xref: /freebsd/sys/dev/nfe/if_nfe.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_arp.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/if_vlan_var.h>
51 
52 #include <net/bpf.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/bus.h>
57 #include <sys/rman.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <dev/nfe/if_nfereg.h>
66 #include <dev/nfe/if_nfevar.h>
67 
68 MODULE_DEPEND(nfe, pci, 1, 1, 1);
69 MODULE_DEPEND(nfe, ether, 1, 1, 1);
70 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
71 
72 /* "device miibus" required.  See GENERIC if you get errors here. */
73 #include "miibus_if.h"
74 
75 static int  nfe_probe(device_t);
76 static int  nfe_attach(device_t);
77 static int  nfe_detach(device_t);
78 static int  nfe_suspend(device_t);
79 static int  nfe_resume(device_t);
80 static int nfe_shutdown(device_t);
81 static int  nfe_can_use_msix(struct nfe_softc *);
82 static int  nfe_detect_msik9(struct nfe_softc *);
83 static void nfe_power(struct nfe_softc *);
84 static int  nfe_miibus_readreg(device_t, int, int);
85 static int  nfe_miibus_writereg(device_t, int, int, int);
86 static void nfe_miibus_statchg(device_t);
87 static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
88 static void nfe_set_intr(struct nfe_softc *);
89 static __inline void nfe_enable_intr(struct nfe_softc *);
90 static __inline void nfe_disable_intr(struct nfe_softc *);
91 static int  nfe_ioctl(if_t, u_long, caddr_t);
92 static void nfe_alloc_msix(struct nfe_softc *, int);
93 static int nfe_intr(void *);
94 static void nfe_int_task(void *, int);
95 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
96 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
97 static int nfe_newbuf(struct nfe_softc *, int);
98 static int nfe_jnewbuf(struct nfe_softc *, int);
99 static int  nfe_rxeof(struct nfe_softc *, int, int *);
100 static int  nfe_jrxeof(struct nfe_softc *, int, int *);
101 static void nfe_txeof(struct nfe_softc *);
102 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
103 static void nfe_setmulti(struct nfe_softc *);
104 static void nfe_start(if_t);
105 static void nfe_start_locked(if_t);
106 static void nfe_watchdog(if_t);
107 static void nfe_init(void *);
108 static void nfe_init_locked(void *);
109 static void nfe_stop(if_t);
110 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
111 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
112 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
113 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
114 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
115 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
116 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
118 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
119 static int  nfe_ifmedia_upd(if_t);
120 static void nfe_ifmedia_sts(if_t, struct ifmediareq *);
121 static void nfe_tick(void *);
122 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
123 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
124 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
125 
126 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
127 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
128 static void nfe_sysctl_node(struct nfe_softc *);
129 static void nfe_stats_clear(struct nfe_softc *);
130 static void nfe_stats_update(struct nfe_softc *);
131 static void nfe_set_linkspeed(struct nfe_softc *);
132 static void nfe_set_wol(struct nfe_softc *);
133 
134 #ifdef NFE_DEBUG
135 static int nfedebug = 0;
136 #define	DPRINTF(sc, ...)	do {				\
137 	if (nfedebug)						\
138 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
139 } while (0)
140 #define	DPRINTFN(sc, n, ...)	do {				\
141 	if (nfedebug >= (n))					\
142 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
143 } while (0)
144 #else
145 #define	DPRINTF(sc, ...)
146 #define	DPRINTFN(sc, n, ...)
147 #endif
148 
149 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
150 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
151 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
152 
153 /* Tunables. */
154 static int msi_disable = 0;
155 static int msix_disable = 0;
156 static int jumbo_disable = 0;
157 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
158 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
159 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
160 
161 static device_method_t nfe_methods[] = {
162 	/* Device interface */
163 	DEVMETHOD(device_probe,		nfe_probe),
164 	DEVMETHOD(device_attach,	nfe_attach),
165 	DEVMETHOD(device_detach,	nfe_detach),
166 	DEVMETHOD(device_suspend,	nfe_suspend),
167 	DEVMETHOD(device_resume,	nfe_resume),
168 	DEVMETHOD(device_shutdown,	nfe_shutdown),
169 
170 	/* MII interface */
171 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
172 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
173 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
174 
175 	DEVMETHOD_END
176 };
177 
178 static driver_t nfe_driver = {
179 	"nfe",
180 	nfe_methods,
181 	sizeof(struct nfe_softc)
182 };
183 
184 static devclass_t nfe_devclass;
185 
186 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
187 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
188 
189 static struct nfe_type nfe_devs[] = {
190 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
191 	    "NVIDIA nForce MCP Networking Adapter"},
192 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
193 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
194 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
195 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
196 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
197 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
198 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
199 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
200 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
201 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
202 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
203 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
204 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
205 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
206 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
207 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
208 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
209 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
210 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
211 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
212 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
213 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
214 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
215 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
216 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
217 	    "NVIDIA nForce MCP55 Networking Adapter"},
218 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
219 	    "NVIDIA nForce MCP55 Networking Adapter"},
220 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
221 	    "NVIDIA nForce MCP61 Networking Adapter"},
222 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
223 	    "NVIDIA nForce MCP61 Networking Adapter"},
224 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
225 	    "NVIDIA nForce MCP61 Networking Adapter"},
226 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
227 	    "NVIDIA nForce MCP61 Networking Adapter"},
228 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
229 	    "NVIDIA nForce MCP65 Networking Adapter"},
230 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
231 	    "NVIDIA nForce MCP65 Networking Adapter"},
232 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
233 	    "NVIDIA nForce MCP65 Networking Adapter"},
234 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
235 	    "NVIDIA nForce MCP65 Networking Adapter"},
236 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
237 	    "NVIDIA nForce MCP67 Networking Adapter"},
238 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
239 	    "NVIDIA nForce MCP67 Networking Adapter"},
240 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
241 	    "NVIDIA nForce MCP67 Networking Adapter"},
242 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
243 	    "NVIDIA nForce MCP67 Networking Adapter"},
244 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
245 	    "NVIDIA nForce MCP73 Networking Adapter"},
246 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
247 	    "NVIDIA nForce MCP73 Networking Adapter"},
248 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
249 	    "NVIDIA nForce MCP73 Networking Adapter"},
250 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
251 	    "NVIDIA nForce MCP73 Networking Adapter"},
252 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
253 	    "NVIDIA nForce MCP77 Networking Adapter"},
254 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
255 	    "NVIDIA nForce MCP77 Networking Adapter"},
256 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
257 	    "NVIDIA nForce MCP77 Networking Adapter"},
258 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
259 	    "NVIDIA nForce MCP77 Networking Adapter"},
260 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
261 	    "NVIDIA nForce MCP79 Networking Adapter"},
262 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
263 	    "NVIDIA nForce MCP79 Networking Adapter"},
264 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
265 	    "NVIDIA nForce MCP79 Networking Adapter"},
266 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
267 	    "NVIDIA nForce MCP79 Networking Adapter"},
268 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP89_LAN,
269 	    "NVIDIA nForce MCP89 Networking Adapter"},
270 	{0, 0, NULL}
271 };
272 
273 
274 /* Probe for supported hardware ID's */
275 static int
276 nfe_probe(device_t dev)
277 {
278 	struct nfe_type *t;
279 
280 	t = nfe_devs;
281 	/* Check for matching PCI DEVICE ID's */
282 	while (t->name != NULL) {
283 		if ((pci_get_vendor(dev) == t->vid_id) &&
284 		    (pci_get_device(dev) == t->dev_id)) {
285 			device_set_desc(dev, t->name);
286 			return (BUS_PROBE_DEFAULT);
287 		}
288 		t++;
289 	}
290 
291 	return (ENXIO);
292 }
293 
294 static void
295 nfe_alloc_msix(struct nfe_softc *sc, int count)
296 {
297 	int rid;
298 
299 	rid = PCIR_BAR(2);
300 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
301 	    &rid, RF_ACTIVE);
302 	if (sc->nfe_msix_res == NULL) {
303 		device_printf(sc->nfe_dev,
304 		    "couldn't allocate MSIX table resource\n");
305 		return;
306 	}
307 	rid = PCIR_BAR(3);
308 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
309 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
310 	if (sc->nfe_msix_pba_res == NULL) {
311 		device_printf(sc->nfe_dev,
312 		    "couldn't allocate MSIX PBA resource\n");
313 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
314 		    sc->nfe_msix_res);
315 		sc->nfe_msix_res = NULL;
316 		return;
317 	}
318 
319 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
320 		if (count == NFE_MSI_MESSAGES) {
321 			if (bootverbose)
322 				device_printf(sc->nfe_dev,
323 				    "Using %d MSIX messages\n", count);
324 			sc->nfe_msix = 1;
325 		} else {
326 			if (bootverbose)
327 				device_printf(sc->nfe_dev,
328 				    "couldn't allocate MSIX\n");
329 			pci_release_msi(sc->nfe_dev);
330 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
331 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
332 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
333 			    PCIR_BAR(2), sc->nfe_msix_res);
334 			sc->nfe_msix_pba_res = NULL;
335 			sc->nfe_msix_res = NULL;
336 		}
337 	}
338 }
339 
340 
341 static int
342 nfe_detect_msik9(struct nfe_softc *sc)
343 {
344 	static const char *maker = "MSI";
345 	static const char *product = "K9N6PGM2-V2 (MS-7309)";
346 	char *m, *p;
347 	int found;
348 
349 	found = 0;
350 	m = kern_getenv("smbios.planar.maker");
351 	p = kern_getenv("smbios.planar.product");
352 	if (m != NULL && p != NULL) {
353 		if (strcmp(m, maker) == 0 && strcmp(p, product) == 0)
354 			found = 1;
355 	}
356 	if (m != NULL)
357 		freeenv(m);
358 	if (p != NULL)
359 		freeenv(p);
360 
361 	return (found);
362 }
363 
364 
365 static int
366 nfe_attach(device_t dev)
367 {
368 	struct nfe_softc *sc;
369 	if_t ifp;
370 	bus_addr_t dma_addr_max;
371 	int error = 0, i, msic, phyloc, reg, rid;
372 
373 	sc = device_get_softc(dev);
374 	sc->nfe_dev = dev;
375 
376 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
377 	    MTX_DEF);
378 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
379 
380 	pci_enable_busmaster(dev);
381 
382 	rid = PCIR_BAR(0);
383 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
384 	    RF_ACTIVE);
385 	if (sc->nfe_res[0] == NULL) {
386 		device_printf(dev, "couldn't map memory resources\n");
387 		mtx_destroy(&sc->nfe_mtx);
388 		return (ENXIO);
389 	}
390 
391 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
392 		uint16_t v, width;
393 
394 		v = pci_read_config(dev, reg + 0x08, 2);
395 		/* Change max. read request size to 4096. */
396 		v &= ~(7 << 12);
397 		v |= (5 << 12);
398 		pci_write_config(dev, reg + 0x08, v, 2);
399 
400 		v = pci_read_config(dev, reg + 0x0c, 2);
401 		/* link capability */
402 		v = (v >> 4) & 0x0f;
403 		width = pci_read_config(dev, reg + 0x12, 2);
404 		/* negotiated link width */
405 		width = (width >> 4) & 0x3f;
406 		if (v != width)
407 			device_printf(sc->nfe_dev,
408 			    "warning, negotiated width of link(x%d) != "
409 			    "max. width of link(x%d)\n", width, v);
410 	}
411 
412 	if (nfe_can_use_msix(sc) == 0) {
413 		device_printf(sc->nfe_dev,
414 		    "MSI/MSI-X capability black-listed, will use INTx\n");
415 		msix_disable = 1;
416 		msi_disable = 1;
417 	}
418 
419 	/* Allocate interrupt */
420 	if (msix_disable == 0 || msi_disable == 0) {
421 		if (msix_disable == 0 &&
422 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
423 			nfe_alloc_msix(sc, msic);
424 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
425 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
426 		    pci_alloc_msi(dev, &msic) == 0) {
427 			if (msic == NFE_MSI_MESSAGES) {
428 				if (bootverbose)
429 					device_printf(dev,
430 					    "Using %d MSI messages\n", msic);
431 				sc->nfe_msi = 1;
432 			} else
433 				pci_release_msi(dev);
434 		}
435 	}
436 
437 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
438 		rid = 0;
439 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
440 		    RF_SHAREABLE | RF_ACTIVE);
441 		if (sc->nfe_irq[0] == NULL) {
442 			device_printf(dev, "couldn't allocate IRQ resources\n");
443 			error = ENXIO;
444 			goto fail;
445 		}
446 	} else {
447 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
448 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
449 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
450 			if (sc->nfe_irq[i] == NULL) {
451 				device_printf(dev,
452 				    "couldn't allocate IRQ resources for "
453 				    "message %d\n", rid);
454 				error = ENXIO;
455 				goto fail;
456 			}
457 		}
458 		/* Map interrupts to vector 0. */
459 		if (sc->nfe_msix != 0) {
460 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
461 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
462 		} else if (sc->nfe_msi != 0) {
463 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
464 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
465 		}
466 	}
467 
468 	/* Set IRQ status/mask register. */
469 	sc->nfe_irq_status = NFE_IRQ_STATUS;
470 	sc->nfe_irq_mask = NFE_IRQ_MASK;
471 	sc->nfe_intrs = NFE_IRQ_WANTED;
472 	sc->nfe_nointrs = 0;
473 	if (sc->nfe_msix != 0) {
474 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
475 		sc->nfe_nointrs = NFE_IRQ_WANTED;
476 	} else if (sc->nfe_msi != 0) {
477 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
478 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
479 	}
480 
481 	sc->nfe_devid = pci_get_device(dev);
482 	sc->nfe_revid = pci_get_revid(dev);
483 	sc->nfe_flags = 0;
484 
485 	switch (sc->nfe_devid) {
486 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
487 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
488 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
489 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
490 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
491 		break;
492 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
493 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
494 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
495 		break;
496 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
497 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
498 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
499 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
500 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
501 		    NFE_MIB_V1;
502 		break;
503 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
504 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
505 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
506 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
507 		break;
508 
509 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
510 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
511 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
512 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
513 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
514 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
515 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
516 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
517 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
518 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
519 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
520 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
521 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
522 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
523 		break;
524 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
525 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
526 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
527 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
528 		/* XXX flow control */
529 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
530 		    NFE_CORRECT_MACADDR | NFE_MIB_V3;
531 		break;
532 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
533 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
534 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
535 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
536 	case PCI_PRODUCT_NVIDIA_MCP89_LAN:
537 		/* XXX flow control */
538 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
539 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
540 		break;
541 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
542 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
543 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
544 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
545 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
546 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
547 		    NFE_MIB_V2;
548 		break;
549 	}
550 
551 	nfe_power(sc);
552 	/* Check for reversed ethernet address */
553 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
554 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
555 	nfe_get_macaddr(sc, sc->eaddr);
556 	/*
557 	 * Allocate the parent bus DMA tag appropriate for PCI.
