struct nfe_dmamap_arg ctx;
1074 	struct nfe_rx_data *data;
1075 	void *desc;
1076 	int i, error, descsize;
1077 
1078 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1079 		desc = ring->desc64;
1080 		descsize = sizeof (struct nfe_desc64);
1081 	} else {
1082 		desc = ring->desc32;
1083 		descsize = sizeof (struct nfe_desc32);
1084 	}
1085 
1086 	ring->cur = ring->next = 0;
1087 
1088 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1089 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1090 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1091 	    BUS_SPACE_MAXADDR,			/* highaddr */
1092 	    NULL, NULL,				/* filter, filterarg */
1093 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1094 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1095 	    0,					/* flags */
1096 	    NULL, NULL,				/* lockfunc, lockarg */
1097 	    &ring->rx_desc_tag);
1098 	if (error != 0) {
1099 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1100 		goto fail;
1101 	}
1102 
1103 	/* allocate memory to desc */
1104 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1105 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1106 	if (error != 0) {
1107 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1108 		goto fail;
1109 	}
1110 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1111 		ring->desc64 = desc;
1112 	else
1113 		ring->desc32 = desc;
1114 
1115 	/* map desc to device visible address space */
1116 	ctx.nfe_busaddr = 0;
1117 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1118 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1119 	if (error != 0) {
1120 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1121 		goto fail;
1122 	}
1123 	ring->physaddr = ctx.nfe_busaddr;
1124 
1125 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1126 	    1, 0,			/* alignment, boundary */
1127 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1128 	    BUS_SPACE_MAXADDR,		/* highaddr */
1129 	    NULL, NULL,			/* filter, filterarg */
1130 	    MCLBYTES, 1,		/* maxsize, nsegments */
1131 	    MCLBYTES,			/* maxsegsize */
1132 	    0,				/* flags */
1133 	    NULL, NULL,			/* lockfunc, lockarg */
1134 	    &ring->rx_data_tag);
1135 	if (error != 0) {
1136 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1137 		goto fail;
1138 	}
1139 
1140 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1141 	if (error != 0) {
1142 		device_printf(sc->nfe_dev,
1143 		    "could not create Rx DMA spare map\n");
1144 		goto fail;
1145 	}
1146 
1147 	/*
1148 	 * Pre-allocate Rx buffers and populate Rx ring.
1149 	 */
1150 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1151 		data = &sc->rxq.data[i];
1152 		data->rx_data_map = NULL;
1153 		data->m = NULL;
1154 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1155 		    &data->rx_data_map);
1156 		if (error != 0) {
1157 			device_printf(sc->nfe_dev,
1158 			    "could not create Rx DMA map\n");
1159 			goto fail;
1160 		}
1161 	}
1162 
1163 fail:
1164 	return (error);
1165 }
1166 
1167 
1168 static void
1169 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1170 {
1171 	struct nfe_dmamap_arg ctx;
1172 	struct nfe_rx_data *data;
1173 	void *desc;
1174 	int i, error, descsize;
1175 
1176 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1177 		return;
1178 	if (jumbo_disable != 0) {
1179 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1180 		sc->nfe_jumbo_disable = 1;
1181 		return;
1182 	}
1183 
1184 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1185 		desc = ring->jdesc64;
1186 		descsize = sizeof (struct nfe_desc64);
1187 	} else {
1188 		desc = ring->jdesc32;
1189 		descsize = sizeof (struct nfe_desc32);
1190 	}
1191 
1192 	ring->jcur = ring->jnext = 0;
1193 
1194 	/* Create DMA tag for jumbo Rx ring. */
1195 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1196 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1197 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1198 	    BUS_SPACE_MAXADDR,			/* highaddr */
1199 	    NULL, NULL,				/* filter, filterarg */
1200 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1201 	    1, 					/* nsegments */
1202 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1203 	    0,					/* flags */
1204 	    NULL, NULL,				/* lockfunc, lockarg */
1205 	    &ring->jrx_desc_tag);
1206 	if (error != 0) {
1207 		device_printf(sc->nfe_dev,
1208 		    "could not create jumbo ring DMA tag\n");
1209 		goto fail;
1210 	}
1211 
1212 	/* Create DMA tag for jumbo Rx buffers. */
1213 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1214 	    1, 0,				/* alignment, boundary */
1215 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1216 	    BUS_SPACE_MAXADDR,			/* highaddr */
1217 	    NULL, NULL,				/* filter, filterarg */
1218 	    MJUM9BYTES,				/* maxsize */
1219 	    1,					/* nsegments */
1220 	    MJUM9BYTES,				/* maxsegsize */
1221 	    0,					/* flags */
1222 	    NULL, NULL,				/* lockfunc, lockarg */
1223 	    &ring->jrx_data_tag);
1224 	if (error != 0) {
1225 		device_printf(sc->nfe_dev,
1226 		    "could not create jumbo Rx buffer DMA tag\n");
1227 		goto fail;
1228 	}
1229 
1230 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1231 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1232 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1233 	if (error != 0) {
1234 		device_printf(sc->nfe_dev,
1235 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1236 		goto fail;
1237 	}
1238 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1239 		ring->jdesc64 = desc;
1240 	else
1241 		ring->jdesc32 = desc;
1242 
1243 	ctx.nfe_busaddr = 0;
1244 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1245 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1246 	if (error != 0) {
1247 		device_printf(sc->nfe_dev,
1248 		    "could not load DMA'able memory for jumbo Rx ring\n");
1249 		goto fail;
1250 	}
1251 	ring->jphysaddr = ctx.nfe_busaddr;
1252 
1253 	/* Create DMA maps for jumbo Rx buffers. */
1254 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1255 	if (error != 0) {
1256 		device_printf(sc->nfe_dev,
1257 		    "could not create jumbo Rx DMA spare map\n");
1258 		goto fail;
1259 	}
1260 
1261 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1262 		data = &sc->jrxq.jdata[i];
1263 		data->rx_data_map = NULL;
1264 		data->m = NULL;
1265 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1266 		    &data->rx_data_map);
1267 		if (error != 0) {
1268 			device_printf(sc->nfe_dev,
1269 			    "could not create jumbo Rx DMA map\n");
1270 			goto fail;
1271 		}
1272 	}
1273 
1274 	return;
1275 
1276 fail:
1277 	/*
1278 	 * Running without jumbo frame support is ok for most cases
1279 	 * so don't fail on creating dma tag/map for jumbo frame.
