xref: /freebsd/sys/dev/nfe/if_nfe.c (revision 38f0b757fd84d17d0fc24739a7cda160c4516d81)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_arp.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/if_vlan_var.h>
51 
52 #include <net/bpf.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/bus.h>
57 #include <sys/rman.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <dev/nfe/if_nfereg.h>
66 #include <dev/nfe/if_nfevar.h>
67 
68 MODULE_DEPEND(nfe, pci, 1, 1, 1);
69 MODULE_DEPEND(nfe, ether, 1, 1, 1);
70 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
71 
72 /* "device miibus" required.  See GENERIC if you get errors here. */
73 #include "miibus_if.h"
74 
75 static int  nfe_probe(device_t);
76 static int  nfe_attach(device_t);
77 static int  nfe_detach(device_t);
78 static int  nfe_suspend(device_t);
79 static int  nfe_resume(device_t);
80 static int nfe_shutdown(device_t);
81 static int  nfe_can_use_msix(struct nfe_softc *);
82 static int  nfe_detect_msik9(struct nfe_softc *);
83 static void nfe_power(struct nfe_softc *);
84 static int  nfe_miibus_readreg(device_t, int, int);
85 static int  nfe_miibus_writereg(device_t, int, int, int);
86 static void nfe_miibus_statchg(device_t);
87 static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
88 static void nfe_set_intr(struct nfe_softc *);
89 static __inline void nfe_enable_intr(struct nfe_softc *);
90 static __inline void nfe_disable_intr(struct nfe_softc *);
91 static int  nfe_ioctl(struct ifnet *, u_long, caddr_t);
92 static void nfe_alloc_msix(struct nfe_softc *, int);
93 static int nfe_intr(void *);
94 static void nfe_int_task(void *, int);
95 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
96 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
97 static int nfe_newbuf(struct nfe_softc *, int);
98 static int nfe_jnewbuf(struct nfe_softc *, int);
99 static int  nfe_rxeof(struct nfe_softc *, int, int *);
100 static int  nfe_jrxeof(struct nfe_softc *, int, int *);
101 static void nfe_txeof(struct nfe_softc *);
102 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
103 static void nfe_setmulti(struct nfe_softc *);
104 static void nfe_start(struct ifnet *);
105 static void nfe_start_locked(struct ifnet *);
106 static void nfe_watchdog(struct ifnet *);
107 static void nfe_init(void *);
108 static void nfe_init_locked(void *);
109 static void nfe_stop(struct ifnet *);
110 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
111 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
112 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
113 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
114 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
115 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
116 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
118 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
119 static int  nfe_ifmedia_upd(struct ifnet *);
120 static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
121 static void nfe_tick(void *);
122 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
123 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
124 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
125 
126 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
127 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
128 static void nfe_sysctl_node(struct nfe_softc *);
129 static void nfe_stats_clear(struct nfe_softc *);
130 static void nfe_stats_update(struct nfe_softc *);
131 static void nfe_set_linkspeed(struct nfe_softc *);
132 static void nfe_set_wol(struct nfe_softc *);
133 
134 #ifdef NFE_DEBUG
135 static int nfedebug = 0;
136 #define	DPRINTF(sc, ...)	do {				\
137 	if (nfedebug)						\
138 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
139 } while (0)
140 #define	DPRINTFN(sc, n, ...)	do {				\
141 	if (nfedebug >= (n))					\
142 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
143 } while (0)
144 #else
145 #define	DPRINTF(sc, ...)
146 #define	DPRINTFN(sc, n, ...)
147 #endif
148 
149 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
150 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
151 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
152 
153 /* Tunables. */
154 static int msi_disable = 0;
155 static int msix_disable = 0;
156 static int jumbo_disable = 0;
157 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
158 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
159 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
160 
161 static device_method_t nfe_methods[] = {
162 	/* Device interface */
163 	DEVMETHOD(device_probe,		nfe_probe),
164 	DEVMETHOD(device_attach,	nfe_attach),
165 	DEVMETHOD(device_detach,	nfe_detach),
166 	DEVMETHOD(device_suspend,	nfe_suspend),
167 	DEVMETHOD(device_resume,	nfe_resume),
168 	DEVMETHOD(device_shutdown,	nfe_shutdown),
169 
170 	/* MII interface */
171 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
172 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
173 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
174 
175 	DEVMETHOD_END
176 };
177 
178 static driver_t nfe_driver = {
179 	"nfe",
180 	nfe_methods,
181 	sizeof(struct nfe_softc)
182 };
183 
184 static devclass_t nfe_devclass;
185 
186 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
187 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
188 
189 static struct nfe_type nfe_devs[] = {
190 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
191 	    "NVIDIA nForce MCP Networking Adapter"},
192 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
193 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
194 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
195 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
196 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
197 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
198 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
199 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
200 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
201 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
202 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
203 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
204 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
205 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
206 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
207 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
208 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
209 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
210 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
211 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
212 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
213 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
214 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
215 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
216 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
217 	    "NVIDIA nForce MCP55 Networking Adapter"},
218 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
219 	    "NVIDIA nForce MCP55 Networking Adapter"},
220 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
221 	    "NVIDIA nForce MCP61 Networking Adapter"},
222 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
223 	    "NVIDIA nForce MCP61 Networking Adapter"},
224 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
225 	    "NVIDIA nForce MCP61 Networking Adapter"},
226 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
227 	    "NVIDIA nForce MCP61 Networking Adapter"},
228 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
229 	    "NVIDIA nForce MCP65 Networking Adapter"},
230 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
231 	    "NVIDIA nForce MCP65 Networking Adapter"},
232 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
233 	    "NVIDIA nForce MCP65 Networking Adapter"},
234 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
235 	    "NVIDIA nForce MCP65 Networking Adapter"},
236 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
237 	    "NVIDIA nForce MCP67 Networking Adapter"},
238 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
239 	    "NVIDIA nForce MCP67 Networking Adapter"},
240 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
241 	    "NVIDIA nForce MCP67 Networking Adapter"},
242 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
243 	    "NVIDIA nForce MCP67 Networking Adapter"},
244 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
245 	    "NVIDIA nForce MCP73 Networking Adapter"},
246 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
247 	    "NVIDIA nForce MCP73 Networking Adapter"},
248 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
249 	    "NVIDIA nForce MCP73 Networking Adapter"},
250 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
251 	    "NVIDIA nForce MCP73 Networking Adapter"},
252 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
253 	    "NVIDIA nForce MCP77 Networking Adapter"},
254 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
255 	    "NVIDIA nForce MCP77 Networking Adapter"},
256 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
257 	    "NVIDIA nForce MCP77 Networking Adapter"},
258 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
259 	    "NVIDIA nForce MCP77 Networking Adapter"},
260 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
261 	    "NVIDIA nForce MCP79 Networking Adapter"},
262 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
263 	    "NVIDIA nForce MCP79 Networking Adapter"},
264 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
265 	    "NVIDIA nForce MCP79 Networking Adapter"},
266 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
267 	    "NVIDIA nForce MCP79 Networking Adapter"},
268 	{0, 0, NULL}
269 };
270 
271 
272 /* Probe for supported hardware ID's */
273 static int
274 nfe_probe(device_t dev)
275 {
276 	struct nfe_type *t;
277 
278 	t = nfe_devs;
279 	/* Check for matching PCI DEVICE ID's */
280 	while (t->name != NULL) {
281 		if ((pci_get_vendor(dev) == t->vid_id) &&
282 		    (pci_get_device(dev) == t->dev_id)) {
283 			device_set_desc(dev, t->name);
284 			return (BUS_PROBE_DEFAULT);
285 		}
286 		t++;
287 	}
288 
289 	return (ENXIO);
290 }
291 
292 static void
293 nfe_alloc_msix(struct nfe_softc *sc, int count)
294 {
295 	int rid;
296 
297 	rid = PCIR_BAR(2);
298 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
299 	    &rid, RF_ACTIVE);
300 	if (sc->nfe_msix_res == NULL) {
301 		device_printf(sc->nfe_dev,
302 		    "couldn't allocate MSIX table resource\n");
303 		return;
304 	}
305 	rid = PCIR_BAR(3);
306 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
307 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
308 	if (sc->nfe_msix_pba_res == NULL) {
309 		device_printf(sc->nfe_dev,
310 		    "couldn't allocate MSIX PBA resource\n");
311 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
312 		    sc->nfe_msix_res);
313 		sc->nfe_msix_res = NULL;
314 		return;
315 	}
316 
317 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
318 		if (count == NFE_MSI_MESSAGES) {
319 			if (bootverbose)
320 				device_printf(sc->nfe_dev,
321 				    "Using %d MSIX messages\n", count);
322 			sc->nfe_msix = 1;
323 		} else {
324 			if (bootverbose)
325 				device_printf(sc->nfe_dev,
326 				    "couldn't allocate MSIX\n");
327 			pci_release_msi(sc->nfe_dev);
328 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
329 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
330 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
331 			    PCIR_BAR(2), sc->nfe_msix_res);
332 			sc->nfe_msix_pba_res = NULL;
333 			sc->nfe_msix_res = NULL;
334 		}
335 	}
336 }
337 
338 
339 static int
340 nfe_detect_msik9(struct nfe_softc *sc)
341 {
342 	static const char *maker = "MSI";
343 	static const char *product = "K9N6PGM2-V2 (MS-7309)";
344 	char *m, *p;
345 	int found;
346 
347 	found = 0;
348 	m = getenv("smbios.planar.maker");
349 	p = getenv("smbios.planar.product");
350 	if (m != NULL && p != NULL) {
351 		if (strcmp(m, maker) == 0 && strcmp(p, product) == 0)
352 			found = 1;
353 	}
354 	if (m != NULL)
355 		freeenv(m);
356 	if (p != NULL)
357 		freeenv(p);
358 
359 	return (found);
360 }
361 
362 
363 static int
364 nfe_attach(device_t dev)
365 {
366 	struct nfe_softc *sc;
367 	struct ifnet *ifp;
368 	bus_addr_t dma_addr_max;
369 	int error = 0, i, msic, phyloc, reg, rid;
370 
371 	sc = device_get_softc(dev);
372 	sc->nfe_dev = dev;
373 
374 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
375 	    MTX_DEF);
376 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
377 
378 	pci_enable_busmaster(dev);
379 
380 	rid = PCIR_BAR(0);
381 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
382 	    RF_ACTIVE);
383 	if (sc->nfe_res[0] == NULL) {
384 		device_printf(dev, "couldn't map memory resources\n");
385 		mtx_destroy(&sc->nfe_mtx);
386 		return (ENXIO);
387 	}
388 
389 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
390 		uint16_t v, width;
391 
392 		v = pci_read_config(dev, reg + 0x08, 2);
393 		/* Change max. read request size to 4096. */
394 		v &= ~(7 << 12);
395 		v |= (5 << 12);
396 		pci_write_config(dev, reg + 0x08, v, 2);
397 
398 		v = pci_read_config(dev, reg + 0x0c, 2);
399 		/* link capability */
400 		v = (v >> 4) & 0x0f;
401 		width = pci_read_config(dev, reg + 0x12, 2);
402 		/* negotiated link width */
403 		width = (width >> 4) & 0x3f;
404 		if (v != width)
405 			device_printf(sc->nfe_dev,
406 			    "warning, negotiated width of link(x%d) != "
407 			    "max. width of link(x%d)\n", width, v);
408 	}
409 
410 	if (nfe_can_use_msix(sc) == 0) {
411 		device_printf(sc->nfe_dev,
412 		    "MSI/MSI-X capability black-listed, will use INTx\n");
413 		msix_disable = 1;
414 		msi_disable = 1;
415 	}
416 
417 	/* Allocate interrupt */
418 	if (msix_disable == 0 || msi_disable == 0) {
419 		if (msix_disable == 0 &&
420 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
421 			nfe_alloc_msix(sc, msic);
422 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
423 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
424 		    pci_alloc_msi(dev, &msic) == 0) {
425 			if (msic == NFE_MSI_MESSAGES) {
426 				if (bootverbose)
427 					device_printf(dev,
428 					    "Using %d MSI messages\n", msic);
429 				sc->nfe_msi = 1;
430 			} else
431 				pci_release_msi(dev);
432 		}
433 	}
434 
435 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
436 		rid = 0;
437 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
438 		    RF_SHAREABLE | RF_ACTIVE);
439 		if (sc->nfe_irq[0] == NULL) {
440 			device_printf(dev, "couldn't allocate IRQ resources\n");
441 			error = ENXIO;
442 			goto fail;
443 		}
444 	} else {
445 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
446 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
447 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
448 			if (sc->nfe_irq[i] == NULL) {
449 				device_printf(dev,
450 				    "couldn't allocate IRQ resources for "
451 				    "message %d\n", rid);
452 				error = ENXIO;
453 				goto fail;
454 			}
455 		}
456 		/* Map interrupts to vector 0. */
457 		if (sc->nfe_msix != 0) {
458 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
459 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
460 		} else if (sc->nfe_msi != 0) {
461 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
462 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
463 		}
464 	}
465 
466 	/* Set IRQ status/mask register. */
467 	sc->nfe_irq_status = NFE_IRQ_STATUS;
468 	sc->nfe_irq_mask = NFE_IRQ_MASK;
469 	sc->nfe_intrs = NFE_IRQ_WANTED;
470 	sc->nfe_nointrs = 0;
471 	if (sc->nfe_msix != 0) {
472 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
473 		sc->nfe_nointrs = NFE_IRQ_WANTED;
474 	} else if (sc->nfe_msi != 0) {
475 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
476 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
477 	}
478 
479 	sc->nfe_devid = pci_get_device(dev);
480 	sc->nfe_revid = pci_get_revid(dev);
481 	sc->nfe_flags = 0;
482 
483 	switch (sc->nfe_devid) {
484 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
485 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
486 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
487 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
488 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
489 		break;
490 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
491 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
492 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
493 		break;
494 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
495 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
496 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
497 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
498 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
499 		    NFE_MIB_V1;
500 		break;
501 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
502 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
503 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
504 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
505 		break;
506 
507 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
508 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
509 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
510 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
511 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
512 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
513 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
514 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
515 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
516 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
517 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
518 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
519 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
520 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
521 		break;
522 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
523 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
524 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
525 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
526 		/* XXX flow control */
527 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
528 		    NFE_CORRECT_MACADDR | NFE_MIB_V3;
529 		break;
530 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
531 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
532 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
533 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
534 		/* XXX flow control */
535 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
536 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
537 		break;
538 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
539 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
540 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
541 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
542 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
543 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
544 		    NFE_MIB_V2;
545 		break;
546 	}
547 
548 	nfe_power(sc);
549 	/* Check for reversed ethernet address */
550 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
551 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
552 	nfe_get_macaddr(sc, sc->eaddr);
553 	/*
554 	 * Allocate the parent bus DMA tag appropriate for PCI.
