1 /* $OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp> 5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */ 22 23 #include <sys/cdefs.h> 24 #ifdef HAVE_KERNEL_OPTION_HEADERS 25 #include "opt_device_polling.h" 26 #endif 27 28 #include <sys/param.h> 29 #include <sys/endian.h> 30 #include <sys/systm.h> 31 #include <sys/sockio.h> 32 #include <sys/mbuf.h> 33 #include <sys/malloc.h> 34 #include <sys/module.h> 35 #include <sys/kernel.h> 36 #include <sys/queue.h> 37 #include <sys/socket.h> 38 #include <sys/sysctl.h> 39 #include <sys/taskqueue.h> 40 41 #include <net/if.h> 42 #include <net/if_var.h> 43 #include <net/if_arp.h> 44 #include <net/ethernet.h> 45 #include <net/if_dl.h> 46 #include <net/if_media.h> 47 #include <net/if_types.h> 48 #include <net/if_vlan_var.h> 49 50 #include <net/bpf.h> 51 52 #include <machine/bus.h> 53 #include <machine/resource.h> 54 #include <sys/bus.h> 55 #include <sys/rman.h> 56 57 #include <dev/mii/mii.h> 58 #include <dev/mii/miivar.h> 59 60 #include <dev/pci/pcireg.h> 61 #include <dev/pci/pcivar.h> 62 63 #include <dev/nfe/if_nfereg.h> 64 #include <dev/nfe/if_nfevar.h> 65 66 MODULE_DEPEND(nfe, pci, 1, 1, 1); 67 MODULE_DEPEND(nfe, ether, 1, 1, 1); 68 MODULE_DEPEND(nfe, miibus, 1, 1, 1); 69 70 /* "device miibus" required. See GENERIC if you get errors here. */ 71 #include "miibus_if.h" 72 73 static int nfe_probe(device_t); 74 static int nfe_attach(device_t); 75 static int nfe_detach(device_t); 76 static int nfe_suspend(device_t); 77 static int nfe_resume(device_t); 78 static int nfe_shutdown(device_t); 79 static int nfe_can_use_msix(struct nfe_softc *); 80 static int nfe_detect_msik9(struct nfe_softc *); 81 static void nfe_power(struct nfe_softc *); 82 static int nfe_miibus_readreg(device_t, int, int); 83 static int nfe_miibus_writereg(device_t, int, int, int); 84 static void nfe_miibus_statchg(device_t); 85 static void nfe_mac_config(struct nfe_softc *, struct mii_data *); 86 static void nfe_set_intr(struct nfe_softc *); 87 static __inline void nfe_enable_intr(struct nfe_softc *); 88 static __inline void nfe_disable_intr(struct nfe_softc *); 89 static int nfe_ioctl(if_t, u_long, caddr_t); 90 static void nfe_alloc_msix(struct nfe_softc *, int); 91 static int nfe_intr(void *); 92 static void nfe_int_task(void *, int); 93 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int); 94 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int); 95 static int nfe_newbuf(struct nfe_softc *, int); 96 static int nfe_jnewbuf(struct nfe_softc *, int); 97 static int nfe_rxeof(struct nfe_softc *, int, int *); 98 static int nfe_jrxeof(struct nfe_softc *, int, int *); 99 static void nfe_txeof(struct nfe_softc *); 100 static int nfe_encap(struct nfe_softc *, struct mbuf **); 101 static void nfe_setmulti(struct nfe_softc *); 102 static void nfe_start(if_t); 103 static void nfe_start_locked(if_t); 104 static void nfe_watchdog(if_t); 105 static void nfe_init(void *); 106 static void nfe_init_locked(void *); 107 static void nfe_stop(if_t); 108 static int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 109 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *); 110 static int nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 111 static int nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *); 112 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 113 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *); 114 static int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 115 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 116 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 117 static int nfe_ifmedia_upd(if_t); 118 static void nfe_ifmedia_sts(if_t, struct ifmediareq *); 119 static void nfe_tick(void *); 120 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *); 121 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *); 122 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int); 123 124 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 125 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS); 126 static void nfe_sysctl_node(struct nfe_softc *); 127 static void nfe_stats_clear(struct nfe_softc *); 128 static void nfe_stats_update(struct nfe_softc *); 129 static void nfe_set_linkspeed(struct nfe_softc *); 130 static void nfe_set_wol(struct nfe_softc *); 131 132 #ifdef NFE_DEBUG 133 static int nfedebug = 0; 134 #define DPRINTF(sc, ...) do { \ 135 if (nfedebug) \ 136 device_printf((sc)->nfe_dev, __VA_ARGS__); \ 137 } while (0) 138 #define DPRINTFN(sc, n, ...) do { \ 139 if (nfedebug >= (n)) \ 140 device_printf((sc)->nfe_dev, __VA_ARGS__); \ 141 } while (0) 142 #else 143 #define DPRINTF(sc, ...) 144 #define DPRINTFN(sc, n, ...) 145 #endif 146 147 #define NFE_LOCK(_sc) mtx_lock(&(_sc)->nfe_mtx) 148 #define NFE_UNLOCK(_sc) mtx_unlock(&(_sc)->nfe_mtx) 149 #define NFE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->nfe_mtx, MA_OWNED) 150 151 /* Tunables. */ 152 static int msi_disable = 0; 153 static int msix_disable = 0; 154 static int jumbo_disable = 0; 155 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable); 156 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable); 157 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable); 158 159 static device_method_t nfe_methods[] = { 160 /* Device interface */ 161 DEVMETHOD(device_probe, nfe_probe), 162 DEVMETHOD(device_attach, nfe_attach), 163 DEVMETHOD(device_detach, nfe_detach), 164 DEVMETHOD(device_suspend, nfe_suspend), 165 DEVMETHOD(device_resume, nfe_resume), 166 DEVMETHOD(device_shutdown, nfe_shutdown), 167 168 /* MII interface */ 169 DEVMETHOD(miibus_readreg, nfe_miibus_readreg), 170 DEVMETHOD(miibus_writereg, nfe_miibus_writereg), 171 DEVMETHOD(miibus_statchg, nfe_miibus_statchg), 172 173 DEVMETHOD_END 174 }; 175 176 static driver_t nfe_driver = { 177 "nfe", 178 nfe_methods, 179 sizeof(struct nfe_softc) 180 }; 181 182 DRIVER_MODULE(nfe, pci, nfe_driver, 0, 0); 183 DRIVER_MODULE(miibus, nfe, miibus_driver, 0, 0); 184 185 static struct nfe_type nfe_devs[] = { 186 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN, 187 "NVIDIA nForce MCP Networking Adapter"}, 188 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN, 189 "NVIDIA nForce2 MCP2 Networking Adapter"}, 190 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1, 191 "NVIDIA nForce2 400 MCP4 Networking Adapter"}, 192 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2, 193 "NVIDIA nForce2 400 MCP5 Networking Adapter"}, 194 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1, 195 "NVIDIA nForce3 MCP3 Networking Adapter"}, 196 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN, 197 "NVIDIA nForce3 250 MCP6 Networking Adapter"}, 198 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4, 199 "NVIDIA nForce3 MCP7 Networking Adapter"}, 200 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1, 201 "NVIDIA nForce4 CK804 MCP8 Networking Adapter"}, 202 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2, 203 "NVIDIA nForce4 CK804 MCP9 Networking Adapter"}, 204 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1, 205 "NVIDIA nForce MCP04 Networking Adapter"}, /* MCP10 */ 206 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2, 207 "NVIDIA nForce MCP04 Networking Adapter"}, /* MCP11 */ 208 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1, 209 "NVIDIA nForce 430 MCP12 Networking Adapter"}, 210 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2, 211 "NVIDIA nForce 430 MCP13 Networking Adapter"}, 212 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1, 213 "NVIDIA nForce MCP55 Networking Adapter"}, 214 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2, 215 "NVIDIA nForce MCP55 Networking Adapter"}, 216 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1, 217 "NVIDIA nForce MCP61 Networking Adapter"}, 218 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2, 219 "NVIDIA nForce MCP61 Networking Adapter"}, 220 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3, 221 "NVIDIA nForce MCP61 Networking Adapter"}, 222 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4, 223 "NVIDIA nForce MCP61 Networking Adapter"}, 224 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1, 225 "NVIDIA nForce MCP65 Networking Adapter"}, 226 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2, 227 "NVIDIA nForce MCP65 Networking Adapter"}, 228 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3, 229 "NVIDIA nForce MCP65 Networking Adapter"}, 230 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4, 231 "NVIDIA nForce MCP65 Networking Adapter"}, 232 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1, 233 "NVIDIA nForce MCP67 Networking Adapter"}, 234 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2, 235 "NVIDIA nForce MCP67 Networking Adapter"}, 236 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3, 237 "NVIDIA nForce MCP67 Networking Adapter"}, 238 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4, 239 "NVIDIA nForce MCP67 Networking Adapter"}, 240 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1, 241 "NVIDIA nForce MCP73 Networking Adapter"}, 242 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2, 243 "NVIDIA nForce MCP73 Networking Adapter"}, 244 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3, 245 "NVIDIA nForce MCP73 Networking Adapter"}, 246 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4, 247 "NVIDIA nForce MCP73 Networking Adapter"}, 248 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1, 249 "NVIDIA nForce MCP77 Networking Adapter"}, 250 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2, 251 "NVIDIA nForce MCP77 Networking Adapter"}, 252 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3, 253 "NVIDIA nForce MCP77 Networking Adapter"}, 254 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4, 255 "NVIDIA nForce MCP77 Networking Adapter"}, 256 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1, 257 "NVIDIA nForce MCP79 Networking Adapter"}, 258 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2, 259 "NVIDIA nForce MCP79 Networking Adapter"}, 260 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3, 261 "NVIDIA nForce MCP79 Networking Adapter"}, 262 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4, 263 "NVIDIA nForce MCP79 Networking Adapter"}, 264 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP89_LAN, 265 "NVIDIA nForce MCP89 Networking Adapter"}, 266 {0, 0, NULL} 267 }; 268 269 /* Probe for supported hardware ID's */ 270 static int 271 nfe_probe(device_t dev) 272 { 273 struct nfe_type *t; 274 275 t = nfe_devs; 276 /* Check for matching PCI DEVICE ID's */ 277 while (t->name != NULL) { 278 if ((pci_get_vendor(dev) == t->vid_id) && 279 (pci_get_device(dev) == t->dev_id)) { 280 device_set_desc(dev, t->name); 281 return (BUS_PROBE_DEFAULT); 282 } 283 t++; 284 } 285 286 return (ENXIO); 287 } 288 289 static void 290 nfe_alloc_msix(struct nfe_softc *sc, int count) 291 { 292 int rid; 293 294 rid = PCIR_BAR(2); 295 sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY, 296 &rid, RF_ACTIVE); 297 if (sc->nfe_msix_res == NULL) { 298 device_printf(sc->nfe_dev, 299 "couldn't allocate MSIX table resource\n"); 300 return; 301 } 302 rid = PCIR_BAR(3); 303 sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev, 304 SYS_RES_MEMORY, &rid, RF_ACTIVE); 305 if (sc->nfe_msix_pba_res == NULL) { 306 device_printf(sc->nfe_dev, 307 "couldn't allocate MSIX PBA resource\n"); 308 bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2), 309 sc->nfe_msix_res); 310 sc->nfe_msix_res = NULL; 311 return; 312 } 313 314 if (pci_alloc_msix(sc->nfe_dev, &count) == 0) { 315 if (count == NFE_MSI_MESSAGES) { 316 if (bootverbose) 317 device_printf(sc->nfe_dev, 318 "Using %d MSIX messages\n", count); 319 sc->nfe_msix = 1; 320 } else { 321 if (bootverbose) 322 device_printf(sc->nfe_dev, 323 "couldn't allocate MSIX\n"); 324 pci_release_msi(sc->nfe_dev); 325 bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, 326 PCIR_BAR(3), sc->nfe_msix_pba_res); 327 bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, 328 PCIR_BAR(2), sc->nfe_msix_res); 329 sc->nfe_msix_pba_res = NULL; 330 sc->nfe_msix_res = NULL; 331 } 332 } 333 } 334 335 static int 336 nfe_detect_msik9(struct nfe_softc *sc) 337 { 338 static const char *maker = "MSI"; 339 static const char *product = "K9N6PGM2-V2 (MS-7309)"; 340 char *m, *p; 341 int found; 342 343 found = 0; 344 m = kern_getenv("smbios.planar.maker"); 345 p = kern_getenv("smbios.planar.product"); 346 if (m != NULL && p != NULL) { 347 if (strcmp(m, maker) == 0 && strcmp(p, product) == 0) 348 found = 1; 349 } 350 if (m != NULL) 351 freeenv(m); 352 if (p != NULL) 353 freeenv(p); 354 355 return (found); 356 } 357 358 static int 359 nfe_attach(device_t