1280 	 */
1281 	nfe_free_jrx_ring(sc, ring);
1282 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1283 	    "resource shortage\n");
1284 	sc->nfe_jumbo_disable = 1;
1285 }
1286 
1287 
1288 static int
1289 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1290 {
1291 	void *desc;
1292 	size_t descsize;
1293 	int i;
1294 
1295 	ring->cur = ring->next = 0;
1296 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1297 		desc = ring->desc64;
1298 		descsize = sizeof (struct nfe_desc64);
1299 	} else {
1300 		desc = ring->desc32;
1301 		descsize = sizeof (struct nfe_desc32);
1302 	}
1303 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1304 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1305 		if (nfe_newbuf(sc, i) != 0)
1306 			return (ENOBUFS);
1307 	}
1308 
1309 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1310 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1311 
1312 	return (0);
1313 }
1314 
1315 
1316 static int
1317 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1318 {
1319 	void *desc;
1320 	size_t descsize;
1321 	int i;
1322 
1323 	ring->jcur = ring->jnext = 0;
1324 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1325 		desc = ring->jdesc64;
1326 		descsize = sizeof (struct nfe_desc64);
1327 	} else {
1328 		desc = ring->jdesc32;
1329 		descsize = sizeof (struct nfe_desc32);
1330 	}
1331 	bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
1332 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1333 		if (nfe_jnewbuf(sc, i) != 0)
1334 			return (ENOBUFS);
1335 	}
1336 
1337 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1338 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1339 
1340 	return (0);
1341 }
1342 
1343 
1344 static void
1345 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1346 {
1347 	struct nfe_rx_data *data;
1348 	void *desc;
1349 	int i, descsize;
1350 
1351 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1352 		desc = ring->desc64;
1353 		descsize = sizeof (struct nfe_desc64);
1354 	} else {
1355 		desc = ring->desc32;
1356 		descsize = sizeof (struct nfe_desc32);
1357 	}
1358 
1359 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1360 		data = &ring->data[i];
1361 		if (data->rx_data_map != NULL) {
1362 			bus_dmamap_destroy(ring->rx_data_tag,
1363 			    data->rx_data_map);
1364 			data->rx_data_map = NULL;
1365 		}
1366 		if (data->m != NULL) {
1367 			m_freem(data->m);
1368 			data->m = NULL;
1369 		}
1370 	}
1371 	if (ring->rx_data_tag != NULL) {
1372 		if (ring->rx_spare_map != NULL) {
1373 			bus_dmamap_destroy(ring->rx_data_tag,
1374 			    ring->rx_spare_map);
1375 			ring->rx_spare_map = NULL;
1376 		}
1377 		bus_dma_tag_destroy(ring->rx_data_tag);
1378 		ring->rx_data_tag = NULL;
1379 	}
1380 
1381 	if (desc != NULL) {
1382 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1383 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1384 		ring->desc64 = NULL;
1385 		ring->desc32 = NULL;
1386 		ring->rx_desc_map = NULL;
1387 	}
1388 	if (ring->rx_desc_tag != NULL) {
1389 		bus_dma_tag_destroy(ring->rx_desc_tag);
1390 		ring->rx_desc_tag = NULL;
1391 	}
1392 }
1393 
1394 
1395 static void
1396 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1397 {
1398 	struct nfe_rx_data *data;
1399 	void *desc;
1400 	int i, descsize;
1401 
1402 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1403 		return;
1404 
1405 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1406 		desc = ring->jdesc64;
1407 		descsize = sizeof (struct nfe_desc64);
1408 	} else {
1409 		desc = ring->jdesc32;
1410 		descsize = sizeof (struct nfe_desc32);
1411 	}
1412 
1413 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1414 		data = &ring->jdata[i];
1415 		if (data->rx_data_map != NULL) {
1416 			bus_dmamap_destroy(ring->jrx_data_tag,
1417 			    data->rx_data_map);
1418 			data->rx_data_map = NULL;
1419 		}
1420 		if (data->m != NULL) {
1421 			m_freem(data->m);
1422 			data->m = NULL;
1423 		}
1424 	}
1425 	if (ring->jrx_data_tag != NULL) {
1426 		if (ring->jrx_spare_map != NULL) {
1427 			bus_dmamap_destroy(ring->jrx_data_tag,
1428 			    ring->jrx_spare_map);
1429 			ring->jrx_spare_map = NULL;
1430 		}
1431 		bus_dma_tag_destroy(ring->jrx_data_tag);
1432 		ring->jrx_data_tag = NULL;
1433 	}
1434 
1435 	if (desc != NULL) {
1436 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1437 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1438 		ring->jdesc64 = NULL;
1439 		ring->jdesc32 = NULL;
1440 		ring->jrx_desc_map = NULL;
1441 	}
1442 
1443 	if (ring->jrx_desc_tag != NULL) {
1444 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1445 		ring->jrx_desc_tag = NULL;
1446 	}
1447 }
1448 
1449 
1450 static int
1451 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1452 {
1453 	struct nfe_dmamap_arg ctx;
1454 	int i, error;
1455 	void *desc;
1456 	int descsize;
1457 
1458 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1459 		desc = ring->desc64;
1460 		descsize = sizeof (struct nfe_desc64);
1461 	} else {
1462 		desc = ring->desc32;
1463 		descsize = sizeof (struct nfe_desc32);
1464 	}
1465 
1466 	ring->queued = 0;
1467 	ring->cur = ring->next = 0;
1468 
1469 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1470 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1471 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1472 	    BUS_SPACE_MAXADDR,			/* highaddr */
1473 	    NULL, NULL,				/* filter, filterarg */
1474 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1475 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1476 	    0,					/* flags */
1477 	    NULL, NULL,				/* lockfunc, lockarg */
1478 	    &ring->tx_desc_tag);
1479 	if (error != 0) {
1480 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1481 		goto fail;
1482 	}
1483 
1484 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1485 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1486 	if (error != 0) {
1487 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1488 		goto fail;
1489 	}
1490 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1491 		ring->desc64 = desc;
1492 	else
1493 		ring->desc32 = desc;
1494 
1495 	ctx.nfe_busaddr = 0;
1496 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1497 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1498 	if (error != 0) {
1499 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1500 		goto fail;
1501 	}
1502 	ring->physaddr = ctx.nfe_busaddr;
1503 
1504 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1505 	    1, 0,
1506 	    BUS_SPACE_MAXADDR,
1507 	    BUS_SPACE_MAXADDR,
1508 	    NULL, NULL,
1509 	    NFE_TSO_MAXSIZE,
1510 	    NFE_MAX_SCATTER,
1511 	    NFE_TSO_MAXSGSIZE,
1512 	    0,
1513 	    NULL, NULL,
1514 	    &ring->tx_data_tag);
1515 	if (error != 0) {
1516 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1517 		goto fail;
1518 	}
1519 
1520 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1521 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1522 		    &ring->data[i].tx_data_map);
1523 		if (error != 0) {
1524 			device_printf(sc->nfe_dev,
1525 			    "could not create Tx DMA map\n");
1526 			goto fail;
1527 		}
1528 	}
1529 
1530 fail:
1531 	return (error);
1532 }
1533 
1534 
1535 static void
1536 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1537 {
1538 	void *desc;
1539 	size_t descsize;
1540 
1541 	sc->nfe_force_tx = 0;
1542 	ring->queued = 0;
1543 	ring->cur = ring->next = 0;
1544 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1545 		desc = ring->desc64;
1546 		descsize = sizeof (struct nfe_desc64);
1547 	} else {
1548 		desc = ring->desc32;
1549 		descsize = sizeof (struct nfe_desc32);
1550 	}
1551 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1552 
1553 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1554 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1555 }
1556 
1557 
1558 static void
1559 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1560 {
1561 	struct nfe_tx_data *data;
1562 	void *desc;
1563 	int i, descsize;
1564 
1565 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1566 		desc = ring->desc64;
1567 		descsize = sizeof (struct nfe_desc64);
1568 	} else {
1569 		desc = ring->desc32;
1570 		descsize = sizeof (struct nfe_desc32);
1571 	}
1572 
1573 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1574 		data = &ring->data[i];
1575 
1576 		if (data->m != NULL) {
1577 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1578 			    BUS_DMASYNC_POSTWRITE);
1579 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1580 			m_freem(data->m);
1581 			data->m = NULL;
1582 		}
1583 		if (data->tx_data_map != NULL) {
1584 			bus_dmamap_destroy(ring->tx_data_tag,
1585 			    data->tx_data_map);
1586 			data->tx_data_map = NULL;
1587 		}
1588 	}
1589 
1590 	if (ring->tx_data_tag != NULL) {
1591 		bus_dma_tag_destroy(ring->tx_data_tag);
1592 		ring->tx_data_tag = NULL;
1593 	}
1594 
1595 	if (desc != NULL) {
1596 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1597 		    BUS_DMASYNC_POSTWRITE);
1598 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1599 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1600 		ring->desc64 = NULL;
1601 		ring->desc32 = NULL;
1602 		ring->tx_desc_map = NULL;
1603 		bus_dma_tag_destroy(ring->tx_desc_tag);
1604 		ring->tx_desc_tag = NULL;
1605 	}
1606 }
1607 
1608 #ifdef DEVICE_POLLING
1609 static poll_handler_t nfe_poll;
1610 
1611 
1612 static int
1613 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1614 {
1615 	struct nfe_softc *sc = ifp->if_softc;
1616 	uint32_t r;
1617 	int rx_npkts = 0;
1618 
1619 	NFE_LOCK(sc);
1620 
1621 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1622 		NFE_UNLOCK(sc);
1623 		return (rx_npkts);
1624 	}
1625 
1626 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1627 		rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
1628 	else
1629 		rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
1630 	nfe_txeof(sc);
1631 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1632 		nfe_start_locked(ifp);
1633 
1634 	if (cmd == POLL_AND_CHECK_STATUS) {
1635 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1636 			NFE_UNLOCK(sc);
1637 			return (rx_npkts);
1638 		}
1639 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1640 
1641 		if (r & NFE_IRQ_LINK) {
1642 			NFE_READ(sc, NFE_PHY_STATUS);
1643 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1644 			DPRINTF(sc, "link state changed\n");
1645 		}
1646 	}
1647 	NFE_UNLOCK(sc);
1648 	return (rx_npkts);
1649 }
1650 #endif /* DEVICE_POLLING */
1651 
1652 static void
1653 nfe_set_intr(struct nfe_softc *sc)
1654 {
1655 
1656 	if (sc->nfe_msi != 0)
1657 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1658 }
1659 
1660 
1661 /* In MSIX, a write to mask reegisters behaves as XOR. */
1662 static __inline void
1663 nfe_enable_intr(struct nfe_softc *sc)
1664 {
1665 
1666 	if (sc->nfe_msix != 0) {
1667 		/* XXX Should have a better way to enable interrupts! */
1668 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1669 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1670 	} else
1671 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1672 }
1673 
1674 
1675 static __inline void
1676 nfe_disable_intr(struct nfe_softc *sc)
1677 {
1678 
1679 	if (sc->nfe_msix != 0) {
1680 		/* XXX Should have a better way to disable interrupts! */
1681 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1682 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1683 	} else
1684 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1685 }
1686 
1687 
1688 static int
1689 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1690 {
1691 	struct nfe_softc *sc;
1692 	struct ifreq *ifr;
1693 	struct mii_data *mii;
1694 	int error, init, mask;
1695 
1696 	sc = ifp->if_softc;
1697 	ifr = (struct ifreq *) data;
1698 	error = 0;
1699 	init = 0;
1700 	switch (cmd) {
1701 	case SIOCSIFMTU:
1702 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1703 			error = EINVAL;
1704 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1705 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1706 			    (sc->nfe_jumbo_disable != 0)) &&
1707 			    ifr->ifr_mtu > ETHERMTU)
1708 				error = EINVAL;
1709 			else {
1710 				NFE_LOCK(sc);
1711 				ifp->if_mtu = ifr->ifr_mtu;
1712 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1713 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1714 					nfe_init_locked(sc);
1715 				}
1716 				NFE_UNLOCK(sc);
1717 			}
1718 		}
1719 		break;
1720 	case SIOCSIFFLAGS:
1721 		NFE_LOCK(sc);
1722 		if (ifp->if_flags & IFF_UP) {
1723 			/*
1724 			 * If only the PROMISC or ALLMULTI flag changes, then
1725 			 * don't do a full re-init of the chip, just update
1726 			 * the Rx filter.