555 	 */
556 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
557 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
558 		dma_addr_max = NFE_DMA_MAXADDR;
559 	error = bus_dma_tag_create(
560 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
561 	    1, 0,				/* alignment, boundary */
562 	    dma_addr_max,			/* lowaddr */
563 	    BUS_SPACE_MAXADDR,			/* highaddr */
564 	    NULL, NULL,				/* filter, filterarg */
565 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
566 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
567 	    0,					/* flags */
568 	    NULL, NULL,				/* lockfunc, lockarg */
569 	    &sc->nfe_parent_tag);
570 	if (error)
571 		goto fail;
572 
573 	ifp = sc->nfe_ifp = if_alloc(IFT_ETHER);
574 	if (ifp == NULL) {
575 		device_printf(dev, "can not if_alloc()\n");
576 		error = ENOSPC;
577 		goto fail;
578 	}
579 
580 	/*
581 	 * Allocate Tx and Rx rings.
582 	 */
583 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
584 		goto fail;
585 
586 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
587 		goto fail;
588 
589 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
590 	/* Create sysctl node. */
591 	nfe_sysctl_node(sc);
592 
593 	ifp->if_softc = sc;
594 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
596 	ifp->if_ioctl = nfe_ioctl;
597 	ifp->if_start = nfe_start;
598 	ifp->if_hwassist = 0;
599 	ifp->if_capabilities = 0;
600 	ifp->if_init = nfe_init;
601 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_TX_RING_COUNT - 1);
602 	ifp->if_snd.ifq_drv_maxlen = NFE_TX_RING_COUNT - 1;
603 	IFQ_SET_READY(&ifp->if_snd);
604 
605 	if (sc->nfe_flags & NFE_HW_CSUM) {
606 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
607 		ifp->if_hwassist |= NFE_CSUM_FEATURES | CSUM_TSO;
608 	}
609 	ifp->if_capenable = ifp->if_capabilities;
610 
611 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
612 	/* VLAN capability setup. */
613 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
614 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
615 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
616 		if ((ifp->if_capabilities & IFCAP_HWCSUM) != 0)
617 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM |
618 			    IFCAP_VLAN_HWTSO;
619 	}
620 
621 	if (pci_find_cap(dev, PCIY_PMG, &reg) == 0)
622 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
623 	ifp->if_capenable = ifp->if_capabilities;
624 
625 	/*
626 	 * Tell the upper layer(s) we support long frames.
627 	 * Must appear after the call to ether_ifattach() because
628 	 * ether_ifattach() sets ifi_hdrlen to the default value.
629 	 */
630 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
631 
632 #ifdef DEVICE_POLLING
633 	ifp->if_capabilities |= IFCAP_POLLING;
634 #endif
635 
636 	/* Do MII setup */
637 	phyloc = MII_PHY_ANY;
638 	if (sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN1 ||
639 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN2 ||
640 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN3 ||
641 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN4) {
642 		if (nfe_detect_msik9(sc) != 0)
643 			phyloc = 0;
644 	}
645 	error = mii_attach(dev, &sc->nfe_miibus, ifp, nfe_ifmedia_upd,
646 	    nfe_ifmedia_sts, BMSR_DEFCAPMASK, phyloc, MII_OFFSET_ANY,
647 	    MIIF_DOPAUSE);
648 	if (error != 0) {
649 		device_printf(dev, "attaching PHYs failed\n");
650 		goto fail;
651 	}
652 	ether_ifattach(ifp, sc->eaddr);
653 
654 	TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
655 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
656 	    taskqueue_thread_enqueue, &sc->nfe_tq);
657 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
658 	    device_get_nameunit(sc->nfe_dev));
659 	error = 0;
660 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
661 		error = bus_setup_intr(dev, sc->nfe_irq[0],
662 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
663 		    &sc->nfe_intrhand[0]);
664 	} else {
665 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
666 			error = bus_setup_intr(dev, sc->nfe_irq[i],
667 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
668 			    &sc->nfe_intrhand[i]);
669 			if (error != 0)
670 				break;
671 		}
672 	}
673 	if (error) {
674 		device_printf(dev, "couldn't set up irq\n");
675 		taskqueue_free(sc->nfe_tq);
676 		sc->nfe_tq = NULL;
677 		ether_ifdetach(ifp);
678 		goto fail;
679 	}
680 
681 fail:
682 	if (error)
683 		nfe_detach(dev);
684 
685 	return (error);
686 }
687 
688 
689 static int
690 nfe_detach(device_t dev)
691 {
692 	struct nfe_softc *sc;
693 	struct ifnet *ifp;
694 	uint8_t eaddr[ETHER_ADDR_LEN];
695 	int i, rid;
696 
697 	sc = device_get_softc(dev);
698 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
699 	ifp = sc->nfe_ifp;
700 
701 #ifdef DEVICE_POLLING
702 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
703 		ether_poll_deregister(ifp);
704 #endif
705 	if (device_is_attached(dev)) {
706 		NFE_LOCK(sc);
707 		nfe_stop(ifp);
708 		ifp->if_flags &= ~IFF_UP;
709 		NFE_UNLOCK(sc);
710 		callout_drain(&sc->nfe_stat_ch);
711 		ether_ifdetach(ifp);
712 	}
713 
714 	if (ifp) {
715 		/* restore ethernet address */
716 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
717 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
718 				eaddr[i] = sc->eaddr[5 - i];
719 			}
720 		} else
721 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
722 		nfe_set_macaddr(sc, eaddr);
723 		if_free(ifp);
724 	}
725 	if (sc->nfe_miibus)
726 		device_delete_child(dev, sc->nfe_miibus);
727 	bus_generic_detach(dev);
728 	if (sc->nfe_tq != NULL) {
729 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
730 		taskqueue_free(sc->nfe_tq);
731 		sc->nfe_tq = NULL;
732 	}
733 
734 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
735 		if (sc->nfe_intrhand[i] != NULL) {
736 			bus_teardown_intr(dev, sc->nfe_irq[i],
737 			    sc->nfe_intrhand[i]);
738 			sc->nfe_intrhand[i] = NULL;
739 		}
740 	}
741 
742 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
743 		if (sc->nfe_irq[0] != NULL)
744 			bus_release_resource(dev, SYS_RES_IRQ, 0,
745 			    sc->nfe_irq[0]);
746 	} else {
747 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
748 			if (sc->nfe_irq[i] != NULL) {
749 				bus_release_resource(dev, SYS_RES_IRQ, rid,
750 				    sc->nfe_irq[i]);
751 				sc->nfe_irq[i] = NULL;
752 			}
753 		}
754 		pci_release_msi(dev);
755 	}
756 	if (sc->nfe_msix_pba_res != NULL) {
757 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
758 		    sc->nfe_msix_pba_res);
759 		sc->nfe_msix_pba_res = NULL;
760 	}
761 	if (sc->nfe_msix_res != NULL) {
762 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
763 		    sc->nfe_msix_res);
764 		sc->nfe_msix_res = NULL;
765 	}
766 	if (sc->nfe_res[0] != NULL) {
767 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
768 		    sc->nfe_res[0]);
769 		sc->nfe_res[0] = NULL;
770 	}
771 
772 	nfe_free_tx_ring(sc, &sc->txq);
773 	nfe_free_rx_ring(sc, &sc->rxq);
774 	nfe_free_jrx_ring(sc, &sc->jrxq);
775 
776 	if (sc->nfe_parent_tag) {
777 		bus_dma_tag_destroy(sc->nfe_parent_tag);
778 		sc->nfe_parent_tag = NULL;
779 	}
780 
781 	mtx_destroy(&sc->nfe_mtx);
782 
783 	return (0);
784 }
785 
786 
787 static int
788 nfe_suspend(device_t dev)
789 {
790 	struct nfe_softc *sc;
791 
792 	sc = device_get_softc(dev);
793 
794 	NFE_LOCK(sc);
795 	nfe_stop(sc->nfe_ifp);
796 	nfe_set_wol(sc);
797 	sc->nfe_suspended = 1;
798 	NFE_UNLOCK(sc);
799 
800 	return (0);
801 }
802 
803 
804 static int
805 nfe_resume(device_t dev)
806 {
807 	struct nfe_softc *sc;
808 	struct ifnet *ifp;
809 
810 	sc = device_get_softc(dev);
811 
812 	NFE_LOCK(sc);
813 	nfe_power(sc);
814 	ifp = sc->nfe_ifp;
815 	if (ifp->if_flags & IFF_UP)
816 		nfe_init_locked(sc);
817 	sc->nfe_suspended = 0;
818 	NFE_UNLOCK(sc);
819 
820 	return (0);
821 }
822 
823 
824 static int
825 nfe_can_use_msix(struct nfe_softc *sc)
826 {
827 	static struct msix_blacklist {
828 		char	*maker;
829 		char	*product;
830 	} msix_blacklists[] = {
831 		{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
832 	};
833 
834 	struct msix_blacklist *mblp;
835 	char *maker, *product;
836 	int count, n, use_msix;
837 
838 	/*
839 	 * Search base board manufacturer and product name table
840 	 * to see this system has a known MSI/MSI-X issue.