558 	 */
559 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
560 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
561 		dma_addr_max = NFE_DMA_MAXADDR;
562 	error = bus_dma_tag_create(
563 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
564 	    1, 0,				/* alignment, boundary */
565 	    dma_addr_max,			/* lowaddr */
566 	    BUS_SPACE_MAXADDR,			/* highaddr */
567 	    NULL, NULL,				/* filter, filterarg */
568 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
569 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
570 	    0,					/* flags */
571 	    NULL, NULL,				/* lockfunc, lockarg */
572 	    &sc->nfe_parent_tag);
573 	if (error)
574 		goto fail;
575 
576 	ifp = sc->nfe_ifp = if_gethandle(IFT_ETHER);
577 	if (ifp == NULL) {
578 		device_printf(dev, "can not if_gethandle()\n");
579 		error = ENOSPC;
580 		goto fail;
581 	}
582 
583 	/*
584 	 * Allocate Tx and Rx rings.
585 	 */
586 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
587 		goto fail;
588 
589 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
590 		goto fail;
591 
592 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
593 	/* Create sysctl node. */
594 	nfe_sysctl_node(sc);
595 
596 	if_setsoftc(ifp, sc);
597 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
598 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
599 	if_setioctlfn(ifp, nfe_ioctl);
600 	if_setstartfn(ifp, nfe_start);
601 	if_sethwassist(ifp, 0);
602 	if_setcapabilities(ifp, 0);
603 	if_setinitfn(ifp, nfe_init);
604 	if_setsendqlen(ifp, NFE_TX_RING_COUNT - 1);
605 	if_setsendqready(ifp);
606 
607 
608 	if (sc->nfe_flags & NFE_HW_CSUM) {
609 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
610 		if_sethwassistbits(ifp, NFE_CSUM_FEATURES | CSUM_TSO, 0);
611 	}
612 	if_setcapenable(ifp, if_getcapabilities(ifp));
613 
614 	sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
615 	/* VLAN capability setup. */
616 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
617 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
618 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0);
619 		if ((if_getcapabilities(ifp) & IFCAP_HWCSUM) != 0)
620 			if_setcapabilitiesbit(ifp,
621 			    (IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO), 0);
622 	}
623 
624 	if (pci_find_cap(dev, PCIY_PMG, &reg) == 0)
625 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
626 	if_setcapenable(ifp, if_getcapabilities(ifp));
627 
628 	/*
629 	 * Tell the upper layer(s) we support long frames.
630 	 * Must appear after the call to ether_ifattach() because
631 	 * ether_ifattach() sets ifi_hdrlen to the default value.
632 	 */
633 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
634 
635 #ifdef DEVICE_POLLING
636 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
637 #endif
638 
639 	/* Do MII setup */
640 	phyloc = MII_PHY_ANY;
641 	if (sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN1 ||
642 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN2 ||
643 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN3 ||
644 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN4) {
645 		if (nfe_detect_msik9(sc) != 0)
646 			phyloc = 0;
647 	}
648 	error = mii_attach(dev, &sc->nfe_miibus, ifp,
649 	    (ifm_change_cb_t)nfe_ifmedia_upd, (ifm_stat_cb_t)nfe_ifmedia_sts,
650 	    BMSR_DEFCAPMASK, phyloc, MII_OFFSET_ANY, MIIF_DOPAUSE);
651 	if (error != 0) {
652 		device_printf(dev, "attaching PHYs failed\n");
653 		goto fail;
654 	}
655 	ether_ifattach(ifp, sc->eaddr);
656 
657 	TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
658 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
659 	    taskqueue_thread_enqueue, &sc->nfe_tq);
660 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
661 	    device_get_nameunit(sc->nfe_dev));
662 	error = 0;
663 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
664 		error = bus_setup_intr(dev, sc->nfe_irq[0],
665 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
666 		    &sc->nfe_intrhand[0]);
667 	} else {
668 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
669 			error = bus_setup_intr(dev, sc->nfe_irq[i],
670 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
671 			    &sc->nfe_intrhand[i]);
672 			if (error != 0)
673 				break;
674 		}
675 	}
676 	if (error) {
677 		device_printf(dev, "couldn't set up irq\n");
678 		taskqueue_free(sc->nfe_tq);
679 		sc->nfe_tq = NULL;
680 		ether_ifdetach(ifp);
681 		goto fail;
682 	}
683 
684 fail:
685 	if (error)
686 		nfe_detach(dev);
687 
688 	return (error);
689 }
690 
691 
692 static int
693 nfe_detach(device_t dev)
694 {
695 	struct nfe_softc *sc;
696 	if_t ifp;
697 	uint8_t eaddr[ETHER_ADDR_LEN];
698 	int i, rid;
699 
700 	sc = device_get_softc(dev);
701 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
702 	ifp = sc->nfe_ifp;
703 
704 #ifdef DEVICE_POLLING
705 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
706 		ether_poll_deregister(ifp);
707 #endif
708 	if (device_is_attached(dev)) {
709 		NFE_LOCK(sc);
710 		nfe_stop(ifp);
711 		if_setflagbits(ifp, 0, IFF_UP);
712 		NFE_UNLOCK(sc);
713 		callout_drain(&sc->nfe_stat_ch);
714 		ether_ifdetach(ifp);
715 	}
716 
717 	if (ifp) {
718 		/* restore ethernet address */
719 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
720 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
721 				eaddr[i] = sc->eaddr[5 - i];
722 			}
723 		} else
724 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
725 		nfe_set_macaddr(sc, eaddr);
726 		if_free(ifp);
727 	}
728 	if (sc->nfe_miibus)
729 		device_delete_child(dev, sc->nfe_miibus);
730 	bus_generic_detach(dev);
731 	if (sc->nfe_tq != NULL) {
732 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
733 		taskqueue_free(sc->nfe_tq);
734 		sc->nfe_tq = NULL;
735 	}
736 
737 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
738 		if (sc->nfe_intrhand[i] != NULL) {
739 			bus_teardown_intr(dev, sc->nfe_irq[i],
740 			    sc->nfe_intrhand[i]);
741 			sc->nfe_intrhand[i] = NULL;
742 		}
743 	}
744 
745 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
746 		if (sc->nfe_irq[0] != NULL)
747 			bus_release_resource(dev, SYS_RES_IRQ, 0,
748 			    sc->nfe_irq[0]);
749 	} else {
750 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
751 			if (sc->nfe_irq[i] != NULL) {
752 				bus_release_resource(dev, SYS_RES_IRQ, rid,
753 				    sc->nfe_irq[i]);
754 				sc->nfe_irq[i] = NULL;
755 			}
756 		}
757 		pci_release_msi(dev);
758 	}
759 	if (sc->nfe_msix_pba_res != NULL) {
760 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
761 		    sc->nfe_msix_pba_res);
762 		sc->nfe_msix_pba_res = NULL;
763 	}
764 	if (sc->nfe_msix_res != NULL) {
765 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
766 		    sc->nfe_msix_res);
767 		sc->nfe_msix_res = NULL;
768 	}
769 	if (sc->nfe_res[0] != NULL) {
770 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
771 		    sc->nfe_res[0]);
772 		sc->nfe_res[0] = NULL;
773 	}
774 
775 	nfe_free_tx_ring(sc, &sc->txq);
776 	nfe_free_rx_ring(sc, &sc->rxq);
777 	nfe_free_jrx_ring(sc, &sc->jrxq);
778 
779 	if (sc->nfe_parent_tag) {
780 		bus_dma_tag_destroy(sc->nfe_parent_tag);
781 		sc->nfe_parent_tag = NULL;
782 	}
783 
784 	mtx_destroy(&sc->nfe_mtx);
785 
786 	return (0);
787 }
788 
789 
790 static int
791 nfe_suspend(device_t dev)
792 {
793 	struct nfe_softc *sc;
794 
795 	sc = device_get_softc(dev);
796 
797 	NFE_LOCK(sc);
798 	nfe_stop(sc->nfe_ifp);
799 	nfe_set_wol(sc);
800 	sc->nfe_suspended = 1;
801 	NFE_UNLOCK(sc);
802 
803 	return (0);
804 }
805 
806 
807 static int
808 nfe_resume(device_t dev)
809 {
810 	struct nfe_softc *sc;
811 	if_t ifp;
812 
813 	sc = device_get_softc(dev);
814 
815 	NFE_LOCK(sc);
816 	nfe_power(sc);
817 	ifp = sc->nfe_ifp;
818 	if (if_getflags(ifp) & IFF_UP)
819 		nfe_init_locked(sc);
820 	sc->nfe_suspended = 0;
821 	NFE_UNLOCK(sc);
822 
823 	return (0);
824 }
825 
826 
827 static int
828 nfe_can_use_msix(struct nfe_softc *sc)
829 {
830 	static struct msix_blacklist {
831 		char	*maker;
832 		char	*product;
833 	} msix_blacklists[] = {
834 		{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
835 	};
836 
837 	struct msix_blacklist *mblp;
838 	char *maker, *product;
839 	int count, n, use_msix;
840 
841 	/*
842 	 * Search base board manufacturer and product name table
843 	 * to see this system has a known MSI/MSI-X issue.