1727 			 */
1728 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1729 			    ((ifp->if_flags ^ sc->nfe_if_flags) &
1730 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1731 				nfe_setmulti(sc);
1732 			else
1733 				nfe_init_locked(sc);
1734 		} else {
1735 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1736 				nfe_stop(ifp);
1737 		}
1738 		sc->nfe_if_flags = ifp->if_flags;
1739 		NFE_UNLOCK(sc);
1740 		error = 0;
1741 		break;
1742 	case SIOCADDMULTI:
1743 	case SIOCDELMULTI:
1744 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1745 			NFE_LOCK(sc);
1746 			nfe_setmulti(sc);
1747 			NFE_UNLOCK(sc);
1748 			error = 0;
1749 		}
1750 		break;
1751 	case SIOCSIFMEDIA:
1752 	case SIOCGIFMEDIA:
1753 		mii = device_get_softc(sc->nfe_miibus);
1754 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1755 		break;
1756 	case SIOCSIFCAP:
1757 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1758 #ifdef DEVICE_POLLING
1759 		if ((mask & IFCAP_POLLING) != 0) {
1760 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1761 				error = ether_poll_register(nfe_poll, ifp);
1762 				if (error)
1763 					break;
1764 				NFE_LOCK(sc);
1765 				nfe_disable_intr(sc);
1766 				ifp->if_capenable |= IFCAP_POLLING;
1767 				NFE_UNLOCK(sc);
1768 			} else {
1769 				error = ether_poll_deregister(ifp);
1770 				/* Enable interrupt even in error case */
1771 				NFE_LOCK(sc);
1772 				nfe_enable_intr(sc);
1773 				ifp->if_capenable &= ~IFCAP_POLLING;
1774 				NFE_UNLOCK(sc);
1775 			}
1776 		}
1777 #endif /* DEVICE_POLLING */
1778 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1779 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1780 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1781 		if ((mask & IFCAP_TXCSUM) != 0 &&
1782 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1783 			ifp->if_capenable ^= IFCAP_TXCSUM;
1784 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1785 				ifp->if_hwassist |= NFE_CSUM_FEATURES;
1786 			else
1787 				ifp->if_hwassist &= ~NFE_CSUM_FEATURES;
1788 		}
1789 		if ((mask & IFCAP_RXCSUM) != 0 &&
1790 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1791 			ifp->if_capenable ^= IFCAP_RXCSUM;
1792 			init++;
1793 		}
1794 		if ((mask & IFCAP_TSO4) != 0 &&
1795 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1796 			ifp->if_capenable ^= IFCAP_TSO4;
1797 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1798 				ifp->if_hwassist |= CSUM_TSO;
1799 			else
1800 				ifp->if_hwassist &= ~CSUM_TSO;
1801 		}
1802 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1803 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1804 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1805 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1806 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1807 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1808 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1809 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1810 			init++;
1811 		}
1812 		/*
1813 		 * XXX
1814 		 * It seems that VLAN stripping requires Rx checksum offload.
1815 		 * Unfortunately FreeBSD has no way to disable only Rx side
1816 		 * VLAN stripping. So when we know Rx checksum offload is
1817 		 * disabled turn entire hardware VLAN assist off.
1818 		 */
1819 		if ((ifp->if_capenable & IFCAP_RXCSUM) == 0) {
1820 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
1821 				init++;
1822 			ifp->if_capenable &= ~(IFCAP_VLAN_HWTAGGING |
1823 			    IFCAP_VLAN_HWTSO);
1824 		}
1825 		if (init > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1826 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1827 			nfe_init(sc);
1828 		}
1829 		VLAN_CAPABILITIES(ifp);
1830 		break;
1831 	default:
1832 		error = ether_ioctl(ifp, cmd, data);
1833 		break;
1834 	}
1835 
1836 	return (error);
1837 }
1838 
1839 
1840 static int
1841 nfe_intr(void *arg)
1842 {
1843 	struct nfe_softc *sc;
1844 	uint32_t status;
1845 
1846 	sc = (struct nfe_softc *)arg;
1847 
1848 	status = NFE_READ(sc, sc->nfe_irq_status);
1849 	if (status == 0 || status == 0xffffffff)
1850 		return (FILTER_STRAY);
1851 	nfe_disable_intr(sc);
1852 	taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1853 
1854 	return (FILTER_HANDLED);
1855 }
1856 
1857 
1858 static void
1859 nfe_int_task(void *arg, int pending)
1860 {
1861 	struct nfe_softc *sc = arg;
1862 	struct ifnet *ifp = sc->nfe_ifp;
1863 	uint32_t r;
1864 	int domore;
1865 
1866 	NFE_LOCK(sc);
1867 
1868 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1869 		nfe_enable_intr(sc);
1870 		NFE_UNLOCK(sc);
1871 		return;	/* not for us */
1872 	}
1873 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1874 
1875 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1876 
1877 #ifdef DEVICE_POLLING
1878 	if (ifp->if_capenable & IFCAP_POLLING) {
1879 		NFE_UNLOCK(sc);
1880 		return;
1881 	}
1882 #endif
1883 
1884 	if (r & NFE_IRQ_LINK) {
1885 		NFE_READ(sc, NFE_PHY_STATUS);
1886 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1887 		DPRINTF(sc, "link state changed\n");
1888 	}
1889 
1890 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1891 		NFE_UNLOCK(sc);
1892 		nfe_disable_intr(sc);
1893 		return;
1894 	}
1895 
1896 	domore = 0;
1897 	/* check Rx ring */
1898 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1899 		domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
1900 	else
1901 		domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
1902 	/* check Tx ring */
1903 	nfe_txeof(sc);
1904 
1905 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1906 		nfe_start_locked(ifp);
1907 
1908 	NFE_UNLOCK(sc);
1909 
1910 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1911 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1912 		return;
1913 	}
1914 
1915 	/* Reenable interrupts. */
1916 	nfe_enable_intr(sc);
1917 }
1918 
1919 
1920 static __inline void
1921 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1922 {
1923 	struct nfe_desc32 *desc32;
1924 	struct nfe_desc64 *desc64;
1925 	struct nfe_rx_data *data;
1926 	struct mbuf *m;
1927 
1928 	data = &sc->rxq.data[idx];
1929 	m = data->m;
1930 
1931 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1932 		desc64 = &sc->rxq.desc64[idx];
1933 		/* VLAN packet may have overwritten it. */
1934 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1935 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1936 		desc64->length = htole16(m->m_len);
1937 		desc64->flags = htole16(NFE_RX_READY);
1938 	} else {
1939 		desc32 = &sc->rxq.desc32[idx];
1940 		desc32->length = htole16(m->m_len);
1941 		desc32->flags = htole16(NFE_RX_READY);
1942 	}
1943 }
1944 
1945 
1946 static __inline void
1947 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1948 {
1949 	struct nfe_desc32 *desc32;
1950 	struct nfe_desc64 *desc64;
1951 	struct nfe_rx_data *data;
1952 	struct mbuf *m;
1953 
1954 	data = &sc->jrxq.jdata[idx];
1955 	m = data->m;
1956 
1957 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1958 		desc64 = &sc->jrxq.jdesc64[idx];
1959 		/* VLAN packet may have overwritten it. */
1960 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1961 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1962 		desc64->length = htole16(m->m_len);
1963 		desc64->flags = htole16(NFE_RX_READY);
1964 	} else {
1965 		desc32 = &sc->jrxq.jdesc32[idx];
1966 		desc32->length = htole16(m->m_len);
1967 		desc32->flags = htole16(NFE_RX_READY);
1968 	}
1969 }
1970 
1971 
1972 static int
1973 nfe_newbuf(struct nfe_softc *sc, int idx)
1974 {
1975 	struct nfe_rx_data *data;
1976 	struct nfe_desc32 *desc32;
1977 	struct nfe_desc64 *desc64;
1978 	struct mbuf *m;
1979 	bus_dma_segment_t segs[1];
1980 	bus_dmamap_t map;
1981 	int nsegs;
1982 
1983 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1984 	if (m == NULL)
1985 		return (ENOBUFS);
1986 