841 	 */
842 	maker = getenv("smbios.planar.maker");
843 	product = getenv("smbios.planar.product");
844 	use_msix = 1;
845 	if (maker != NULL && product != NULL) {
846 		count = sizeof(msix_blacklists) / sizeof(msix_blacklists[0]);
847 		mblp = msix_blacklists;
848 		for (n = 0; n < count; n++) {
849 			if (strcmp(maker, mblp->maker) == 0 &&
850 			    strcmp(product, mblp->product) == 0) {
851 				use_msix = 0;
852 				break;
853 			}
854 			mblp++;
855 		}
856 	}
857 	if (maker != NULL)
858 		freeenv(maker);
859 	if (product != NULL)
860 		freeenv(product);
861 
862 	return (use_msix);
863 }
864 
865 
866 /* Take PHY/NIC out of powerdown, from Linux */
867 static void
868 nfe_power(struct nfe_softc *sc)
869 {
870 	uint32_t pwr;
871 
872 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
873 		return;
874 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
875 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
876 	DELAY(100);
877 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
878 	DELAY(100);
879 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
880 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
881 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
882 	if (sc->nfe_revid >= 0xa3 &&
883 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
884 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
885 		pwr |= NFE_PWR2_REVA3;
886 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
887 }
888 
889 
890 static void
891 nfe_miibus_statchg(device_t dev)
892 {
893 	struct nfe_softc *sc;
894 	struct mii_data *mii;
895 	struct ifnet *ifp;
896 	uint32_t rxctl, txctl;
897 
898 	sc = device_get_softc(dev);
899 
900 	mii = device_get_softc(sc->nfe_miibus);
901 	ifp = sc->nfe_ifp;
902 
903 	sc->nfe_link = 0;
904 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
905 	    (IFM_ACTIVE | IFM_AVALID)) {
906 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
907 		case IFM_10_T:
908 		case IFM_100_TX:
909 		case IFM_1000_T:
910 			sc->nfe_link = 1;
911 			break;
912 		default:
913 			break;
914 		}
915 	}
916 
917 	nfe_mac_config(sc, mii);
918 	txctl = NFE_READ(sc, NFE_TX_CTL);
919 	rxctl = NFE_READ(sc, NFE_RX_CTL);
920 	if (sc->nfe_link != 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
921 		txctl |= NFE_TX_START;
922 		rxctl |= NFE_RX_START;
923 	} else {
924 		txctl &= ~NFE_TX_START;
925 		rxctl &= ~NFE_RX_START;
926 	}
927 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
928 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
929 }
930 
931 
932 static void
933 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
934 {
935 	uint32_t link, misc, phy, seed;
936 	uint32_t val;
937 
938 	NFE_LOCK_ASSERT(sc);
939 
940 	phy = NFE_READ(sc, NFE_PHY_IFACE);
941 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
942 
943 	seed = NFE_READ(sc, NFE_RNDSEED);
944 	seed &= ~NFE_SEED_MASK;
945 
946 	misc = NFE_MISC1_MAGIC;
947 	link = NFE_MEDIA_SET;
948 
949 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
950 		phy  |= NFE_PHY_HDX;	/* half-duplex */
951 		misc |= NFE_MISC1_HDX;
952 	}
953 
954 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
955 	case IFM_1000_T:	/* full-duplex only */
956 		link |= NFE_MEDIA_1000T;
957 		seed |= NFE_SEED_1000T;
958 		phy  |= NFE_PHY_1000T;
959 		break;
960 	case IFM_100_TX:
961 		link |= NFE_MEDIA_100TX;
962 		seed |= NFE_SEED_100TX;
963 		phy  |= NFE_PHY_100TX;
964 		break;
965 	case IFM_10_T:
966 		link |= NFE_MEDIA_10T;
967 		seed |= NFE_SEED_10T;
968 		break;
969 	}
970 
971 	if ((phy & 0x10000000) != 0) {
972 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
973 			val = NFE_R1_MAGIC_1000;
974 		else
975 			val = NFE_R1_MAGIC_10_100;
976 	} else
977 		val = NFE_R1_MAGIC_DEFAULT;
978 	NFE_WRITE(sc, NFE_SETUP_R1, val);
979 
980 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
981 
982 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
983 	NFE_WRITE(sc, NFE_MISC1, misc);
984 	NFE_WRITE(sc, NFE_LINKSPEED, link);
985 
986 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
987 		/* It seems all hardwares supports Rx pause frames. */
988 		val = NFE_READ(sc, NFE_RXFILTER);
989 		if ((IFM_OPTIONS(mii->mii_media_active) &
990 		    IFM_ETH_RXPAUSE) != 0)
991 			val |= NFE_PFF_RX_PAUSE;
992 		else
993 			val &= ~NFE_PFF_RX_PAUSE;
994 		NFE_WRITE(sc, NFE_RXFILTER, val);
995 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
996 			val = NFE_READ(sc, NFE_MISC1);
997 			if ((IFM_OPTIONS(mii->mii_media_active) &
998 			    IFM_ETH_TXPAUSE) != 0) {
999 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1000 				    NFE_TX_PAUSE_FRAME_ENABLE);
1001 				val |= NFE_MISC1_TX_PAUSE;
1002 			} else {
1003 				val &= ~NFE_MISC1_TX_PAUSE;
1004 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1005 				    NFE_TX_PAUSE_FRAME_DISABLE);
1006 			}
1007 			NFE_WRITE(sc, NFE_MISC1, val);
1008 		}
1009 	} else {
1010 		/* disable rx/tx pause frames */
1011 		val = NFE_READ(sc, NFE_RXFILTER);
1012 		val &= ~NFE_PFF_RX_PAUSE;
1013 		NFE_WRITE(sc, NFE_RXFILTER, val);
1014 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
1015 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1016 			    NFE_TX_PAUSE_FRAME_DISABLE);
1017 			val = NFE_READ(sc, NFE_MISC1);
1018 			val &= ~NFE_MISC1_TX_PAUSE;
1019 			NFE_WRITE(sc, NFE_MISC1, val);
1020 		}
1021 	}
1022 }
1023 
1024 
1025 static int
1026 nfe_miibus_readreg(device_t dev, int phy, int reg)
1027 {
1028 	struct nfe_softc *sc = device_get_softc(dev);
1029 	uint32_t val;
1030 	int ntries;
1031 
1032 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1033 
1034 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1035 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1036 		DELAY(100);
1037 	}
1038 
1039 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
1040 
1041 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1042 		DELAY(100);
1043 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1044 			break;
1045 	}
1046 	if (ntries == NFE_TIMEOUT) {
1047 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
1048 		return 0;
1049 	}
1050 
1051 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
1052 		DPRINTFN(sc, 2, "could not read PHY\n");
1053 		return 0;
1054 	}
1055 
1056 	val = NFE_READ(sc, NFE_PHY_DATA);
1057 	if (val != 0xffffffff && val != 0)
1058 		sc->mii_phyaddr = phy;
1059 
1060 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
1061 
1062 	return (val);
1063 }
1064 
1065 
1066 static int
1067 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
1068 {
1069 	struct nfe_softc *sc = device_get_softc(dev);
1070 	uint32_t ctl;
1071 	int ntries;
1072 
1073 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1074 
1075 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1076 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1077 		DELAY(100);
1078 	}
1079 
1080 	NFE_WRITE(sc, NFE_PHY_DATA, val);
1081 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
1082 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
1083 
1084 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1085 		DELAY(100);
1086 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1087 			break;
1088 	}
1089 #ifdef NFE_DEBUG
1090 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
1091 		device_printf(sc->nfe_dev, "could not write to PHY\n");
1092 #endif
1093 	return (0);
1094 }
1095 
1096 struct nfe_dmamap_arg {
1097 	bus_addr_t nfe_busaddr;
1098 };
1099 
1100 static int
1101 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1102 {
1103 	struct nfe_dmamap_arg ctx;
1104 	struct nfe_rx_data *data;
1105 	void *desc;
1106 	int i, error, descsize;
1107 
1108 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1109 		desc = ring->desc64;
1110 		descsize = sizeof (struct nfe_desc64);
1111 	} else {
1112 		desc = ring->desc32;
1113 		descsize = sizeof (struct nfe_desc32);
1114 	}
1115 
1116 	ring->cur = ring->next = 0;
1117 
1118 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1119 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1120 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1121 	    BUS_SPACE_MAXADDR,			/* highaddr */
1122 	    NULL, NULL,				/* filter, filterarg */
1123 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1124 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1125 	    0,					/* flags */
1126 	    NULL, NULL,				/* lockfunc, lockarg */
1127 	    &ring->rx_desc_tag);
1128 	if (error != 0) {
1129 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1130 		goto fail;
1131 	}
1132 
1133 	/* allocate memory to desc */
1134 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1135 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1136 	if (error != 0) {
1137 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1138 		goto fail;
1139 	}
1140 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1141 		ring->desc64 = desc;
1142 	else
1143 		ring->desc32 = desc;
1144 
1145 	/* map desc to device visible address space */
1146 	ctx.nfe_busaddr = 0;
1147 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1148 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1149 	if (error != 0) {
1150 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1151 		goto fail;
1152 	}
1153 	ring->physaddr = ctx.nfe_busaddr;
1154 
1155 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1156 	    1, 0,			/* alignment, boundary */
1157 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1158 	    BUS_SPACE_MAXADDR,		/* highaddr */
1159 	    NULL, NULL,			/* filter, filterarg */
1160 	    MCLBYTES, 1,		/* maxsize, nsegments */
1161 	    MCLBYTES,			/* maxsegsize */
1162 	    0,				/* flags */
1163 	    NULL, NULL,			/* lockfunc, lockarg */
1164 	    &ring->rx_data_tag);
1165 	if (error != 0) {
1166 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1167 		goto fail;
1168 	}
1169 
1170 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1171 	if (error != 0) {
1172 		device_printf(sc->nfe_dev,
1173 		    "could not create Rx DMA spare map\n");
1174 		goto fail;
1175 	}
1176 
1177 	/*
1178 	 * Pre-allocate Rx buffers and populate Rx ring.
1179 	 */
1180 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1181 		data = &sc->rxq.data[i];
1182 		data->rx_data_map = NULL;
1183 		data->m = NULL;
1184 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1185 		    &data->rx_data_map);
1186 		if (error != 0) {
1187 			device_printf(sc->nfe_dev,
1188 			    "could not create Rx DMA map\n");
1189 			goto fail;
1190 		}
1191 	}
1192 
1193 fail:
1194 	return (error);
1195 }
1196 
1197 
1198 static void
1199 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1200 {
1201 	struct nfe_dmamap_arg ctx;
1202 	struct nfe_rx_data *data;
1203 	void *desc;
1204 	int i, error, descsize;
1205 
1206 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1207 		return;
1208 	if (jumbo_disable != 0) {
1209 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1210 		sc->nfe_jumbo_disable = 1;
1211 		return;
1212 	}
1213 
1214 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1215 		desc = ring->jdesc64;
1216 		descsize = sizeof (struct nfe_desc64);
1217 	} else {
1218 		desc = ring->jdesc32;
1219 		descsize = sizeof (struct nfe_desc32);
1220 	}
1221 
1222 	ring->jcur = ring->jnext = 0;
1223 
1224 	/* Create DMA tag for jumbo Rx ring. */
1225 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1226 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1227 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1228 	    BUS_SPACE_MAXADDR,			/* highaddr */
1229 	    NULL, NULL,				/* filter, filterarg */
1230 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1231 	    1, 					/* nsegments */
1232 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1233 	    0,					/* flags */
1234 	    NULL, NULL,				/* lockfunc, lockarg */
1235 	    &ring->jrx_desc_tag);
1236 	if (error != 0) {
1237 		device_printf(sc->nfe_dev,
1238 		    "could not create jumbo ring DMA tag\n");
1239 		goto fail;
1240 	}
1241 
1242 	/* Create DMA tag for jumbo Rx buffers. */
1243 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1244 	    1, 0,				/* alignment, boundary */
1245 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1246 	    BUS_SPACE_MAXADDR,			/* highaddr */
1247 	    NULL, NULL,				/* filter, filterarg */
1248 	    MJUM9BYTES,				/* maxsize */
1249 	    1,					/* nsegments */
1250 	    MJUM9BYTES,				/* maxsegsize */
1251 	    0,					/* flags */
1252 	    NULL, NULL,				/* lockfunc, lockarg */
1253 	    &ring->jrx_data_tag);
1254 	if (error != 0) {
1255 		device_printf(sc->nfe_dev,
1256 		    "could not create jumbo Rx buffer DMA tag\n");
1257 		goto fail;
1258 	}
1259 
1260 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1261 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1262 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1263 	if (error != 0) {
1264 		device_printf(sc->nfe_dev,
1265 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1266 		goto fail;
1267 	}
1268 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1269 		ring->jdesc64 = desc;
1270 	else
1271 		ring->jdesc32 = desc;
1272 
1273 	ctx.nfe_busaddr = 0;
1274 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1275 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1276 	if (error != 0) {
1277 		device_printf(sc->nfe_dev,
1278 		    "could not load DMA'able memory for jumbo Rx ring\n");
1279 		goto fail;
1280 	}
1281 	ring->jphysaddr = ctx.nfe_busaddr;
1282 
1283 	/* Create DMA maps for jumbo Rx buffers. */
1284 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1285 	if (error != 0) {
1286 		device_printf(sc->nfe_dev,
1287 		    "could not create jumbo Rx DMA spare map\n");
1288 		goto fail;
1289 	}
1290 
1291 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1292 		data = &sc->jrxq.jdata[i];
1293 		data->rx_data_map = NULL;
1294 		data->m = NULL;
1295 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1296 		    &data->rx_data_map);
1297 		if (error != 0) {
1298 			device_printf(sc->nfe_dev,
1299 			    "could not create jumbo Rx DMA map\n");
1300 			goto fail;
1301 		}
1302 	}
1303 
1304 	return;
1305 
1306 fail:
1307 	/*
1308 	 * Running without jumbo frame support is ok for most cases
1309 	 * so don't fail on creating dma tag/map for jumbo frame.