844 	 */
845 	maker = kern_getenv("smbios.planar.maker");
846 	product = kern_getenv("smbios.planar.product");
847 	use_msix = 1;
848 	if (maker != NULL && product != NULL) {
849 		count = nitems(msix_blacklists);
850 		mblp = msix_blacklists;
851 		for (n = 0; n < count; n++) {
852 			if (strcmp(maker, mblp->maker) == 0 &&
853 			    strcmp(product, mblp->product) == 0) {
854 				use_msix = 0;
855 				break;
856 			}
857 			mblp++;
858 		}
859 	}
860 	if (maker != NULL)
861 		freeenv(maker);
862 	if (product != NULL)
863 		freeenv(product);
864 
865 	return (use_msix);
866 }
867 
868 
869 /* Take PHY/NIC out of powerdown, from Linux */
870 static void
871 nfe_power(struct nfe_softc *sc)
872 {
873 	uint32_t pwr;
874 
875 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
876 		return;
877 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
878 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
879 	DELAY(100);
880 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
881 	DELAY(100);
882 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
883 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
884 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
885 	if (sc->nfe_revid >= 0xa3 &&
886 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
887 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
888 		pwr |= NFE_PWR2_REVA3;
889 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
890 }
891 
892 
893 static void
894 nfe_miibus_statchg(device_t dev)
895 {
896 	struct nfe_softc *sc;
897 	struct mii_data *mii;
898 	if_t ifp;
899 	uint32_t rxctl, txctl;
900 
901 	sc = device_get_softc(dev);
902 
903 	mii = device_get_softc(sc->nfe_miibus);
904 	ifp = sc->nfe_ifp;
905 
906 	sc->nfe_link = 0;
907 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
908 	    (IFM_ACTIVE | IFM_AVALID)) {
909 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
910 		case IFM_10_T:
911 		case IFM_100_TX:
912 		case IFM_1000_T:
913 			sc->nfe_link = 1;
914 			break;
915 		default:
916 			break;
917 		}
918 	}
919 
920 	nfe_mac_config(sc, mii);
921 	txctl = NFE_READ(sc, NFE_TX_CTL);
922 	rxctl = NFE_READ(sc, NFE_RX_CTL);
923 	if (sc->nfe_link != 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
924 		txctl |= NFE_TX_START;
925 		rxctl |= NFE_RX_START;
926 	} else {
927 		txctl &= ~NFE_TX_START;
928 		rxctl &= ~NFE_RX_START;
929 	}
930 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
931 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
932 }
933 
934 
935 static void
936 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
937 {
938 	uint32_t link, misc, phy, seed;
939 	uint32_t val;
940 
941 	NFE_LOCK_ASSERT(sc);
942 
943 	phy = NFE_READ(sc, NFE_PHY_IFACE);
944 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
945 
946 	seed = NFE_READ(sc, NFE_RNDSEED);
947 	seed &= ~NFE_SEED_MASK;
948 
949 	misc = NFE_MISC1_MAGIC;
950 	link = NFE_MEDIA_SET;
951 
952 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
953 		phy  |= NFE_PHY_HDX;	/* half-duplex */
954 		misc |= NFE_MISC1_HDX;
955 	}
956 
957 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
958 	case IFM_1000_T:	/* full-duplex only */
959 		link |= NFE_MEDIA_1000T;
960 		seed |= NFE_SEED_1000T;
961 		phy  |= NFE_PHY_1000T;
962 		break;
963 	case IFM_100_TX:
964 		link |= NFE_MEDIA_100TX;
965 		seed |= NFE_SEED_100TX;
966 		phy  |= NFE_PHY_100TX;
967 		break;
968 	case IFM_10_T:
969 		link |= NFE_MEDIA_10T;
970 		seed |= NFE_SEED_10T;
971 		break;
972 	}
973 
974 	if ((phy & 0x10000000) != 0) {
975 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
976 			val = NFE_R1_MAGIC_1000;
977 		else
978 			val = NFE_R1_MAGIC_10_100;
979 	} else
980 		val = NFE_R1_MAGIC_DEFAULT;
981 	NFE_WRITE(sc, NFE_SETUP_R1, val);
982 
983 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
984 
985 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
986 	NFE_WRITE(sc, NFE_MISC1, misc);
987 	NFE_WRITE(sc, NFE_LINKSPEED, link);
988 
989 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
990 		/* It seems all hardwares supports Rx pause frames. */
991 		val = NFE_READ(sc, NFE_RXFILTER);
992 		if ((IFM_OPTIONS(mii->mii_media_active) &
993 		    IFM_ETH_RXPAUSE) != 0)
994 			val |= NFE_PFF_RX_PAUSE;
995 		else
996 			val &= ~NFE_PFF_RX_PAUSE;
997 		NFE_WRITE(sc, NFE_RXFILTER, val);
998 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
999 			val = NFE_READ(sc, NFE_MISC1);
1000 			if ((IFM_OPTIONS(mii->mii_media_active) &
1001 			    IFM_ETH_TXPAUSE) != 0) {
1002 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1003 				    NFE_TX_PAUSE_FRAME_ENABLE);
1004 				val |= NFE_MISC1_TX_PAUSE;
1005 			} else {
1006 				val &= ~NFE_MISC1_TX_PAUSE;
1007 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1008 				    NFE_TX_PAUSE_FRAME_DISABLE);
1009 			}
1010 			NFE_WRITE(sc, NFE_MISC1, val);
1011 		}
1012 	} else {
1013 		/* disable rx/tx pause frames */
1014 		val = NFE_READ(sc, NFE_RXFILTER);
1015 		val &= ~NFE_PFF_RX_PAUSE;
1016 		NFE_WRITE(sc, NFE_RXFILTER, val);
1017 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
1018 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1019 			    NFE_TX_PAUSE_FRAME_DISABLE);
1020 			val = NFE_READ(sc, NFE_MISC1);
1021 			val &= ~NFE_MISC1_TX_PAUSE;
1022 			NFE_WRITE(sc, NFE_MISC1, val);
1023 		}
1024 	}
1025 }
1026 
1027 
1028 static int
1029 nfe_miibus_readreg(device_t dev, int phy, int reg)
1030 {
1031 	struct nfe_softc *sc = device_get_softc(dev);
1032 	uint32_t val;
1033 	int ntries;
1034 
1035 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1036 
1037 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1038 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1039 		DELAY(100);
1040 	}
1041 
1042 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
1043 
1044 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1045 		DELAY(100);
1046 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1047 			break;
1048 	}
1049 	if (ntries == NFE_TIMEOUT) {
1050 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
1051 		return 0;
1052 	}
1053 
1054 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
1055 		DPRINTFN(sc, 2, "could not read PHY\n");
1056 		return 0;
1057 	}
1058 
1059 	val = NFE_READ(sc, NFE_PHY_DATA);
1060 	if (val != 0xffffffff && val != 0)
1061 		sc->mii_phyaddr = phy;
1062 
1063 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
1064 
1065 	return (val);
1066 }
1067 
1068 
1069 static int
1070 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
1071 {
1072 	struct nfe_softc *sc = device_get_softc(dev);
1073 	uint32_t ctl;
1074 	int ntries;
1075 
1076 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1077 
1078 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1079 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1080 		DELAY(100);
1081 	}
1082 
1083 	NFE_WRITE(sc, NFE_PHY_DATA, val);
1084 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
1085 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
1086 
1087 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1088 		DELAY(100);
1089 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1090 			break;
1091 	}
1092 #ifdef NFE_DEBUG
1093 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
1094 		device_printf(sc->nfe_dev, "could not write to PHY\n");
1095 #endif
1096 	return (0);
1097 }
1098 
1099 struct nfe_dmamap_arg {
1100 	bus_addr_t nfe_busaddr;
1101 };
1102 
1103 static int
1104 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1105 {
1106 	struct nfe_dmamap_arg ctx;
1107 	struct nfe_rx_data *data;
1108 	void *desc;
1109 	int i, error, descsize;
1110 
1111 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1112 		desc = ring->desc64;
1113 		descsize = sizeof (struct nfe_desc64);
1114 	} else {
1115 		desc = ring->desc32;
1116 		descsize = sizeof (struct nfe_desc32);
1117 	}
1118 
1119 	ring->cur = ring->next = 0;
1120 
1121 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1122 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1123 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1124 	    BUS_SPACE_MAXADDR,			/* highaddr */
1125 	    NULL, NULL,				/* filter, filterarg */
1126 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1127 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1128 	    0,					/* flags */
1129 	    NULL, NULL,				/* lockfunc, lockarg */
1130 	    &ring->rx_desc_tag);
1131 	if (error != 0) {
1132 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1133 		goto fail;
1134 	}
1135 
1136 	/* allocate memory to desc */
1137 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1138 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1139 	if (error != 0) {
1140 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1141 		goto fail;
1142 	}
1143 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1144 		ring->desc64 = desc;
1145 	else
1146 		ring->desc32 = desc;
1147 
1148 	/* map desc to device visible address space */
1149 	ctx.nfe_busaddr = 0;
1150 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1151 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1152 	if (error != 0) {
1153 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1154 		goto fail;
1155 	}
1156 	ring->physaddr = ctx.nfe_busaddr;
1157 
1158 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1159 	    1, 0,			/* alignment, boundary */
1160 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1161 	    BUS_SPACE_MAXADDR,		/* highaddr */
1162 	    NULL, NULL,			/* filter, filterarg */
1163 	    MCLBYTES, 1,		/* maxsize, nsegments */
1164 	    MCLBYTES,			/* maxsegsize */
1165 	    0,				/* flags */
1166 	    NULL, NULL,			/* lockfunc, lockarg */
1167 	    &ring->rx_data_tag);
1168 	if (error != 0) {
1169 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1170 		goto fail;
1171 	}
1172 
1173 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1174 	if (error != 0) {
1175 		device_printf(sc->nfe_dev,
1176 		    "could not create Rx DMA spare map\n");
1177 		goto fail;
1178 	}
1179 
1180 	/*
1181 	 * Pre-allocate Rx buffers and populate Rx ring.
1182 	 */
1183 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1184 		data = &sc->rxq.data[i];
1185 		data->rx_data_map = NULL;
1186 		data->m = NULL;
1187 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1188 		    &data->rx_data_map);
1189 		if (error != 0) {
1190 			device_printf(sc->nfe_dev,
1191 			    "could not create Rx DMA map\n");
1192 			goto fail;
1193 		}
1194 	}
1195 
1196 fail:
1197 	return (error);
1198 }
1199 
1200 
1201 static void
1202 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1203 {
1204 	struct nfe_dmamap_arg ctx;
1205 	struct nfe_rx_data *data;
1206 	void *desc;
1207 	int i, error, descsize;
1208 
1209 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1210 		return;
1211 	if (jumbo_disable != 0) {
1212 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1213 		sc->nfe_jumbo_disable = 1;
1214 		return;
1215 	}
1216 
1217 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1218 		desc = ring->jdesc64;
1219 		descsize = sizeof (struct nfe_desc64);
1220 	} else {
1221 		desc = ring->jdesc32;
1222 		descsize = sizeof (struct nfe_desc32);
1223 	}
1224 
1225 	ring->jcur = ring->jnext = 0;
1226 
1227 	/* Create DMA tag for jumbo Rx ring. */
1228 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1229 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1230 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1231 	    BUS_SPACE_MAXADDR,			/* highaddr */
1232 	    NULL, NULL,				/* filter, filterarg */
1233 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1234 	    1, 					/* nsegments */
1235 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1236 	    0,					/* flags */
1237 	    NULL, NULL,				/* lockfunc, lockarg */
1238 	    &ring->jrx_desc_tag);
1239 	if (error != 0) {
1240 		device_printf(sc->nfe_dev,
1241 		    "could not create jumbo ring DMA tag\n");
1242 		goto fail;
1243 	}
1244 
1245 	/* Create DMA tag for jumbo Rx buffers. */
1246 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1247 	    1, 0,				/* alignment, boundary */
1248 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1249 	    BUS_SPACE_MAXADDR,			/* highaddr */
1250 	    NULL, NULL,				/* filter, filterarg */
1251 	    MJUM9BYTES,				/* maxsize */
1252 	    1,					/* nsegments */
1253 	    MJUM9BYTES,				/* maxsegsize */
1254 	    0,					/* flags */
1255 	    NULL, NULL,				/* lockfunc, lockarg */
1256 	    &ring->jrx_data_tag);
1257 	if (error != 0) {
1258 		device_printf(sc->nfe_dev,
1259 		    "could not create jumbo Rx buffer DMA tag\n");
1260 		goto fail;
1261 	}
1262 
1263 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1264 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1265 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1266 	if (error != 0) {
1267 		device_printf(sc->nfe_dev,
1268 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1269 		goto fail;
1270 	}
1271 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1272 		ring->jdesc64 = desc;
1273 	else
1274 		ring->jdesc32 = desc;
1275 
1276 	ctx.nfe_busaddr = 0;
1277 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1278 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1279 	if (error != 0) {
1280 		device_printf(sc->nfe_dev,
1281 		    "could not load DMA'able memory for jumbo Rx ring\n");
1282 		goto fail;
1283 	}
1284 	ring->jphysaddr = ctx.nfe_busaddr;
1285 
1286 	/* Create DMA maps for jumbo Rx buffers. */
1287 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1288 	if (error != 0) {
1289 		device_printf(sc->nfe_dev,
1290 		    "could not create jumbo Rx DMA spare map\n");
1291 		goto fail;
1292 	}
1293 
1294 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1295 		data = &sc->jrxq.jdata[i];
1296 		data->rx_data_map = NULL;
1297 		data->m = NULL;
1298 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1299 		    &data->rx_data_map);
1300 		if (error != 0) {
1301 			device_printf(sc->nfe_dev,
1302 			    "could not create jumbo Rx DMA map\n");
1303 			goto fail;
1304 		}
1305 	}
1306 
1307 	return;
1308 
1309 fail:
1310 	/*
1311 	 * Running without jumbo frame support is ok for most cases
1312 	 * so don't fail on creating dma tag/map for jumbo frame.