1987 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1988 	m_adj(m, ETHER_ALIGN);
1989 
1990 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
1991 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
1992 		m_freem(m);
1993 		return (ENOBUFS);
1994 	}
1995 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1996 
1997 	data = &sc->rxq.data[idx];
1998 	if (data->m != NULL) {
1999 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2000 		    BUS_DMASYNC_POSTREAD);
2001 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
2002 	}
2003 	map = data->rx_data_map;
2004 	data->rx_data_map = sc->rxq.rx_spare_map;
2005 	sc->rxq.rx_spare_map = map;
2006 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2007 	    BUS_DMASYNC_PREREAD);
2008 	data->paddr = segs[0].ds_addr;
2009 	data->m = m;
2010 	/* update mapping address in h/w descriptor */
2011 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2012 		desc64 = &sc->rxq.desc64[idx];
2013 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2014 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2015 		desc64->length = htole16(segs[0].ds_len);
2016 		desc64->flags = htole16(NFE_RX_READY);
2017 	} else {
2018 		desc32 = &sc->rxq.desc32[idx];
2019 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2020 		desc32->length = htole16(segs[0].ds_len);
2021 		desc32->flags = htole16(NFE_RX_READY);
2022 	}
2023 
2024 	return (0);
2025 }
2026 
2027 
2028 static int
2029 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2030 {
2031 	struct nfe_rx_data *data;
2032 	struct nfe_desc32 *desc32;
2033 	struct nfe_desc64 *desc64;
2034 	struct mbuf *m;
2035 	bus_dma_segment_t segs[1];
2036 	bus_dmamap_t map;
2037 	int nsegs;
2038 
2039 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2040 	if (m == NULL)
2041 		return (ENOBUFS);
2042 	if ((m->m_flags & M_EXT) == 0) {
2043 		m_freem(m);
2044 		return (ENOBUFS);
2045 	}
2046 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
2047 	m_adj(m, ETHER_ALIGN);
2048 
2049 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2050 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2051 		m_freem(m);
2052 		return (ENOBUFS);
2053 	}
2054 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2055 
2056 	data = &sc->jrxq.jdata[idx];
2057 	if (data->m != NULL) {
2058 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2059 		    BUS_DMASYNC_POSTREAD);
2060 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2061 	}
2062 	map = data->rx_data_map;
2063 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2064 	sc->jrxq.jrx_spare_map = map;
2065 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2066 	    BUS_DMASYNC_PREREAD);
2067 	data->paddr = segs[0].ds_addr;
2068 	data->m = m;
2069 	/* update mapping address in h/w descriptor */
2070 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2071 		desc64 = &sc->jrxq.jdesc64[idx];
2072 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2073 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2074 		desc64->length = htole16(segs[0].ds_len);
2075 		desc64->flags = htole16(NFE_RX_READY);
2076 	} else {
2077 		desc32 = &sc->jrxq.jdesc32[idx];
2078 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2079 		desc32->length = htole16(segs[0].ds_len);
2080 		desc32->flags = htole16(NFE_RX_READY);
2081 	}
2082 
2083 	return (0);
2084 }
2085 
2086 
2087 static int
2088 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2089 {
2090 	struct ifnet *ifp = sc->nfe_ifp;
2091 	struct nfe_desc32 *desc32;
2092 	struct nfe_desc64 *desc64;
2093 	struct nfe_rx_data *data;
2094 	struct mbuf *m;
2095 	uint16_t flags;
2096 	int len, prog, rx_npkts;
2097 	uint32_t vtag = 0;
2098 
2099 	rx_npkts = 0;
2100 	NFE_LOCK_ASSERT(sc);
2101 
2102 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2103 	    BUS_DMASYNC_POSTREAD);
2104 
2105 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2106 		if (count <= 0)
2107 			break;
2108 		count--;
2109 
2110 		data = &sc->rxq.data[sc->rxq.cur];
2111 
2112 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2113 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2114 			vtag = le32toh(desc64->physaddr[1]);
2115 			flags = le16toh(desc64->flags);
2116 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2117 		} else {
2118 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2119 			flags = le16toh(desc32->flags);
2120 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2121 		}
2122 
2123 		if (flags & NFE_RX_READY)
2124 			break;
2125 		prog++;
2126 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2127 			if (!(flags & NFE_RX_VALID_V1)) {
2128 				ifp->if_ierrors++;
2129 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2130 				continue;
2131 			}
2132 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2133 				flags &= ~NFE_RX_ERROR;
2134 				len--;	/* fix buffer length */
2135 			}
2136 		} else {
2137 			if (!(flags & NFE_RX_VALID_V2)) {
2138 				ifp->if_ierrors++;
2139 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2140 				continue;
2141 			}
2142 
2143 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2144 				flags &= ~NFE_RX_ERROR;
2145 				len--;	/* fix buffer length */
2146 			}
2147 		}
2148 
2149 		if (flags & NFE_RX_ERROR) {
2150 			ifp->if_ierrors++;
2151 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2152 			continue;
2153 		}
2154 
2155 		m = data->m;
2156 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2157 			ifp->if_iqdrops++;
2158 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2159 			continue;
2160 		}
2161 
2162 		if ((vtag & NFE_RX_VTAG) != 0 &&
2163 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2164 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2165 			m->m_flags |= M_VLANTAG;
2166 		}
2167 
2168 		m->m_pkthdr.len = m->m_len = len;
2169 		m->m_pkthdr.rcvif = ifp;
2170 
2171 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2172 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2173 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2174 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2175 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2176 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2177 					m->m_pkthdr.csum_flags |=
2178 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2179 					m->m_pkthdr.csum_data = 0xffff;
2180 				}
2181 			}
2182 		}
2183 
2184 		ifp->if_ipackets++;
2185 
2186 		NFE_UNLOCK(sc);
2187 		(*ifp->if_input)(ifp, m);
2188 		NFE_LOCK(sc);
2189 		rx_npkts++;
2190 	}
2191 
2192 	if (prog > 0)
2193 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2194 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2195 
2196 	if (rx_npktsp != NULL)
2197 		*rx_npktsp = rx_npkts;
2198 	return (count > 0 ? 0 : EAGAIN);
2199 }
2200 
2201 
2202 static int
2203 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2204 {
2205 	struct ifnet *ifp = sc->nfe_ifp;
2206 	struct nfe_desc32 *desc32;
2207 	struct nfe_desc64 *desc64;
2208 	struct nfe_rx_data *data;
2209 	struct mbuf *m;
2210 	uint16_t flags;
2211 	int len, prog, rx_npkts;
2212 	uint32_t vtag = 0;
2213 
2214 	rx_npkts = 0;
2215 	NFE_LOCK_ASSERT(sc);
2216 
2217 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2218 	    BUS_DMASYNC_POSTREAD);
2219 
2220 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2221 	    vtag = 0) {
2222 		if (count <= 0)
2223 			break;
2224 		count--;
2225 
2226 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2227 
2228 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2229 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2230 			vtag = le32toh(desc64->physaddr[1]);
2231 			flags = le16toh(desc64->flags);
2232 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2233 		} else {
2234 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2235 			flags = le16toh(desc32->flags);
2236 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2237 		}
2238 
2239 		if (flags & NFE_RX_READY)
2240 			break;