1310 	 */
1311 	nfe_free_jrx_ring(sc, ring);
1312 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1313 	    "resource shortage\n");
1314 	sc->nfe_jumbo_disable = 1;
1315 }
1316 
1317 
1318 static int
1319 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1320 {
1321 	void *desc;
1322 	size_t descsize;
1323 	int i;
1324 
1325 	ring->cur = ring->next = 0;
1326 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1327 		desc = ring->desc64;
1328 		descsize = sizeof (struct nfe_desc64);
1329 	} else {
1330 		desc = ring->desc32;
1331 		descsize = sizeof (struct nfe_desc32);
1332 	}
1333 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1334 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1335 		if (nfe_newbuf(sc, i) != 0)
1336 			return (ENOBUFS);
1337 	}
1338 
1339 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1340 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1341 
1342 	return (0);
1343 }
1344 
1345 
1346 static int
1347 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1348 {
1349 	void *desc;
1350 	size_t descsize;
1351 	int i;
1352 
1353 	ring->jcur = ring->jnext = 0;
1354 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1355 		desc = ring->jdesc64;
1356 		descsize = sizeof (struct nfe_desc64);
1357 	} else {
1358 		desc = ring->jdesc32;
1359 		descsize = sizeof (struct nfe_desc32);
1360 	}
1361 	bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
1362 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1363 		if (nfe_jnewbuf(sc, i) != 0)
1364 			return (ENOBUFS);
1365 	}
1366 
1367 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1368 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1369 
1370 	return (0);
1371 }
1372 
1373 
1374 static void
1375 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1376 {
1377 	struct nfe_rx_data *data;
1378 	void *desc;
1379 	int i, descsize;
1380 
1381 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1382 		desc = ring->desc64;
1383 		descsize = sizeof (struct nfe_desc64);
1384 	} else {
1385 		desc = ring->desc32;
1386 		descsize = sizeof (struct nfe_desc32);
1387 	}
1388 
1389 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1390 		data = &ring->data[i];
1391 		if (data->rx_data_map != NULL) {
1392 			bus_dmamap_destroy(ring->rx_data_tag,
1393 			    data->rx_data_map);
1394 			data->rx_data_map = NULL;
1395 		}
1396 		if (data->m != NULL) {
1397 			m_freem(data->m);
1398 			data->m = NULL;
1399 		}
1400 	}
1401 	if (ring->rx_data_tag != NULL) {
1402 		if (ring->rx_spare_map != NULL) {
1403 			bus_dmamap_destroy(ring->rx_data_tag,
1404 			    ring->rx_spare_map);
1405 			ring->rx_spare_map = NULL;
1406 		}
1407 		bus_dma_tag_destroy(ring->rx_data_tag);
1408 		ring->rx_data_tag = NULL;
1409 	}
1410 
1411 	if (desc != NULL) {
1412 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1413 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1414 		ring->desc64 = NULL;
1415 		ring->desc32 = NULL;
1416 		ring->rx_desc_map = NULL;
1417 	}
1418 	if (ring->rx_desc_tag != NULL) {
1419 		bus_dma_tag_destroy(ring->rx_desc_tag);
1420 		ring->rx_desc_tag = NULL;
1421 	}
1422 }
1423 
1424 
1425 static void
1426 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1427 {
1428 	struct nfe_rx_data *data;
1429 	void *desc;
1430 	int i, descsize;
1431 
1432 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1433 		return;
1434 
1435 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1436 		desc = ring->jdesc64;
1437 		descsize = sizeof (struct nfe_desc64);
1438 	} else {
1439 		desc = ring->jdesc32;
1440 		descsize = sizeof (struct nfe_desc32);
1441 	}
1442 
1443 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1444 		data = &ring->jdata[i];
1445 		if (data->rx_data_map != NULL) {
1446 			bus_dmamap_destroy(ring->jrx_data_tag,
1447 			    data->rx_data_map);
1448 			data->rx_data_map = NULL;
1449 		}
1450 		if (data->m != NULL) {
1451 			m_freem(data->m);
1452 			data->m = NULL;
1453 		}
1454 	}
1455 	if (ring->jrx_data_tag != NULL) {
1456 		if (ring->jrx_spare_map != NULL) {
1457 			bus_dmamap_destroy(ring->jrx_data_tag,
1458 			    ring->jrx_spare_map);
1459 			ring->jrx_spare_map = NULL;
1460 		}
1461 		bus_dma_tag_destroy(ring->jrx_data_tag);
1462 		ring->jrx_data_tag = NULL;
1463 	}
1464 
1465 	if (desc != NULL) {
1466 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1467 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1468 		ring->jdesc64 = NULL;
1469 		ring->jdesc32 = NULL;
1470 		ring->jrx_desc_map = NULL;
1471 	}
1472 
1473 	if (ring->jrx_desc_tag != NULL) {
1474 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1475 		ring->jrx_desc_tag = NULL;
1476 	}
1477 }
1478 
1479 
1480 static int
1481 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1482 {
1483 	struct nfe_dmamap_arg ctx;
1484 	int i, error;
1485 	void *desc;
1486 	int descsize;
1487 
1488 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1489 		desc = ring->desc64;
1490 		descsize = sizeof (struct nfe_desc64);
1491 	} else {
1492 		desc = ring->desc32;
1493 		descsize = sizeof (struct nfe_desc32);
1494 	}
1495 
1496 	ring->queued = 0;
1497 	ring->cur = ring->next = 0;
1498 
1499 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1500 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1501 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1502 	    BUS_SPACE_MAXADDR,			/* highaddr */
1503 	    NULL, NULL,				/* filter, filterarg */
1504 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1505 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1506 	    0,					/* flags */
1507 	    NULL, NULL,				/* lockfunc, lockarg */
1508 	    &ring->tx_desc_tag);
1509 	if (error != 0) {
1510 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1511 		goto fail;
1512 	}
1513 
1514 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1515 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1516 	if (error != 0) {
1517 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1518 		goto fail;
1519 	}
1520 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1521 		ring->desc64 = desc;
1522 	else
1523 		ring->desc32 = desc;
1524 
1525 	ctx.nfe_busaddr = 0;
1526 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1527 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1528 	if (error != 0) {
1529 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1530 		goto fail;
1531 	}
1532 	ring->physaddr = ctx.nfe_busaddr;
1533 
1534 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1535 	    1, 0,
1536 	    BUS_SPACE_MAXADDR,
1537 	    BUS_SPACE_MAXADDR,
1538 	    NULL, NULL,
1539 	    NFE_TSO_MAXSIZE,
1540 	    NFE_MAX_SCATTER,
1541 	    NFE_TSO_MAXSGSIZE,
1542 	    0,
1543 	    NULL, NULL,
1544 	    &ring->tx_data_tag);
1545 	if (error != 0) {
1546 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1547 		goto fail;
1548 	}
1549 
1550 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1551 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1552 		    &ring->data[i].tx_data_map);
1553 		if (error != 0) {
1554 			device_printf(sc->nfe_dev,
1555 			    "could not create Tx DMA map\n");
1556 			goto fail;
1557 		}
1558 	}
1559 
1560 fail:
1561 	return (error);
1562 }
1563 
1564 
1565 static void
1566 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1567 {
1568 	void *desc;
1569 	size_t descsize;
1570 
1571 	sc->nfe_force_tx = 0;
1572 	ring->queued = 0;
1573 	ring->cur = ring->next = 0;
1574 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1575 		desc = ring->desc64;
1576 		descsize = sizeof (struct nfe_desc64);
1577 	} else {
1578 		desc = ring->desc32;
1579 		descsize = sizeof (struct nfe_desc32);
1580 	}
1581 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1582 
1583 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1584 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1585 }
1586 
1587 
1588 static void
1589 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1590 {
1591 	struct nfe_tx_data *data;
1592 	void *desc;
1593 	int i, descsize;
1594 
1595 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1596 		desc = ring->desc64;
1597 		descsize = sizeof (struct nfe_desc64);
1598 	} else {
1599 		desc = ring->desc32;
1600 		descsize = sizeof (struct nfe_desc32);
1601 	}
1602 
1603 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1604 		data = &ring->data[i];
1605 
1606 		if (data->m != NULL) {
1607 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1608 			    BUS_DMASYNC_POSTWRITE);
1609 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1610 			m_freem(data->m);
1611 			data->m = NULL;
1612 		}
1613 		if (data->tx_data_map != NULL) {
1614 			bus_dmamap_destroy(ring->tx_data_tag,
1615 			    data->tx_data_map);
1616 			data->tx_data_map = NULL;
1617 		}
1618 	}
1619 
1620 	if (ring->tx_data_tag != NULL) {
1621 		bus_dma_tag_destroy(ring->tx_data_tag);
1622 		ring->tx_data_tag = NULL;
1623 	}
1624 
1625 	if (desc != NULL) {
1626 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1627 		    BUS_DMASYNC_POSTWRITE);
1628 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1629 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1630 		ring->desc64 = NULL;
1631 		ring->desc32 = NULL;
1632 		ring->tx_desc_map = NULL;
1633 		bus_dma_tag_destroy(ring->tx_desc_tag);
1634 		ring->tx_desc_tag = NULL;
1635 	}
1636 }
1637 
1638 #ifdef DEVICE_POLLING
1639 static poll_handler_t nfe_poll;
1640 
1641 
1642 static int
1643 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1644 {
1645 	struct nfe_softc *sc = ifp->if_softc;
1646 	uint32_t r;
1647 	int rx_npkts = 0;
1648 
1649 	NFE_LOCK(sc);
1650 
1651 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1652 		NFE_UNLOCK(sc);
1653 		return (rx_npkts);
1654 	}
1655 
1656 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1657 		rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
1658 	else
1659 		rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
1660 	nfe_txeof(sc);
1661 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1662 		nfe_start_locked(ifp);
1663 
1664 	if (cmd == POLL_AND_CHECK_STATUS) {
1665 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1666 			NFE_UNLOCK(sc);
1667 			return (rx_npkts);
1668 		}
1669 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1670 
1671 		if (r & NFE_IRQ_LINK) {
1672 			NFE_READ(sc, NFE_PHY_STATUS);
1673 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1674 			DPRINTF(sc, "link state changed\n");
1675 		}
1676 	}
1677 	NFE_UNLOCK(sc);
1678 	return (rx_npkts);
1679 }
1680 #endif /* DEVICE_POLLING */
1681 
1682 static void
1683 nfe_set_intr(struct nfe_softc *sc)
1684 {
1685 
1686 	if (sc->nfe_msi != 0)
1687 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1688 }
1689 
1690 
1691 /* In MSIX, a write to mask reegisters behaves as XOR. */
1692 static __inline void
1693 nfe_enable_intr(struct nfe_softc *sc)
1694 {
1695 
1696 	if (sc->nfe_msix != 0) {
1697 		/* XXX Should have a better way to enable interrupts! */
1698 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1699 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1700 	} else
1701 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1702 }
1703 
1704 
1705 static __inline void
1706 nfe_disable_intr(struct nfe_softc *sc)
1707 {
1708 
1709 	if (sc->nfe_msix != 0) {
1710 		/* XXX Should have a better way to disable interrupts! */
1711 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1712 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1713 	} else
1714 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1715 }
1716 
1717 
1718 static int
1719 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1720 {
1721 	struct nfe_softc *sc;
1722 	struct ifreq *ifr;
1723 	struct mii_data *mii;
1724 	int error, init, mask;
1725 
1726 	sc = ifp->if_softc;
1727 	ifr = (struct ifreq *) data;
1728 	error = 0;
1729 	init = 0;
1730 	switch (cmd) {
1731 	case SIOCSIFMTU:
1732 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1733 			error = EINVAL;
1734 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1735 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1736 			    (sc->nfe_jumbo_disable != 0)) &&
1737 			    ifr->ifr_mtu > ETHERMTU)
1738 				error = EINVAL;
1739 			else {
1740 				NFE_LOCK(sc);
1741 				ifp->if_mtu = ifr->ifr_mtu;
1742 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1743 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1744 					nfe_init_locked(sc);
1745 				}
1746 				NFE_UNLOCK(sc);
1747 			}
1748 		}
1749 		break;
1750 	case SIOCSIFFLAGS:
1751 		NFE_LOCK(sc);
1752 		if (ifp->if_flags & IFF_UP) {
1753 			/*
1754 			 * If only the PROMISC or ALLMULTI flag changes, then
1755 			 * don't do a full re-init of the chip, just update
1756 			 * the Rx filter.