dev) 360 { 361 struct nfe_softc *sc; 362 if_t ifp; 363 bus_addr_t dma_addr_max; 364 int error = 0, i, msic, phyloc, reg, rid; 365 366 sc = device_get_softc(dev); 367 sc->nfe_dev = dev; 368 369 mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 370 MTX_DEF); 371 callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0); 372 373 pci_enable_busmaster(dev); 374 375 rid = PCIR_BAR(0); 376 sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 377 RF_ACTIVE); 378 if (sc->nfe_res[0] == NULL) { 379 device_printf(dev, "couldn't map memory resources\n"); 380 mtx_destroy(&sc->nfe_mtx); 381 return (ENXIO); 382 } 383 384 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 385 uint16_t v, width; 386 387 v = pci_read_config(dev, reg + 0x08, 2); 388 /* Change max. read request size to 4096. */ 389 v &= ~(7 << 12); 390 v |= (5 << 12); 391 pci_write_config(dev, reg + 0x08, v, 2); 392 393 v = pci_read_config(dev, reg + 0x0c, 2); 394 /* link capability */ 395 v = (v >> 4) & 0x0f; 396 width = pci_read_config(dev, reg + 0x12, 2); 397 /* negotiated link width */ 398 width = (width >> 4) & 0x3f; 399 if (v != width) 400 device_printf(sc->nfe_dev, 401 "warning, negotiated width of link(x%d) != " 402 "max. width of link(x%d)\n", width, v); 403 } 404 405 if (nfe_can_use_msix(sc) == 0) { 406 device_printf(sc->nfe_dev, 407 "MSI/MSI-X capability black-listed, will use INTx\n"); 408 msix_disable = 1; 409 msi_disable = 1; 410 } 411 412 /* Allocate interrupt */ 413 if (msix_disable == 0 || msi_disable == 0) { 414 if (msix_disable == 0 && 415 (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES) 416 nfe_alloc_msix(sc, msic); 417 if (msi_disable == 0 && sc->nfe_msix == 0 && 418 (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES && 419 pci_alloc_msi(dev, &msic) == 0) { 420 if (msic == NFE_MSI_MESSAGES) { 421 if (bootverbose) 422 device_printf(dev, 423 "Using %d MSI messages\n", msic); 424 sc->nfe_msi = 1; 425 } else 426 pci_release_msi(dev); 427 } 428 } 429 430 if (sc->nfe_msix == 0 && sc->nfe_msi == 0) { 431 rid = 0; 432 sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 433 RF_SHAREABLE | RF_ACTIVE); 434 if (sc->nfe_irq[0] == NULL) { 435 device_printf(dev, "couldn't allocate IRQ resources\n"); 436 error = ENXIO; 437 goto fail; 438 } 439 } else { 440 for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) { 441 sc->nfe_irq[i] = bus_alloc_resource_any(dev, 442 SYS_RES_IRQ, &rid, RF_ACTIVE); 443 if (sc->nfe_irq[i] == NULL) { 444 device_printf(dev, 445 "couldn't allocate IRQ resources for " 446 "message %d\n", rid); 447 error = ENXIO; 448 goto fail; 449 } 450 } 451 /* Map interrupts to vector 0. */ 452 if (sc->nfe_msix != 0) { 453 NFE_WRITE(sc, NFE_MSIX_MAP0, 0); 454 NFE_WRITE(sc, NFE_MSIX_MAP1, 0); 455 } else if (sc->nfe_msi != 0) { 456 NFE_WRITE(sc, NFE_MSI_MAP0, 0); 457 NFE_WRITE(sc, NFE_MSI_MAP1, 0); 458 } 459 } 460 461 /* Set IRQ status/mask register. */ 462 sc->nfe_irq_status = NFE_IRQ_STATUS; 463 sc->nfe_irq_mask = NFE_IRQ_MASK; 464 sc->nfe_intrs = NFE_IRQ_WANTED; 465 sc->nfe_nointrs = 0; 466 if (sc->nfe_msix != 0) { 467 sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS; 468 sc->nfe_nointrs = NFE_IRQ_WANTED; 469 } else if (sc->nfe_msi != 0) { 470 sc->nfe_irq_mask = NFE_MSI_IRQ_MASK; 471 sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED; 472 } 473 474 sc->nfe_devid = pci_get_device(dev); 475 sc->nfe_revid = pci_get_revid(dev); 476 sc->nfe_flags = 0; 477 478 switch (sc->nfe_devid) { 479 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: 480 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: 481 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: 482 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: 483 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; 484 break; 485 case PCI_PRODUCT_NVIDIA_MCP51_LAN1: 486 case PCI_PRODUCT_NVIDIA_MCP51_LAN2: 487 sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1; 488 break; 489 case PCI_PRODUCT_NVIDIA_CK804_LAN1: 490 case PCI_PRODUCT_NVIDIA_CK804_LAN2: 491 case PCI_PRODUCT_NVIDIA_MCP04_LAN1: 492 case PCI_PRODUCT_NVIDIA_MCP04_LAN2: 493 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 494 NFE_MIB_V1; 495 break; 496 case PCI_PRODUCT_NVIDIA_MCP55_LAN1: 497 case PCI_PRODUCT_NVIDIA_MCP55_LAN2: 498 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 499 NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2; 500 break; 501 502 case PCI_PRODUCT_NVIDIA_MCP61_LAN1: 503 case PCI_PRODUCT_NVIDIA_MCP61_LAN2: 504 case PCI_PRODUCT_NVIDIA_MCP61_LAN3: 505 case PCI_PRODUCT_NVIDIA_MCP61_LAN4: 506 case PCI_PRODUCT_NVIDIA_MCP67_LAN1: 507 case PCI_PRODUCT_NVIDIA_MCP67_LAN2: 508 case PCI_PRODUCT_NVIDIA_MCP67_LAN3: 509 case PCI_PRODUCT_NVIDIA_MCP67_LAN4: 510 case PCI_PRODUCT_NVIDIA_MCP73_LAN1: 511 case PCI_PRODUCT_NVIDIA_MCP73_LAN2: 512 case PCI_PRODUCT_NVIDIA_MCP73_LAN3: 513 case PCI_PRODUCT_NVIDIA_MCP73_LAN4: 514 sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | 515 NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2; 516 break; 517 case PCI_PRODUCT_NVIDIA_MCP77_LAN1: 518 case PCI_PRODUCT_NVIDIA_MCP77_LAN2: 519 case PCI_PRODUCT_NVIDIA_MCP77_LAN3: 520 case PCI_PRODUCT_NVIDIA_MCP77_LAN4: 521 /* XXX flow control */ 522 sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT | 523 NFE_CORRECT_MACADDR | NFE_MIB_V3; 524 break; 525 case PCI_PRODUCT_NVIDIA_MCP79_LAN1: 526 case PCI_PRODUCT_NVIDIA_MCP79_LAN2: 527 case PCI_PRODUCT_NVIDIA_MCP79_LAN3: 528 case PCI_PRODUCT_NVIDIA_MCP79_LAN4: 529 case PCI_PRODUCT_NVIDIA_MCP89_LAN: 530 /* XXX flow control */ 531 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 532 NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3; 533 break; 534 case PCI_PRODUCT_NVIDIA_MCP65_LAN1: 535 case PCI_PRODUCT_NVIDIA_MCP65_LAN2: 536 case PCI_PRODUCT_NVIDIA_MCP65_LAN3: 537 case PCI_PRODUCT_NVIDIA_MCP65_LAN4: 538 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | 539 NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | 540 NFE_MIB_V2; 541 break; 542 } 543 544 nfe_power(sc); 545 /* Check for reversed ethernet address */ 546 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0) 547 sc->nfe_flags |= NFE_CORRECT_MACADDR; 548 nfe_get_macaddr(sc, sc->eaddr); 549 /* 550 * Allocate the parent bus DMA tag appropriate for PCI. 551 */ 552 dma_addr_max = BUS_SPACE_MAXADDR_32BIT; 553 if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0) 554 dma_addr_max = NFE_DMA_MAXADDR; 555 error = bus_dma_tag_create( 556 bus_get_dma_tag(sc->nfe_dev), /* parent */ 557 1, 0, /* alignment, boundary */ 558 dma_addr_max, /* lowaddr */ 559 BUS_SPACE_MAXADDR, /* highaddr */ 560 NULL, NULL, /* filter, filterarg */ 561 BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */ 562 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 563 0, /* flags */ 564 NULL, NULL, /* lockfunc, lockarg */ 565 &sc->nfe_parent_tag); 566 if (error) 567 goto fail; 568 569 ifp = sc->nfe_ifp = if_gethandle(IFT_ETHER); 570 if (ifp == NULL) { 571 device_printf(dev, "can not if_gethandle()\n"); 572 error = ENOSPC; 573 goto fail; 574 } 575 576 /* 577 * Allocate Tx and Rx rings. 578 */ 579 if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0) 580 goto fail; 581 582 if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0) 583 goto fail; 584 585 nfe_alloc_jrx_ring(sc, &sc->jrxq); 586 /* Create sysctl node. */ 587 nfe_sysctl_node(sc); 588 589 if_setsoftc(ifp, sc); 590 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 591 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 592 if_setioctlfn(ifp, nfe_ioctl); 593 if_setstartfn(ifp, nfe_start); 594 if_sethwassist(ifp, 0); 595 if_setcapabilities(ifp, 0); 596 if_setinitfn(ifp, nfe_init); 597 if_setsendqlen(ifp, NFE_TX_RING_COUNT - 1); 598 if_setsendqready(ifp); 599 600 if (sc->nfe_flags & NFE_HW_CSUM) { 601 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0); 602 if_sethwassistbits(ifp, NFE_CSUM_FEATURES | CSUM_TSO, 0); 603 } 604 if_setcapenable(ifp, if_getcapabilities(ifp)); 605 606 sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS; 607 /* VLAN capability setup. */ 608 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0); 609 if ((sc->nfe_flags & NFE_HW_VLAN) != 0) { 610 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0); 611 if ((if_getcapabilities(ifp) & IFCAP_HWCSUM) != 0) 612 if_setcapabilitiesbit(ifp, 613 (IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO), 0); 614 } 615 616 if (pci_find_cap(dev, PCIY_PMG, ®) == 0) 617 if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0); 618 if_setcapenable(ifp, if_getcapabilities(ifp)); 619 620 /* 621 * Tell the upper layer(s) we support long frames. 622 * Must appear after the call to ether_ifattach() because 623 * ether_ifattach() sets ifi_hdrlen to the default value. 624 */ 625 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 626 627 #ifdef DEVICE_POLLING 628 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 629 #endif 630 631 /* Do MII setup */ 632 phyloc = MII_PHY_ANY; 633 if (sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN1 || 634 sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN2 || 635 sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN3 || 636 sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN4) { 637 if (nfe_detect_msik9(sc) != 0) 638 phyloc = 0; 639 } 640 error = mii_attach(dev, &sc->nfe_miibus, ifp, 641 (ifm_change_cb_t)nfe_ifmedia_upd, (ifm_stat_cb_t)nfe_ifmedia_sts, 642 BMSR_DEFCAPMASK, phyloc, MII_OFFSET_ANY, MIIF_DOPAUSE); 643 if (error != 0) { 644 device_printf(dev, "attaching PHYs failed\n"); 645 goto fail; 646 } 647 ether_ifattach(ifp, sc->eaddr); 648 649 NET_TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc); 650 sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK, 651 taskqueue_thread_enqueue, &sc->nfe_tq); 652 taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq", 653 device_get_nameunit(sc->nfe_dev)); 654 error = 0; 655 if (sc->nfe_msi == 0 && sc->nfe_msix == 0) { 656 error = bus_setup_intr(dev, sc->nfe_irq[0], 657 INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc, 658 &sc->nfe_intrhand[0]); 659 } else { 660 for (i = 0; i < NFE_MSI_MESSAGES; i++) { 661 error = bus_setup_intr(dev, sc->nfe_irq[i], 662 INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc, 663 &sc->nfe_intrhand[i]); 664 if (error != 0) 665 break; 666 } 667 } 668 if (error) { 669 device_printf(dev, "couldn't set up irq\n"); 670 taskqueue_free(sc->nfe_tq); 671 sc->nfe_tq = NULL; 672 ether_ifdetach(ifp); 673 goto fail; 674 } 675 676 fail: 677 if (error) 678 nfe_detach(dev); 679 680 return (error); 681 } 682 683 static int 684 nfe_detach(device_t dev) 685 { 686 struct nfe_softc *sc; 687 if_t ifp; 688 uint8_t eaddr[ETHER_ADDR_LEN]; 689 int i, rid; 690 691 sc = device_get_softc(dev); 692 KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized")); 693 ifp = sc->nfe_ifp; 694 695 #ifdef DEVICE_POLLING 696 if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING) 697 ether_poll_deregister(ifp); 698 #endif 699 if (device_is_attached(dev)) { 700 NFE_LOCK(sc); 701 nfe_stop(ifp); 702 if_setflagbits(ifp, 0, IFF_UP); 703 NFE_UNLOCK(sc); 704 callout_drain(&sc->nfe_stat_ch); 705 ether_ifdetach(ifp); 706 } 707 708 if (ifp) { 709 /* restore ethernet address */ 710 if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) { 711 for (i = 0; i < ETHER_ADDR_LEN; i++) { 712 eaddr[i] = sc->eaddr[5 - i]; 713 } 714 } else 715 bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN); 716 nfe_set_macaddr(sc, eaddr); 717 if_free(ifp); 718 } 719 if (sc->nfe_miibus) 720 device_delete_child(dev, sc->nfe_miibus); 721 bus_generic_detach(dev); 722 if (sc->nfe_tq != NULL) { 723 taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task); 724 taskqueue_free(sc->nfe_tq); 725 sc->nfe_tq = NULL; 726 } 727 728 for (i = 0; i < NFE_MSI_MESSAGES; i++) { 729 if (sc->nfe_intrhand[i] != NULL) { 730 bus_teardown_intr(dev, sc->nfe_irq[i], 731 sc->nfe_intrhand[i]); 732 sc->nfe_intrhand[i] = NULL; 733 } 734 } 735 736 if (sc->nfe_msi == 0 && sc->nfe_msix == 0) { 737 if (sc->nfe_irq[0] != NULL) 738 bus_release_resource(dev, SYS_RES_IRQ, 0, 739 sc->nfe_irq[0]); 740 } else { 741 for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) { 742 if (sc->nfe_irq[i] != NULL) { 743 bus_release_resource(dev, SYS_RES_IRQ, rid, 744 sc->nfe_irq[i]); 745 sc->nfe_irq[i] = NULL; 746 } 747 } 748 pci_release_msi(dev); 749 } 750 if (sc->nfe_msix_pba_res != NULL) { 751 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3), 752 sc->nfe_msix_pba_res); 753 sc->nfe_msix_pba_res = NULL; 754 } 755 if (sc->nfe_msix_res != NULL) { 756 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2), 757 sc->nfe_msix_res); 758 sc->nfe_msix_res = NULL; 759 } 760 if (sc->nfe_res[0] != NULL) { 761 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 762 sc->nfe_res[0]); 763 sc->nfe_res[0] = NULL; 764 } 765 766 nfe_free_tx_ring(sc, &sc->txq); 767 nfe_free_rx_ring(sc, &sc->rxq); 768 nfe_free_jrx_ring(sc, &sc->jrxq); 769 770 if (sc->nfe_parent_tag) { 771 bus_dma_tag_destroy(sc->nfe_parent_tag); 772 sc->nfe_parent_tag = NULL; 773 } 774 775 mtx_destroy(&sc->nfe_mtx); 776 777 return (0); 778 } 779 780 static int 781 nfe_suspend(device_t dev) 782 { 783 struct nfe_softc *sc; 784 785 sc = device_get_softc(dev); 786 787 NFE_LOCK(sc); 788 nfe_stop(sc->nfe_ifp); 789 nfe_set_wol(sc); 790 sc->nfe_suspended = 1; 791 NFE_UNLOCK(sc); 792 793 return (0); 794 } 795 796 static int 797 nfe_resume(device_t dev) 798 { 799 struct nfe_softc *sc; 800 if_t ifp; 801 802 sc = device_get_softc(dev); 803 804 NFE_LOCK(sc); 805 nfe_power(sc); 806 ifp = sc->nfe_ifp; 807 if (if_getflags(ifp) & IFF_UP) 808 nfe_init_locked(sc); 809 sc->nfe_suspended = 0; 810 NFE_UNLOCK(sc); 811 812 return (0); 813 } 814 815 static int 816 nfe_can_use_msix(struct nfe_softc *sc) 817 { 818 static struct msix_blacklist { 819 char *maker; 820 char *product; 821 } msix_blacklists[] = { 822 { "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" } 823 }; 824 825 struct msix_blacklist *mblp; 826 char *maker, *product; 827 int count, n, use_msix; 828 829 /* 830 * Search base board manufacturer and product name table 831 * to see this system has a known MSI/MSI-X issue. 