1313 	 */
1314 	nfe_free_jrx_ring(sc, ring);
1315 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1316 	    "resource shortage\n");
1317 	sc->nfe_jumbo_disable = 1;
1318 }
1319 
1320 
1321 static int
1322 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1323 {
1324 	void *desc;
1325 	size_t descsize;
1326 	int i;
1327 
1328 	ring->cur = ring->next = 0;
1329 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1330 		desc = ring->desc64;
1331 		descsize = sizeof (struct nfe_desc64);
1332 	} else {
1333 		desc = ring->desc32;
1334 		descsize = sizeof (struct nfe_desc32);
1335 	}
1336 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1337 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1338 		if (nfe_newbuf(sc, i) != 0)
1339 			return (ENOBUFS);
1340 	}
1341 
1342 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1343 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1344 
1345 	return (0);
1346 }
1347 
1348 
1349 static int
1350 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1351 {
1352 	void *desc;
1353 	size_t descsize;
1354 	int i;
1355 
1356 	ring->jcur = ring->jnext = 0;
1357 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1358 		desc = ring->jdesc64;
1359 		descsize = sizeof (struct nfe_desc64);
1360 	} else {
1361 		desc = ring->jdesc32;
1362 		descsize = sizeof (struct nfe_desc32);
1363 	}
1364 	bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
1365 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1366 		if (nfe_jnewbuf(sc, i) != 0)
1367 			return (ENOBUFS);
1368 	}
1369 
1370 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1371 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1372 
1373 	return (0);
1374 }
1375 
1376 
1377 static void
1378 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1379 {
1380 	struct nfe_rx_data *data;
1381 	void *desc;
1382 	int i;
1383 
1384 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1385 		desc = ring->desc64;
1386 	else
1387 		desc = ring->desc32;
1388 
1389 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1390 		data = &ring->data[i];
1391 		if (data->rx_data_map != NULL) {
1392 			bus_dmamap_destroy(ring->rx_data_tag,
1393 			    data->rx_data_map);
1394 			data->rx_data_map = NULL;
1395 		}
1396 		if (data->m != NULL) {
1397 			m_freem(data->m);
1398 			data->m = NULL;
1399 		}
1400 	}
1401 	if (ring->rx_data_tag != NULL) {
1402 		if (ring->rx_spare_map != NULL) {
1403 			bus_dmamap_destroy(ring->rx_data_tag,
1404 			    ring->rx_spare_map);
1405 			ring->rx_spare_map = NULL;
1406 		}
1407 		bus_dma_tag_destroy(ring->rx_data_tag);
1408 		ring->rx_data_tag = NULL;
1409 	}
1410 
1411 	if (desc != NULL) {
1412 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1413 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1414 		ring->desc64 = NULL;
1415 		ring->desc32 = NULL;
1416 	}
1417 	if (ring->rx_desc_tag != NULL) {
1418 		bus_dma_tag_destroy(ring->rx_desc_tag);
1419 		ring->rx_desc_tag = NULL;
1420 	}
1421 }
1422 
1423 
1424 static void
1425 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1426 {
1427 	struct nfe_rx_data *data;
1428 	void *desc;
1429 	int i, descsize;
1430 
1431 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1432 		return;
1433 
1434 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1435 		desc = ring->jdesc64;
1436 		descsize = sizeof (struct nfe_desc64);
1437 	} else {
1438 		desc = ring->jdesc32;
1439 		descsize = sizeof (struct nfe_desc32);
1440 	}
1441 
1442 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1443 		data = &ring->jdata[i];
1444 		if (data->rx_data_map != NULL) {
1445 			bus_dmamap_destroy(ring->jrx_data_tag,
1446 			    data->rx_data_map);
1447 			data->rx_data_map = NULL;
1448 		}
1449 		if (data->m != NULL) {
1450 			m_freem(data->m);
1451 			data->m = NULL;
1452 		}
1453 	}
1454 	if (ring->jrx_data_tag != NULL) {
1455 		if (ring->jrx_spare_map != NULL) {
1456 			bus_dmamap_destroy(ring->jrx_data_tag,
1457 			    ring->jrx_spare_map);
1458 			ring->jrx_spare_map = NULL;
1459 		}
1460 		bus_dma_tag_destroy(ring->jrx_data_tag);
1461 		ring->jrx_data_tag = NULL;
1462 	}
1463 
1464 	if (desc != NULL) {
1465 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1466 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1467 		ring->jdesc64 = NULL;
1468 		ring->jdesc32 = NULL;
1469 	}
1470 
1471 	if (ring->jrx_desc_tag != NULL) {
1472 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1473 		ring->jrx_desc_tag = NULL;
1474 	}
1475 }
1476 
1477 
1478 static int
1479 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1480 {
1481 	struct nfe_dmamap_arg ctx;
1482 	int i, error;
1483 	void *desc;
1484 	int descsize;
1485 
1486 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1487 		desc = ring->desc64;
1488 		descsize = sizeof (struct nfe_desc64);
1489 	} else {
1490 		desc = ring->desc32;
1491 		descsize = sizeof (struct nfe_desc32);
1492 	}
1493 
1494 	ring->queued = 0;
1495 	ring->cur = ring->next = 0;
1496 
1497 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1498 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1499 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1500 	    BUS_SPACE_MAXADDR,			/* highaddr */
1501 	    NULL, NULL,				/* filter, filterarg */
1502 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1503 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1504 	    0,					/* flags */
1505 	    NULL, NULL,				/* lockfunc, lockarg */
1506 	    &ring->tx_desc_tag);
1507 	if (error != 0) {
1508 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1509 		goto fail;
1510 	}
1511 
1512 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1513 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1514 	if (error != 0) {
1515 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1516 		goto fail;
1517 	}
1518 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1519 		ring->desc64 = desc;
1520 	else
1521 		ring->desc32 = desc;
1522 
1523 	ctx.nfe_busaddr = 0;
1524 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1525 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1526 	if (error != 0) {
1527 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1528 		goto fail;
1529 	}
1530 	ring->physaddr = ctx.nfe_busaddr;
1531 
1532 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1533 	    1, 0,
1534 	    BUS_SPACE_MAXADDR,
1535 	    BUS_SPACE_MAXADDR,
1536 	    NULL, NULL,
1537 	    NFE_TSO_MAXSIZE,
1538 	    NFE_MAX_SCATTER,
1539 	    NFE_TSO_MAXSGSIZE,
1540 	    0,
1541 	    NULL, NULL,
1542 	    &ring->tx_data_tag);
1543 	if (error != 0) {
1544 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1545 		goto fail;
1546 	}
1547 
1548 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1549 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1550 		    &ring->data[i].tx_data_map);
1551 		if (error != 0) {
1552 			device_printf(sc->nfe_dev,
1553 			    "could not create Tx DMA map\n");
1554 			goto fail;
1555 		}
1556 	}
1557 
1558 fail:
1559 	return (error);
1560 }
1561 
1562 
1563 static void
1564 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1565 {
1566 	void *desc;
1567 	size_t descsize;
1568 
1569 	sc->nfe_force_tx = 0;
1570 	ring->queued = 0;
1571 	ring->cur = ring->next = 0;
1572 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1573 		desc = ring->desc64;
1574 		descsize = sizeof (struct nfe_desc64);
1575 	} else {
1576 		desc = ring->desc32;
1577 		descsize = sizeof (struct nfe_desc32);
1578 	}
1579 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1580 
1581 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1582 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1583 }
1584 
1585 
1586 static void
1587 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1588 {
1589 	struct nfe_tx_data *data;
1590 	void *desc;
1591 	int i, descsize;
1592 
1593 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1594 		desc = ring->desc64;
1595 		descsize = sizeof (struct nfe_desc64);
1596 	} else {
1597 		desc = ring->desc32;
1598 		descsize = sizeof (struct nfe_desc32);
1599 	}
1600 
1601 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1602 		data = &ring->data[i];
1603 
1604 		if (data->m != NULL) {
1605 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1606 			    BUS_DMASYNC_POSTWRITE);
1607 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1608 			m_freem(data->m);
1609 			data->m = NULL;
1610 		}
1611 		if (data->tx_data_map != NULL) {
1612 			bus_dmamap_destroy(ring->tx_data_tag,
1613 			    data->tx_data_map);
1614 			data->tx_data_map = NULL;
1615 		}
1616 	}
1617 
1618 	if (ring->tx_data_tag != NULL) {
1619 		bus_dma_tag_destroy(ring->tx_data_tag);
1620 		ring->tx_data_tag = NULL;
1621 	}
1622 
1623 	if (desc != NULL) {
1624 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1625 		    BUS_DMASYNC_POSTWRITE);
1626 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1627 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1628 		ring->desc64 = NULL;
1629 		ring->desc32 = NULL;
1630 		bus_dma_tag_destroy(ring->tx_desc_tag);
1631 		ring->tx_desc_tag = NULL;
1632 	}
1633 }
1634 
1635 #ifdef DEVICE_POLLING
1636 static poll_handler_t nfe_poll;
1637 
1638 
1639 static int
1640 nfe_poll(if_t ifp, enum poll_cmd cmd, int count)
1641 {
1642 	struct nfe_softc *sc = if_getsoftc(ifp);
1643 	uint32_t r;
1644 	int rx_npkts = 0;
1645 
1646 	NFE_LOCK(sc);
1647 
1648 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1649 		NFE_UNLOCK(sc);
1650 		return (rx_npkts);
1651 	}
1652 
1653 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1654 		rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
1655 	else
1656 		rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
1657 	nfe_txeof(sc);
1658 	if (!if_sendq_empty(ifp))
1659 		nfe_start_locked(ifp);
1660 
1661 	if (cmd == POLL_AND_CHECK_STATUS) {
1662 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1663 			NFE_UNLOCK(sc);
1664 			return (rx_npkts);
1665 		}
1666 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1667 
1668 		if (r & NFE_IRQ_LINK) {
1669 			NFE_READ(sc, NFE_PHY_STATUS);
1670 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1671 			DPRINTF(sc, "link state changed\n");
1672 		}
1673 	}
1674 	NFE_UNLOCK(sc);
1675 	return (rx_npkts);
1676 }
1677 #endif /* DEVICE_POLLING */
1678 
1679 static void
1680 nfe_set_intr(struct nfe_softc *sc)
1681 {
1682 
1683 	if (sc->nfe_msi != 0)
1684 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1685 }
1686 
1687 
1688 /* In MSIX, a write to mask reegisters behaves as XOR. */
1689 static __inline void
1690 nfe_enable_intr(struct nfe_softc *sc)
1691 {
1692 
1693 	if (sc->nfe_msix != 0) {
1694 		/* XXX Should have a better way to enable interrupts! */
1695 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1696 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1697 	} else
1698 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1699 }
1700 
1701 
1702 static __inline void
1703 nfe_disable_intr(struct nfe_softc *sc)
1704 {
1705 
1706 	if (sc->nfe_msix != 0) {
1707 		/* XXX Should have a better way to disable interrupts! */
1708 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1709 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1710 	} else
1711 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1712 }
1713 
1714 
1715 static int
1716 nfe_ioctl(if_t ifp, u_long cmd, caddr_t data)
1717 {
1718 	struct nfe_softc *sc;
1719 	struct ifreq *ifr;
1720 	struct mii_data *mii;
1721 	int error, init, mask;
1722 
1723 	sc = if_getsoftc(ifp);
1724 	ifr = (struct ifreq *) data;
1725 	error = 0;
1726 	init = 0;
1727 	switch (cmd) {
1728 	case SIOCSIFMTU:
1729 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1730 			error = EINVAL;
1731 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1732 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1733 			    (sc->nfe_jumbo_disable != 0)) &&
1734 			    ifr->ifr_mtu > ETHERMTU)
1735 				error = EINVAL;
1736 			else {
1737 				NFE_LOCK(sc);
1738 				if_setmtu(ifp, ifr->ifr_mtu);
1739 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1740 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1741 					nfe_init_locked(sc);
1742 				}
1743 				NFE_UNLOCK(sc);
1744 			}
1745 		}
1746 		break;
1747 	case SIOCSIFFLAGS:
1748 		NFE_LOCK(sc);
1749 		if (if_getflags(ifp) & IFF_UP) {
1750 			/*
1751 			 * If only the PROMISC or ALLMULTI flag changes, then
1752 			 * don't do a full re-init of the chip, just update
1753 			 * the Rx filter.