1757 			 */
1758 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1759 			    ((ifp->if_flags ^ sc->nfe_if_flags) &
1760 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1761 				nfe_setmulti(sc);
1762 			else
1763 				nfe_init_locked(sc);
1764 		} else {
1765 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1766 				nfe_stop(ifp);
1767 		}
1768 		sc->nfe_if_flags = ifp->if_flags;
1769 		NFE_UNLOCK(sc);
1770 		error = 0;
1771 		break;
1772 	case SIOCADDMULTI:
1773 	case SIOCDELMULTI:
1774 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1775 			NFE_LOCK(sc);
1776 			nfe_setmulti(sc);
1777 			NFE_UNLOCK(sc);
1778 			error = 0;
1779 		}
1780 		break;
1781 	case SIOCSIFMEDIA:
1782 	case SIOCGIFMEDIA:
1783 		mii = device_get_softc(sc->nfe_miibus);
1784 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1785 		break;
1786 	case SIOCSIFCAP:
1787 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1788 #ifdef DEVICE_POLLING
1789 		if ((mask & IFCAP_POLLING) != 0) {
1790 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1791 				error = ether_poll_register(nfe_poll, ifp);
1792 				if (error)
1793 					break;
1794 				NFE_LOCK(sc);
1795 				nfe_disable_intr(sc);
1796 				ifp->if_capenable |= IFCAP_POLLING;
1797 				NFE_UNLOCK(sc);
1798 			} else {
1799 				error = ether_poll_deregister(ifp);
1800 				/* Enable interrupt even in error case */
1801 				NFE_LOCK(sc);
1802 				nfe_enable_intr(sc);
1803 				ifp->if_capenable &= ~IFCAP_POLLING;
1804 				NFE_UNLOCK(sc);
1805 			}
1806 		}
1807 #endif /* DEVICE_POLLING */
1808 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1809 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1810 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1811 		if ((mask & IFCAP_TXCSUM) != 0 &&
1812 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1813 			ifp->if_capenable ^= IFCAP_TXCSUM;
1814 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1815 				ifp->if_hwassist |= NFE_CSUM_FEATURES;
1816 			else
1817 				ifp->if_hwassist &= ~NFE_CSUM_FEATURES;
1818 		}
1819 		if ((mask & IFCAP_RXCSUM) != 0 &&
1820 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1821 			ifp->if_capenable ^= IFCAP_RXCSUM;
1822 			init++;
1823 		}
1824 		if ((mask & IFCAP_TSO4) != 0 &&
1825 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1826 			ifp->if_capenable ^= IFCAP_TSO4;
1827 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1828 				ifp->if_hwassist |= CSUM_TSO;
1829 			else
1830 				ifp->if_hwassist &= ~CSUM_TSO;
1831 		}
1832 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1833 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1834 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1835 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1836 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1837 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1838 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1839 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1840 			init++;
1841 		}
1842 		/*
1843 		 * XXX
1844 		 * It seems that VLAN stripping requires Rx checksum offload.
1845 		 * Unfortunately FreeBSD has no way to disable only Rx side
1846 		 * VLAN stripping. So when we know Rx checksum offload is
1847 		 * disabled turn entire hardware VLAN assist off.
1848 		 */
1849 		if ((ifp->if_capenable & IFCAP_RXCSUM) == 0) {
1850 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
1851 				init++;
1852 			ifp->if_capenable &= ~(IFCAP_VLAN_HWTAGGING |
1853 			    IFCAP_VLAN_HWTSO);
1854 		}
1855 		if (init > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1856 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1857 			nfe_init(sc);
1858 		}
1859 		VLAN_CAPABILITIES(ifp);
1860 		break;
1861 	default:
1862 		error = ether_ioctl(ifp, cmd, data);
1863 		break;
1864 	}
1865 
1866 	return (error);
1867 }
1868 
1869 
1870 static int
1871 nfe_intr(void *arg)
1872 {
1873 	struct nfe_softc *sc;
1874 	uint32_t status;
1875 
1876 	sc = (struct nfe_softc *)arg;
1877 
1878 	status = NFE_READ(sc, sc->nfe_irq_status);
1879 	if (status == 0 || status == 0xffffffff)
1880 		return (FILTER_STRAY);
1881 	nfe_disable_intr(sc);
1882 	taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1883 
1884 	return (FILTER_HANDLED);
1885 }
1886 
1887 
1888 static void
1889 nfe_int_task(void *arg, int pending)
1890 {
1891 	struct nfe_softc *sc = arg;
1892 	struct ifnet *ifp = sc->nfe_ifp;
1893 	uint32_t r;
1894 	int domore;
1895 
1896 	NFE_LOCK(sc);
1897 
1898 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1899 		nfe_enable_intr(sc);
1900 		NFE_UNLOCK(sc);
1901 		return;	/* not for us */
1902 	}
1903 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1904 
1905 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1906 
1907 #ifdef DEVICE_POLLING
1908 	if (ifp->if_capenable & IFCAP_POLLING) {
1909 		NFE_UNLOCK(sc);
1910 		return;
1911 	}
1912 #endif
1913 
1914 	if (r & NFE_IRQ_LINK) {
1915 		NFE_READ(sc, NFE_PHY_STATUS);
1916 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1917 		DPRINTF(sc, "link state changed\n");
1918 	}
1919 
1920 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1921 		NFE_UNLOCK(sc);
1922 		nfe_disable_intr(sc);
1923 		return;
1924 	}
1925 
1926 	domore = 0;
1927 	/* check Rx ring */
1928 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1929 		domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
1930 	else
1931 		domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
1932 	/* check Tx ring */
1933 	nfe_txeof(sc);
1934 
1935 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1936 		nfe_start_locked(ifp);
1937 
1938 	NFE_UNLOCK(sc);
1939 
1940 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1941 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1942 		return;
1943 	}
1944 
1945 	/* Reenable interrupts. */
1946 	nfe_enable_intr(sc);
1947 }
1948 
1949 
1950 static __inline void
1951 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1952 {
1953 	struct nfe_desc32 *desc32;
1954 	struct nfe_desc64 *desc64;
1955 	struct nfe_rx_data *data;
1956 	struct mbuf *m;
1957 
1958 	data = &sc->rxq.data[idx];
1959 	m = data->m;
1960 
1961 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1962 		desc64 = &sc->rxq.desc64[idx];
1963 		/* VLAN packet may have overwritten it. */
1964 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1965 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1966 		desc64->length = htole16(m->m_len);
1967 		desc64->flags = htole16(NFE_RX_READY);
1968 	} else {
1969 		desc32 = &sc->rxq.desc32[idx];
1970 		desc32->length = htole16(m->m_len);
1971 		desc32->flags = htole16(NFE_RX_READY);
1972 	}
1973 }
1974 
1975 
1976 static __inline void
1977 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1978 {
1979 	struct nfe_desc32 *desc32;
1980 	struct nfe_desc64 *desc64;
1981 	struct nfe_rx_data *data;
1982 	struct mbuf *m;
1983 
1984 	data = &sc->jrxq.jdata[idx];
1985 	m = data->m;
1986 
1987 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1988 		desc64 = &sc->jrxq.jdesc64[idx];
1989 		/* VLAN packet may have overwritten it. */
1990 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1991 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1992 		desc64->length = htole16(m->m_len);
1993 		desc64->flags = htole16(NFE_RX_READY);
1994 	} else {
1995 		desc32 = &sc->jrxq.jdesc32[idx];
1996 		desc32->length = htole16(m->m_len);
1997 		desc32->flags = htole16(NFE_RX_READY);
1998 	}
1999 }
2000 
2001 
2002 static int
2003 nfe_newbuf(struct nfe_softc *sc, int idx)
2004 {
2005 	struct nfe_rx_data *data;
2006 	struct nfe_desc32 *desc32;
2007 	struct nfe_desc64 *desc64;
2008 	struct mbuf *m;
2009 	bus_dma_segment_t segs[1];
2010 	bus_dmamap_t map;
2011 	int nsegs;
2012 
2013 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2014 	if (m == NULL)
2015 		return (ENOBUFS);
2016 
2017 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2018 	m_adj(m, ETHER_ALIGN);
2019 
2020 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
2021 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2022 		m_freem(m);
2023 		return (ENOBUFS);
2024 	}
2025 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2026 
2027 	data = &sc->rxq.data[idx];
2028 	if (data->m != NULL) {
2029 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2030 		    BUS_DMASYNC_POSTREAD);
2031 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
2032 	}
2033 	map = data->rx_data_map;
2034 	data->rx_data_map = sc->rxq.rx_spare_map;
2035 	sc->rxq.rx_spare_map = map;
2036 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2037 	    BUS_DMASYNC_PREREAD);
2038 	data->paddr = segs[0].ds_addr;
2039 	data->m = m;
2040 	/* update mapping address in h/w descriptor */
2041 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2042 		desc64 = &sc->rxq.desc64[idx];
2043 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2044 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2045 		desc64->length = htole16(segs[0].ds_len);
2046 		desc64->flags = htole16(NFE_RX_READY);
2047 	} else {
2048 		desc32 = &sc->rxq.desc32[idx];
2049 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2050 		desc32->length = htole16(segs[0].ds_len);
2051 		desc32->flags = htole16(NFE_RX_READY);
2052 	}
2053 
2054 	return (0);
2055 }
2056 
2057 
2058 static int
2059 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2060 {
2061 	struct nfe_rx_data *data;
2062 	struct nfe_desc32 *desc32;
2063 	struct nfe_desc64 *desc64;
2064 	struct mbuf *m;
2065 	bus_dma_segment_t segs[1];
2066 	bus_dmamap_t map;
2067 	int nsegs;
2068 
2069 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2070 	if (m == NULL)
2071 		return (ENOBUFS);
2072 	if ((m->m_flags & M_EXT) == 0) {
2073 		m_freem(m);
2074 		return (ENOBUFS);
2075 	}
2076 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
2077 	m_adj(m, ETHER_ALIGN);
2078 
2079 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2080 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2081 		m_freem(m);
2082 		return (ENOBUFS);
2083 	}
2084 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2085 
2086 	data = &sc->jrxq.jdata[idx];
2087 	if (data->m != NULL) {
2088 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2089 		    BUS_DMASYNC_POSTREAD);
2090 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2091 	}
2092 	map = data->rx_data_map;
2093 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2094 	sc->jrxq.jrx_spare_map = map;
2095 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2096 	    BUS_DMASYNC_PREREAD);
2097 	data->paddr = segs[0].ds_addr;
2098 	data->m = m;
2099 	/* update mapping address in h/w descriptor */
2100 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2101 		desc64 = &sc->jrxq.jdesc64[idx];
2102 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2103 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2104 		desc64->length = htole16(segs[0].ds_len);
2105 		desc64->flags = htole16(NFE_RX_READY);
2106 	} else {
2107 		desc32 = &sc->jrxq.jdesc32[idx];
2108 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2109 		desc32->length = htole16(segs[0].ds_len);
2110 		desc32->flags = htole16(NFE_RX_READY);
2111 	}
2112 
2113 	return (0);
2114 }
2115 
2116 
2117 static int
2118 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2119 {
2120 	struct ifnet *ifp = sc->nfe_ifp;
2121 	struct nfe_desc32 *desc32;
2122 	struct nfe_desc64 *desc64;
2123 	struct nfe_rx_data *data;
2124 	struct mbuf *m;
2125 	uint16_t flags;
2126 	int len, prog, rx_npkts;
2127 	uint32_t vtag = 0;
2128 
2129 	rx_npkts = 0;
2130 	NFE_LOCK_ASSERT(sc);
2131 
2132 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2133 	    BUS_DMASYNC_POSTREAD);
2134 
2135 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2136 		if (count <= 0)
2137 			break;
2138 		count--;
2139 
2140 		data = &sc->rxq.data[sc->rxq.cur];
2141 
2142 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2143 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2144 			vtag = le32toh(desc64->physaddr[1]);