2241 		prog++;
2242 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2243 			if (!(flags & NFE_RX_VALID_V1)) {
2244 				ifp->if_ierrors++;
2245 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2246 				continue;
2247 			}
2248 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2249 				flags &= ~NFE_RX_ERROR;
2250 				len--;	/* fix buffer length */
2251 			}
2252 		} else {
2253 			if (!(flags & NFE_RX_VALID_V2)) {
2254 				ifp->if_ierrors++;
2255 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2256 				continue;
2257 			}
2258 
2259 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2260 				flags &= ~NFE_RX_ERROR;
2261 				len--;	/* fix buffer length */
2262 			}
2263 		}
2264 
2265 		if (flags & NFE_RX_ERROR) {
2266 			ifp->if_ierrors++;
2267 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2268 			continue;
2269 		}
2270 
2271 		m = data->m;
2272 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2273 			ifp->if_iqdrops++;
2274 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2275 			continue;
2276 		}
2277 
2278 		if ((vtag & NFE_RX_VTAG) != 0 &&
2279 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2280 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2281 			m->m_flags |= M_VLANTAG;
2282 		}
2283 
2284 		m->m_pkthdr.len = m->m_len = len;
2285 		m->m_pkthdr.rcvif = ifp;
2286 
2287 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2288 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2289 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2290 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2291 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2292 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2293 					m->m_pkthdr.csum_flags |=
2294 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2295 					m->m_pkthdr.csum_data = 0xffff;
2296 				}
2297 			}
2298 		}
2299 
2300 		ifp->if_ipackets++;
2301 
2302 		NFE_UNLOCK(sc);
2303 		(*ifp->if_input)(ifp, m);
2304 		NFE_LOCK(sc);
2305 		rx_npkts++;
2306 	}
2307 
2308 	if (prog > 0)
2309 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2310 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2311 
2312 	if (rx_npktsp != NULL)
2313 		*rx_npktsp = rx_npkts;
2314 	return (count > 0 ? 0 : EAGAIN);
2315 }
2316 
2317 
2318 static void
2319 nfe_txeof(struct nfe_softc *sc)
2320 {
2321 	struct ifnet *ifp = sc->nfe_ifp;
2322 	struct nfe_desc32 *desc32;
2323 	struct nfe_desc64 *desc64;
2324 	struct nfe_tx_data *data = NULL;
2325 	uint16_t flags;
2326 	int cons, prog;
2327 
2328 	NFE_LOCK_ASSERT(sc);
2329 
2330 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2331 	    BUS_DMASYNC_POSTREAD);
2332 
2333 	prog = 0;
2334 	for (cons = sc->txq.next; cons != sc->txq.cur;
2335 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2336 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2337 			desc64 = &sc->txq.desc64[cons];
2338 			flags = le16toh(desc64->flags);
2339 		} else {
2340 			desc32 = &sc->txq.desc32[cons];
2341 			flags = le16toh(desc32->flags);
2342 		}
2343 
2344 		if (flags & NFE_TX_VALID)
2345 			break;
2346 
2347 		prog++;
2348 		sc->txq.queued--;
2349 		data = &sc->txq.data[cons];
2350 
2351 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2352 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2353 				continue;
2354 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2355 				device_printf(sc->nfe_dev,
2356 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2357 
2358 				ifp->if_oerrors++;
2359 			} else
2360 				ifp->if_opackets++;
2361 		} else {
2362 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2363 				continue;
2364 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2365 				device_printf(sc->nfe_dev,
2366 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2367 				ifp->if_oerrors++;
2368 			} else
2369 				ifp->if_opackets++;
2370 		}
2371 
2372 		/* last fragment of the mbuf chain transmitted */
2373 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2374 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2375 		    BUS_DMASYNC_POSTWRITE);
2376 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2377 		m_freem(data->m);
2378 		data->m = NULL;
2379 	}
2380 
2381 	if (prog > 0) {
2382 		sc->nfe_force_tx = 0;
2383 		sc->txq.next = cons;
2384 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2385 		if (sc->txq.queued == 0)
2386 			sc->nfe_watchdog_timer = 0;
2387 	}
2388 }
2389 
2390 static int
2391 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2392 {
2393 	struct nfe_desc32 *desc32 = NULL;
2394 	struct nfe_desc64 *desc64 = NULL;
2395 	bus_dmamap_t map;
2396 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2397 	int error, i, nsegs, prod, si;
2398 	uint32_t tso_segsz;
2399 	uint16_t cflags, flags;
2400 	struct mbuf *m;
2401 
2402 	prod = si = sc->txq.cur;
2403 	map = sc->txq.data[prod].tx_data_map;
2404 
2405 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2406 	    &nsegs, BUS_DMA_NOWAIT);
2407 	if (error == EFBIG) {
2408 		m = m_collapse(*m_head, M_DONTWAIT, NFE_MAX_SCATTER);
2409 		if (m == NULL) {
2410 			m_freem(*m_head);
2411 			*m_head = NULL;
2412 			return (ENOBUFS);
2413 		}
2414 		*m_head = m;
2415 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2416 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2417 		if (error != 0) {
2418 			m_freem(*m_head);
2419 			*m_head = NULL;
2420 			return (ENOBUFS);
2421 		}
2422 	} else if (error != 0)
2423 		return (error);
2424 	if (nsegs == 0) {
2425 		m_freem(*m_head);
2426 		*m_head = NULL;
2427 		return (EIO);
2428 	}
2429 
2430 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2431 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2432 		return (ENOBUFS);
2433 	}
2434 
2435 	m = *m_head;
2436 	cflags = flags = 0;
2437 	tso_segsz = 0;
2438 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2439 		tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2440 		    NFE_TX_TSO_SHIFT;
2441 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2442 		cflags |= NFE_TX_TSO;
2443 	} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2444 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2445 			cflags |= NFE_TX_IP_CSUM;
2446 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2447 			cflags |= NFE_TX_TCP_UDP_CSUM;
2448 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2449 			cflags |= NFE_TX_TCP_UDP_CSUM;
2450 	}
2451 
2452 	for (i = 0; i < nsegs; i++) {
2453 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2454 			desc64 = &sc->txq.desc64[prod];
2455 			desc64->physaddr[0] =
2456 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2457 			desc64->physaddr[1] =
2458 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2459 			desc64->vtag = 0;
2460 			desc64->length = htole16(segs[i].ds_len - 1);
2461 			desc64->flags = htole16(flags);
2462 		} else {
2463 			desc32 = &sc->txq.desc32[prod];
2464 			desc32->physaddr =
2465 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2466 			desc32->length = htole16(segs[i].ds_len - 1);
2467 			desc32->flags = htole16(flags);
2468 		}
2469 
2470 		/*
2471 		 * Setting of the valid bit in the first descriptor is
2472 		 * deferred until the whole chain is fully setup.
2473 		 */
2474 		flags |= NFE_TX_VALID;
2475 
2476 		sc->txq.queued++;
2477 		NFE_INC(prod, NFE_TX_RING_COUNT);
2478 	}
2479 
2480 	/*
2481 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2482 	 * csum flags, vtag and TSO belong to the first fragment only.
2483 	 */
2484 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2485 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2486 		desc64 = &sc->txq.desc64[si];
2487 		if ((m->m_flags & M_VLANTAG) != 0)
2488 			desc64->vtag = htole32(NFE_TX_VTAG |
2489 			    m->m_pkthdr.ether_vtag);
2490 		if (tso_segsz != 0) {
2491 			/*
2492 			 * XXX
2493 			 * The following indicates the descriptor element
2494 			 * is a 32bit quantity.