1754 			 */
1755 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) &&
1756 			    ((if_getflags(ifp) ^ sc->nfe_if_flags) &
1757 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1758 				nfe_setmulti(sc);
1759 			else
1760 				nfe_init_locked(sc);
1761 		} else {
1762 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1763 				nfe_stop(ifp);
1764 		}
1765 		sc->nfe_if_flags = if_getflags(ifp);
1766 		NFE_UNLOCK(sc);
1767 		error = 0;
1768 		break;
1769 	case SIOCADDMULTI:
1770 	case SIOCDELMULTI:
1771 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1772 			NFE_LOCK(sc);
1773 			nfe_setmulti(sc);
1774 			NFE_UNLOCK(sc);
1775 			error = 0;
1776 		}
1777 		break;
1778 	case SIOCSIFMEDIA:
1779 	case SIOCGIFMEDIA:
1780 		mii = device_get_softc(sc->nfe_miibus);
1781 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1782 		break;
1783 	case SIOCSIFCAP:
1784 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1785 #ifdef DEVICE_POLLING
1786 		if ((mask & IFCAP_POLLING) != 0) {
1787 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1788 				error = ether_poll_register(nfe_poll, ifp);
1789 				if (error)
1790 					break;
1791 				NFE_LOCK(sc);
1792 				nfe_disable_intr(sc);
1793 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1794 				NFE_UNLOCK(sc);
1795 			} else {
1796 				error = ether_poll_deregister(ifp);
1797 				/* Enable interrupt even in error case */
1798 				NFE_LOCK(sc);
1799 				nfe_enable_intr(sc);
1800 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1801 				NFE_UNLOCK(sc);
1802 			}
1803 		}
1804 #endif /* DEVICE_POLLING */
1805 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1806 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1807 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1808 		if ((mask & IFCAP_TXCSUM) != 0 &&
1809 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1810 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1811 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1812 				if_sethwassistbits(ifp, NFE_CSUM_FEATURES, 0);
1813 			else
1814 				if_sethwassistbits(ifp, 0, NFE_CSUM_FEATURES);
1815 		}
1816 		if ((mask & IFCAP_RXCSUM) != 0 &&
1817 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1818 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1819 			init++;
1820 		}
1821 		if ((mask & IFCAP_TSO4) != 0 &&
1822 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1823 			if_togglecapenable(ifp, IFCAP_TSO4);
1824 			if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
1825 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1826 			else
1827 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1828 		}
1829 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1830 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1831 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1832 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1833 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1834 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1835 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1836 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1837 			init++;
1838 		}
1839 		/*
1840 		 * XXX
1841 		 * It seems that VLAN stripping requires Rx checksum offload.
1842 		 * Unfortunately FreeBSD has no way to disable only Rx side
1843 		 * VLAN stripping. So when we know Rx checksum offload is
1844 		 * disabled turn entire hardware VLAN assist off.
1845 		 */
1846 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) == 0) {
1847 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
1848 				init++;
1849 			if_setcapenablebit(ifp, 0,
1850 			    (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO));
1851 		}
1852 		if (init > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1853 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1854 			nfe_init(sc);
1855 		}
1856 		if_vlancap(ifp);
1857 		break;
1858 	default:
1859 		error = ether_ioctl(ifp, cmd, data);
1860 		break;
1861 	}
1862 
1863 	return (error);
1864 }
1865 
1866 
1867 static int
1868 nfe_intr(void *arg)
1869 {
1870 	struct nfe_softc *sc;
1871 	uint32_t status;
1872 
1873 	sc = (struct nfe_softc *)arg;
1874 
1875 	status = NFE_READ(sc, sc->nfe_irq_status);
1876 	if (status == 0 || status == 0xffffffff)
1877 		return (FILTER_STRAY);
1878 	nfe_disable_intr(sc);
1879 	taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task);
1880 
1881 	return (FILTER_HANDLED);
1882 }
1883 
1884 
1885 static void
1886 nfe_int_task(void *arg, int pending)
1887 {
1888 	struct nfe_softc *sc = arg;
1889 	if_t ifp = sc->nfe_ifp;
1890 	uint32_t r;
1891 	int domore;
1892 
1893 	NFE_LOCK(sc);
1894 
1895 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1896 		nfe_enable_intr(sc);
1897 		NFE_UNLOCK(sc);
1898 		return;	/* not for us */
1899 	}
1900 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1901 
1902 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1903 
1904 #ifdef DEVICE_POLLING
1905 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1906 		NFE_UNLOCK(sc);
1907 		return;
1908 	}
1909 #endif
1910 
1911 	if (r & NFE_IRQ_LINK) {
1912 		NFE_READ(sc, NFE_PHY_STATUS);
1913 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1914 		DPRINTF(sc, "link state changed\n");
1915 	}
1916 
1917 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1918 		NFE_UNLOCK(sc);
1919 		nfe_disable_intr(sc);
1920 		return;
1921 	}
1922 
1923 	domore = 0;
1924 	/* check Rx ring */
1925 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1926 		domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
1927 	else
1928 		domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
1929 	/* check Tx ring */
1930 	nfe_txeof(sc);
1931 
1932 	if (!if_sendq_empty(ifp))
1933 		nfe_start_locked(ifp);
1934 
1935 	NFE_UNLOCK(sc);
1936 
1937 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1938 		taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task);
1939 		return;
1940 	}
1941 
1942 	/* Reenable interrupts. */
1943 	nfe_enable_intr(sc);
1944 }
1945 
1946 
1947 static __inline void
1948 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1949 {
1950 	struct nfe_desc32 *desc32;
1951 	struct nfe_desc64 *desc64;
1952 	struct nfe_rx_data *data;
1953 	struct mbuf *m;
1954 
1955 	data = &sc->rxq.data[idx];
1956 	m = data->m;
1957 
1958 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1959 		desc64 = &sc->rxq.desc64[idx];
1960 		/* VLAN packet may have overwritten it. */
1961 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1962 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1963 		desc64->length = htole16(m->m_len);
1964 		desc64->flags = htole16(NFE_RX_READY);
1965 	} else {
1966 		desc32 = &sc->rxq.desc32[idx];
1967 		desc32->length = htole16(m->m_len);
1968 		desc32->flags = htole16(NFE_RX_READY);
1969 	}
1970 }
1971 
1972 
1973 static __inline void
1974 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1975 {
1976 	struct nfe_desc32 *desc32;
1977 	struct nfe_desc64 *desc64;
1978 	struct nfe_rx_data *data;
1979 	struct mbuf *m;
1980 
1981 	data = &sc->jrxq.jdata[idx];
1982 	m = data->m;
1983 
1984 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1985 		desc64 = &sc->jrxq.jdesc64[idx];
1986 		/* VLAN packet may have overwritten it. */
1987 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1988 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1989 		desc64->length = htole16(m->m_len);
1990 		desc64->flags = htole16(NFE_RX_READY);
1991 	} else {
1992 		desc32 = &sc->jrxq.jdesc32[idx];
1993 		desc32->length = htole16(m->m_len);
1994 		desc32->flags = htole16(NFE_RX_READY);
1995 	}
1996 }
1997 
1998 
1999 static int
2000 nfe_newbuf(struct nfe_softc *sc, int idx)
2001 {
2002 	struct nfe_rx_data *data;
2003 	struct nfe_desc32 *desc32;
2004 	struct nfe_desc64 *desc64;
2005 	struct mbuf *m;
2006 	bus_dma_segment_t segs[1];
2007 	bus_dmamap_t map;
2008 	int nsegs;
2009 
2010 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2011 	if (m == NULL)
2012 		return (ENOBUFS);
2013 
2014 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2015 	m_adj(m, ETHER_ALIGN);
2016 
2017 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
2018 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2019 		m_freem(m);
2020 		return (ENOBUFS);
2021 	}
2022 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2023 
2024 	data = &sc->rxq.data[idx];
2025 	if (data->m != NULL) {
2026 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2027 		    BUS_DMASYNC_POSTREAD);
2028 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
2029 	}
2030 	map = data->rx_data_map;
2031 	data->rx_data_map = sc->rxq.rx_spare_map;
2032 	sc->rxq.rx_spare_map = map;
2033 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2034 	    BUS_DMASYNC_PREREAD);
2035 	data->paddr = segs[0].ds_addr;
2036 	data->m = m;
2037 	/* update mapping address in h/w descriptor */
2038 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2039 		desc64 = &sc->rxq.desc64[idx];
2040 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2041 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2042 		desc64->length = htole16(segs[0].ds_len);
2043 		desc64->flags = htole16(NFE_RX_READY);
2044 	} else {
2045 		desc32 = &sc->rxq.desc32[idx];
2046 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2047 		desc32->length = htole16(segs[0].ds_len);
2048 		desc32->flags = htole16(NFE_RX_READY);
2049 	}
2050 
2051 	return (0);
2052 }
2053 
2054 
2055 static int
2056 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2057 {
2058 	struct nfe_rx_data *data;
2059 	struct nfe_desc32 *desc32;
2060 	struct nfe_desc64 *desc64;
2061 	struct mbuf *m;
2062 	bus_dma_segment_t segs[1];
2063 	bus_dmamap_t map;
2064 	int nsegs;
2065 
2066 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2067 	if (m == NULL)
2068 		return (ENOBUFS);
2069 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
2070 	m_adj(m, ETHER_ALIGN);
2071 
2072 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2073 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2074 		m_freem(m);
2075 		return (ENOBUFS);
2076 	}
2077 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2078 
2079 	data = &sc->jrxq.jdata[idx];
2080 	if (data->m != NULL) {
2081 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2082 		    BUS_DMASYNC_POSTREAD);
2083 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2084 	}
2085 	map = data->rx_data_map;
2086 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2087 	sc->jrxq.jrx_spare_map = map;
2088 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2089 	    BUS_DMASYNC_PREREAD);
2090 	data->paddr = segs[0].ds_addr;
2091 	data->m = m;
2092 	/* update mapping address in h/w descriptor */
2093 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2094 		desc64 = &sc->jrxq.jdesc64[idx];
2095 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2096 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2097 		desc64->length = htole16(segs[0].ds_len);
2098 		desc64->flags = htole16(NFE_RX_READY);
2099 	} else {
2100 		desc32 = &sc->jrxq.jdesc32[idx];
2101 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2102 		desc32->length = htole16(segs[0].ds_len);
2103 		desc32->flags = htole16(NFE_RX_READY);
2104 	}
2105 
2106 	return (0);
2107 }
2108 
2109 
2110 static int
2111 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2112 {
2113 	if_t ifp = sc->nfe_ifp;
2114 	struct nfe_desc32 *desc32;
2115 	struct nfe_desc64 *desc64;
2116 	struct nfe_rx_data *data;
2117 	struct mbuf *m;
2118 	uint16_t flags;
2119 	int len, prog, rx_npkts;
2120 	uint32_t vtag = 0;
2121 
2122 	rx_npkts = 0;
2123 	NFE_LOCK_ASSERT(sc);
2124 
2125 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2126 	    BUS_DMASYNC_POSTREAD);
2127 
2128 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2129 		if (count <= 0)
2130 			break;
2131 		count--;
2132 
2133 		data = &sc->rxq.data[sc->rxq.cur];
2134 
2135 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2136 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2137 			vtag = le32toh(desc64->physaddr[1]);
2138 			flags = le16toh(desc64->flags);
2139 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2140 		} else {
2141 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2142 			flags = le16toh(desc32->flags);
2143 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2144 		}
2145 
2146 		if (flags & NFE_RX_READY)
2147 			break;
2148 		prog++;
2149 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2150 			if (!(flags & NFE_RX_VALID_V1)) {