2145 			flags = le16toh(desc64->flags);
2146 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2147 		} else {
2148 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2149 			flags = le16toh(desc32->flags);
2150 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2151 		}
2152 
2153 		if (flags & NFE_RX_READY)
2154 			break;
2155 		prog++;
2156 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2157 			if (!(flags & NFE_RX_VALID_V1)) {
2158 				ifp->if_ierrors++;
2159 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2160 				continue;
2161 			}
2162 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2163 				flags &= ~NFE_RX_ERROR;
2164 				len--;	/* fix buffer length */
2165 			}
2166 		} else {
2167 			if (!(flags & NFE_RX_VALID_V2)) {
2168 				ifp->if_ierrors++;
2169 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2170 				continue;
2171 			}
2172 
2173 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2174 				flags &= ~NFE_RX_ERROR;
2175 				len--;	/* fix buffer length */
2176 			}
2177 		}
2178 
2179 		if (flags & NFE_RX_ERROR) {
2180 			ifp->if_ierrors++;
2181 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2182 			continue;
2183 		}
2184 
2185 		m = data->m;
2186 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2187 			ifp->if_iqdrops++;
2188 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2189 			continue;
2190 		}
2191 
2192 		if ((vtag & NFE_RX_VTAG) != 0 &&
2193 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2194 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2195 			m->m_flags |= M_VLANTAG;
2196 		}
2197 
2198 		m->m_pkthdr.len = m->m_len = len;
2199 		m->m_pkthdr.rcvif = ifp;
2200 
2201 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2202 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2203 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2204 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2205 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2206 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2207 					m->m_pkthdr.csum_flags |=
2208 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2209 					m->m_pkthdr.csum_data = 0xffff;
2210 				}
2211 			}
2212 		}
2213 
2214 		ifp->if_ipackets++;
2215 
2216 		NFE_UNLOCK(sc);
2217 		(*ifp->if_input)(ifp, m);
2218 		NFE_LOCK(sc);
2219 		rx_npkts++;
2220 	}
2221 
2222 	if (prog > 0)
2223 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2224 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2225 
2226 	if (rx_npktsp != NULL)
2227 		*rx_npktsp = rx_npkts;
2228 	return (count > 0 ? 0 : EAGAIN);
2229 }
2230 
2231 
2232 static int
2233 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2234 {
2235 	struct ifnet *ifp = sc->nfe_ifp;
2236 	struct nfe_desc32 *desc32;
2237 	struct nfe_desc64 *desc64;
2238 	struct nfe_rx_data *data;
2239 	struct mbuf *m;
2240 	uint16_t flags;
2241 	int len, prog, rx_npkts;
2242 	uint32_t vtag = 0;
2243 
2244 	rx_npkts = 0;
2245 	NFE_LOCK_ASSERT(sc);
2246 
2247 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2248 	    BUS_DMASYNC_POSTREAD);
2249 
2250 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2251 	    vtag = 0) {
2252 		if (count <= 0)
2253 			break;
2254 		count--;
2255 
2256 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2257 
2258 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2259 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2260 			vtag = le32toh(desc64->physaddr[1]);
2261 			flags = le16toh(desc64->flags);
2262 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2263 		} else {
2264 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2265 			flags = le16toh(desc32->flags);
2266 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2267 		}
2268 
2269 		if (flags & NFE_RX_READY)
2270 			break;
2271 		prog++;
2272 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2273 			if (!(flags & NFE_RX_VALID_V1)) {
2274 				ifp->if_ierrors++;
2275 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2276 				continue;
2277 			}
2278 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2279 				flags &= ~NFE_RX_ERROR;
2280 				len--;	/* fix buffer length */
2281 			}
2282 		} else {
2283 			if (!(flags & NFE_RX_VALID_V2)) {
2284 				ifp->if_ierrors++;
2285 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2286 				continue;
2287 			}
2288 
2289 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2290 				flags &= ~NFE_RX_ERROR;
2291 				len--;	/* fix buffer length */
2292 			}
2293 		}
2294 
2295 		if (flags & NFE_RX_ERROR) {
2296 			ifp->if_ierrors++;
2297 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2298 			continue;
2299 		}
2300 
2301 		m = data->m;
2302 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2303 			ifp->if_iqdrops++;
2304 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2305 			continue;
2306 		}
2307 
2308 		if ((vtag & NFE_RX_VTAG) != 0 &&
2309 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2310 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2311 			m->m_flags |= M_VLANTAG;
2312 		}
2313 
2314 		m->m_pkthdr.len = m->m_len = len;
2315 		m->m_pkthdr.rcvif = ifp;
2316 
2317 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2318 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2319 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2320 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2321 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2322 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2323 					m->m_pkthdr.csum_flags |=
2324 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2325 					m->m_pkthdr.csum_data = 0xffff;
2326 				}
2327 			}
2328 		}
2329 
2330 		ifp->if_ipackets++;
2331 
2332 		NFE_UNLOCK(sc);
2333 		(*ifp->if_input)(ifp, m);
2334 		NFE_LOCK(sc);
2335 		rx_npkts++;
2336 	}
2337 
2338 	if (prog > 0)
2339 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2340 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2341 
2342 	if (rx_npktsp != NULL)
2343 		*rx_npktsp = rx_npkts;
2344 	return (count > 0 ? 0 : EAGAIN);
2345 }
2346 
2347 
2348 static void
2349 nfe_txeof(struct nfe_softc *sc)
2350 {
2351 	struct ifnet *ifp = sc->nfe_ifp;
2352 	struct nfe_desc32 *desc32;
2353 	struct nfe_desc64 *desc64;
2354 	struct nfe_tx_data *data = NULL;
2355 	uint16_t flags;
2356 	int cons, prog;
2357 
2358 	NFE_LOCK_ASSERT(sc);
2359 
2360 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2361 	    BUS_DMASYNC_POSTREAD);
2362 
2363 	prog = 0;
2364 	for (cons = sc->txq.next; cons != sc->txq.cur;
2365 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2366 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2367 			desc64 = &sc->txq.desc64[cons];
2368 			flags = le16toh(desc64->flags);
2369 		} else {
2370 			desc32 = &sc->txq.desc32[cons];
2371 			flags = le16toh(desc32->flags);
2372 		}
2373 
2374 		if (flags & NFE_TX_VALID)
2375 			break;
2376 
2377 		prog++;
2378 		sc->txq.queued--;
2379 		data = &sc->txq.data[cons];
2380 
2381 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2382 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2383 				continue;
2384 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2385 				device_printf(sc->nfe_dev,
2386 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2387 
2388 				ifp->if_oerrors++;
2389 			} else
2390 				ifp->if_opackets++;
2391 		} else {
2392 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2393 				continue;
2394 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2395 				device_printf(sc->nfe_dev,
2396 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2397 				ifp->if_oerrors++;
2398 			} else
2399 				ifp->if_opackets++;
2400 		}
2401 
2402 		/* last fragment of the mbuf chain transmitted */
2403 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2404 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2405 		    BUS_DMASYNC_POSTWRITE);
2406 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2407 		m_freem(data->m);
2408 		data->m = NULL;
2409 	}
2410 
2411 	if (prog > 0) {
2412 		sc->nfe_force_tx = 0;
2413 		sc->txq.next = cons;
2414 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2415 		if (sc->txq.queued == 0)
2416 			sc->nfe_watchdog_timer = 0;
2417 	}
2418 }
2419 
2420 static int
2421 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2422 {
2423 	struct nfe_desc32 *desc32 = NULL;
2424 	struct nfe_desc64 *desc64 = NULL;
2425 	bus_dmamap_t map;
2426 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2427 	int error, i, nsegs, prod, si;
2428 	uint32_t tsosegsz;
2429 	uint16_t cflags, flags;
2430 	struct mbuf *m;
2431 
2432 	prod = si = sc->txq.cur;
2433 	map = sc->txq.data[prod].tx_data_map;
2434 
2435 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2436 	    &nsegs, BUS_DMA_NOWAIT);
2437 	if (error == EFBIG) {
2438 		m = m_collapse(*m_head, M_NOWAIT, NFE_MAX_SCATTER);
2439 		if (m == NULL) {
2440 			m_freem(*m_head);
2441 			*m_head = NULL;
2442 			return (ENOBUFS);
2443 		}
2444 		*m_head = m;
2445 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2446 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2447 		if (error != 0) {
2448 			m_freem(*m_head);
2449 			*m_head = NULL;
2450 			return (ENOBUFS);
2451 		}
2452 	} else if (error != 0)
2453 		return (error);
2454 	if (nsegs == 0) {
2455 		m_freem(*m_head);
2456 		*m_head = NULL;
2457 		return (EIO);
2458 	}
2459 
2460 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2461 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2462 		return (ENOBUFS);
2463 	}
2464 
2465 	m = *m_head;
2466 	cflags = flags = 0;
2467 	tsosegsz = 0;
2468 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2469 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2470 		    NFE_TX_TSO_SHIFT;
2471 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2472 		cflags |= NFE_TX_TSO;
2473 	} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2474 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2475 			cflags |= NFE_TX_IP_CSUM;
2476 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2477 			cflags |= NFE_TX_TCP_UDP_CSUM;
2478 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2479 			cflags |= NFE_TX_TCP_UDP_CSUM;
2480 	}
2481 
2482 	for (i = 0; i < nsegs; i++) {
2483 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2484 			desc64 = &sc->txq.desc64[prod];
2485 			desc64->physaddr[0] =
2486 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2487 			desc64->physaddr[1] =
2488 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2489 			desc64->vtag = 0;
2490 			desc64->length = htole16(segs[i].ds_len - 1);
2491 			desc64->flags = htole16(flags);
2492 		} else {
2493 			desc32 = &sc->txq.desc32[prod];
2494 			desc32->physaddr =
2495 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2496 			desc32->length = htole16(segs[i].ds_len - 1);
2497 			desc32->flags = htole16(flags);
2498 		}
2499 
2500 		/*
2501 		 * Setting of the valid bit in the first descriptor is
2502 		 * deferred until the whole chain is fully setup.
2503 		 */
2504 		flags |= NFE_TX_VALID;
2505 
2506 		sc->txq.queued++;
2507 		NFE_INC(prod, NFE_TX_RING_COUNT);
2508 	}
2509 
2510 	/*
2511 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2512 	 * csum flags, vtag and TSO belong to the first fragment only.
2513 	 */
2514 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2515 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2516 		desc64 = &sc->txq.desc64[si];
2517 		if ((m->m_flags & M_VLANTAG) != 0)
2518 			desc64->vtag = htole32(NFE_TX_VTAG |
2519 			    m->m_pkthdr.ether_vtag);
2520 		if (tsosegsz != 0) {
2521 			/*
2522 			 * XXX
2523 			 * The following indicates the descriptor element
2524 			 * is a 32bit quantity.
2525 			 */
2526 			desc64->length |= htole16((uint16_t)tsosegsz);
2527 			desc64->flags |= htole16(tsosegsz >> 16);
2528 		}
2529 		/*
2530 		 * finally, set the valid/checksum/TSO bit in the first
2531 		 * descriptor.