832 */ 833 maker = kern_getenv("smbios.planar.maker"); 834 product = kern_getenv("smbios.planar.product"); 835 use_msix = 1; 836 if (maker != NULL && product != NULL) { 837 count = nitems(msix_blacklists); 838 mblp = msix_blacklists; 839 for (n = 0; n < count; n++) { 840 if (strcmp(maker, mblp->maker) == 0 && 841 strcmp(product, mblp->product) == 0) { 842 use_msix = 0; 843 break; 844 } 845 mblp++; 846 } 847 } 848 if (maker != NULL) 849 freeenv(maker); 850 if (product != NULL) 851 freeenv(product); 852 853 return (use_msix); 854 } 855 856 /* Take PHY/NIC out of powerdown, from Linux */ 857 static void 858 nfe_power(struct nfe_softc *sc) 859 { 860 uint32_t pwr; 861 862 if ((sc->nfe_flags & NFE_PWR_MGMT) == 0) 863 return; 864 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2); 865 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC); 866 DELAY(100); 867 NFE_WRITE(sc, NFE_MAC_RESET, 0); 868 DELAY(100); 869 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2); 870 pwr = NFE_READ(sc, NFE_PWR2_CTL); 871 pwr &= ~NFE_PWR2_WAKEUP_MASK; 872 if (sc->nfe_revid >= 0xa3 && 873 (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 || 874 sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2)) 875 pwr |= NFE_PWR2_REVA3; 876 NFE_WRITE(sc, NFE_PWR2_CTL, pwr); 877 } 878 879 static void 880 nfe_miibus_statchg(device_t dev) 881 { 882 struct nfe_softc *sc; 883 struct mii_data *mii; 884 if_t ifp; 885 uint32_t rxctl, txctl; 886 887 sc = device_get_softc(dev); 888 889 mii = device_get_softc(sc->nfe_miibus); 890 ifp = sc->nfe_ifp; 891 892 sc->nfe_link = 0; 893 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 894 (IFM_ACTIVE | IFM_AVALID)) { 895 switch (IFM_SUBTYPE(mii->mii_media_active)) { 896 case IFM_10_T: 897 case IFM_100_TX: 898 case IFM_1000_T: 899 sc->nfe_link = 1; 900 break; 901 default: 902 break; 903 } 904 } 905 906 nfe_mac_config(sc, mii); 907 txctl = NFE_READ(sc, NFE_TX_CTL); 908 rxctl = NFE_READ(sc, NFE_RX_CTL); 909 if (sc->nfe_link != 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 910 txctl |= NFE_TX_START; 911 rxctl |= NFE_RX_START; 912 } else { 913 txctl &= ~NFE_TX_START; 914 rxctl &= ~NFE_RX_START; 915 } 916 NFE_WRITE(sc, NFE_TX_CTL, txctl); 917 NFE_WRITE(sc, NFE_RX_CTL, rxctl); 918 } 919 920 static void 921 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii) 922 { 923 uint32_t link, misc, phy, seed; 924 uint32_t val; 925 926 NFE_LOCK_ASSERT(sc); 927 928 phy = NFE_READ(sc, NFE_PHY_IFACE); 929 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T); 930 931 seed = NFE_READ(sc, NFE_RNDSEED); 932 seed &= ~NFE_SEED_MASK; 933 934 misc = NFE_MISC1_MAGIC; 935 link = NFE_MEDIA_SET; 936 937 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) { 938 phy |= NFE_PHY_HDX; /* half-duplex */ 939 misc |= NFE_MISC1_HDX; 940 } 941 942 switch (IFM_SUBTYPE(mii->mii_media_active)) { 943 case IFM_1000_T: /* full-duplex only */ 944 link |= NFE_MEDIA_1000T; 945 seed |= NFE_SEED_1000T; 946 phy |= NFE_PHY_1000T; 947 break; 948 case IFM_100_TX: 949 link |= NFE_MEDIA_100TX; 950 seed |= NFE_SEED_100TX; 951 phy |= NFE_PHY_100TX; 952 break; 953 case IFM_10_T: 954 link |= NFE_MEDIA_10T; 955 seed |= NFE_SEED_10T; 956 break; 957 } 958 959 if ((phy & 0x10000000) != 0) { 960 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) 961 val = NFE_R1_MAGIC_1000; 962 else 963 val = NFE_R1_MAGIC_10_100; 964 } else 965 val = NFE_R1_MAGIC_DEFAULT; 966 NFE_WRITE(sc, NFE_SETUP_R1, val); 967 968 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */ 969 970 NFE_WRITE(sc, NFE_PHY_IFACE, phy); 971 NFE_WRITE(sc, NFE_MISC1, misc); 972 NFE_WRITE(sc, NFE_LINKSPEED, link); 973 974 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 975 /* It seems all hardwares supports Rx pause frames. */ 976 val = NFE_READ(sc, NFE_RXFILTER); 977 if ((IFM_OPTIONS(mii->mii_media_active) & 978 IFM_ETH_RXPAUSE) != 0) 979 val |= NFE_PFF_RX_PAUSE; 980 else 981 val &= ~NFE_PFF_RX_PAUSE; 982 NFE_WRITE(sc, NFE_RXFILTER, val); 983 if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) { 984 val = NFE_READ(sc, NFE_MISC1); 985 if ((IFM_OPTIONS(mii->mii_media_active) & 986 IFM_ETH_TXPAUSE) != 0) { 987 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, 988 NFE_TX_PAUSE_FRAME_ENABLE); 989 val |= NFE_MISC1_TX_PAUSE; 990 } else { 991 val &= ~NFE_MISC1_TX_PAUSE; 992 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, 993 NFE_TX_PAUSE_FRAME_DISABLE); 994 } 995 NFE_WRITE(sc, NFE_MISC1, val); 996 } 997 } else { 998 /* disable rx/tx pause frames */ 999 val = NFE_READ(sc, NFE_RXFILTER); 1000 val &= ~NFE_PFF_RX_PAUSE; 1001 NFE_WRITE(sc, NFE_RXFILTER, val); 1002 if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) { 1003 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, 1004 NFE_TX_PAUSE_FRAME_DISABLE); 1005 val = NFE_READ(sc, NFE_MISC1); 1006 val &= ~NFE_MISC1_TX_PAUSE; 1007 NFE_WRITE(sc, NFE_MISC1, val); 1008 } 1009 } 1010 } 1011 1012 static int 1013 nfe_miibus_readreg(device_t dev, int phy, int reg) 1014 { 1015 struct nfe_softc *sc = device_get_softc(dev); 1016 uint32_t val; 1017 int ntries; 1018 1019 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1020 1021 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 1022 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 1023 DELAY(100); 1024 } 1025 1026 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg); 1027 1028 for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) { 1029 DELAY(100); 1030 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 1031 break; 1032 } 1033 if (ntries == NFE_TIMEOUT) { 1034 DPRINTFN(sc, 2, "timeout waiting for PHY\n"); 1035 return 0; 1036 } 1037 1038 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) { 1039 DPRINTFN(sc, 2, "could not read PHY\n"); 1040 return 0; 1041 } 1042 1043 val = NFE_READ(sc, NFE_PHY_DATA); 1044 if (val != 0xffffffff && val != 0) 1045 sc->mii_phyaddr = phy; 1046 1047 DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val); 1048 1049 return (val); 1050 } 1051 1052 static int 1053 nfe_miibus_writereg(device_t dev, int phy, int reg, int val) 1054 { 1055 struct nfe_softc *sc = device_get_softc(dev); 1056 uint32_t ctl; 1057 int ntries; 1058 1059 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1060 1061 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 1062 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 1063 DELAY(100); 1064 } 1065 1066 NFE_WRITE(sc, NFE_PHY_DATA, val); 1067 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg; 1068 NFE_WRITE(sc, NFE_PHY_CTL, ctl); 1069 1070 for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) { 1071 DELAY(100); 1072 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 1073 break; 1074 } 1075 #ifdef NFE_DEBUG 1076 if (nfedebug >= 2 && ntries == NFE_TIMEOUT) 1077 device_printf(sc->nfe_dev, "could not write to PHY\n"); 1078 #endif 1079 return (0); 1080 } 1081 1082 struct nfe_dmamap_arg { 1083 bus_addr_t nfe_busaddr; 1084 }; 1085 1086 static int 1087 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1088 { 1089 struct nfe_dmamap_arg ctx; 1090 struct nfe_rx_data *data; 1091 void *desc; 1092 int i, error, descsize; 1093 1094 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1095 desc = ring->desc64; 1096 descsize = sizeof (struct nfe_desc64); 1097 } else { 1098 desc = ring->desc32; 1099 descsize = sizeof (struct nfe_desc32); 1100 } 1101 1102 ring->cur = ring->next = 0; 1103 1104 error = bus_dma_tag_create(sc->nfe_parent_tag, 1105 NFE_RING_ALIGN, 0, /* alignment, boundary */ 1106 BUS_SPACE_MAXADDR, /* lowaddr */ 1107 BUS_SPACE_MAXADDR, /* highaddr */ 1108 NULL, NULL, /* filter, filterarg */ 1109 NFE_RX_RING_COUNT * descsize, 1, /* maxsize, nsegments */ 1110 NFE_RX_RING_COUNT * descsize, /* maxsegsize */ 1111 0, /* flags */ 1112 NULL, NULL, /* lockfunc, lockarg */ 1113 &ring->rx_desc_tag); 1114 if (error != 0) { 1115 device_printf(sc->nfe_dev, "could not create desc DMA tag\n"); 1116 goto fail; 1117 } 1118 1119 /* allocate memory to desc */ 1120 error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK | 1121 BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map); 1122 if (error != 0) { 1123 device_printf(sc->nfe_dev, "could not create desc DMA map\n"); 1124 goto fail; 1125 } 1126 if (sc->nfe_flags & NFE_40BIT_ADDR) 1127 ring->desc64 = desc; 1128 else 1129 ring->desc32 = desc; 1130 1131 /* map desc to device visible address space */ 1132 ctx.nfe_busaddr = 0; 1133 error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc, 1134 NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0); 1135 if (error != 0) { 1136 device_printf(sc->nfe_dev, "could not load desc DMA map\n"); 1137 goto fail; 1138 } 1139 ring->physaddr = ctx.nfe_busaddr; 1140 1141 error = bus_dma_tag_create(sc->nfe_parent_tag, 1142 1, 0, /* alignment, boundary */ 1143 BUS_SPACE_MAXADDR, /* lowaddr */ 1144 BUS_SPACE_MAXADDR, /* highaddr */ 1145 NULL, NULL, /* filter, filterarg */ 1146 MCLBYTES, 1, /* maxsize, nsegments */ 1147 MCLBYTES, /* maxsegsize */ 1148 0, /* flags */ 1149 NULL, NULL, /* lockfunc, lockarg */ 1150 &ring->rx_data_tag); 1151 if (error != 0) { 1152 device_printf(sc->nfe_dev, "could not create Rx DMA tag\n"); 1153 goto fail; 1154 } 1155 1156 error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map); 1157 if (error != 0) { 1158 device_printf(sc->nfe_dev, 1159 "could not create Rx DMA spare map\n"); 1160 goto fail; 1161 } 1162 1163 /* 1164 * Pre-allocate Rx buffers and populate Rx ring. 1165 */ 1166 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1167 data = &sc->rxq.data[i]; 1168 data->rx_data_map = NULL; 1169 data->m = NULL; 1170 error = bus_dmamap_create(ring->rx_data_tag, 0, 1171 &data->rx_data_map); 1172 if (error != 0) { 1173 device_printf(sc->nfe_dev, 1174 "could not create Rx DMA map\n"); 1175 goto fail; 1176 } 1177 } 1178 1179 fail: 1180 return (error); 1181 } 1182 1183 static void 1184 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring) 1185 { 1186 struct nfe_dmamap_arg ctx; 1187 struct nfe_rx_data *data; 1188 void *desc; 1189 int i, error, descsize; 1190 1191 if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0) 1192 return; 1193 if (jumbo_disable != 0) { 1194 device_printf(sc->nfe_dev, "disabling jumbo frame support\n"); 1195 sc->nfe_jumbo_disable = 1; 1196 return; 1197 } 1198 1199 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1200 desc = ring->jdesc64; 1201 descsize = sizeof (struct nfe_desc64); 1202 } else { 1203 desc = ring->jdesc32; 1204 descsize = sizeof (struct nfe_desc32); 1205 } 1206 1207 ring->jcur = ring->jnext = 0; 1208 1209 /* Create DMA tag for jumbo Rx ring. */ 1210 error = bus_dma_tag_create(sc->nfe_parent_tag, 1211 NFE_RING_ALIGN, 0, /* alignment, boundary */ 1212 BUS_SPACE_MAXADDR, /* lowaddr */ 1213 BUS_SPACE_MAXADDR, /* highaddr */ 1214 NULL, NULL, /* filter, filterarg */ 1215 NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsize */ 1216 1, /* nsegments */ 1217 NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsegsize */ 1218 0, /* flags */ 1219 NULL, NULL, /* lockfunc, lockarg */ 1220 &ring->jrx_desc_tag); 1221 if (error != 0) { 1222 device_printf(sc->nfe_dev, 1223 "could not create jumbo ring DMA tag\n"); 1224 goto fail; 1225 } 1226 1227 /* Create DMA tag for jumbo Rx buffers. */ 1228 error = bus_dma_tag_create(sc->nfe_parent_tag, 