2151 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2152 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2153 				continue;
2154 			}
2155 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2156 				flags &= ~NFE_RX_ERROR;
2157 				len--;	/* fix buffer length */
2158 			}
2159 		} else {
2160 			if (!(flags & NFE_RX_VALID_V2)) {
2161 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2162 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2163 				continue;
2164 			}
2165 
2166 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2167 				flags &= ~NFE_RX_ERROR;
2168 				len--;	/* fix buffer length */
2169 			}
2170 		}
2171 
2172 		if (flags & NFE_RX_ERROR) {
2173 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2174 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2175 			continue;
2176 		}
2177 
2178 		m = data->m;
2179 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2180 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2181 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2182 			continue;
2183 		}
2184 
2185 		if ((vtag & NFE_RX_VTAG) != 0 &&
2186 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2187 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2188 			m->m_flags |= M_VLANTAG;
2189 		}
2190 
2191 		m->m_pkthdr.len = m->m_len = len;
2192 		m->m_pkthdr.rcvif = ifp;
2193 
2194 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
2195 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2196 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2197 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2198 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2199 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2200 					m->m_pkthdr.csum_flags |=
2201 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2202 					m->m_pkthdr.csum_data = 0xffff;
2203 				}
2204 			}
2205 		}
2206 
2207 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2208 
2209 		NFE_UNLOCK(sc);
2210 		if_input(ifp, m);
2211 		NFE_LOCK(sc);
2212 		rx_npkts++;
2213 	}
2214 
2215 	if (prog > 0)
2216 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2217 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2218 
2219 	if (rx_npktsp != NULL)
2220 		*rx_npktsp = rx_npkts;
2221 	return (count > 0 ? 0 : EAGAIN);
2222 }
2223 
2224 
2225 static int
2226 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2227 {
2228 	if_t ifp = sc->nfe_ifp;
2229 	struct nfe_desc32 *desc32;
2230 	struct nfe_desc64 *desc64;
2231 	struct nfe_rx_data *data;
2232 	struct mbuf *m;
2233 	uint16_t flags;
2234 	int len, prog, rx_npkts;
2235 	uint32_t vtag = 0;
2236 
2237 	rx_npkts = 0;
2238 	NFE_LOCK_ASSERT(sc);
2239 
2240 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2241 	    BUS_DMASYNC_POSTREAD);
2242 
2243 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2244 	    vtag = 0) {
2245 		if (count <= 0)
2246 			break;
2247 		count--;
2248 
2249 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2250 
2251 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2252 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2253 			vtag = le32toh(desc64->physaddr[1]);
2254 			flags = le16toh(desc64->flags);
2255 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2256 		} else {
2257 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2258 			flags = le16toh(desc32->flags);
2259 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2260 		}
2261 
2262 		if (flags & NFE_RX_READY)
2263 			break;
2264 		prog++;
2265 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2266 			if (!(flags & NFE_RX_VALID_V1)) {
2267 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2268 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2269 				continue;
2270 			}
2271 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2272 				flags &= ~NFE_RX_ERROR;
2273 				len--;	/* fix buffer length */
2274 			}
2275 		} else {
2276 			if (!(flags & NFE_RX_VALID_V2)) {
2277 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2278 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2279 				continue;
2280 			}
2281 
2282 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2283 				flags &= ~NFE_RX_ERROR;
2284 				len--;	/* fix buffer length */
2285 			}
2286 		}
2287 
2288 		if (flags & NFE_RX_ERROR) {
2289 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2290 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2291 			continue;
2292 		}
2293 
2294 		m = data->m;
2295 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2296 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2297 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2298 			continue;
2299 		}
2300 
2301 		if ((vtag & NFE_RX_VTAG) != 0 &&
2302 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2303 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2304 			m->m_flags |= M_VLANTAG;
2305 		}
2306 
2307 		m->m_pkthdr.len = m->m_len = len;
2308 		m->m_pkthdr.rcvif = ifp;
2309 
2310 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
2311 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2312 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2313 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2314 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2315 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2316 					m->m_pkthdr.csum_flags |=
2317 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2318 					m->m_pkthdr.csum_data = 0xffff;
2319 				}
2320 			}
2321 		}
2322 
2323 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2324 
2325 		NFE_UNLOCK(sc);
2326 		if_input(ifp, m);
2327 		NFE_LOCK(sc);
2328 		rx_npkts++;
2329 	}
2330 
2331 	if (prog > 0)
2332 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2333 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2334 
2335 	if (rx_npktsp != NULL)
2336 		*rx_npktsp = rx_npkts;
2337 	return (count > 0 ? 0 : EAGAIN);
2338 }
2339 
2340 
2341 static void
2342 nfe_txeof(struct nfe_softc *sc)
2343 {
2344 	if_t ifp = sc->nfe_ifp;
2345 	struct nfe_desc32 *desc32;
2346 	struct nfe_desc64 *desc64;
2347 	struct nfe_tx_data *data = NULL;
2348 	uint16_t flags;
2349 	int cons, prog;
2350 
2351 	NFE_LOCK_ASSERT(sc);
2352 
2353 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2354 	    BUS_DMASYNC_POSTREAD);
2355 
2356 	prog = 0;
2357 	for (cons = sc->txq.next; cons != sc->txq.cur;
2358 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2359 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2360 			desc64 = &sc->txq.desc64[cons];
2361 			flags = le16toh(desc64->flags);
2362 		} else {
2363 			desc32 = &sc->txq.desc32[cons];
2364 			flags = le16toh(desc32->flags);
2365 		}
2366 
2367 		if (flags & NFE_TX_VALID)
2368 			break;
2369 
2370 		prog++;
2371 		sc->txq.queued--;
2372 		data = &sc->txq.data[cons];
2373 
2374 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2375 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2376 				continue;
2377 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2378 				device_printf(sc->nfe_dev,
2379 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2380 
2381 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2382 			} else
2383 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2384 		} else {
2385 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2386 				continue;
2387 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2388 				device_printf(sc->nfe_dev,
2389 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2390 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2391 			} else
2392 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2393 		}
2394 
2395 		/* last fragment of the mbuf chain transmitted */
2396 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2397 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2398 		    BUS_DMASYNC_POSTWRITE);
2399 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2400 		m_freem(data->m);
2401 		data->m = NULL;
2402 	}
2403 
2404 	if (prog > 0) {
2405 		sc->nfe_force_tx = 0;
2406 		sc->txq.next = cons;
2407 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2408 		if (sc->txq.queued == 0)
2409 			sc->nfe_watchdog_timer = 0;
2410 	}
2411 }
2412 
2413 static int
2414 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2415 {
2416 	struct nfe_desc32 *desc32 = NULL;
2417 	struct nfe_desc64 *desc64 = NULL;
2418 	bus_dmamap_t map;
2419 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2420 	int error, i, nsegs, prod, si;
2421 	uint32_t tsosegsz;
2422 	uint16_t cflags, flags;
2423 	struct mbuf *m;
2424 
2425 	prod = si = sc->txq.cur;
2426 	map = sc->txq.data[prod].tx_data_map;
2427 
2428 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2429 	    &nsegs, BUS_DMA_NOWAIT);
2430 	if (error == EFBIG) {
2431 		m = m_collapse(*m_head, M_NOWAIT, NFE_MAX_SCATTER);
2432 		if (m == NULL) {
2433 			m_freem(*m_head);
2434 			*m_head = NULL;
2435 			return (ENOBUFS);
2436 		}
2437 		*m_head = m;
2438 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2439 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2440 		if (error != 0) {
2441 			m_freem(*m_head);
2442 			*m_head = NULL;
2443 			return (ENOBUFS);
2444 		}
2445 	} else if (error != 0)
2446 		return (error);
2447 	if (nsegs == 0) {
2448 		m_freem(*m_head);
2449 		*m_head = NULL;
2450 		return (EIO);
2451 	}
2452 
2453 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2454 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2455 		return (ENOBUFS);
2456 	}
2457 
2458 	m = *m_head;
2459 	cflags = flags = 0;
2460 	tsosegsz = 0;
2461 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2462 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2463 		    NFE_TX_TSO_SHIFT;
2464 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2465 		cflags |= NFE_TX_TSO;
2466 	} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2467 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2468 			cflags |= NFE_TX_IP_CSUM;
2469 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2470 			cflags |= NFE_TX_TCP_UDP_CSUM;
2471 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2472 			cflags |= NFE_TX_TCP_UDP_CSUM;
2473 	}
2474 
2475 	for (i = 0; i < nsegs; i++) {
2476 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2477 			desc64 = &sc->txq.desc64[prod];
2478 			desc64->physaddr[0] =
2479 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2480 			desc64->physaddr[1] =
2481 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2482 			desc64->vtag = 0;
2483 			desc64->length = htole16(segs[i].ds_len - 1);
2484 			desc64->flags = htole16(flags);
2485 		} else {
2486 			desc32 = &sc->txq.desc32[prod];
2487 			desc32->physaddr =
2488 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2489 			desc32->length = htole16(segs[i].ds_len - 1);
2490 			desc32->flags = htole16(flags);
2491 		}
2492 
2493 		/*
2494 		 * Setting of the valid bit in the first descriptor is
2495 		 * deferred until the whole chain is fully setup.
2496 		 */
2497 		flags |= NFE_TX_VALID;
2498 
2499 		sc->txq.queued++;
2500 		NFE_INC(prod, NFE_TX_RING_COUNT);
2501 	}
2502 
2503 	/*
2504 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2505 	 * csum flags, vtag and TSO belong to the first fragment only.
2506 	 */
2507 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2508 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2509 		desc64 = &sc->txq.desc64[si];
2510 		if ((m->m_flags & M_VLANTAG) != 0)
2511 			desc64->vtag = htole32(NFE_TX_VTAG |
2512 			    m->m_pkthdr.ether_vtag);
2513 		if (tsosegsz != 0) {
2514 			/*
2515 			 * XXX
2516 			 * The following indicates the descriptor element
2517 			 * is a 32bit quantity.
2518 			 */
2519 			desc64->length |= htole16((uint16_t)tsosegsz);
2520 			desc64->flags |= htole16(tsosegsz >> 16);
2521 		}
2522 		/*
2523 		 * finally, set the valid/checksum/TSO bit in the first
2524 		 * descriptor.
2525 		 */
2526 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2527 	} else {
2528 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2529 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2530 		else
2531 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2532 		desc32 = &sc->txq.desc32[si];
2533 		if (tsosegsz != 0) {
2534 			/*
2535 			 * XXX
2536 			 * The following indicates the descriptor element
2537 			 * is a 32bit quantity.
2538 			 */
2539 			desc32->length |= htole16((uint16_t)tsosegsz);
2540 			desc32->flags |= htole16(tsosegsz >> 16);
2541 		}
2542 		/*
2543 		 * finally, set the valid/checksum/TSO bit in the first
2544 		 * descriptor.