2532 		 */
2533 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2534 	} else {
2535 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2536 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2537 		else
2538 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2539 		desc32 = &sc->txq.desc32[si];
2540 		if (tsosegsz != 0) {
2541 			/*
2542 			 * XXX
2543 			 * The following indicates the descriptor element
2544 			 * is a 32bit quantity.
2545 			 */
2546 			desc32->length |= htole16((uint16_t)tsosegsz);
2547 			desc32->flags |= htole16(tsosegsz >> 16);
2548 		}
2549 		/*
2550 		 * finally, set the valid/checksum/TSO bit in the first
2551 		 * descriptor.
2552 		 */
2553 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2554 	}
2555 
2556 	sc->txq.cur = prod;
2557 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2558 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2559 	sc->txq.data[prod].tx_data_map = map;
2560 	sc->txq.data[prod].m = m;
2561 
2562 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2563 
2564 	return (0);
2565 }
2566 
2567 
2568 static void
2569 nfe_setmulti(struct nfe_softc *sc)
2570 {
2571 	struct ifnet *ifp = sc->nfe_ifp;
2572 	struct ifmultiaddr *ifma;
2573 	int i;
2574 	uint32_t filter;
2575 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2576 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2577 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2578 	};
2579 
2580 	NFE_LOCK_ASSERT(sc);
2581 
2582 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2583 		bzero(addr, ETHER_ADDR_LEN);
2584 		bzero(mask, ETHER_ADDR_LEN);
2585 		goto done;
2586 	}
2587 
2588 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2589 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2590 
2591 	if_maddr_rlock(ifp);
2592 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2593 		u_char *addrp;
2594 
2595 		if (ifma->ifma_addr->sa_family != AF_LINK)
2596 			continue;
2597 
2598 		addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2599 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
2600 			u_int8_t mcaddr = addrp[i];
2601 			addr[i] &= mcaddr;
2602 			mask[i] &= ~mcaddr;
2603 		}
2604 	}
2605 	if_maddr_runlock(ifp);
2606 
2607 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2608 		mask[i] |= addr[i];
2609 	}
2610 
2611 done:
2612 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2613 
2614 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2615 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2616 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2617 	    addr[5] <<  8 | addr[4]);
2618 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2619 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2620 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2621 	    mask[5] <<  8 | mask[4]);
2622 
2623 	filter = NFE_READ(sc, NFE_RXFILTER);
2624 	filter &= NFE_PFF_RX_PAUSE;
2625 	filter |= NFE_RXFILTER_MAGIC;
2626 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2627 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2628 }
2629 
2630 
2631 static void
2632 nfe_start(struct ifnet *ifp)
2633 {
2634 	struct nfe_softc *sc = ifp->if_softc;
2635 
2636 	NFE_LOCK(sc);
2637 	nfe_start_locked(ifp);
2638 	NFE_UNLOCK(sc);
2639 }
2640 
2641 static void
2642 nfe_start_locked(struct ifnet *ifp)
2643 {
2644 	struct nfe_softc *sc = ifp->if_softc;
2645 	struct mbuf *m0;
2646 	int enq;
2647 
2648 	NFE_LOCK_ASSERT(sc);
2649 
2650 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2651 	    IFF_DRV_RUNNING || sc->nfe_link == 0)
2652 		return;
2653 
2654 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2655 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2656 		if (m0 == NULL)
2657 			break;
2658 
2659 		if (nfe_encap(sc, &m0) != 0) {
2660 			if (m0 == NULL)
2661 				break;
2662 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2663 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2664 			break;
2665 		}
2666 		enq++;
2667 		ETHER_BPF_MTAP(ifp, m0);
2668 	}
2669 
2670 	if (enq > 0) {
2671 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2672 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2673 
2674 		/* kick Tx */
2675 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2676 
2677 		/*
2678 		 * Set a timeout in case the chip goes out to lunch.
2679 		 */
2680 		sc->nfe_watchdog_timer = 5;
2681 	}
2682 }
2683 
2684 
2685 static void
2686 nfe_watchdog(struct ifnet *ifp)
2687 {
2688 	struct nfe_softc *sc = ifp->if_softc;
2689 
2690 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2691 		return;
2692 
2693 	/* Check if we've lost Tx completion interrupt. */
2694 	nfe_txeof(sc);
2695 	if (sc->txq.queued == 0) {
2696 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2697 		    "-- recovering\n");
2698 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2699 			nfe_start_locked(ifp);
2700 		return;
2701 	}
2702 	/* Check if we've lost start Tx command. */
2703 	sc->nfe_force_tx++;
2704 	if (sc->nfe_force_tx <= 3) {
2705 		/*
2706 		 * If this is the case for watchdog timeout, the following
2707 		 * code should go to nfe_txeof().
2708 		 */
2709 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2710 		return;
2711 	}
2712 	sc->nfe_force_tx = 0;
2713 
2714 	if_printf(ifp, "watchdog timeout\n");
2715 
2716 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2717 	ifp->if_oerrors++;
2718 	nfe_init_locked(sc);
2719 }
2720 
2721 
2722 static void
2723 nfe_init(void *xsc)
2724 {
2725 	struct nfe_softc *sc = xsc;
2726 
2727 	NFE_LOCK(sc);
2728 	nfe_init_locked(sc);
2729 	NFE_UNLOCK(sc);
2730 }
2731 
2732 
2733 static void
2734 nfe_init_locked(void *xsc)
2735 {
2736 	struct nfe_softc *sc = xsc;
2737 	struct ifnet *ifp = sc->nfe_ifp;
2738 	struct mii_data *mii;
2739 	uint32_t val;
2740 	int error;
2741 
2742 	NFE_LOCK_ASSERT(sc);
2743 
2744 	mii = device_get_softc(sc->nfe_miibus);
2745 
2746 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2747 		return;
2748 
2749 	nfe_stop(ifp);
2750 
2751 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
2752 
2753 	nfe_init_tx_ring(sc, &sc->txq);
2754 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2755 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2756 	else
2757 		error = nfe_init_rx_ring(sc, &sc->rxq);
2758 	if (error != 0) {
2759 		device_printf(sc->nfe_dev,
2760 		    "initialization failed: no memory for rx buffers\n");
2761 		nfe_stop(ifp);
2762 		return;
2763 	}
2764 
2765 	val = 0;
2766 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2767 		val |= NFE_MAC_ADDR_INORDER;
2768 	NFE_WRITE(sc, NFE_TX_UNK, val);
2769 	NFE_WRITE(sc, NFE_STATUS, 0);
2770 
2771 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2772 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2773 
2774 	sc->rxtxctl = NFE_RXTX_BIT2;
2775 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2776 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2777 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2778 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2779 
2780 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2781 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2782 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2783 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2784 
2785 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2786 	DELAY(10);
2787 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2788 
2789 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2790 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2791 	else
2792 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2793 
2794 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2795 
2796 	/* set MAC address */
2797 	nfe_set_macaddr(sc, IF_LLADDR(ifp));
2798 
2799 	/* tell MAC where rings are in memory */
2800 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2801 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2802 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2803 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2804 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2805 	} else {
2806 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2807 		    NFE_ADDR_HI(sc->rxq.physaddr));
2808 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2809 		    NFE_ADDR_LO(sc->rxq.physaddr));
2810 	}
2811 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2812 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2813 
2814 	NFE_WRITE(sc, NFE_RING_SIZE,
2815 	    (NFE_RX_RING_COUNT - 1) << 16 |
2816 	    (NFE_TX_RING_COUNT - 1));
2817 
2818 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2819 
2820 	/* force MAC to wakeup */
2821 	val = NFE_READ(sc, NFE_PWR_STATE);
2822 	if ((val & NFE_PWR_WAKEUP) == 0)
2823 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2824 	DELAY(10);
2825 	val = NFE_READ(sc, NFE_PWR_STATE);
2826 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2827 
2828 #if 1
2829 	/* configure interrupts coalescing/mitigation */
2830 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2831 #else
2832 	/* no interrupt mitigation: one interrupt per packet */
2833 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2834 #endif
2835 
2836 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2837 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2838 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2839 
2840 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2841 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2842 
2843 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2844 	/* Disable WOL. */
2845 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
2846 
2847 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2848 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2849 	DELAY(10);
2850 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2851 
2852 	/* set Rx filter */
2853 	nfe_setmulti(sc);
2854 
2855 	/* enable Rx */
2856 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2857 
2858 	/* enable Tx */
2859 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2860 
2861 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2862 
2863 	/* Clear hardware stats. */
2864 	nfe_stats_clear(sc);
2865 
2866 #ifdef DEVICE_POLLING
2867 	if (ifp->if_capenable & IFCAP_POLLING)
2868 		nfe_disable_intr(sc);
2869 	else
2870 #endif
2871 	nfe_set_intr(sc);
2872 	nfe_enable_intr(sc); /* enable interrupts */
2873 
2874 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2875 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2876 
2877 	sc->nfe_link = 0;
2878 	mii_mediachg(mii);
2879 
2880 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2881 }
2882 
2883 
2884 static void
2885 nfe_stop(struct ifnet *ifp)
2886 {
2887 	struct nfe_softc *sc = ifp->if_softc;
2888 	struct nfe_rx_ring *rx_ring;
2889 	struct nfe_jrx_ring *jrx_ring;
2890 	struct nfe_tx_ring *tx_ring;
2891 	struct nfe_rx_data *rdata;
2892 	struct nfe_tx_data *tdata;
2893 	int i;
2894 
2895 	NFE_LOCK_ASSERT(sc);
2896 
2897 	sc->nfe_watchdog_timer = 0;
2898 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2899 
2900 	callout_stop(&sc->nfe_stat_ch);
2901 
2902 	/* abort Tx */
2903 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2904 
2905 	/* disable Rx */
2906 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2907 
2908 	/* disable interrupts */
2909 	nfe_disable_intr(sc);
2910 
2911 	sc->nfe_link = 0;
2912 
2913 	/* free Rx and Tx mbufs still in the queues. */
2914 	rx_ring = &sc->rxq;
2915 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2916 		rdata = &rx_ring->data[i];
2917 		if (rdata->m != NULL) {
2918 			bus_dmamap_sync(rx_ring->rx_data_tag,
2919 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2920 			bus_dmamap_unload(rx_ring->rx_data_tag,
2921 			    rdata->rx_data_map);
2922 			m_freem(rdata->m);
2923 			rdata->m = NULL;
2924 		}
2925 	}
2926 
2927 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2928 		jrx_ring = &sc->jrxq;
2929 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2930 			rdata = &jrx_ring->jdata[i];
2931 			if (rdata->m != NULL) {
2932 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2933 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2934 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2935 				    rdata->rx_data_map);
2936 				m_freem(rdata->m);
2937 				rdata->m = NULL;
2938 			}
2939 		}
2940 	}
2941 
2942 	tx_ring = &sc->txq;
2943 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2944 		tdata = &tx_ring->data[i];
2945 		if (tdata->m != NULL) {
2946 			bus_dmamap_sync(tx_ring->tx_data_tag,
2947 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2948 			bus_dmamap_unload(tx_ring->tx_data_tag,
2949 			    tdata->tx_data_map);
2950 			m_freem(tdata->m);
2951 			tdata->m = NULL;
2952 		}
2953 	}
2954 	/* Update hardware stats. */
2955 	nfe_stats_update(sc);
2956 }
2957 
2958 
2959 static int
2960 nfe_ifmedia_upd(struct ifnet *ifp)
2961 {
2962 	struct nfe_softc *sc = ifp->if_softc;
2963 	struct mii_data *mii;
2964 
2965 	NFE_LOCK(sc);
2966 	mii = device_get_softc(sc->nfe_miibus);
2967 	mii_mediachg(mii);
2968 	NFE_UNLOCK(sc);
2969 
2970 	return (0);
2971 }
2972 
2973 
2974 static void
2975 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2976 {
2977 	struct nfe_softc *sc;
2978 	struct mii_data *mii;
2979 
2980 	sc = ifp->if_softc;
2981 
2982 	NFE_LOCK(sc);
2983 	mii = device_get_softc(sc->nfe_miibus);
2984 	mii_pollstat(mii);
2985 
2986 	ifmr->ifm_active = mii->mii_media_active;
2987 	ifmr->ifm_status = mii->mii_media_status;
2988 	NFE_UNLOCK(sc);
2989 }
2990 
2991 
2992 void
2993 nfe_tick(void *xsc)
2994 {
2995 	struct nfe_softc *sc;
2996 	struct mii_data *mii;
2997 	struct ifnet *ifp;
2998 
2999 	sc = (struct nfe_softc *)xsc;
3000 
3001 	NFE_LOCK_ASSERT(sc);
3002 
3003 	ifp = sc->nfe_ifp;
3004 
3005 	mii = device_get_softc(sc->nfe_miibus);
3006 	mii_tick(mii);
3007 	nfe_stats_update(sc);
3008 	nfe_watchdog(ifp);
3009 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
3010 }
3011 
3012 
3013 static int
3014 nfe_shutdown(device_t dev)
3015 {
3016 
3017 	return (nfe_suspend(dev));
3018 }
3019 
3020 
3021 static void
3022 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
3023 {
3024 	uint32_t val;
3025 
3026 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
3027 		val = NFE_READ(sc, NFE_MACADDR_LO);
3028 		addr[0] = (val >> 8) & 0xff;
3029 		addr[1] = (val & 0xff);
3030 
3031 		val = NFE_READ(sc, NFE_MACADDR_HI);
3032 		addr[2] = (val >> 24) & 0xff;
3033 		addr[3] = (val >> 16) & 0xff;
3034 		addr[4] = (val >>  8) & 0xff;
3035 		addr[5] = (val & 0xff);
3036 	} else {
3037 		val = NFE_READ(sc, NFE_MACADDR_LO);
3038 		addr[5] = (val >> 8) & 0xff;
3039 		addr[4] = (val & 0xff);
3040 
3041 		val = NFE_READ(sc, NFE_MACADDR_HI);
3042 		addr[3] = (val >> 24) & 0xff;
3043 		addr[2] = (val >> 16) & 0xff;
3044 		addr[1] = (val >>  8) & 0xff;
3045 		addr[0] = (val & 0xff);
3046 	}
3047 }
3048 
3049 
3050 static void
3051 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3052 {
3053 
3054 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3055 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3056 	    addr[1] << 8 | addr[0]);
3057 }
3058 
3059 
3060 /*
3061  * Map a single buffer address.