1229 1, 0, /* alignment, boundary */ 1230 BUS_SPACE_MAXADDR, /* lowaddr */ 1231 BUS_SPACE_MAXADDR, /* highaddr */ 1232 NULL, NULL, /* filter, filterarg */ 1233 MJUM9BYTES, /* maxsize */ 1234 1, /* nsegments */ 1235 MJUM9BYTES, /* maxsegsize */ 1236 0, /* flags */ 1237 NULL, NULL, /* lockfunc, lockarg */ 1238 &ring->jrx_data_tag); 1239 if (error != 0) { 1240 device_printf(sc->nfe_dev, 1241 "could not create jumbo Rx buffer DMA tag\n"); 1242 goto fail; 1243 } 1244 1245 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */ 1246 error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK | 1247 BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map); 1248 if (error != 0) { 1249 device_printf(sc->nfe_dev, 1250 "could not allocate DMA'able memory for jumbo Rx ring\n"); 1251 goto fail; 1252 } 1253 if (sc->nfe_flags & NFE_40BIT_ADDR) 1254 ring->jdesc64 = desc; 1255 else 1256 ring->jdesc32 = desc; 1257 1258 ctx.nfe_busaddr = 0; 1259 error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc, 1260 NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0); 1261 if (error != 0) { 1262 device_printf(sc->nfe_dev, 1263 "could not load DMA'able memory for jumbo Rx ring\n"); 1264 goto fail; 1265 } 1266 ring->jphysaddr = ctx.nfe_busaddr; 1267 1268 /* Create DMA maps for jumbo Rx buffers. */ 1269 error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map); 1270 if (error != 0) { 1271 device_printf(sc->nfe_dev, 1272 "could not create jumbo Rx DMA spare map\n"); 1273 goto fail; 1274 } 1275 1276 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 1277 data = &sc->jrxq.jdata[i]; 1278 data->rx_data_map = NULL; 1279 data->m = NULL; 1280 error = bus_dmamap_create(ring->jrx_data_tag, 0, 1281 &data->rx_data_map); 1282 if (error != 0) { 1283 device_printf(sc->nfe_dev, 1284 "could not create jumbo Rx DMA map\n"); 1285 goto fail; 1286 } 1287 } 1288 1289 return; 1290 1291 fail: 1292 /* 1293 * Running without jumbo frame support is ok for most cases 1294 * so don't fail on creating dma tag/map for jumbo frame. 1295 */ 1296 nfe_free_jrx_ring(sc, ring); 1297 device_printf(sc->nfe_dev, "disabling jumbo frame support due to " 1298 "resource shortage\n"); 1299 sc->nfe_jumbo_disable = 1; 1300 } 1301 1302 static int 1303 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1304 { 1305 void *desc; 1306 size_t descsize; 1307 int i; 1308 1309 ring->cur = ring->next = 0; 1310 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1311 desc = ring->desc64; 1312 descsize = sizeof (struct nfe_desc64); 1313 } else { 1314 desc = ring->desc32; 1315 descsize = sizeof (struct nfe_desc32); 1316 } 1317 bzero(desc, descsize * NFE_RX_RING_COUNT); 1318 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1319 if (nfe_newbuf(sc, i) != 0) 1320 return (ENOBUFS); 1321 } 1322 1323 bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map, 1324 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1325 1326 return (0); 1327 } 1328 1329 static int 1330 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring) 1331 { 1332 void *desc; 1333 size_t descsize; 1334 int i; 1335 1336 ring->jcur = ring->jnext = 0; 1337 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1338 desc = ring->jdesc64; 1339 descsize = sizeof (struct nfe_desc64); 1340 } else { 1341 desc = ring->jdesc32; 1342 descsize = sizeof (struct nfe_desc32); 1343 } 1344 bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT); 1345 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 1346 if (nfe_jnewbuf(sc, i) != 0) 1347 return (ENOBUFS); 1348 } 1349 1350 bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map, 1351 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1352 1353 return (0); 1354 } 1355 1356 static void 1357 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1358 { 1359 struct nfe_rx_data *data; 1360 void *desc; 1361 int i; 1362 1363 if (sc->nfe_flags & NFE_40BIT_ADDR) 1364 desc = ring->desc64; 1365 else 1366 desc = ring->desc32; 1367 1368 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1369 data = &ring->data[i]; 1370 if (data->rx_data_map != NULL) { 1371 bus_dmamap_destroy(ring->rx_data_tag, 1372 data->rx_data_map); 1373 data->rx_data_map = NULL; 1374 } 1375 if (data->m != NULL) { 1376 m_freem(data->m); 1377 data->m = NULL; 1378 } 1379 } 1380 if (ring->rx_data_tag != NULL) { 1381 if (ring->rx_spare_map != NULL) { 1382 bus_dmamap_destroy(ring->rx_data_tag, 1383 ring->rx_spare_map); 1384 ring->rx_spare_map = NULL; 1385 } 1386 bus_dma_tag_destroy(ring->rx_data_tag); 1387 ring->rx_data_tag = NULL; 1388 } 1389 1390 if (desc != NULL) { 1391 bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map); 1392 bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map); 1393 ring->desc64 = NULL; 1394 ring->desc32 = NULL; 1395 } 1396 if (ring->rx_desc_tag != NULL) { 1397 bus_dma_tag_destroy(ring->rx_desc_tag); 1398 ring->rx_desc_tag = NULL; 1399 } 1400 } 1401 1402 static void 1403 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring) 1404 { 1405 struct nfe_rx_data *data; 1406 void *desc; 1407 int i; 1408 1409 if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0) 1410 return; 1411 1412 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1413 desc = ring->jdesc64; 1414 } else { 1415 desc = ring->jdesc32; 1416 } 1417 1418 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 1419 data = &ring->jdata[i]; 1420 if (data->rx_data_map != NULL) { 1421 bus_dmamap_destroy(ring->jrx_data_tag, 1422 data->rx_data_map); 1423 data->rx_data_map = NULL; 1424 } 1425 if (data->m != NULL) { 1426 m_freem(data->m); 1427 data->m = NULL; 1428 } 1429 } 1430 if (ring->jrx_data_tag != NULL) { 1431 if (ring->jrx_spare_map != NULL) { 1432 bus_dmamap_destroy(ring->jrx_data_tag, 1433 ring->jrx_spare_map); 1434 ring->jrx_spare_map = NULL; 1435 } 1436 bus_dma_tag_destroy(ring->jrx_data_tag); 1437 ring->jrx_data_tag = NULL; 1438 } 1439 1440 if (desc != NULL) { 1441 bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map); 1442 bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map); 1443 ring->jdesc64 = NULL; 1444 ring->jdesc32 = NULL; 1445 } 1446 1447 if (ring->jrx_desc_tag != NULL) { 1448 bus_dma_tag_destroy(ring->jrx_desc_tag); 1449 ring->jrx_desc_tag = NULL; 1450 } 1451 } 1452 1453 static int 1454 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1455 { 1456 struct nfe_dmamap_arg ctx; 1457 int i, error; 1458 void *desc; 1459 int descsize; 1460 1461 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1462 desc = ring->desc64; 1463 descsize = sizeof (struct nfe_desc64); 1464 } else { 1465 desc = ring->desc32; 1466 descsize = sizeof (struct nfe_desc32); 1467 } 1468 1469 ring->queued = 0; 1470 ring->cur = ring->next = 0; 1471 1472 error = bus_dma_tag_create(sc->nfe_parent_tag, 1473 NFE_RING_ALIGN, 0, /* alignment, boundary */ 1474 BUS_SPACE_MAXADDR, /* lowaddr */ 1475 BUS_SPACE_MAXADDR, /* highaddr */ 1476 NULL, NULL, /* filter, filterarg */ 1477 NFE_TX_RING_COUNT * descsize, 1, /* maxsize, nsegments */ 1478 NFE_TX_RING_COUNT * descsize, /* maxsegsize */ 1479 0, /* flags */ 1480 NULL, NULL, /* lockfunc, lockarg */ 1481 &ring->tx_desc_tag); 1482 if (error != 0) { 1483 device_printf(sc->nfe_dev, "could not create desc DMA tag\n"); 1484 goto fail; 1485 } 1486 1487 error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK | 1488 BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map); 1489 if (error != 0) { 1490 device_printf(sc->nfe_dev, "could not create desc DMA map\n"); 1491 goto fail; 1492 } 1493 if (sc->nfe_flags & NFE_40BIT_ADDR) 1494 ring->desc64 = desc; 1495 else 1496 ring->desc32 = desc; 1497 1498 ctx.nfe_busaddr = 0; 1499 error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc, 1500 NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0); 1501 if (error != 0) { 1502 device_printf(sc->nfe_dev, "could not load desc DMA map\n"); 1503 goto fail; 1504 } 1505 ring->physaddr = ctx.nfe_busaddr; 1506 1507 error = bus_dma_tag_create(sc->nfe_parent_tag, 1508 1, 0, 1509 BUS_SPACE_MAXADDR, 1510 BUS_SPACE_MAXADDR, 1511 NULL, NULL, 1512 NFE_TSO_MAXSIZE, 1513 NFE_MAX_SCATTER, 1514 NFE_TSO_MAXSGSIZE, 1515 0, 1516 NULL, NULL, 1517 &ring->tx_data_tag); 1518 if (error != 0) { 1519 device_printf(sc->nfe_dev, "could not create Tx DMA tag\n"); 1520 goto fail; 1521 } 1522 1523 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1524 error = bus_dmamap_create(ring->tx_data_tag, 0, 1525 &ring->data[i].tx_data_map); 1526 if (error != 0) { 1527 device_printf(sc->nfe_dev, 1528 "could not create Tx DMA map\n"); 1529 goto fail; 1530 } 1531 } 1532 1533 fail: 1534 return (error); 1535 } 1536 1537 static void 1538 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1539 { 1540 void *desc; 1541 size_t descsize; 1542 1543 sc->nfe_force_tx = 0; 1544 ring->queued = 0; 1545 ring->cur = ring->next = 0; 1546 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1547 desc = ring->desc64; 1548 descsize = sizeof (struct nfe_desc64); 1549 } else { 1550 desc = ring->desc32; 1551 descsize = sizeof (struct nfe_desc32); 1552 } 1553 bzero(desc, descsize * NFE_TX_RING_COUNT); 1554 1555 bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map, 1556 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1557 } 1558 1559 static void 1560 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1561 { 1562 struct nfe_tx_data *data; 1563 void *desc; 1564 int i; 1565 1566 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1567 desc = ring->desc64; 1568 } else { 1569 desc = ring->desc32; 1570 } 1571 1572 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1573 data = &ring->data[i]; 1574 1575 if (data->m != NULL) { 1576 bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map, 1577 BUS_DMASYNC_POSTWRITE); 1578 bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map); 1579 m_freem(data->m); 1580 data->m = NULL; 1581 } 1582 if (data->tx_data_map != NULL) { 1583 bus_dmamap_destroy(ring->tx_data_tag, 1584 data->tx_data_map); 1585 data->tx_data_map = NULL; 1586 } 1587 } 1588 1589 if (ring->tx_data_tag != NULL) { 1590 bus_dma_tag_destroy(ring->tx_data_tag); 1591 ring->tx_data_tag = NULL; 1592 } 1593 1594 if (desc != NULL) { 1595 bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map, 1596 BUS_DMASYNC_POSTWRITE); 1597 bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map); 1598 bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map); 1599 ring->desc64 = NULL; 1600 ring->desc32 = NULL; 1601 bus_dma_tag_destroy(ring->tx_desc_tag); 1602 ring->tx_desc_tag = NULL; 1603 } 1604 } 1605 1606 #ifdef DEVICE_POLLING 1607 static poll_handler_t nfe_poll; 1608 1609 static int 1610 nfe_poll(if_t ifp, enum poll_cmd cmd, int count) 1611 { 1612 struct nfe_softc *sc = if_getsoftc(ifp); 1613 uint32_t r; 1614 int rx_npkts = 0; 1615 1616 NFE_LOCK(sc); 1617 1618 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 1619 NFE_UNLOCK(sc); 1620 return (rx_npkts); 1621 } 1622 1623 if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) 1624 rx_npkts = nfe_jrxeof(sc, count, &rx_npkts); 1625 else 1626 rx_npkts = nfe_rxeof(sc, count, &rx_npkts); 1627 nfe_txeof(sc); 1628 if (!if_sendq_empty(ifp)) 1629 nfe_start_locked(ifp); 1630 1631 if (cmd == POLL_AND_CHECK_STATUS) { 1632 if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) { 1633 NFE_UNLOCK(sc); 1634 return (rx_npkts); 1635 } 1636 NFE_WRITE(sc, sc->nfe_irq_status, r); 1637 1638 if (r & NFE_IRQ_LINK) { 1639 NFE_READ(sc, NFE_PHY_STATUS); 1640 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1641 DPRINTF(sc, "link state changed\n"); 1642 } 1643 } 1644 NFE_UNLOCK(sc); 1645 return (rx_npkts); 1646 } 1647 #endif /* DEVICE_POLLING */ 1648 1649 static void 1650 nfe_set_intr(struct nfe_softc *sc) 1651 { 1652 1653 if (sc->nfe_msi != 0) 1654 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); 1655 } 1656 1657 /* In MSIX, a write to mask reegisters behaves as XOR. */ 1658 static __inline void 1659 nfe_enable_intr(struct nfe_softc *sc) 1660 { 1661 1662 if (sc->nfe_msix != 0) { 1663 /* XXX Should have a better way to enable interrupts! */ 1664 if (NFE_READ(sc, sc->nfe_irq_mask) == 0) 1665 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs); 1666 } else 1667 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs); 1668 } 1669 1670 static __inline void 1671 nfe_disable_intr(struct nfe_softc *sc) 1672 { 1673 1674 if (sc->nfe_msix != 0) { 1675 /* XXX Should have a better way to disable interrupts! */ 1676 if (NFE_READ(sc, sc->nfe_irq_mask) != 0) 1677 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs); 1678 } else 1679 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs); 1680 } 1681 1682 static int 1683 nfe_ioctl(if_t ifp, u_long cmd, caddr_t data) 1684 { 1685 struct nfe_softc *sc; 1686 struct ifreq *ifr; 1687 struct mii_data *mii; 1688 int error, init, mask; 1689 1690 sc = if_getsoftc(ifp); 1691 ifr = (struct ifreq *) data; 1692 error = 0; 1693 init = 0; 1694 switch (cmd) { 1695 case SIOCSIFMTU: 1696 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU) 1697 error = EINVAL; 1698 else if (if_getmtu(ifp) != ifr->ifr_mtu) { 1699 if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) || 1700 (sc->nfe_jumbo_disable != 0)) && 1701 ifr->ifr_mtu > ETHERMTU) 1702 error = EINVAL; 1703 else { 1704 NFE_LOCK(sc); 1705 if_setmtu(ifp, ifr->ifr_mtu); 1706 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 1707 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1708 nfe_init_locked(sc); 1709 } 1710 NFE_UNLOCK(sc); 1711 } 1712 } 1713 break; 1714 case SIOCSIFFLAGS: 1715 NFE_LOCK(sc); 1716 if (if_getflags(ifp) & IFF_UP) { 1717 /* 1718 * If only the PROMISC or ALLMULTI flag changes, then 1719 * don't do a full re-init of the chip, just update 1720 * the Rx filter. 