2545 		 */
2546 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2547 	}
2548 
2549 	sc->txq.cur = prod;
2550 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2551 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2552 	sc->txq.data[prod].tx_data_map = map;
2553 	sc->txq.data[prod].m = m;
2554 
2555 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2556 
2557 	return (0);
2558 }
2559 
2560 
2561 static void
2562 nfe_setmulti(struct nfe_softc *sc)
2563 {
2564 	if_t ifp = sc->nfe_ifp;
2565 	int i, mc_count, mcnt;
2566 	uint32_t filter;
2567 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2568 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2569 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2570 	};
2571 	uint8_t *mta;
2572 
2573 	NFE_LOCK_ASSERT(sc);
2574 
2575 	if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2576 		bzero(addr, ETHER_ADDR_LEN);
2577 		bzero(mask, ETHER_ADDR_LEN);
2578 		goto done;
2579 	}
2580 
2581 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2582 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2583 
2584 	mc_count = if_multiaddr_count(ifp, -1);
2585 	mta = malloc(sizeof(uint8_t) * ETHER_ADDR_LEN * mc_count, M_DEVBUF,
2586 	    M_NOWAIT);
2587 
2588 	/* Unable to get memory - process without filtering */
2589 	if (mta == NULL) {
2590 		device_printf(sc->nfe_dev, "nfe_setmulti: failed to allocate"
2591 		    "temp multicast buffer!\n");
2592 
2593 		bzero(addr, ETHER_ADDR_LEN);
2594 		bzero(mask, ETHER_ADDR_LEN);
2595 		goto done;
2596 	}
2597 
2598 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
2599 
2600 	for (i = 0; i < mcnt; i++) {
2601 		uint8_t *addrp;
2602 		int j;
2603 
2604 		addrp = mta + (i * ETHER_ADDR_LEN);
2605 		for (j = 0; j < ETHER_ADDR_LEN; j++) {
2606 			u_int8_t mcaddr = addrp[j];
2607 			addr[j] &= mcaddr;
2608 			mask[j] &= ~mcaddr;
2609 		}
2610 	}
2611 
2612 	free(mta, M_DEVBUF);
2613 
2614 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2615 		mask[i] |= addr[i];
2616 	}
2617 
2618 done:
2619 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2620 
2621 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2622 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2623 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2624 	    addr[5] <<  8 | addr[4]);
2625 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2626 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2627 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2628 	    mask[5] <<  8 | mask[4]);
2629 
2630 	filter = NFE_READ(sc, NFE_RXFILTER);
2631 	filter &= NFE_PFF_RX_PAUSE;
2632 	filter |= NFE_RXFILTER_MAGIC;
2633 	filter |= (if_getflags(ifp) & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2634 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2635 }
2636 
2637 
2638 static void
2639 nfe_start(if_t ifp)
2640 {
2641 	struct nfe_softc *sc = if_getsoftc(ifp);
2642 
2643 	NFE_LOCK(sc);
2644 	nfe_start_locked(ifp);
2645 	NFE_UNLOCK(sc);
2646 }
2647 
2648 static void
2649 nfe_start_locked(if_t ifp)
2650 {
2651 	struct nfe_softc *sc = if_getsoftc(ifp);
2652 	struct mbuf *m0;
2653 	int enq = 0;
2654 
2655 	NFE_LOCK_ASSERT(sc);
2656 
2657 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2658 	    IFF_DRV_RUNNING || sc->nfe_link == 0)
2659 		return;
2660 
2661 	while (!if_sendq_empty(ifp)) {
2662 		m0 = if_dequeue(ifp);
2663 
2664 		if (m0 == NULL)
2665 			break;
2666 
2667 		if (nfe_encap(sc, &m0) != 0) {
2668 			if (m0 == NULL)
2669 				break;
2670 			if_sendq_prepend(ifp, m0);
2671 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2672 			break;
2673 		}
2674 		enq++;
2675 		if_etherbpfmtap(ifp, m0);
2676 	}
2677 
2678 	if (enq > 0) {
2679 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2680 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2681 
2682 		/* kick Tx */
2683 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2684 
2685 		/*
2686 		 * Set a timeout in case the chip goes out to lunch.
2687 		 */
2688 		sc->nfe_watchdog_timer = 5;
2689 	}
2690 }
2691 
2692 
2693 static void
2694 nfe_watchdog(if_t ifp)
2695 {
2696 	struct nfe_softc *sc = if_getsoftc(ifp);
2697 
2698 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2699 		return;
2700 
2701 	/* Check if we've lost Tx completion interrupt. */
2702 	nfe_txeof(sc);
2703 	if (sc->txq.queued == 0) {
2704 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2705 		    "-- recovering\n");
2706 		if (!if_sendq_empty(ifp))
2707 			nfe_start_locked(ifp);
2708 		return;
2709 	}
2710 	/* Check if we've lost start Tx command. */
2711 	sc->nfe_force_tx++;
2712 	if (sc->nfe_force_tx <= 3) {
2713 		/*
2714 		 * If this is the case for watchdog timeout, the following
2715 		 * code should go to nfe_txeof().
2716 		 */
2717 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2718 		return;
2719 	}
2720 	sc->nfe_force_tx = 0;
2721 
2722 	if_printf(ifp, "watchdog timeout\n");
2723 
2724 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2725 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2726 	nfe_init_locked(sc);
2727 }
2728 
2729 
2730 static void
2731 nfe_init(void *xsc)
2732 {
2733 	struct nfe_softc *sc = xsc;
2734 
2735 	NFE_LOCK(sc);
2736 	nfe_init_locked(sc);
2737 	NFE_UNLOCK(sc);
2738 }
2739 
2740 
2741 static void
2742 nfe_init_locked(void *xsc)
2743 {
2744 	struct nfe_softc *sc = xsc;
2745 	if_t ifp = sc->nfe_ifp;
2746 	struct mii_data *mii;
2747 	uint32_t val;
2748 	int error;
2749 
2750 	NFE_LOCK_ASSERT(sc);
2751 
2752 	mii = device_get_softc(sc->nfe_miibus);
2753 
2754 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2755 		return;
2756 
2757 	nfe_stop(ifp);
2758 
2759 	sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
2760 
2761 	nfe_init_tx_ring(sc, &sc->txq);
2762 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2763 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2764 	else
2765 		error = nfe_init_rx_ring(sc, &sc->rxq);
2766 	if (error != 0) {
2767 		device_printf(sc->nfe_dev,
2768 		    "initialization failed: no memory for rx buffers\n");
2769 		nfe_stop(ifp);
2770 		return;
2771 	}
2772 
2773 	val = 0;
2774 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2775 		val |= NFE_MAC_ADDR_INORDER;
2776 	NFE_WRITE(sc, NFE_TX_UNK, val);
2777 	NFE_WRITE(sc, NFE_STATUS, 0);
2778 
2779 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2780 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2781 
2782 	sc->rxtxctl = NFE_RXTX_BIT2;
2783 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2784 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2785 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2786 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2787 
2788 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2789 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2790 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2791 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2792 
2793 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2794 	DELAY(10);
2795 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2796 
2797 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2798 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2799 	else
2800 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2801 
2802 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2803 
2804 	/* set MAC address */
2805 	nfe_set_macaddr(sc, if_getlladdr(ifp));
2806 
2807 	/* tell MAC where rings are in memory */
2808 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2809 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2810 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2811 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2812 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2813 	} else {
2814 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2815 		    NFE_ADDR_HI(sc->rxq.physaddr));
2816 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2817 		    NFE_ADDR_LO(sc->rxq.physaddr));
2818 	}
2819 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2820 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2821 
2822 	NFE_WRITE(sc, NFE_RING_SIZE,
2823 	    (NFE_RX_RING_COUNT - 1) << 16 |
2824 	    (NFE_TX_RING_COUNT - 1));
2825 
2826 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2827 
2828 	/* force MAC to wakeup */
2829 	val = NFE_READ(sc, NFE_PWR_STATE);
2830 	if ((val & NFE_PWR_WAKEUP) == 0)
2831 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2832 	DELAY(10);
2833 	val = NFE_READ(sc, NFE_PWR_STATE);
2834 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2835 
2836 #if 1
2837 	/* configure interrupts coalescing/mitigation */
2838 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2839 #else
2840 	/* no interrupt mitigation: one interrupt per packet */
2841 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2842 #endif
2843 
2844 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2845 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2846 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2847 
2848 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2849 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2850 
2851 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2852 	/* Disable WOL. */
2853 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
2854 
2855 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2856 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2857 	DELAY(10);
2858 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2859 
2860 	/* set Rx filter */
2861 	nfe_setmulti(sc);
2862 
2863 	/* enable Rx */
2864 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2865 
2866 	/* enable Tx */
2867 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2868 
2869 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2870 
2871 	/* Clear hardware stats. */
2872 	nfe_stats_clear(sc);
2873 
2874 #ifdef DEVICE_POLLING
2875 	if (if_getcapenable(ifp) & IFCAP_POLLING)
2876 		nfe_disable_intr(sc);
2877 	else
2878 #endif
2879 	nfe_set_intr(sc);
2880 	nfe_enable_intr(sc); /* enable interrupts */
2881 
2882 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2883 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2884 
2885 	sc->nfe_link = 0;
2886 	mii_mediachg(mii);
2887 
2888 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2889 }
2890 
2891 
2892 static void
2893 nfe_stop(if_t ifp)
2894 {
2895 	struct nfe_softc *sc = if_getsoftc(ifp);
2896 	struct nfe_rx_ring *rx_ring;
2897 	struct nfe_jrx_ring *jrx_ring;
2898 	struct nfe_tx_ring *tx_ring;
2899 	struct nfe_rx_data *rdata;
2900 	struct nfe_tx_data *tdata;
2901 	int i;
2902 
2903 	NFE_LOCK_ASSERT(sc);
2904 
2905 	sc->nfe_watchdog_timer = 0;
2906 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2907 
2908 	callout_stop(&sc->nfe_stat_ch);
2909 
2910 	/* abort Tx */
2911 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2912 
2913 	/* disable Rx */
2914 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2915 
2916 	/* disable interrupts */
2917 	nfe_disable_intr(sc);
2918 
2919 	sc->nfe_link = 0;
2920 
2921 	/* free Rx and Tx mbufs still in the queues. */
2922 	rx_ring = &sc->rxq;
2923 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2924 		rdata = &rx_ring->data[i];
2925 		if (rdata->m != NULL) {
2926 			bus_dmamap_sync(rx_ring->rx_data_tag,
2927 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2928 			bus_dmamap_unload(rx_ring->rx_data_tag,
2929 			    rdata->rx_data_map);
2930 			m_freem(rdata->m);
2931 			rdata->m = NULL;
2932 		}
2933 	}
2934 
2935 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2936 		jrx_ring = &sc->jrxq;
2937 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2938 			rdata = &jrx_ring->jdata[i];
2939 			if (rdata->m != NULL) {
2940 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2941 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2942 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2943 				    rdata->rx_data_map);
2944 				m_freem(rdata->m);
2945 				rdata->m = NULL;
2946 			}
2947 		}
2948 	}
2949 
2950 	tx_ring = &sc->txq;
2951 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2952 		tdata = &tx_ring->data[i];
2953 		if (tdata->m != NULL) {
2954 			bus_dmamap_sync(tx_ring->tx_data_tag,
2955 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2956 			bus_dmamap_unload(tx_ring->tx_data_tag,
2957 			    tdata->tx_data_map);
2958 			m_freem(tdata->m);
2959 			tdata->m = NULL;
2960 		}
2961 	}
2962 	/* Update hardware stats. */
2963 	nfe_stats_update(sc);
2964 }
2965 
2966 
2967 static int
2968 nfe_ifmedia_upd(if_t ifp)
2969 {
2970 	struct nfe_softc *sc = if_getsoftc(ifp);
2971 	struct mii_data *mii;
2972 
2973 	NFE_LOCK(sc);
2974 	mii = device_get_softc(sc->nfe_miibus);
2975 	mii_mediachg(mii);
2976 	NFE_UNLOCK(sc);
2977 
2978 	return (0);
2979 }
2980 
2981 
2982 static void
2983 nfe_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2984 {
2985 	struct nfe_softc *sc;
2986 	struct mii_data *mii;
2987 
2988 	sc = if_getsoftc(ifp);
2989 
2990 	NFE_LOCK(sc);
2991 	mii = device_get_softc(sc->nfe_miibus);
2992 	mii_pollstat(mii);
2993 
2994 	ifmr->ifm_active = mii->mii_media_active;
2995 	ifmr->ifm_status = mii->mii_media_status;
2996 	NFE_UNLOCK(sc);
2997 }
2998 
2999 
3000 void
3001 nfe_tick(void *xsc)
3002 {
3003 	struct nfe_softc *sc;
3004 	struct mii_data *mii;
3005 	if_t ifp;
3006 
3007 	sc = (struct nfe_softc *)xsc;
3008 
3009 	NFE_LOCK_ASSERT(sc);
3010 
3011 	ifp = sc->nfe_ifp;
3012 
3013 	mii = device_get_softc(sc->nfe_miibus);
3014 	mii_tick(mii);
3015 	nfe_stats_update(sc);
3016 	nfe_watchdog(ifp);
3017 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
3018 }
3019 
3020 
3021 static int
3022 nfe_shutdown(device_t dev)
3023 {
3024 
3025 	return (nfe_suspend(dev));
3026 }
3027 
3028 
3029 static void
3030 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
3031 {
3032 	uint32_t val;
3033 
3034 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
3035 		val = NFE_READ(sc, NFE_MACADDR_LO);
3036 		addr[0] = (val >> 8) & 0xff;
3037 		addr[1] = (val & 0xff);
3038 
3039 		val = NFE_READ(sc, NFE_MACADDR_HI);
3040 		addr[2] = (val >> 24) & 0xff;
3041 		addr[3] = (val >> 16) & 0xff;
3042 		addr[4] = (val >>  8) & 0xff;
3043 		addr[5] = (val & 0xff);
3044 	} else {
3045 		val = NFE_READ(sc, NFE_MACADDR_LO);
3046 		addr[5] = (val >> 8) & 0xff;
3047 		addr[4] = (val & 0xff);
3048 
3049 		val = NFE_READ(sc, NFE_MACADDR_HI);
3050 		addr[3] = (val >> 24) & 0xff;
3051 		addr[2] = (val >> 16) & 0xff;
3052 		addr[1] = (val >>  8) & 0xff;
3053 		addr[0] = (val & 0xff);
3054 	}
3055 }
3056 
3057 
3058 static void
3059 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3060 {
3061 
3062 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3063 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3064 	    addr[1] << 8 | addr[0]);
3065 }
3066 
3067 
3068 /*
3069  * Map a single buffer address.