2495 			 */
2496 			desc64->length |= htole16((uint16_t)tso_segsz);
2497 			desc64->flags |= htole16(tso_segsz >> 16);
2498 		}
2499 		/*
2500 		 * finally, set the valid/checksum/TSO bit in the first
2501 		 * descriptor.
2502 		 */
2503 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2504 	} else {
2505 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2506 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2507 		else
2508 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2509 		desc32 = &sc->txq.desc32[si];
2510 		if (tso_segsz != 0) {
2511 			/*
2512 			 * XXX
2513 			 * The following indicates the descriptor element
2514 			 * is a 32bit quantity.
2515 			 */
2516 			desc32->length |= htole16((uint16_t)tso_segsz);
2517 			desc32->flags |= htole16(tso_segsz >> 16);
2518 		}
2519 		/*
2520 		 * finally, set the valid/checksum/TSO bit in the first
2521 		 * descriptor.
2522 		 */
2523 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2524 	}
2525 
2526 	sc->txq.cur = prod;
2527 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2528 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2529 	sc->txq.data[prod].tx_data_map = map;
2530 	sc->txq.data[prod].m = m;
2531 
2532 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2533 
2534 	return (0);
2535 }
2536 
2537 
2538 static void
2539 nfe_setmulti(struct nfe_softc *sc)
2540 {
2541 	struct ifnet *ifp = sc->nfe_ifp;
2542 	struct ifmultiaddr *ifma;
2543 	int i;
2544 	uint32_t filter;
2545 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2546 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2547 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2548 	};
2549 
2550 	NFE_LOCK_ASSERT(sc);
2551 
2552 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2553 		bzero(addr, ETHER_ADDR_LEN);
2554 		bzero(mask, ETHER_ADDR_LEN);
2555 		goto done;
2556 	}
2557 
2558 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2559 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2560 
2561 	if_maddr_rlock(ifp);
2562 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2563 		u_char *addrp;
2564 
2565 		if (ifma->ifma_addr->sa_family != AF_LINK)
2566 			continue;
2567 
2568 		addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2569 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
2570 			u_int8_t mcaddr = addrp[i];
2571 			addr[i] &= mcaddr;
2572 			mask[i] &= ~mcaddr;
2573 		}
2574 	}
2575 	if_maddr_runlock(ifp);
2576 
2577 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2578 		mask[i] |= addr[i];
2579 	}
2580 
2581 done:
2582 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2583 
2584 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2585 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2586 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2587 	    addr[5] <<  8 | addr[4]);
2588 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2589 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2590 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2591 	    mask[5] <<  8 | mask[4]);
2592 
2593 	filter = NFE_READ(sc, NFE_RXFILTER);
2594 	filter &= NFE_PFF_RX_PAUSE;
2595 	filter |= NFE_RXFILTER_MAGIC;
2596 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2597 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2598 }
2599 
2600 
2601 static void
2602 nfe_start(struct ifnet *ifp)
2603 {
2604 	struct nfe_softc *sc = ifp->if_softc;
2605 
2606 	NFE_LOCK(sc);
2607 	nfe_start_locked(ifp);
2608 	NFE_UNLOCK(sc);
2609 }
2610 
2611 static void
2612 nfe_start_locked(struct ifnet *ifp)
2613 {
2614 	struct nfe_softc *sc = ifp->if_softc;
2615 	struct mbuf *m0;
2616 	int enq;
2617 
2618 	NFE_LOCK_ASSERT(sc);
2619 
2620 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2621 	    IFF_DRV_RUNNING || sc->nfe_link == 0)
2622 		return;
2623 
2624 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2625 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2626 		if (m0 == NULL)
2627 			break;
2628 
2629 		if (nfe_encap(sc, &m0) != 0) {
2630 			if (m0 == NULL)
2631 				break;
2632 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2633 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2634 			break;
2635 		}
2636 		enq++;
2637 		ETHER_BPF_MTAP(ifp, m0);
2638 	}
2639 
2640 	if (enq > 0) {
2641 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2642 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2643 
2644 		/* kick Tx */
2645 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2646 
2647 		/*
2648 		 * Set a timeout in case the chip goes out to lunch.
2649 		 */
2650 		sc->nfe_watchdog_timer = 5;
2651 	}
2652 }
2653 
2654 
2655 static void
2656 nfe_watchdog(struct ifnet *ifp)
2657 {
2658 	struct nfe_softc *sc = ifp->if_softc;
2659 
2660 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2661 		return;
2662 
2663 	/* Check if we've lost Tx completion interrupt. */
2664 	nfe_txeof(sc);
2665 	if (sc->txq.queued == 0) {
2666 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2667 		    "-- recovering\n");
2668 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2669 			nfe_start_locked(ifp);
2670 		return;
2671 	}
2672 	/* Check if we've lost start Tx command. */
2673 	sc->nfe_force_tx++;
2674 	if (sc->nfe_force_tx <= 3) {
2675 		/*
2676 		 * If this is the case for watchdog timeout, the following
2677 		 * code should go to nfe_txeof().
2678 		 */
2679 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2680 		return;
2681 	}
2682 	sc->nfe_force_tx = 0;
2683 
2684 	if_printf(ifp, "watchdog timeout\n");
2685 
2686 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2687 	ifp->if_oerrors++;
2688 	nfe_init_locked(sc);
2689 }
2690 
2691 
2692 static void
2693 nfe_init(void *xsc)
2694 {
2695 	struct nfe_softc *sc = xsc;
2696 
2697 	NFE_LOCK(sc);
2698 	nfe_init_locked(sc);
2699 	NFE_UNLOCK(sc);
2700 }
2701 
2702 
2703 static void
2704 nfe_init_locked(void *xsc)
2705 {
2706 	struct nfe_softc *sc = xsc;
2707 	struct ifnet *ifp = sc->nfe_ifp;
2708 	struct mii_data *mii;
2709 	uint32_t val;
2710 	int error;
2711 
2712 	NFE_LOCK_ASSERT(sc);
2713 
2714 	mii = device_get_softc(sc->nfe_miibus);
2715 
2716 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2717 		return;
2718 
2719 	nfe_stop(ifp);
2720 
2721 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
2722 
2723 	nfe_init_tx_ring(sc, &sc->txq);
2724 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2725 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2726 	else
2727 		error = nfe_init_rx_ring(sc, &sc->rxq);
2728 	if (error != 0) {
2729 		device_printf(sc->nfe_dev,
2730 		    "initialization failed: no memory for rx buffers\n");
2731 		nfe_stop(ifp);
2732 		return;
2733 	}
2734 
2735 	val = 0;
2736 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2737 		val |= NFE_MAC_ADDR_INORDER;
2738 	NFE_WRITE(sc, NFE_TX_UNK, val);
2739 	NFE_WRITE(sc, NFE_STATUS, 0);
2740 
2741 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2742 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2743 
2744 	sc->rxtxctl = NFE_RXTX_BIT2;
2745 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2746 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2747 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2748 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2749 
2750 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2751 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2752 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2753 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2754 
2755 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2756 	DELAY(10);
2757 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2758 
2759 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2760 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2761 	else