1721 */ 1722 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) && 1723 ((if_getflags(ifp) ^ sc->nfe_if_flags) & 1724 (IFF_ALLMULTI | IFF_PROMISC)) != 0) 1725 nfe_setmulti(sc); 1726 else 1727 nfe_init_locked(sc); 1728 } else { 1729 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 1730 nfe_stop(ifp); 1731 } 1732 sc->nfe_if_flags = if_getflags(ifp); 1733 NFE_UNLOCK(sc); 1734 error = 0; 1735 break; 1736 case SIOCADDMULTI: 1737 case SIOCDELMULTI: 1738 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1739 NFE_LOCK(sc); 1740 nfe_setmulti(sc); 1741 NFE_UNLOCK(sc); 1742 error = 0; 1743 } 1744 break; 1745 case SIOCSIFMEDIA: 1746 case SIOCGIFMEDIA: 1747 mii = device_get_softc(sc->nfe_miibus); 1748 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1749 break; 1750 case SIOCSIFCAP: 1751 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 1752 #ifdef DEVICE_POLLING 1753 if ((mask & IFCAP_POLLING) != 0) { 1754 if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) { 1755 error = ether_poll_register(nfe_poll, ifp); 1756 if (error) 1757 break; 1758 NFE_LOCK(sc); 1759 nfe_disable_intr(sc); 1760 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 1761 NFE_UNLOCK(sc); 1762 } else { 1763 error = ether_poll_deregister(ifp); 1764 /* Enable interrupt even in error case */ 1765 NFE_LOCK(sc); 1766 nfe_enable_intr(sc); 1767 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 1768 NFE_UNLOCK(sc); 1769 } 1770 } 1771 #endif /* DEVICE_POLLING */ 1772 if ((mask & IFCAP_WOL_MAGIC) != 0 && 1773 (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0) 1774 if_togglecapenable(ifp, IFCAP_WOL_MAGIC); 1775 if ((mask & IFCAP_TXCSUM) != 0 && 1776 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 1777 if_togglecapenable(ifp, IFCAP_TXCSUM); 1778 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 1779 if_sethwassistbits(ifp, NFE_CSUM_FEATURES, 0); 1780 else 1781 if_sethwassistbits(ifp, 0, NFE_CSUM_FEATURES); 1782 } 1783 if ((mask & IFCAP_RXCSUM) != 0 && 1784 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) { 1785 if_togglecapenable(ifp, IFCAP_RXCSUM); 1786 init++; 1787 } 1788 if ((mask & IFCAP_TSO4) != 0 && 1789 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 1790 if_togglecapenable(ifp, IFCAP_TSO4); 1791 if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0) 1792 if_sethwassistbits(ifp, CSUM_TSO, 0); 1793 else 1794 if_sethwassistbits(ifp, 0, CSUM_TSO); 1795 } 1796 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 1797 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 1798 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 1799 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 1800 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 1801 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 1802 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 1803 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO); 1804 init++; 1805 } 1806 /* 1807 * XXX 1808 * It seems that VLAN stripping requires Rx checksum offload. 1809 * Unfortunately FreeBSD has no way to disable only Rx side 1810 * VLAN stripping. So when we know Rx checksum offload is 1811 * disabled turn entire hardware VLAN assist off. 1812 */ 1813 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) == 0) { 1814 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) 1815 init++; 1816 if_setcapenablebit(ifp, 0, 1817 (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO)); 1818 } 1819 if (init > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1820 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1821 nfe_init(sc); 1822 } 1823 if_vlancap(ifp); 1824 break; 1825 default: 1826 error = ether_ioctl(ifp, cmd, data); 1827 break; 1828 } 1829 1830 return (error); 1831 } 1832 1833 static int 1834 nfe_intr(void *arg) 1835 { 1836 struct nfe_softc *sc; 1837 uint32_t status; 1838 1839 sc = (struct nfe_softc *)arg; 1840 1841 status = NFE_READ(sc, sc->nfe_irq_status); 1842 if (status == 0 || status == 0xffffffff) 1843 return (FILTER_STRAY); 1844 nfe_disable_intr(sc); 1845 taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task); 1846 1847 return (FILTER_HANDLED); 1848 } 1849 1850 static void 1851 nfe_int_task(void *arg, int pending) 1852 { 1853 struct nfe_softc *sc = arg; 1854 if_t ifp = sc->nfe_ifp; 1855 uint32_t r; 1856 int domore; 1857 1858 NFE_LOCK(sc); 1859 1860 if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) { 1861 nfe_enable_intr(sc); 1862 NFE_UNLOCK(sc); 1863 return; /* not for us */ 1864 } 1865 NFE_WRITE(sc, sc->nfe_irq_status, r); 1866 1867 DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r); 1868 1869 #ifdef DEVICE_POLLING 1870 if (if_getcapenable(ifp) & IFCAP_POLLING) { 1871 NFE_UNLOCK(sc); 1872 return; 1873 } 1874 #endif 1875 1876 if (r & NFE_IRQ_LINK) { 1877 NFE_READ(sc, NFE_PHY_STATUS); 1878 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1879 DPRINTF(sc, "link state changed\n"); 1880 } 1881 1882 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 1883 NFE_UNLOCK(sc); 1884 nfe_disable_intr(sc); 1885 return; 1886 } 1887 1888 domore = 0; 1889 /* check Rx ring */ 1890 if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) 1891 domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL); 1892 else 1893 domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL); 1894 /* check Tx ring */ 1895 nfe_txeof(sc); 1896 1897 if (!if_sendq_empty(ifp)) 1898 nfe_start_locked(ifp); 1899 1900 NFE_UNLOCK(sc); 1901 1902 if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) { 1903 taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task); 1904 return; 1905 } 1906 1907 /* Reenable interrupts. */ 1908 nfe_enable_intr(sc); 1909 } 1910 1911 static __inline void 1912 nfe_discard_rxbuf(struct nfe_softc *sc, int idx) 1913 { 1914 struct nfe_desc32 *desc32; 1915 struct nfe_desc64 *desc64; 1916 struct nfe_rx_data *data; 1917 struct mbuf *m; 1918 1919 data = &sc->rxq.data[idx]; 1920 m = data->m; 1921 1922 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1923 desc64 = &sc->rxq.desc64[idx]; 1924 /* VLAN packet may have overwritten it. */ 1925 desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr)); 1926 desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr)); 1927 desc64->length = htole16(m->m_len); 1928 desc64->flags = htole16(NFE_RX_READY); 1929 } else { 1930 desc32 = &sc->rxq.desc32[idx]; 1931 desc32->length = htole16(m->m_len); 1932 desc32->flags = htole16(NFE_RX_READY); 1933 } 1934 } 1935 1936 static __inline void 1937 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx) 1938 { 1939 struct nfe_desc32 *desc32; 1940 struct nfe_desc64 *desc64; 1941 struct nfe_rx_data *data; 1942 struct mbuf *m; 1943 1944 data = &sc->jrxq.jdata[idx]; 1945 m = data->m; 1946 1947 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1948 desc64 = &sc->jrxq.jdesc64[idx]; 1949 /* VLAN packet may have overwritten it. */ 1950 desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr)); 1951 desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr)); 1952 desc64->length = htole16(m->m_len); 1953 desc64->flags = htole16(NFE_RX_READY); 1954 } else { 1955 desc32 = &sc->jrxq.jdesc32[idx]; 1956 desc32->length = htole16(m->m_len); 1957 desc32->flags = htole16(NFE_RX_READY); 1958 } 1959 } 1960 1961 static int 1962 nfe_newbuf(struct nfe_softc *sc, int idx) 1963 { 1964 struct nfe_rx_data *data; 1965 struct nfe_desc32 *desc32; 1966 struct nfe_desc64 *desc64; 1967 struct mbuf *m; 1968 bus_dma_segment_t segs[1]; 1969 bus_dmamap_t map; 1970 int nsegs; 1971 1972 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1973 if (m == NULL) 1974 return (ENOBUFS); 1975 1976 m->m_len = m->m_pkthdr.len = MCLBYTES; 1977 m_adj(m, ETHER_ALIGN); 1978 1979 if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map, 1980 m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) { 1981 m_freem(m); 1982 return (ENOBUFS); 1983 } 1984 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1985 1986 data = &sc->rxq.data[idx]; 1987 if (data->m != NULL) { 1988 bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map, 1989 BUS_DMASYNC_POSTREAD); 1990 bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map); 1991 } 1992 map = data->rx_data_map; 1993 data->rx_data_map = sc->rxq.rx_spare_map; 1994 sc->rxq.rx_spare_map = map; 1995 bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map, 1996 BUS_DMASYNC_PREREAD); 1997 data->paddr = segs[0].ds_addr; 1998 data->m = m; 1999 /* update mapping address in h/w descriptor */ 2000 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2001 desc64 = &sc->rxq.desc64[idx]; 2002 desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr)); 2003 desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 2004 desc64->length = htole16(segs[0].ds_len); 2005 desc64->flags = htole16(NFE_RX_READY); 2006 } else { 2007 desc32 = &sc->rxq.desc32[idx]; 2008 desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 2009 desc32->length = htole16(segs[0].ds_len); 2010 desc32->flags = htole16(NFE_RX_READY); 2011 } 2012 2013 return (0); 2014 } 2015 2016 static int 2017 nfe_jnewbuf(struct nfe_softc *sc, int idx) 2018 { 2019 struct nfe_rx_data *data; 2020 struct nfe_desc32 *desc32; 2021 struct nfe_desc64 *desc64; 2022 struct mbuf *m; 2023 bus_dma_segment_t segs[1]; 2024 bus_dmamap_t map; 2025 int nsegs; 2026 2027 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 2028 if (m == NULL) 2029 return (ENOBUFS); 2030 m->m_pkthdr.len = m->m_len = MJUM9BYTES; 2031 m_adj(m, ETHER_ALIGN); 2032 2033 if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag, 2034 sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) { 2035 m_freem(m); 2036 return (ENOBUFS); 2037 } 2038 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 2039 2040 data = &sc->jrxq.jdata[idx]; 2041 if (data->m != NULL) { 2042 bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map, 2043 BUS_DMASYNC_POSTREAD); 2044 bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map); 2045 } 2046 map = data->rx_data_map; 2047 data->rx_data_map = sc->jrxq.jrx_spare_map; 2048 sc->jrxq.jrx_spare_map = map; 2049 bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map, 2050 BUS_DMASYNC_PREREAD); 2051 data->paddr = segs[0].ds_addr; 2052 data->m = m; 2053 /* update mapping address in h/w descriptor */ 2054 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2055 desc64 = &sc->jrxq.jdesc64[idx]; 2056 desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr)); 2057 desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 2058 desc64->length = htole16(segs[0].ds_len); 2059 desc64->flags = htole16(NFE_RX_READY); 2060 } else { 2061 desc32 = &sc->jrxq.jdesc32[idx]; 2062 desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 2063 desc32->length = htole16(segs[0].ds_len); 2064 desc32->flags = htole16(NFE_RX_READY); 2065 } 2066 2067 return (0); 2068 } 2069 2070 static int 2071 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp) 2072 { 2073 if_t ifp = sc->nfe_ifp; 2074 struct nfe_desc32 *desc32; 2075 struct nfe_desc64 *desc64; 2076 struct nfe_rx_data *data; 2077 struct mbuf *m; 2078 uint16_t flags; 2079 int len, prog, rx_npkts; 2080 uint32_t vtag = 0; 2081 2082 rx_npkts = 0; 2083 NFE_LOCK_ASSERT(sc); 2084 2085 bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map, 2086 BUS_DMASYNC_POSTREAD); 2087 2088 for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) { 2089 if (count <= 0) 2090 break; 2091 count--; 2092 2093 data = &sc->rxq.data[sc->rxq.cur]; 2094 2095 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2096 desc64 = &sc->rxq.desc64[sc->rxq.cur]; 2097 vtag = le32toh(desc64->physaddr[1]); 2098 flags = le16toh(desc64->flags); 2099 len = le16toh(desc64->length) & NFE_RX_LEN_MASK; 2100 } else { 2101 desc32 = &sc->rxq.desc32[sc->rxq.cur]; 2102 flags = le16toh(desc32->flags); 2103 len = le16toh(desc32->length) & NFE_RX_LEN_MASK; 2104 } 2105 2106 if (flags & NFE_RX_READY) 2107 break; 2108 prog++; 2109 if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 2110 if (!