3062  */
3063 
3064 static void
3065 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3066 {
3067 	struct nfe_dmamap_arg *ctx;
3068 
3069 	if (error != 0)
3070 		return;
3071 
3072 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3073 
3074 	ctx = (struct nfe_dmamap_arg *)arg;
3075 	ctx->nfe_busaddr = segs[0].ds_addr;
3076 }
3077 
3078 
3079 static int
3080 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3081 {
3082 	int error, value;
3083 
3084 	if (!arg1)
3085 		return (EINVAL);
3086 	value = *(int *)arg1;
3087 	error = sysctl_handle_int(oidp, &value, 0, req);
3088 	if (error || !req->newptr)
3089 		return (error);
3090 	if (value < low || value > high)
3091 		return (EINVAL);
3092 	*(int *)arg1 = value;
3093 
3094 	return (0);
3095 }
3096 
3097 
3098 static int
3099 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3100 {
3101 
3102 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3103 	    NFE_PROC_MAX));
3104 }
3105 
3106 
3107 #define	NFE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
3108 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3109 #define	NFE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
3110 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
3111 
3112 static void
3113 nfe_sysctl_node(struct nfe_softc *sc)
3114 {
3115 	struct sysctl_ctx_list *ctx;
3116 	struct sysctl_oid_list *child, *parent;
3117 	struct sysctl_oid *tree;
3118 	struct nfe_hw_stats *stats;
3119 	int error;
3120 
3121 	stats = &sc->nfe_stats;
3122 	ctx = device_get_sysctl_ctx(sc->nfe_dev);
3123 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
3124 	SYSCTL_ADD_PROC(ctx, child,
3125 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
3126 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
3127 	    "max number of Rx events to process");
3128 
3129 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
3130 	error = resource_int_value(device_get_name(sc->nfe_dev),
3131 	    device_get_unit(sc->nfe_dev), "process_limit",
3132 	    &sc->nfe_process_limit);
3133 	if (error == 0) {
3134 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
3135 		    sc->nfe_process_limit > NFE_PROC_MAX) {
3136 			device_printf(sc->nfe_dev,
3137 			    "process_limit value out of range; "
3138 			    "using default: %d\n", NFE_PROC_DEFAULT);
3139 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
3140 		}
3141 	}
3142 
3143 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3144 		return;
3145 
3146 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3147 	    NULL, "NFE statistics");
3148 	parent = SYSCTL_CHILDREN(tree);
3149 
3150 	/* Rx statistics. */
3151 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3152 	    NULL, "Rx MAC statistics");
3153 	child = SYSCTL_CHILDREN(tree);
3154 
3155 	NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
3156 	    &stats->rx_frame_errors, "Framing Errors");
3157 	NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
3158 	    &stats->rx_extra_bytes, "Extra Bytes");
3159 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3160 	    &stats->rx_late_cols, "Late Collisions");
3161 	NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
3162 	    &stats->rx_runts, "Runts");
3163 	NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
3164 	    &stats->rx_jumbos, "Jumbos");
3165 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
3166 	    &stats->rx_fifo_overuns, "FIFO Overruns");
3167 	NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
3168 	    &stats->rx_crc_errors, "CRC Errors");
3169 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
3170 	    &stats->rx_fae, "Frame Alignment Errors");
3171 	NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
3172 	    &stats->rx_len_errors, "Length Errors");
3173 	NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3174 	    &stats->rx_unicast, "Unicast Frames");
3175 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3176 	    &stats->rx_multicast, "Multicast Frames");
3177 	NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3178 	    &stats->rx_broadcast, "Broadcast Frames");
3179 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3180 		NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3181 		    &stats->rx_octets, "Octets");
3182 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3183 		    &stats->rx_pause, "Pause frames");
3184 		NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
3185 		    &stats->rx_drops, "Drop frames");
3186 	}
3187 
3188 	/* Tx statistics. */
3189 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3190 	    NULL, "Tx MAC statistics");
3191 	child = SYSCTL_CHILDREN(tree);
3192 	NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3193 	    &stats->tx_octets, "Octets");
3194 	NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
3195 	    &stats->tx_zero_rexmits, "Zero Retransmits");
3196 	NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
3197 	    &stats->tx_one_rexmits, "One Retransmits");
3198 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
3199 	    &stats->tx_multi_rexmits, "Multiple Retransmits");
3200 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3201 	    &stats->tx_late_cols, "Late Collisions");
3202 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
3203 	    &stats->tx_fifo_underuns, "FIFO Underruns");
3204 	NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
3205 	    &stats->tx_carrier_losts, "Carrier Losts");
3206 	NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
3207 	    &stats->tx_excess_deferals, "Excess Deferrals");
3208 	NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
3209 	    &stats->tx_retry_errors, "Retry Errors");
3210 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3211 		NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
3212 		    &stats->tx_deferals, "Deferrals");
3213 		NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
3214 		    &stats->tx_frames, "Frames");
3215 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3216 		    &stats->tx_pause, "Pause Frames");
3217 	}
3218 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3219 		NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3220 		    &stats->tx_deferals, "Unicast Frames");
3221 		NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3222 		    &stats->tx_frames, "Multicast Frames");
3223 		NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3224 		    &stats->tx_pause, "Broadcast Frames");
3225 	}
3226 }
3227 
3228 #undef NFE_SYSCTL_STAT_ADD32
3229 #undef NFE_SYSCTL_STAT_ADD64
3230 
3231 static void
3232 nfe_stats_clear(struct nfe_softc *sc)
3233 {
3234 	int i, mib_cnt;
3235 
3236 	if ((sc->nfe_flags & NFE_MIB_V1) != 0)
3237 		mib_cnt = NFE_NUM_MIB_STATV1;
3238 	else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
3239 		mib_cnt = NFE_NUM_MIB_STATV2;
3240 	else
3241 		return;
3242 
3243 	for (i = 0; i < mib_cnt; i++)
3244 		NFE_READ(sc, NFE_TX_OCTET + i * sizeof(uint32_t));
3245 
3246 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3247 		NFE_READ(sc, NFE_TX_UNICAST);
3248 		NFE_READ(sc, NFE_TX_MULTICAST);
3249 		NFE_READ(sc, NFE_TX_BROADCAST);
3250 	}
3251 }
3252 
3253 static void
3254 nfe_stats_update(struct nfe_softc *sc)
3255 {
3256 	struct nfe_hw_stats *stats;
3257 
3258 	NFE_LOCK_ASSERT(sc);
3259 
3260 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3261 		return;
3262 
3263 	stats = &sc->nfe_stats;
3264 	stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
3265 	stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
3266 	stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
3267 	stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
3268 	stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
3269 	stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
3270 	stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
3271 	stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
3272 	stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
3273 	stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
3274 	stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
3275 	stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
3276 	stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
3277 	stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
3278 	stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
3279 	stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
3280 	stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
3281 	stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
3282 	stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
3283 	stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
3284 	stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
3285 
3286 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3287 		stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
3288 		stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
3289 		stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
3290 		stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
3291 		stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
3292 		stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
3293 	}
3294 
3295 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3296 		stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
3297 		stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
3298 		stats->tx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
3299 	}
3300 }
3301 
3302 
3303 static void
3304 nfe_set_linkspeed(struct nfe_softc *sc)
3305 {
3306 	struct mii_softc *miisc;
3307 	struct mii_data *mii;
3308 	int aneg, i, phyno;
3309 
3310 	NFE_LOCK_ASSERT(sc);
3311 
3312 	mii = device_get_softc(sc->nfe_miibus);
3313 	mii_pollstat(mii);
3314 	aneg = 0;
3315 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3316 	    (IFM_ACTIVE | IFM_AVALID)) {
3317 		switch IFM_SUBTYPE(mii->mii_media_active) {
3318 		case IFM_10_T:
3319 		case IFM_100_TX:
3320 			return;
3321 		case IFM_1000_T:
3322 			aneg++;
3323 			break;
3324 		default:
3325 			break;
3326 		}
3327 	}
3328 	miisc = LIST_FIRST(&mii->mii_phys);
3329 	phyno = miisc->mii_phy;
3330 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3331 		PHY_RESET(miisc);
3332 	nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
3333 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3334 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3335 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3336 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
3337 	DELAY(1000);
3338 	if (aneg != 0) {
3339 		/*
3340 		 * Poll link state until nfe(4) get a 10/100Mbps link.
3341 		 */
3342 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3343 			mii_pollstat(mii);
3344 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3345 			    == (IFM_ACTIVE | IFM_AVALID)) {
3346 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3347 				case IFM_10_T:
3348 				case IFM_100_TX:
3349 					nfe_mac_config(sc, mii);
3350 					return;
3351 				default:
3352 					break;
3353 				}
3354 			}
3355 			NFE_UNLOCK(sc);
3356 			pause("nfelnk", hz);
3357 			NFE_LOCK(sc);
3358 		}
3359 		if (i == MII_ANEGTICKS_GIGE)
3360 			device_printf(sc->nfe_dev,
3361 			    "establishing a link failed, WOL may not work!");
3362 	}
3363 	/*
3364 	 * No link, force MAC to have 100Mbps, full-duplex link.
3365 	 * This is the last resort and may/may not work.
3366 	 */
3367 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3368 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3369 	nfe_mac_config(sc, mii);
3370 }
3371 
3372 
3373 static void
3374 nfe_set_wol(struct nfe_softc *sc)
3375 {
3376 	struct ifnet *ifp;
3377 	uint32_t wolctl;
3378 	int pmc;
3379 	uint16_t pmstat;
3380 
3381 	NFE_LOCK_ASSERT(sc);
3382 
3383 	if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
3384 		return;
3385 	ifp = sc->nfe_ifp;
3386 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3387 		wolctl = NFE_WOL_MAGIC;
3388 	else
3389 		wolctl = 0;
3390 	NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
3391 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
3392 		nfe_set_linkspeed(sc);
3393 		if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
3394 			NFE_WRITE(sc, NFE_PWR2_CTL,
3395 			    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
3396 		/* Enable RX. */
3397 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
3398 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
3399 		NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
3400 		    NFE_RX_START);
3401 	}
3402 	/* Request PME if WOL is requested. */
3403 	pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
3404 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3405 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3406 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3407 	pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3408 }
3409