2762 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2763 
2764 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2765 
2766 	/* set MAC address */
2767 	nfe_set_macaddr(sc, IF_LLADDR(ifp));
2768 
2769 	/* tell MAC where rings are in memory */
2770 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2771 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2772 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2773 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2774 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2775 	} else {
2776 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2777 		    NFE_ADDR_HI(sc->rxq.physaddr));
2778 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2779 		    NFE_ADDR_LO(sc->rxq.physaddr));
2780 	}
2781 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2782 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2783 
2784 	NFE_WRITE(sc, NFE_RING_SIZE,
2785 	    (NFE_RX_RING_COUNT - 1) << 16 |
2786 	    (NFE_TX_RING_COUNT - 1));
2787 
2788 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2789 
2790 	/* force MAC to wakeup */
2791 	val = NFE_READ(sc, NFE_PWR_STATE);
2792 	if ((val & NFE_PWR_WAKEUP) == 0)
2793 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2794 	DELAY(10);
2795 	val = NFE_READ(sc, NFE_PWR_STATE);
2796 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2797 
2798 #if 1
2799 	/* configure interrupts coalescing/mitigation */
2800 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2801 #else
2802 	/* no interrupt mitigation: one interrupt per packet */
2803 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2804 #endif
2805 
2806 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2807 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2808 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2809 
2810 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2811 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2812 
2813 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2814 	/* Disable WOL. */
2815 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
2816 
2817 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2818 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2819 	DELAY(10);
2820 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2821 
2822 	/* set Rx filter */
2823 	nfe_setmulti(sc);
2824 
2825 	/* enable Rx */
2826 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2827 
2828 	/* enable Tx */
2829 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2830 
2831 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2832 
2833 	/* Clear hardware stats. */
2834 	nfe_stats_clear(sc);
2835 
2836 #ifdef DEVICE_POLLING
2837 	if (ifp->if_capenable & IFCAP_POLLING)
2838 		nfe_disable_intr(sc);
2839 	else
2840 #endif
2841 	nfe_set_intr(sc);
2842 	nfe_enable_intr(sc); /* enable interrupts */
2843 
2844 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2845 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2846 
2847 	sc->nfe_link = 0;
2848 	mii_mediachg(mii);
2849 
2850 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2851 }
2852 
2853 
2854 static void
2855 nfe_stop(struct ifnet *ifp)
2856 {
2857 	struct nfe_softc *sc = ifp->if_softc;
2858 	struct nfe_rx_ring *rx_ring;
2859 	struct nfe_jrx_ring *jrx_ring;
2860 	struct nfe_tx_ring *tx_ring;
2861 	struct nfe_rx_data *rdata;
2862 	struct nfe_tx_data *tdata;
2863 	int i;
2864 
2865 	NFE_LOCK_ASSERT(sc);
2866 
2867 	sc->nfe_watchdog_timer = 0;
2868 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2869 
2870 	callout_stop(&sc->nfe_stat_ch);
2871 
2872 	/* abort Tx */
2873 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2874 
2875 	/* disable Rx */
2876 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2877 
2878 	/* disable interrupts */
2879 	nfe_disable_intr(sc);
2880 
2881 	sc->nfe_link = 0;
2882 
2883 	/* free Rx and Tx mbufs still in the queues. */
2884 	rx_ring = &sc->rxq;
2885 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2886 		rdata = &rx_ring->data[i];
2887 		if (rdata->m != NULL) {
2888 			bus_dmamap_sync(rx_ring->rx_data_tag,
2889 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2890 			bus_dmamap_unload(rx_ring->rx_data_tag,
2891 			    rdata->rx_data_map);
2892 			m_freem(rdata->m);
2893 			rdata->m = NULL;
2894 		}
2895 	}
2896 
2897 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2898 		jrx_ring = &sc->jrxq;
2899 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2900 			rdata = &jrx_ring->jdata[i];
2901 			if (rdata->m != NULL) {
2902 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2903 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2904 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2905 				    rdata->rx_data_map);
2906 				m_freem(rdata->m);
2907 				rdata->m = NULL;
2908 			}
2909 		}
2910 	}
2911 
2912 	tx_ring = &sc->txq;
2913 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2914 		tdata = &tx_ring->data[i];
2915 		if (tdata->m != NULL) {
2916 			bus_dmamap_sync(tx_ring->tx_data_tag,
2917 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2918 			bus_dmamap_unload(tx_ring->tx_data_tag,
2919 			    tdata->tx_data_map);
2920 			m_freem(tdata->m);
2921 			tdata->m = NULL;
2922 		}
2923 	}
2924 	/* Update hardware stats. */
2925 	nfe_stats_update(sc);
2926 }
2927 
2928 
2929 static int
2930 nfe_ifmedia_upd(struct ifnet *ifp)
2931 {
2932 	struct nfe_softc *sc = ifp->if_softc;
2933 	struct mii_data *mii;
2934 
2935 	NFE_LOCK(sc);
2936 	mii = device_get_softc(sc->nfe_miibus);
2937 	mii_mediachg(mii);
2938 	NFE_UNLOCK(sc);
2939 
2940 	return (0);
2941 }
2942 
2943 
2944 static void
2945 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2946 {
2947 	struct nfe_softc *sc;
2948 	struct mii_data *mii;
2949 
2950 	sc = ifp->if_softc;
2951 
2952 	NFE_LOCK(sc);
2953 	mii = device_get_softc(sc->nfe_miibus);
2954 	mii_pollstat(mii);
2955 	NFE_UNLOCK(sc);
2956 
2957 	ifmr->ifm_active = mii->mii_media_active;
2958 	ifmr->ifm_status = mii->mii_media_status;
2959 }
2960 
2961 
2962 void
2963 nfe_tick(void *xsc)
2964 {
2965 	struct nfe_softc *sc;
2966 	struct mii_data *mii;
2967 	struct ifnet *ifp;
2968 
2969 	sc = (struct nfe_softc *)xsc;
2970 
2971 	NFE_LOCK_ASSERT(sc);
2972 
2973 	ifp = sc->nfe_ifp;
2974 
2975 	mii = device_get_softc(sc->nfe_miibus);
2976 	mii_tick(mii);
2977 	nfe_stats_update(sc);
2978 	nfe_watchdog(ifp);
2979 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2980 }
2981 
2982 
2983 static int
2984 nfe_shutdown(device_t dev)
2985 {
2986 
2987 	return (nfe_suspend(dev));
2988 }
2989 
2990 
2991 static void
2992 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2993 {
2994 	uint32_t val;
2995 
2996 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
2997 		val = NFE_READ(sc, NFE_MACADDR_LO);
2998 		addr[0] = (val >> 8) & 0xff;
2999 		addr[1] = (val & 0xff);
3000 
3001 		val = NFE_READ(sc, NFE_MACADDR_HI);
3002 		addr[2] = (val >> 24) & 0xff;
3003 		addr[3] = (val >> 16) & 0xff;
3004 		addr[4] = (val >>  8) & 0xff;
3005 		addr[5] = (val & 0xff);
3006 	} else {
3007 		val = NFE_READ(sc, NFE_MACADDR_LO);
3008 		addr[5] = (val >> 8) & 0xff;
3009 		addr[4] = (val & 0xff);
3010 
3011 		val = NFE_READ(sc, NFE_MACADDR_HI);
3012 		addr[3] = (val >> 24) & 0xff;
3013 		addr[2] = (val >> 16) & 0xff;
3014 		addr[1] = (val >>  8) & 0xff;
3015 		addr[0] = (val & 0xff);
3016 	}
3017 }
3018 
3019 
3020 static void
3021 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3022 {
3023 
3024 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3025 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3026 	    addr[1] << 8 | addr[0]);
3027 }
3028 
3029 
3030 /*
3031  * Map a single buffer address.