(flags & NFE_RX_VALID_V1)) { 2111 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2112 nfe_discard_rxbuf(sc, sc->rxq.cur); 2113 continue; 2114 } 2115 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { 2116 flags &= ~NFE_RX_ERROR; 2117 len--; /* fix buffer length */ 2118 } 2119 } else { 2120 if (!(flags & NFE_RX_VALID_V2)) { 2121 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2122 nfe_discard_rxbuf(sc, sc->rxq.cur); 2123 continue; 2124 } 2125 2126 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { 2127 flags &= ~NFE_RX_ERROR; 2128 len--; /* fix buffer length */ 2129 } 2130 } 2131 2132 if (flags & NFE_RX_ERROR) { 2133 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2134 nfe_discard_rxbuf(sc, sc->rxq.cur); 2135 continue; 2136 } 2137 2138 m = data->m; 2139 if (nfe_newbuf(sc, sc->rxq.cur) != 0) { 2140 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2141 nfe_discard_rxbuf(sc, sc->rxq.cur); 2142 continue; 2143 } 2144 2145 if ((vtag & NFE_RX_VTAG) != 0 && 2146 (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 2147 m->m_pkthdr.ether_vtag = vtag & 0xffff; 2148 m->m_flags |= M_VLANTAG; 2149 } 2150 2151 m->m_pkthdr.len = m->m_len = len; 2152 m->m_pkthdr.rcvif = ifp; 2153 2154 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { 2155 if ((flags & NFE_RX_IP_CSUMOK) != 0) { 2156 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2157 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2158 if ((flags & NFE_RX_TCP_CSUMOK) != 0 || 2159 (flags & NFE_RX_UDP_CSUMOK) != 0) { 2160 m->m_pkthdr.csum_flags |= 2161 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2162 m->m_pkthdr.csum_data = 0xffff; 2163 } 2164 } 2165 } 2166 2167 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2168 2169 NFE_UNLOCK(sc); 2170 if_input(ifp, m); 2171 NFE_LOCK(sc); 2172 rx_npkts++; 2173 } 2174 2175 if (prog > 0) 2176 bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map, 2177 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2178 2179 if (rx_npktsp != NULL) 2180 *rx_npktsp = rx_npkts; 2181 return (count > 0 ? 0 : EAGAIN); 2182 } 2183 2184 static int 2185 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp) 2186 { 2187 if_t ifp = sc->nfe_ifp; 2188 struct nfe_desc32 *desc32; 2189 struct nfe_desc64 *desc64; 2190 struct nfe_rx_data *data; 2191 struct mbuf *m; 2192 uint16_t flags; 2193 int len, prog, rx_npkts; 2194 uint32_t vtag = 0; 2195 2196 rx_npkts = 0; 2197 NFE_LOCK_ASSERT(sc); 2198 2199 bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map, 2200 BUS_DMASYNC_POSTREAD); 2201 2202 for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT), 2203 vtag = 0) { 2204 if (count <= 0) 2205 break; 2206 count--; 2207 2208 data = &sc->jrxq.jdata[sc->jrxq.jcur]; 2209 2210 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2211 desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur]; 2212 vtag = le32toh(desc64->physaddr[1]); 2213 flags = le16toh(desc64->flags); 2214 len = le16toh(desc64->length) & NFE_RX_LEN_MASK; 2215 } else { 2216 desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur]; 2217 flags = le16toh(desc32->flags); 2218 len = le16toh(desc32->length) & NFE_RX_LEN_MASK; 2219 } 2220 2221 if (flags & NFE_RX_READY) 2222 break; 2223 prog++; 2224 if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 2225 if (!(flags & NFE_RX_VALID_V1)) { 2226 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2227 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2228 continue; 2229 } 2230 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { 2231 flags &= ~NFE_RX_ERROR; 2232 len--; /* fix buffer length */ 2233 } 2234 } else { 2235 if (!(flags & NFE_RX_VALID_V2)) { 2236 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2237 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2238 continue; 2239 } 2240 2241 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { 2242 flags &= ~NFE_RX_ERROR; 2243 len--; /* fix buffer length */ 2244 } 2245 } 2246 2247 if (flags & NFE_RX_ERROR) { 2248 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2249 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2250 continue; 2251 } 2252 2253 m = data->m; 2254 if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) { 2255 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2256 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2257 continue; 2258 } 2259 2260 if ((vtag & NFE_RX_VTAG) != 0 && 2261 (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 2262 m->m_pkthdr.ether_vtag = vtag & 0xffff; 2263 m->m_flags |= M_VLANTAG; 2264 } 2265 2266 m->m_pkthdr.len = m->m_len = len; 2267 m->m_pkthdr.rcvif = ifp; 2268 2269 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { 2270 if ((flags & NFE_RX_IP_CSUMOK) != 0) { 2271 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2272 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2273 if ((flags & NFE_RX_TCP_CSUMOK) != 0 || 2274 (flags & NFE_RX_UDP_CSUMOK) != 0) { 2275 m->m_pkthdr.csum_flags |= 2276 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2277 m->m_pkthdr.csum_data = 0xffff; 2278 } 2279 } 2280 } 2281 2282 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2283 2284 NFE_UNLOCK(sc); 2285 if_input(ifp, m); 2286 NFE_LOCK(sc); 2287 rx_npkts++; 2288 } 2289 2290 if (prog > 0) 2291 bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map, 2292 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2293 2294 if (rx_npktsp != NULL) 2295 *rx_npktsp = rx_npkts; 2296 return (count > 0 ? 0 : EAGAIN); 2297 } 2298 2299 static void 2300 nfe_txeof(struct nfe_softc *sc) 2301 { 2302 if_t ifp = sc->nfe_ifp; 2303 struct nfe_desc32 *desc32; 2304 struct nfe_desc64 *desc64; 2305 struct nfe_tx_data *data = NULL; 2306 uint16_t flags; 2307 int cons, prog; 2308 2309 NFE_LOCK_ASSERT(sc); 2310 2311 bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, 2312 BUS_DMASYNC_POSTREAD); 2313 2314 prog = 0; 2315 for (cons = sc->txq.next; cons != sc->txq.cur; 2316 NFE_INC(cons, NFE_TX_RING_COUNT)) { 2317 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2318 desc64 = &sc->txq.desc64[cons]; 2319 flags = le16toh(desc64->flags); 2320 } else { 2321 desc32 = &sc->txq.desc32[cons]; 2322 flags = le16toh(desc32->flags); 2323 } 2324 2325 if (flags & NFE_TX_VALID) 2326 break; 2327 2328 prog++; 2329 sc->txq.queued--; 2330 data = &sc->txq.data[cons]; 2331 2332 if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 2333 if ((flags & NFE_TX_LASTFRAG_V1) == 0) 2334 continue; 2335 if ((flags & NFE_TX_ERROR_V1) != 0) { 2336 device_printf(sc->nfe_dev, 2337 "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR); 2338 2339 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2340 } else 2341 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2342 } else { 2343 if ((flags & NFE_TX_LASTFRAG_V2) == 0) 2344 continue; 2345 if ((flags & NFE_TX_ERROR_V2) != 0) { 2346 device_printf(sc->nfe_dev, 2347 "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR); 2348 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2349 } else 2350 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2351 } 2352 2353 /* last fragment of the mbuf chain transmitted */ 2354 KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__)); 2355 bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map, 2356 BUS_DMASYNC_POSTWRITE); 2357 bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map); 2358 m_freem(data->m); 2359 data->m = NULL; 2360 } 2361 2362 if (prog > 0) { 2363 sc->nfe_force_tx = 0; 2364 sc->txq.next = cons; 2365 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 2366 if (sc->txq.queued == 0) 2367 sc->nfe_watchdog_timer = 0; 2368 } 2369 } 2370 2371 static int 2372 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head) 2373 { 2374 struct nfe_desc32 *desc32 = NULL; 2375 struct nfe_desc64 *desc64 = NULL; 2376 bus_dmamap_t map; 2377 bus_dma_segment_t segs[NFE_MAX_SCATTER]; 2378 int error, i, nsegs, prod, si; 2379 uint32_t tsosegsz; 2380 uint16_t cflags, flags; 2381 struct mbuf *m; 2382 2383 prod = si = sc->txq.cur; 2384 map = sc->txq.data[prod].tx_data_map; 2385 2386 error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs, 2387 &nsegs, BUS_DMA_NOWAIT); 2388 if (error == EFBIG) { 2389 m = m_collapse(*m_head, M_NOWAIT, NFE_MAX_SCATTER); 2390 if (m == NULL) { 2391 m_freem(*m_head); 2392 *m_head = NULL; 2393 return (ENOBUFS); 2394 } 2395 *m_head = m; 2396 error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, 2397 *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2398 if (error != 0) { 2399 m_freem(*m_head); 2400 *m_head = NULL; 2401 return (ENOBUFS); 2402 } 2403 } else if (error != 0) 2404 return (error); 2405 if (nsegs == 0) { 2406 m_freem(*m_head); 2407 *m_head = NULL; 2408 return (EIO); 2409 } 2410 2411 if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) { 2412 bus_dmamap_unload(sc->txq.tx_data_tag, map); 2413 return (ENOBUFS); 2414 } 2415 2416 m = *m_head; 2417 cflags = flags = 0; 2418 tsosegsz = 0; 2419 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2420 tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz << 2421 NFE_TX_TSO_SHIFT; 2422 cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM); 2423 cflags |= NFE_TX_TSO; 2424 } else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) { 2425 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 2426 cflags |= NFE_TX_IP_CSUM; 2427 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 2428 cflags |= NFE_TX_TCP_UDP_CSUM; 2429 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 2430 cflags |= NFE_TX_TCP_UDP_CSUM; 2431 } 2432 2433 for (i = 0; i < nsegs; i++) { 2434 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2435 desc64 = &sc->txq.desc64[prod]; 2436 desc64->physaddr[0] = 2437 htole32(NFE_ADDR_HI(segs[i].ds_addr)); 2438 desc64->physaddr[1] = 2439 htole32(NFE_ADDR_LO(segs[i].ds_addr)); 2440 desc64->vtag = 0; 2441 desc64->length = htole16(segs[i].ds_len - 1); 2442 desc64->flags = htole16(flags); 2443 } else { 2444 desc32 = &sc->txq.desc32[prod]; 2445 desc32->physaddr = 2446 htole32(NFE_ADDR_LO(segs[i].ds_addr)); 2447 desc32->length = htole16(segs[i].ds_len - 1); 2448 desc32->flags = htole16(flags); 2449 } 2450 2451 /* 2452 * Setting of the valid bit in the first descriptor is 2453 * deferred until the whole chain is fully setup. 2454 */ 2455 flags |= NFE_TX_VALID; 2456 2457 sc->txq.queued++; 2458 NFE_INC(prod, NFE_TX_RING_COUNT); 2459 } 2460 2461 /* 2462 * the whole mbuf chain has been DMA mapped, fix last/first descriptor. 2463 * csum flags, vtag and TSO belong to the first fragment only. 2464 */ 2465 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2466 desc64->flags |= htole16(NFE_TX_LASTFRAG_V2); 2467 desc64 = &sc->txq.desc64[si]; 2468 if ((m->m_flags & M_VLANTAG) != 0) 2469 desc64->vtag = htole32(NFE_TX_VTAG | 2470 m->m_pkthdr.ether_vtag); 2471 if (tsosegsz != 0) { 2472 /* 2473 * XXX 2474 * The following indicates the descriptor element 2475 * is a 32bit quantity. 2476 */ 2477 desc64->length |= htole16((uint16_t)tsosegsz); 2478 desc64->flags |= htole16(tsosegsz >> 16); 2479 } 2480 /* 2481 * finally, set the valid/checksum/TSO bit in the first 2482 * descriptor. 2483 */ 2484 desc64->flags |= htole16(NFE_TX_VALID | cflags); 2485 } else { 2486 if (sc->nfe_flags & NFE_JUMBO_SUP) 2487 desc32->flags |= htole16(NFE_TX_LASTFRAG_V2); 2488 else 2489 desc32->flags |= htole16(NFE_TX_LASTFRAG_V1); 2490 desc32 = &sc->txq.desc32[si]; 2491 if (tsosegsz != 0) { 2492 /* 2493 * XXX 2494 * The following indicates the descriptor element 2495 * is a 32bit quantity. 2496 */ 2497 desc32->length |= htole16((uint16_t)tsosegsz); 2498 desc32->flags |= htole16(tsosegsz >> 16); 2499 } 2500 /* 2501 * finally, set the valid/checksum/TSO bit in the first 2502 * descriptor. 