3070  */
3071 
3072 static void
3073 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3074 {
3075 	struct nfe_dmamap_arg *ctx;
3076 
3077 	if (error != 0)
3078 		return;
3079 
3080 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3081 
3082 	ctx = (struct nfe_dmamap_arg *)arg;
3083 	ctx->nfe_busaddr = segs[0].ds_addr;
3084 }
3085 
3086 
3087 static int
3088 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3089 {
3090 	int error, value;
3091 
3092 	if (!arg1)
3093 		return (EINVAL);
3094 	value = *(int *)arg1;
3095 	error = sysctl_handle_int(oidp, &value, 0, req);
3096 	if (error || !req->newptr)
3097 		return (error);
3098 	if (value < low || value > high)
3099 		return (EINVAL);
3100 	*(int *)arg1 = value;
3101 
3102 	return (0);
3103 }
3104 
3105 
3106 static int
3107 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3108 {
3109 
3110 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3111 	    NFE_PROC_MAX));
3112 }
3113 
3114 
3115 #define	NFE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
3116 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3117 #define	NFE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
3118 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
3119 
3120 static void
3121 nfe_sysctl_node(struct nfe_softc *sc)
3122 {
3123 	struct sysctl_ctx_list *ctx;
3124 	struct sysctl_oid_list *child, *parent;
3125 	struct sysctl_oid *tree;
3126 	struct nfe_hw_stats *stats;
3127 	int error;
3128 
3129 	stats = &sc->nfe_stats;
3130 	ctx = device_get_sysctl_ctx(sc->nfe_dev);
3131 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
3132 	SYSCTL_ADD_PROC(ctx, child,
3133 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
3134 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
3135 	    "max number of Rx events to process");
3136 
3137 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
3138 	error = resource_int_value(device_get_name(sc->nfe_dev),
3139 	    device_get_unit(sc->nfe_dev), "process_limit",
3140 	    &sc->nfe_process_limit);
3141 	if (error == 0) {
3142 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
3143 		    sc->nfe_process_limit > NFE_PROC_MAX) {
3144 			device_printf(sc->nfe_dev,
3145 			    "process_limit value out of range; "
3146 			    "using default: %d\n", NFE_PROC_DEFAULT);
3147 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
3148 		}
3149 	}
3150 
3151 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3152 		return;
3153 
3154 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3155 	    NULL, "NFE statistics");
3156 	parent = SYSCTL_CHILDREN(tree);
3157 
3158 	/* Rx statistics. */
3159 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3160 	    NULL, "Rx MAC statistics");
3161 	child = SYSCTL_CHILDREN(tree);
3162 
3163 	NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
3164 	    &stats->rx_frame_errors, "Framing Errors");
3165 	NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
3166 	    &stats->rx_extra_bytes, "Extra Bytes");
3167 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3168 	    &stats->rx_late_cols, "Late Collisions");
3169 	NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
3170 	    &stats->rx_runts, "Runts");
3171 	NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
3172 	    &stats->rx_jumbos, "Jumbos");
3173 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
3174 	    &stats->rx_fifo_overuns, "FIFO Overruns");
3175 	NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
3176 	    &stats->rx_crc_errors, "CRC Errors");
3177 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
3178 	    &stats->rx_fae, "Frame Alignment Errors");
3179 	NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
3180 	    &stats->rx_len_errors, "Length Errors");
3181 	NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3182 	    &stats->rx_unicast, "Unicast Frames");
3183 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3184 	    &stats->rx_multicast, "Multicast Frames");
3185 	NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3186 	    &stats->rx_broadcast, "Broadcast Frames");
3187 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3188 		NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3189 		    &stats->rx_octets, "Octets");
3190 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3191 		    &stats->rx_pause, "Pause frames");
3192 		NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
3193 		    &stats->rx_drops, "Drop frames");
3194 	}
3195 
3196 	/* Tx statistics. */
3197 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3198 	    NULL, "Tx MAC statistics");
3199 	child = SYSCTL_CHILDREN(tree);
3200 	NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3201 	    &stats->tx_octets, "Octets");
3202 	NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
3203 	    &stats->tx_zero_rexmits, "Zero Retransmits");
3204 	NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
3205 	    &stats->tx_one_rexmits, "One Retransmits");
3206 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
3207 	    &stats->tx_multi_rexmits, "Multiple Retransmits");
3208 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3209 	    &stats->tx_late_cols, "Late Collisions");
3210 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
3211 	    &stats->tx_fifo_underuns, "FIFO Underruns");
3212 	NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
3213 	    &stats->tx_carrier_losts, "Carrier Losts");
3214 	NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
3215 	    &stats->tx_excess_deferals, "Excess Deferrals");
3216 	NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
3217 	    &stats->tx_retry_errors, "Retry Errors");
3218 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3219 		NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
3220 		    &stats->tx_deferals, "Deferrals");
3221 		NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
3222 		    &stats->tx_frames, "Frames");
3223 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3224 		    &stats->tx_pause, "Pause Frames");
3225 	}
3226 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3227 		NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3228 		    &stats->tx_deferals, "Unicast Frames");
3229 		NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3230 		    &stats->tx_frames, "Multicast Frames");
3231 		NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3232 		    &stats->tx_pause, "Broadcast Frames");
3233 	}
3234 }
3235 
3236 #undef NFE_SYSCTL_STAT_ADD32
3237 #undef NFE_SYSCTL_STAT_ADD64
3238 
3239 static void
3240 nfe_stats_clear(struct nfe_softc *sc)
3241 {
3242 	int i, mib_cnt;
3243 
3244 	if ((sc->nfe_flags & NFE_MIB_V1) != 0)
3245 		mib_cnt = NFE_NUM_MIB_STATV1;
3246 	else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
3247 		mib_cnt = NFE_NUM_MIB_STATV2;
3248 	else
3249 		return;
3250 
3251 	for (i = 0; i < mib_cnt; i++)
3252 		NFE_READ(sc, NFE_TX_OCTET + i * sizeof(uint32_t));
3253 
3254 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3255 		NFE_READ(sc, NFE_TX_UNICAST);
3256 		NFE_READ(sc, NFE_TX_MULTICAST);
3257 		NFE_READ(sc, NFE_TX_BROADCAST);
3258 	}
3259 }
3260 
3261 static void
3262 nfe_stats_update(struct nfe_softc *sc)
3263 {
3264 	struct nfe_hw_stats *stats;
3265 
3266 	NFE_LOCK_ASSERT(sc);
3267 
3268 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3269 		return;
3270 
3271 	stats = &sc->nfe_stats;
3272 	stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
3273 	stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
3274 	stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
3275 	stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
3276 	stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
3277 	stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
3278 	stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
3279 	stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
3280 	stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
3281 	stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
3282 	stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
3283 	stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
3284 	stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
3285 	stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
3286 	stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
3287 	stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
3288 	stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
3289 	stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
3290 	stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
3291 	stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
3292 	stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
3293 
3294 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3295 		stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
3296 		stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
3297 		stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
3298 		stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
3299 		stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
3300 		stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
3301 	}
3302 
3303 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3304 		stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
3305 		stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
3306 		stats->tx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
3307 	}
3308 }
3309 
3310 
3311 static void
3312 nfe_set_linkspeed(struct nfe_softc *sc)
3313 {
3314 	struct mii_softc *miisc;
3315 	struct mii_data *mii;
3316 	int aneg, i, phyno;
3317 
3318 	NFE_LOCK_ASSERT(sc);
3319 
3320 	mii = device_get_softc(sc->nfe_miibus);
3321 	mii_pollstat(mii);
3322 	aneg = 0;
3323 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3324 	    (IFM_ACTIVE | IFM_AVALID)) {
3325 		switch IFM_SUBTYPE(mii->mii_media_active) {
3326 		case IFM_10_T:
3327 		case IFM_100_TX:
3328 			return;
3329 		case IFM_1000_T:
3330 			aneg++;
3331 			break;
3332 		default:
3333 			break;
3334 		}
3335 	}
3336 	miisc = LIST_FIRST(&mii->mii_phys);
3337 	phyno = miisc->mii_phy;
3338 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3339 		PHY_RESET(miisc);
3340 	nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
3341 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3342 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3343 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3344 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
3345 	DELAY(1000);
3346 	if (aneg != 0) {
3347 		/*
3348 		 * Poll link state until nfe(4) get a 10/100Mbps link.
3349 		 */
3350 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3351 			mii_pollstat(mii);
3352 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3353 			    == (IFM_ACTIVE | IFM_AVALID)) {
3354 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3355 				case IFM_10_T:
3356 				case IFM_100_TX:
3357 					nfe_mac_config(sc, mii);
3358 					return;
3359 				default:
3360 					break;
3361 				}
3362 			}
3363 			NFE_UNLOCK(sc);
3364 			pause("nfelnk", hz);
3365 			NFE_LOCK(sc);
3366 		}
3367 		if (i == MII_ANEGTICKS_GIGE)
3368 			device_printf(sc->nfe_dev,
3369 			    "establishing a link failed, WOL may not work!");
3370 	}
3371 	/*
3372 	 * No link, force MAC to have 100Mbps, full-duplex link.
3373 	 * This is the last resort and may/may not work.
3374 	 */
3375 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3376 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3377 	nfe_mac_config(sc, mii);
3378 }
3379 
3380 
3381 static void
3382 nfe_set_wol(struct nfe_softc *sc)
3383 {
3384 	if_t ifp;
3385 	uint32_t wolctl;
3386 	int pmc;
3387 	uint16_t pmstat;
3388 
3389 	NFE_LOCK_ASSERT(sc);
3390 
3391 	if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
3392 		return;
3393 	ifp = sc->nfe_ifp;
3394 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
3395 		wolctl = NFE_WOL_MAGIC;
3396 	else
3397 		wolctl = 0;
3398 	NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
3399 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
3400 		nfe_set_linkspeed(sc);
3401 		if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
3402 			NFE_WRITE(sc, NFE_PWR2_CTL,
3403 			    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
3404 		/* Enable RX. */
3405 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
3406 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
3407 		NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
3408 		    NFE_RX_START);
3409 	}
3410 	/* Request PME if WOL is requested. */
3411 	pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
3412 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3413 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3414 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3415 	pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3416 }
3417