3032  */
3033 
3034 static void
3035 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3036 {
3037 	struct nfe_dmamap_arg *ctx;
3038 
3039 	if (error != 0)
3040 		return;
3041 
3042 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3043 
3044 	ctx = (struct nfe_dmamap_arg *)arg;
3045 	ctx->nfe_busaddr = segs[0].ds_addr;
3046 }
3047 
3048 
3049 static int
3050 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3051 {
3052 	int error, value;
3053 
3054 	if (!arg1)
3055 		return (EINVAL);
3056 	value = *(int *)arg1;
3057 	error = sysctl_handle_int(oidp, &value, 0, req);
3058 	if (error || !req->newptr)
3059 		return (error);
3060 	if (value < low || value > high)
3061 		return (EINVAL);
3062 	*(int *)arg1 = value;
3063 
3064 	return (0);
3065 }
3066 
3067 
3068 static int
3069 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3070 {
3071 
3072 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3073 	    NFE_PROC_MAX));
3074 }
3075 
3076 
3077 #define	NFE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
3078 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3079 #define	NFE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
3080 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
3081 
3082 static void
3083 nfe_sysctl_node(struct nfe_softc *sc)
3084 {
3085 	struct sysctl_ctx_list *ctx;
3086 	struct sysctl_oid_list *child, *parent;
3087 	struct sysctl_oid *tree;
3088 	struct nfe_hw_stats *stats;
3089 	int error;
3090 
3091 	stats = &sc->nfe_stats;
3092 	ctx = device_get_sysctl_ctx(sc->nfe_dev);
3093 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
3094 	SYSCTL_ADD_PROC(ctx, child,
3095 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
3096 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
3097 	    "max number of Rx events to process");
3098 
3099 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
3100 	error = resource_int_value(device_get_name(sc->nfe_dev),
3101 	    device_get_unit(sc->nfe_dev), "process_limit",
3102 	    &sc->nfe_process_limit);
3103 	if (error == 0) {
3104 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
3105 		    sc->nfe_process_limit > NFE_PROC_MAX) {
3106 			device_printf(sc->nfe_dev,
3107 			    "process_limit value out of range; "
3108 			    "using default: %d\n", NFE_PROC_DEFAULT);
3109 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
3110 		}
3111 	}
3112 
3113 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3114 		return;
3115 
3116 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3117 	    NULL, "NFE statistics");
3118 	parent = SYSCTL_CHILDREN(tree);
3119 
3120 	/* Rx statistics. */
3121 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3122 	    NULL, "Rx MAC statistics");
3123 	child = SYSCTL_CHILDREN(tree);
3124 
3125 	NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
3126 	    &stats->rx_frame_errors, "Framing Errors");
3127 	NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
3128 	    &stats->rx_extra_bytes, "Extra Bytes");
3129 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3130 	    &stats->rx_late_cols, "Late Collisions");
3131 	NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
3132 	    &stats->rx_runts, "Runts");
3133 	NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
3134 	    &stats->rx_jumbos, "Jumbos");
3135 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
3136 	    &stats->rx_fifo_overuns, "FIFO Overruns");
3137 	NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
3138 	    &stats->rx_crc_errors, "CRC Errors");
3139 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
3140 	    &stats->rx_fae, "Frame Alignment Errors");
3141 	NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
3142 	    &stats->rx_len_errors, "Length Errors");
3143 	NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3144 	    &stats->rx_unicast, "Unicast Frames");
3145 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3146 	    &stats->rx_multicast, "Multicast Frames");
3147 	NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3148 	    &stats->rx_broadcast, "Broadcast Frames");
3149 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3150 		NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3151 		    &stats->rx_octets, "Octets");
3152 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3153 		    &stats->rx_pause, "Pause frames");
3154 		NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
3155 		    &stats->rx_drops, "Drop frames");
3156 	}
3157 
3158 	/* Tx statistics. */
3159 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3160 	    NULL, "Tx MAC statistics");
3161 	child = SYSCTL_CHILDREN(tree);
3162 	NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3163 	    &stats->tx_octets, "Octets");
3164 	NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
3165 	    &stats->tx_zero_rexmits, "Zero Retransmits");
3166 	NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
3167 	    &stats->tx_one_rexmits, "One Retransmits");
3168 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
3169 	    &stats->tx_multi_rexmits, "Multiple Retransmits");
3170 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3171 	    &stats->tx_late_cols, "Late Collisions");
3172 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
3173 	    &stats->tx_fifo_underuns, "FIFO Underruns");
3174 	NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
3175 	    &stats->tx_carrier_losts, "Carrier Losts");
3176 	NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
3177 	    &stats->tx_excess_deferals, "Excess Deferrals");
3178 	NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
3179 	    &stats->tx_retry_errors, "Retry Errors");
3180 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3181 		NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
3182 		    &stats->tx_deferals, "Deferrals");
3183 		NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
3184 		    &stats->tx_frames, "Frames");
3185 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3186 		    &stats->tx_pause, "Pause Frames");
3187 	}
3188 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3189 		NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3190 		    &stats->tx_deferals, "Unicast Frames");
3191 		NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3192 		    &stats->tx_frames, "Multicast Frames");
3193 		NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3194 		    &stats->tx_pause, "Broadcast Frames");
3195 	}
3196 }
3197 
3198 #undef NFE_SYSCTL_STAT_ADD32
3199 #undef NFE_SYSCTL_STAT_ADD64
3200 
3201 static void
3202 nfe_stats_clear(struct nfe_softc *sc)
3203 {
3204 	int i, mib_cnt;
3205 
3206 	if ((sc->nfe_flags & NFE_MIB_V1) != 0)
3207 		mib_cnt = NFE_NUM_MIB_STATV1;
3208 	else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
3209 		mib_cnt = NFE_NUM_MIB_STATV2;
3210 	else
3211 		return;
3212 
3213 	for (i = 0; i < mib_cnt; i += sizeof(uint32_t))
3214 		NFE_READ(sc, NFE_TX_OCTET + i);
3215 
3216 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3217 		NFE_READ(sc, NFE_TX_UNICAST);
3218 		NFE_READ(sc, NFE_TX_MULTICAST);
3219 		NFE_READ(sc, NFE_TX_BROADCAST);
3220 	}
3221 }
3222 
3223 static void
3224 nfe_stats_update(struct nfe_softc *sc)
3225 {
3226 	struct nfe_hw_stats *stats;
3227 
3228 	NFE_LOCK_ASSERT(sc);
3229 
3230 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3231 		return;
3232 
3233 	stats = &sc->nfe_stats;
3234 	stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
3235 	stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
3236 	stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
3237 	stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
3238 	stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
3239 	stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
3240 	stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
3241 	stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
3242 	stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
3243 	stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
3244 	stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
3245 	stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
3246 	stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
3247 	stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
3248 	stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
3249 	stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
3250 	stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
3251 	stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
3252 	stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
3253 	stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
3254 	stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
3255 
3256 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3257 		stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
3258 		stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
3259 		stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
3260 		stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
3261 		stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
3262 		stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
3263 	}
3264 
3265 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3266 		stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
3267 		stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
3268 		stats->rx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
3269 	}
3270 }
3271 
3272 
3273 static void
3274 nfe_set_linkspeed(struct nfe_softc *sc)
3275 {
3276 	struct mii_softc *miisc;
3277 	struct mii_data *mii;
3278 	int aneg, i, phyno;
3279 
3280 	NFE_LOCK_ASSERT(sc);
3281 
3282 	mii = device_get_softc(sc->nfe_miibus);
3283 	mii_pollstat(mii);
3284 	aneg = 0;
3285 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3286 	    (IFM_ACTIVE | IFM_AVALID)) {
3287 		switch IFM_SUBTYPE(mii->mii_media_active) {
3288 		case IFM_10_T:
3289 		case IFM_100_TX:
3290 			return;
3291 		case IFM_1000_T:
3292 			aneg++;
3293 			break;
3294 		default:
3295 			break;
3296 		}
3297 	}
3298 	miisc = LIST_FIRST(&mii->mii_phys);
3299 	phyno = miisc->mii_phy;
3300 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3301 		PHY_RESET(miisc);
3302 	nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
3303 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3304 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3305 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3306 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
3307 	DELAY(1000);
3308 	if (aneg != 0) {
3309 		/*
3310 		 * Poll link state until nfe(4) get a 10/100Mbps link.
3311 		 */
3312 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3313 			mii_pollstat(mii);
3314 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3315 			    == (IFM_ACTIVE | IFM_AVALID)) {
3316 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3317 				case IFM_10_T:
3318 				case IFM_100_TX:
3319 					nfe_mac_config(sc, mii);
3320 					return;
3321 				default:
3322 					break;
3323 				}
3324 			}
3325 			NFE_UNLOCK(sc);
3326 			pause("nfelnk", hz);
3327 			NFE_LOCK(sc);
3328 		}
3329 		if (i == MII_ANEGTICKS_GIGE)
3330 			device_printf(sc->nfe_dev,
3331 			    "establishing a link failed, WOL may not work!");
3332 	}
3333 	/*
3334 	 * No link, force MAC to have 100Mbps, full-duplex link.
3335 	 * This is the last resort and may/may not work.
3336 	 */
3337 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3338 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3339 	nfe_mac_config(sc, mii);
3340 }
3341 
3342 
3343 static void
3344 nfe_set_wol(struct nfe_softc *sc)
3345 {
3346 	struct ifnet *ifp;
3347 	uint32_t wolctl;
3348 	int pmc;
3349 	uint16_t pmstat;
3350 
3351 	NFE_LOCK_ASSERT(sc);
3352 
3353 	if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
3354 		return;
3355 	ifp = sc->nfe_ifp;
3356 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3357 		wolctl = NFE_WOL_MAGIC;
3358 	else
3359 		wolctl = 0;
3360 	NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
3361 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
3362 		nfe_set_linkspeed(sc);
3363 		if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
3364 			NFE_WRITE(sc, NFE_PWR2_CTL,
3365 			    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
3366 		/* Enable RX. */
3367 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
3368 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
3369 		NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
3370 		    NFE_RX_START);
3371 	}
3372 	/* Request PME if WOL is requested. */
3373 	pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
3374 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3375 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3376 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3377 	pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3378 }
3379