2503 */ 2504 desc32->flags |= htole16(NFE_TX_VALID | cflags); 2505 } 2506 2507 sc->txq.cur = prod; 2508 prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT; 2509 sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map; 2510 sc->txq.data[prod].tx_data_map = map; 2511 sc->txq.data[prod].m = m; 2512 2513 bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE); 2514 2515 return (0); 2516 } 2517 2518 struct nfe_hash_maddr_ctx { 2519 uint8_t addr[ETHER_ADDR_LEN]; 2520 uint8_t mask[ETHER_ADDR_LEN]; 2521 }; 2522 2523 static u_int 2524 nfe_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 2525 { 2526 struct nfe_hash_maddr_ctx *ctx = arg; 2527 uint8_t *addrp, mcaddr; 2528 int j; 2529 2530 addrp = LLADDR(sdl); 2531 for (j = 0; j < ETHER_ADDR_LEN; j++) { 2532 mcaddr = addrp[j]; 2533 ctx->addr[j] &= mcaddr; 2534 ctx->mask[j] &= ~mcaddr; 2535 } 2536 2537 return (1); 2538 } 2539 2540 static void 2541 nfe_setmulti(struct nfe_softc *sc) 2542 { 2543 if_t ifp = sc->nfe_ifp; 2544 struct nfe_hash_maddr_ctx ctx; 2545 uint32_t filter; 2546 uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 2547 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2548 }; 2549 int i; 2550 2551 NFE_LOCK_ASSERT(sc); 2552 2553 if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 2554 bzero(ctx.addr, ETHER_ADDR_LEN); 2555 bzero(ctx.mask, ETHER_ADDR_LEN); 2556 goto done; 2557 } 2558 2559 bcopy(etherbroadcastaddr, ctx.addr, ETHER_ADDR_LEN); 2560 bcopy(etherbroadcastaddr, ctx.mask, ETHER_ADDR_LEN); 2561 2562 if_foreach_llmaddr(ifp, nfe_hash_maddr, &ctx); 2563 2564 for (i = 0; i < ETHER_ADDR_LEN; i++) { 2565 ctx.mask[i] |= ctx.addr[i]; 2566 } 2567 2568 done: 2569 ctx.addr[0] |= 0x01; /* make sure multicast bit is set */ 2570 2571 NFE_WRITE(sc, NFE_MULTIADDR_HI, ctx.addr[3] << 24 | ctx.addr[2] << 16 | 2572 ctx.addr[1] << 8 | ctx.addr[0]); 2573 NFE_WRITE(sc, NFE_MULTIADDR_LO, 2574 ctx.addr[5] << 8 | ctx.addr[4]); 2575 NFE_WRITE(sc, NFE_MULTIMASK_HI, ctx.mask[3] << 24 | ctx.mask[2] << 16 | 2576 ctx.mask[1] << 8 | ctx.mask[0]); 2577 NFE_WRITE(sc, NFE_MULTIMASK_LO, 2578 ctx.mask[5] << 8 | ctx.mask[4]); 2579 2580 filter = NFE_READ(sc, NFE_RXFILTER); 2581 filter &= NFE_PFF_RX_PAUSE; 2582 filter |= NFE_RXFILTER_MAGIC; 2583 filter |= (if_getflags(ifp) & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M; 2584 NFE_WRITE(sc, NFE_RXFILTER, filter); 2585 } 2586 2587 static void 2588 nfe_start(if_t ifp) 2589 { 2590 struct nfe_softc *sc = if_getsoftc(ifp); 2591 2592 NFE_LOCK(sc); 2593 nfe_start_locked(ifp); 2594 NFE_UNLOCK(sc); 2595 } 2596 2597 static void 2598 nfe_start_locked(if_t ifp) 2599 { 2600 struct nfe_softc *sc = if_getsoftc(ifp); 2601 struct mbuf *m0; 2602 int enq = 0; 2603 2604 NFE_LOCK_ASSERT(sc); 2605 2606 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2607 IFF_DRV_RUNNING || sc->nfe_link == 0) 2608 return; 2609 2610 while (!if_sendq_empty(ifp)) { 2611 m0 = if_dequeue(ifp); 2612 2613 if (m0 == NULL) 2614 break; 2615 2616 if (nfe_encap(sc, &m0) != 0) { 2617 if (m0 == NULL) 2618 break; 2619 if_sendq_prepend(ifp, m0); 2620 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 2621 break; 2622 } 2623 enq++; 2624 ether_bpf_mtap_if(ifp, m0); 2625 } 2626 2627 if (enq > 0) { 2628 bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, 2629 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2630 2631 /* kick Tx */ 2632 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); 2633 2634 /* 2635 * Set a timeout in case the chip goes out to lunch. 2636 */ 2637 sc->nfe_watchdog_timer = 5; 2638 } 2639 } 2640 2641 static void 2642 nfe_watchdog(if_t ifp) 2643 { 2644 struct nfe_softc *sc = if_getsoftc(ifp); 2645 2646 if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer) 2647 return; 2648 2649 /* Check if we've lost Tx completion interrupt. */ 2650 nfe_txeof(sc); 2651 if (sc->txq.queued == 0) { 2652 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 2653 "-- recovering\n"); 2654 if (!if_sendq_empty(ifp)) 2655 nfe_start_locked(ifp); 2656 return; 2657 } 2658 /* Check if we've lost start Tx command. */ 2659 sc->nfe_force_tx++; 2660 if (sc->nfe_force_tx <= 3) { 2661 /* 2662 * If this is the case for watchdog timeout, the following 2663 * code should go to nfe_txeof(). 2664 */ 2665 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); 2666 return; 2667 } 2668 sc->nfe_force_tx = 0; 2669 2670 if_printf(ifp, "watchdog timeout\n"); 2671 2672 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2673 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2674 nfe_init_locked(sc); 2675 } 2676 2677 static void 2678 nfe_init(void *xsc) 2679 { 2680 struct nfe_softc *sc = xsc; 2681 2682 NFE_LOCK(sc); 2683 nfe_init_locked(sc); 2684 NFE_UNLOCK(sc); 2685 } 2686 2687 static void 2688 nfe_init_locked(void *xsc) 2689 { 2690 struct nfe_softc *sc = xsc; 2691 if_t ifp = sc->nfe_ifp; 2692 struct mii_data *mii; 2693 uint32_t val; 2694 int error; 2695 2696 NFE_LOCK_ASSERT(sc); 2697 2698 mii = device_get_softc(sc->nfe_miibus); 2699 2700 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2701 return; 2702 2703 nfe_stop(ifp); 2704 2705 sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS; 2706 2707 nfe_init_tx_ring(sc, &sc->txq); 2708 if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN)) 2709 error = nfe_init_jrx_ring(sc, &sc->jrxq); 2710 else 2711 error = nfe_init_rx_ring(sc, &sc->rxq); 2712 if (error != 0) { 2713 device_printf(sc->nfe_dev, 2714 "initialization failed: no memory for rx buffers\n"); 2715 nfe_stop(ifp); 2716 return; 2717 } 2718 2719 val = 0; 2720 if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0) 2721 val |= NFE_MAC_ADDR_INORDER; 2722 NFE_WRITE(sc, NFE_TX_UNK, val); 2723 NFE_WRITE(sc, NFE_STATUS, 0); 2724 2725 if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) 2726 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE); 2727 2728 sc->rxtxctl = NFE_RXTX_BIT2; 2729 if (sc->nfe_flags & NFE_40BIT_ADDR) 2730 sc->rxtxctl |= NFE_RXTX_V3MAGIC; 2731 else if (sc->nfe_flags & NFE_JUMBO_SUP) 2732 sc->rxtxctl |= NFE_RXTX_V2MAGIC; 2733 2734 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) 2735 sc->rxtxctl |= NFE_RXTX_RXCSUM; 2736 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) 2737 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP; 2738 2739 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl); 2740 DELAY(10); 2741 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 2742 2743 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) 2744 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE); 2745 else 2746 NFE_WRITE(sc, NFE_VTAG_CTL, 0); 2747 2748 NFE_WRITE(sc, NFE_SETUP_R6, 0); 2749 2750 /* set MAC address */ 2751 nfe_set_macaddr(sc, if_getlladdr(ifp)); 2752 2753 /* tell MAC where rings are in memory */ 2754 if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) { 2755 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 2756 NFE_ADDR_HI(sc->jrxq.jphysaddr)); 2757 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 2758 NFE_ADDR_LO(sc->jrxq.jphysaddr)); 2759 } else { 2760 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 2761 NFE_ADDR_HI(sc->rxq.physaddr)); 2762 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 2763 NFE_ADDR_LO(sc->rxq.physaddr)); 2764 } 2765 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr)); 2766 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr)); 2767 2768 NFE_WRITE(sc, NFE_RING_SIZE, 2769 (NFE_RX_RING_COUNT - 1) << 16 | 2770 (NFE_TX_RING_COUNT - 1)); 2771 2772 NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize); 2773 2774 /* force MAC to wakeup */ 2775 val = NFE_READ(sc, NFE_PWR_STATE); 2776 if ((val & NFE_PWR_WAKEUP) == 0) 2777 NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP); 2778 DELAY(10); 2779 val = NFE_READ(sc, NFE_PWR_STATE); 2780 NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID); 2781 2782 #if 1 2783 /* configure interrupts coalescing/mitigation */ 2784 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT); 2785 #else 2786 /* no interrupt mitigation: one interrupt per packet */ 2787 NFE_WRITE(sc, NFE_IMTIMER, 970); 2788 #endif 2789 2790 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100); 2791 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); 2792 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC); 2793 2794 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */ 2795 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC); 2796 2797 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); 2798 /* Disable WOL. */ 2799 NFE_WRITE(sc, NFE_WOL_CTL, 0); 2800 2801 sc->rxtxctl &= ~NFE_RXTX_BIT2; 2802 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 2803 DELAY(10); 2804 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl); 2805 2806 /* set Rx filter */ 2807 nfe_setmulti(sc); 2808 2809 /* enable Rx */ 2810 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); 2811 2812 /* enable Tx */ 2813 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START); 2814 2815 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 2816 2817 /* Clear hardware stats. */ 2818 nfe_stats_clear(sc); 2819 2820 #ifdef DEVICE_POLLING 2821 if (if_getcapenable(ifp) & IFCAP_POLLING) 2822 nfe_disable_intr(sc); 2823 else 2824 #endif 2825 nfe_set_intr(sc); 2826 nfe_enable_intr(sc); /* enable interrupts */ 2827 2828 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 2829 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 2830 2831 sc->nfe_link = 0; 2832 mii_mediachg(mii); 2833 2834 callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc); 2835 } 2836 2837 static void 2838 nfe_stop(if_t ifp) 2839 { 2840 struct nfe_softc *sc = if_getsoftc(ifp); 2841 struct nfe_rx_ring *rx_ring; 2842 struct nfe_jrx_ring *jrx_ring; 2843 struct nfe_tx_ring *tx_ring; 2844 struct nfe_rx_data *rdata; 2845 struct nfe_tx_data *tdata; 2846 int i; 2847 2848 NFE_LOCK_ASSERT(sc); 2849 2850 sc->nfe_watchdog_timer = 0; 2851 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 2852 2853 callout_stop(&sc->nfe_stat_ch); 2854 2855 /* abort Tx */ 2856 NFE_WRITE(sc, NFE_TX_CTL, 0); 2857 2858 /* disable Rx */ 2859 NFE_WRITE(sc, NFE_RX_CTL, 0); 2860 2861 /* disable interrupts */ 2862 nfe_disable_intr(sc); 2863 2864 sc->nfe_link = 0; 2865 2866 /* free Rx and Tx mbufs still in the queues. */ 2867 rx_ring = &sc->rxq; 2868 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 2869 rdata = &rx_ring->data[i]; 2870 if (rdata->m != NULL) { 2871 bus_dmamap_sync(rx_ring->rx_data_tag, 2872 rdata->rx_data_map, BUS_DMASYNC_POSTREAD); 2873 bus_dmamap_unload(rx_ring->rx_data_tag, 2874 rdata->rx_data_map); 2875 m_freem(rdata->m); 2876 rdata->m = NULL; 2877 } 2878 } 2879 2880 if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) { 2881 jrx_ring = &sc->jrxq; 2882 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 2883 rdata = &jrx_ring->jdata[i]; 2884 if (rdata->m != NULL) { 2885 bus_dmamap_sync(jrx_ring->jrx_data_tag, 2886 rdata->rx_data_map, BUS_DMASYNC_POSTREAD); 2887 bus_dmamap_unload(jrx_ring->jrx_data_tag, 2888 rdata->rx_data_map); 2889 m_freem(rdata->m); 2890 rdata->m = NULL; 2891 } 2892 } 2893 } 2894 2895 tx_ring = &sc->txq; 2896 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 2897 tdata = &tx_ring->data[i]; 2898 if (tdata->m != NULL) { 2899 bus_dmamap_sync(tx_ring->tx_data_tag, 2900 tdata->tx_data_map, BUS_DMASYNC_POSTWRITE); 2901 bus_dmamap_unload(tx_ring->tx_data_tag, 2902 tdata->tx_data_map); 2903 m_freem(tdata->m); 2904 tdata->m = NULL; 2905 } 2906 } 2907 /* Update hardware stats. */ 2908 nfe_stats_update(sc); 2909 } 2910 2911 static int 2912 nfe_ifmedia_upd(if_t ifp) 2913 { 2914 struct nfe_softc *sc = if_getsoftc(ifp); 2915 struct mii_data *mii; 2916 2917 NFE_LOCK(sc); 2918 mii = device_get_softc(sc->nfe_miibus); 2919 mii_mediachg(mii); 2920 NFE_UNLOCK(sc); 2921 2922 return (0); 2923 } 2924 2925 static void 2926 nfe_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2927 { 2928 struct nfe_softc *sc; 2929 struct mii_data *mii; 2930 2931 sc = if_getsoftc(ifp); 2932 2933 NFE_LOCK(sc); 2934 mii = device_get_softc(sc->nfe_miibus); 2935 mii_pollstat(mii); 2936 2937 ifmr->ifm_active = mii->mii_media_active; 2938 ifmr->ifm_status = mii->mii_media_status; 2939 NFE_UNLOCK(sc); 2940 } 2941 2942 void 2943 nfe_tick(void *xsc) 2944 { 2945 struct nfe_softc *sc; 2946 struct mii_data *mii; 2947 if_t ifp; 2948 2949 sc = (struct nfe_softc *)xsc; 2950 2951 NFE_LOCK_ASSERT(sc); 2952 2953 ifp = sc->nfe_ifp; 2954 2955 mii = device_get_softc(sc->nfe_miibus); 2956 mii_tick(mii); 2957 nfe_stats_update(sc); 2958 nfe_watchdog(ifp); 2959 callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc); 2960 } 2961 2962 static int 2963 nfe_shutdown(device_t dev) 2964 { 2965 2966 return (nfe_suspend(dev)); 2967 } 2968 2969 static void 2970 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr) 2971 { 2972 uint32_t val; 2973 2974 if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) { 2975 val = NFE_READ(sc, NFE_MACADDR_LO); 2976 addr[0] = (val >> 8) & 0xff; 2977 addr[1] = (val & 0xff); 2978 2979 val = NFE_READ(sc, NFE_MACADDR_HI); 2980 addr[2] = (val >> 24) & 0xff; 2981 addr[3] = (val >> 16) & 0xff; 2982 addr[4] = (val >> 8) & 0xff; 2983 addr[5] = (val & 0xff); 2984 } else { 2985 val = NFE_READ(sc, NFE_MACADDR_LO); 2986 addr[5] = (val >> 8) & 0xff; 2987 addr[4] = (val & 0xff); 2988 2989 val = NFE_READ(sc, NFE_MACADDR_HI); 2990 addr[3] = (val >> 24) & 0xff; 2991 addr[2] = (val >> 16) & 0xff; 2992 addr[1] = (val >> 8) & 0xff; 2993 addr[0] = (val & 0xff); 2994 } 2995 } 2996 2997 static void 2998 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr) 2999 { 3000 3001 NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] << 8 | addr[4]); 3002 NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 | 3003 addr[1] << 8 | addr[0]); 3004 } 3005 3006 /* 3007 * Map a single buffer address. 3008 */ 3009 3010 static void 3011 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3012 { 3013 struct nfe_dmamap_arg *ctx; 3014 3015 if (error != 0) 3016 return; 3017 3018 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 3019 3020 ctx = (struct nfe_dmamap_arg *)arg; 3021 ctx->nfe_busaddr = segs[0].ds_addr; 3022 } 3023 3024 static int 3025 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3026 { 3027 int error, value; 3028 3029 if (!arg1) 3030 return (EINVAL); 3031 value = *(int *)arg1; 3032 error = sysctl_handle_int(oidp, &value, 0, req); 3033 if (error || !req->newptr) 3034 return (error); 3035 if (value < low || value > high) 3036 return (EINVAL); 3037 *(int *)arg1 = value; 3038 3039 return (0); 3040 } 3041 3042 static int 3043 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS) 3044 { 3045 3046 return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN, 3047 NFE_PROC_MAX)); 3048 } 3049 3050 #define NFE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 3051 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 3052 #define NFE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 3053 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 3054 3055 static void 3056 nfe_sysctl_node(struct nfe_softc *sc) 3057 { 3058 struct sysctl_ctx_list *ctx; 3059 struct sysctl_oid_list *child, *parent; 3060 struct sysctl_oid *tree; 3061 struct nfe_hw_stats *stats; 3062 int error; 3063 3064 stats = &sc->nfe_stats; 3065 ctx = device_get_sysctl_ctx(sc->nfe_dev); 3066 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev)); 3067 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 3068 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 3069 &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I", 3070 "max number of Rx events to process"); 3071 3072 sc->nfe_process_limit = NFE_PROC_DEFAULT; 3073 error = resource_int_value(device_get_name(sc->nfe_dev), 3074 device_get_unit(sc->nfe_dev), "process_limit", 3075 &sc->nfe_process_limit); 3076 if (error == 0) { 3077 if (sc->nfe_process_limit < NFE_PROC_MIN || 3078 sc->nfe_process_limit > NFE_PROC_MAX) { 3079 device_printf(sc->nfe_dev, 3080 "process_limit value out of range; " 3081 "using default: %d\n", NFE_PROC_DEFAULT); 3082 sc->nfe_process_limit = NFE_PROC_DEFAULT; 3083 } 3084 } 3085 3086 if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0) 3087 return; 3088 3089 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", 3090 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NFE statistics"); 3091 parent = SYSCTL_CHILDREN(tree); 3092 3093 /* Rx statistics. */ 3094 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", 3095 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics"); 3096 child = SYSCTL_CHILDREN(tree); 3097 3098 NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors", 3099 &stats->rx_frame_errors, "Framing Errors"); 3100 NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes", 3101 &stats->rx_extra_bytes, "Extra Bytes"); 3102 NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols", 3103 &stats->rx_late_cols, "Late Collisions"); 3104 NFE_SYSCTL_STAT_ADD32(ctx, child, "runts", 3105 &stats->rx_runts, "Runts"); 3106 NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos", 3107 &stats->rx_jumbos, "Jumbos"); 3108 NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns", 3109 &stats->rx_fifo_overuns, "FIFO Overruns"); 3110 NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors", 3111 &stats->rx_crc_errors, "CRC Errors"); 3112 NFE_SYSCTL_STAT_ADD32(ctx, child, "fae", 3113 &stats->rx_fae, "Frame Alignment Errors"); 3114 NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors", 3115 &stats->rx_len_errors, "Length Errors"); 3116 NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast", 3117 &stats->rx_unicast, "Unicast Frames"); 3118 NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast", 3119 &stats->rx_multicast, "Multicast Frames"); 3120 NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast", 3121 &stats->rx_broadcast, "Broadcast Frames"); 3122 if ((sc->nfe_flags & NFE_MIB_V2) != 0) { 3123 NFE_SYSCTL_STAT_ADD64(ctx, child, "octets", 3124 &stats->rx_octets, "Octets"); 3125 NFE_SYSCTL_STAT_ADD32(ctx, child, "pause", 3126 &stats->rx_pause, "Pause frames"); 3127 NFE_SYSCTL_STAT_ADD32(ctx, child, "drops", 3128 &stats->rx_drops, "Drop frames"); 3129 } 3130 3131 /* Tx statistics. */ 3132 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", 3133 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics"); 3134 child = SYSCTL_CHILDREN(tree); 3135 NFE_SYSCTL_STAT_ADD64(ctx, child, "octets", 3136 &stats->tx_octets, "Octets"); 3137 NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits", 3138 &stats->tx_zero_rexmits, "Zero Retransmits"); 3139 NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits", 3140 &stats->tx_one_rexmits, "One Retransmits"); 3141 NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits", 3142 &stats->tx_multi_rexmits, "Multiple Retransmits"); 3143 NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols", 3144 &stats->tx_late_cols, "Late Collisions"); 3145 NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns", 3146 &stats->tx_fifo_underuns, "FIFO Underruns"); 3147 NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts", 3148 &stats->tx_carrier_losts, "Carrier Losts"); 3149 NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals", 3150 &stats->tx_excess_deferals, "Excess Deferrals"); 3151 NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors", 3152 &stats->tx_retry_errors, "Retry Errors"); 3153 if ((sc->nfe_flags & NFE_MIB_V2) != 0) { 3154 NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals", 3155 &stats->tx_deferals, "Deferrals"); 3156 NFE_SYSCTL_STAT_ADD32(ctx, child, "frames", 3157 &stats->tx_frames, "Frames"); 3158 NFE_SYSCTL_STAT_ADD32(ctx, child, "pause", 3159 &stats->tx_pause, "Pause Frames"); 3160 } 3161 if ((sc->nfe_flags & NFE_MIB_V3) != 0) { 3162 NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast", 3163 &stats->tx_deferals, "Unicast Frames"); 3164 NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast", 3165 &stats->tx_frames, "Multicast Frames"); 3166 NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast", 3167 &stats->tx_pause, "Broadcast Frames"); 3168 } 3169 } 3170 3171 #undef NFE_SYSCTL_STAT_ADD32 3172 #undef NFE_SYSCTL_STAT_ADD64 3173 3174 static void 3175 nfe_stats_clear(struct nfe_softc *sc) 3176 { 3177 int i, mib_cnt; 3178 3179 if ((sc->nfe_flags & NFE_MIB_V1) != 0) 3180 mib_cnt = NFE_NUM_MIB_STATV1; 3181 else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0) 3182 mib_cnt = NFE_NUM_MIB_STATV2; 3183 else 3184 return; 3185 3186 for (i = 0; i < mib_cnt; i++) 3187 NFE_READ(sc, NFE_TX_OCTET + i * sizeof(uint32_t)); 3188 3189 if ((sc->nfe_flags & NFE_MIB_V3) != 0) { 3190 NFE_READ(sc, NFE_TX_UNICAST); 3191 NFE_READ(sc, NFE_TX_MULTICAST); 3192 NFE_READ(sc, NFE_TX_BROADCAST); 3193 } 3194 } 3195 3196 static void 3197 nfe_stats_update(struct nfe_softc *sc) 3198 { 3199 struct nfe_hw_stats *stats; 3200 3201 NFE_LOCK_ASSERT(sc); 3202 3203 if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0) 3204 return; 3205 3206 stats = &sc->nfe_stats; 3207 stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET); 3208 stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT); 3209 stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT); 3210 stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT); 3211 stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL); 3212 stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN); 3213 stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST); 3214 stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL); 3215 stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR); 3216 stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR); 3217 stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES); 3218 stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL); 3219 stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT); 3220 stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO); 3221 stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN); 3222 stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR); 3223 stats->rx_fae += NFE_READ(sc, NFE_RX_FAE); 3224 stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR); 3225 stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST); 3226 stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST); 3227 stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST); 3228 3229 if ((sc->nfe_flags & NFE_MIB_V2) != 0) { 3230 stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL); 3231 stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME); 3232 stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET); 3233 stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE); 3234 stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE); 3235 stats->rx_drops += NFE_READ(sc, NFE_RX_DROP); 3236 } 3237 3238 if ((sc->nfe_flags & NFE_MIB_V3) != 0) { 3239 stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST); 3240 stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST); 3241 stats->tx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST); 3242 } 3243 } 3244 3245 static void 3246 nfe_set_linkspeed(struct nfe_softc *sc) 3247 { 3248 struct mii_softc *miisc; 3249 struct mii_data *mii; 3250 int aneg, i, phyno; 3251 3252 NFE_LOCK_ASSERT(sc); 3253 3254 mii = device_get_softc(sc->nfe_miibus); 3255 mii_pollstat(mii); 3256 aneg = 0; 3257 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 3258 (IFM_ACTIVE | IFM_AVALID)) { 3259 switch IFM_SUBTYPE(mii->mii_media_active) { 3260 case IFM_10_T: 3261 case IFM_100_TX: 3262 return; 3263 case IFM_1000_T: 3264 aneg++; 3265 break; 3266 default: 3267 break; 3268 } 3269 } 3270 miisc = LIST_FIRST(&mii->mii_phys); 3271 phyno = miisc->mii_phy; 3272 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 3273 PHY_RESET(miisc); 3274 nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0); 3275 nfe_miibus_writereg(sc->nfe_dev, phyno, 3276 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 3277 nfe_miibus_writereg(sc->nfe_dev, phyno, 3278 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 3279 DELAY(1000); 3280 if (aneg != 0) { 3281 /* 3282 * Poll link state until nfe(4) get a 10/100Mbps link. 3283 */ 3284 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 3285 mii_pollstat(mii); 3286 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 3287 == (IFM_ACTIVE | IFM_AVALID)) { 3288 switch (IFM_SUBTYPE(mii->mii_media_active)) { 3289 case IFM_10_T: 3290 case IFM_100_TX: 3291 nfe_mac_config(sc, mii); 3292 return; 3293 default: 3294 break; 3295 } 3296 } 3297 NFE_UNLOCK(sc); 3298 pause("nfelnk", hz); 3299 NFE_LOCK(sc); 3300 } 3301 if (i == MII_ANEGTICKS_GIGE) 3302 device_printf(sc->nfe_dev, 3303 "establishing a link failed, WOL may not work!"); 3304 } 3305 /* 3306 * No link, force MAC to have 100Mbps, full-duplex link. 3307 * This is the last resort and may/may not work. 3308 */ 3309 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 3310 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 3311 nfe_mac_config(sc, mii); 3312 } 3313 3314 static void 3315 nfe_set_wol(struct nfe_softc *sc) 3316 { 3317 if_t ifp; 3318 uint32_t wolctl; 3319 int pmc; 3320 uint16_t pmstat; 3321 3322 NFE_LOCK_ASSERT(sc); 3323 3324 if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0) 3325 return; 3326 ifp = sc->nfe_ifp; 3327 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) 3328 wolctl = NFE_WOL_MAGIC; 3329 else 3330 wolctl = 0; 3331 NFE_WRITE(sc, NFE_WOL_CTL, wolctl); 3332 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) { 3333 nfe_set_linkspeed(sc); 3334 if ((sc->nfe_flags & NFE_PWR_MGMT) != 0) 3335 NFE_WRITE(sc, NFE_PWR2_CTL, 3336 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS); 3337 /* Enable RX. */ 3338 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0); 3339 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0); 3340 NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) | 3341 NFE_RX_START); 3342 } 3343 /* Request PME if WOL is requested. */ 3344 pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2); 3345 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3346 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) 3347 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3348 pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 3349 } 3350