xref: /freebsd/sys/dev/nfe/if_nfe.c (revision 1e4896b176ff664dc9c2fce5426bf2fdf8017a7d)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_arp.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/if_vlan_var.h>
51 
52 #include <net/bpf.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/bus.h>
57 #include <sys/rman.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <dev/nfe/if_nfereg.h>
66 #include <dev/nfe/if_nfevar.h>
67 
68 MODULE_DEPEND(nfe, pci, 1, 1, 1);
69 MODULE_DEPEND(nfe, ether, 1, 1, 1);
70 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
71 
72 /* "device miibus" required.  See GENERIC if you get errors here. */
73 #include "miibus_if.h"
74 
75 static int  nfe_probe(device_t);
76 static int  nfe_attach(device_t);
77 static int  nfe_detach(device_t);
78 static int  nfe_suspend(device_t);
79 static int  nfe_resume(device_t);
80 static int nfe_shutdown(device_t);
81 static int  nfe_can_use_msix(struct nfe_softc *);
82 static int  nfe_detect_msik9(struct nfe_softc *);
83 static void nfe_power(struct nfe_softc *);
84 static int  nfe_miibus_readreg(device_t, int, int);
85 static int  nfe_miibus_writereg(device_t, int, int, int);
86 static void nfe_miibus_statchg(device_t);
87 static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
88 static void nfe_set_intr(struct nfe_softc *);
89 static __inline void nfe_enable_intr(struct nfe_softc *);
90 static __inline void nfe_disable_intr(struct nfe_softc *);
91 static int  nfe_ioctl(if_t, u_long, caddr_t);
92 static void nfe_alloc_msix(struct nfe_softc *, int);
93 static int nfe_intr(void *);
94 static void nfe_int_task(void *, int);
95 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
96 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
97 static int nfe_newbuf(struct nfe_softc *, int);
98 static int nfe_jnewbuf(struct nfe_softc *, int);
99 static int  nfe_rxeof(struct nfe_softc *, int, int *);
100 static int  nfe_jrxeof(struct nfe_softc *, int, int *);
101 static void nfe_txeof(struct nfe_softc *);
102 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
103 static void nfe_setmulti(struct nfe_softc *);
104 static void nfe_start(if_t);
105 static void nfe_start_locked(if_t);
106 static void nfe_watchdog(if_t);
107 static void nfe_init(void *);
108 static void nfe_init_locked(void *);
109 static void nfe_stop(if_t);
110 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
111 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
112 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
113 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
114 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
115 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
116 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
118 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
119 static int  nfe_ifmedia_upd(if_t);
120 static void nfe_ifmedia_sts(if_t, struct ifmediareq *);
121 static void nfe_tick(void *);
122 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
123 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
124 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
125 
126 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
127 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
128 static void nfe_sysctl_node(struct nfe_softc *);
129 static void nfe_stats_clear(struct nfe_softc *);
130 static void nfe_stats_update(struct nfe_softc *);
131 static void nfe_set_linkspeed(struct nfe_softc *);
132 static void nfe_set_wol(struct nfe_softc *);
133 
134 #ifdef NFE_DEBUG
135 static int nfedebug = 0;
136 #define	DPRINTF(sc, ...)	do {				\
137 	if (nfedebug)						\
138 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
139 } while (0)
140 #define	DPRINTFN(sc, n, ...)	do {				\
141 	if (nfedebug >= (n))					\
142 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
143 } while (0)
144 #else
145 #define	DPRINTF(sc, ...)
146 #define	DPRINTFN(sc, n, ...)
147 #endif
148 
149 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
150 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
151 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
152 
153 /* Tunables. */
154 static int msi_disable = 0;
155 static int msix_disable = 0;
156 static int jumbo_disable = 0;
157 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
158 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
159 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
160 
161 static device_method_t nfe_methods[] = {
162 	/* Device interface */
163 	DEVMETHOD(device_probe,		nfe_probe),
164 	DEVMETHOD(device_attach,	nfe_attach),
165 	DEVMETHOD(device_detach,	nfe_detach),
166 	DEVMETHOD(device_suspend,	nfe_suspend),
167 	DEVMETHOD(device_resume,	nfe_resume),
168 	DEVMETHOD(device_shutdown,	nfe_shutdown),
169 
170 	/* MII interface */
171 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
172 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
173 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
174 
175 	DEVMETHOD_END
176 };
177 
178 static driver_t nfe_driver = {
179 	"nfe",
180 	nfe_methods,
181 	sizeof(struct nfe_softc)
182 };
183 
184 static devclass_t nfe_devclass;
185 
186 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
187 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
188 
189 static struct nfe_type nfe_devs[] = {
190 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
191 	    "NVIDIA nForce MCP Networking Adapter"},
192 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
193 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
194 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
195 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
196 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
197 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
198 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
199 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
200 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
201 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
202 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
203 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
204 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
205 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
206 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
207 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
208 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
209 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
210 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
211 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
212 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
213 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
214 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
215 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
216 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
217 	    "NVIDIA nForce MCP55 Networking Adapter"},
218 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
219 	    "NVIDIA nForce MCP55 Networking Adapter"},
220 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
221 	    "NVIDIA nForce MCP61 Networking Adapter"},
222 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
223 	    "NVIDIA nForce MCP61 Networking Adapter"},
224 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
225 	    "NVIDIA nForce MCP61 Networking Adapter"},
226 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
227 	    "NVIDIA nForce MCP61 Networking Adapter"},
228 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
229 	    "NVIDIA nForce MCP65 Networking Adapter"},
230 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
231 	    "NVIDIA nForce MCP65 Networking Adapter"},
232 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
233 	    "NVIDIA nForce MCP65 Networking Adapter"},
234 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
235 	    "NVIDIA nForce MCP65 Networking Adapter"},
236 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
237 	    "NVIDIA nForce MCP67 Networking Adapter"},
238 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
239 	    "NVIDIA nForce MCP67 Networking Adapter"},
240 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
241 	    "NVIDIA nForce MCP67 Networking Adapter"},
242 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
243 	    "NVIDIA nForce MCP67 Networking Adapter"},
244 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
245 	    "NVIDIA nForce MCP73 Networking Adapter"},
246 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
247 	    "NVIDIA nForce MCP73 Networking Adapter"},
248 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
249 	    "NVIDIA nForce MCP73 Networking Adapter"},
250 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
251 	    "NVIDIA nForce MCP73 Networking Adapter"},
252 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
253 	    "NVIDIA nForce MCP77 Networking Adapter"},
254 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
255 	    "NVIDIA nForce MCP77 Networking Adapter"},
256 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
257 	    "NVIDIA nForce MCP77 Networking Adapter"},
258 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
259 	    "NVIDIA nForce MCP77 Networking Adapter"},
260 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
261 	    "NVIDIA nForce MCP79 Networking Adapter"},
262 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
263 	    "NVIDIA nForce MCP79 Networking Adapter"},
264 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
265 	    "NVIDIA nForce MCP79 Networking Adapter"},
266 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
267 	    "NVIDIA nForce MCP79 Networking Adapter"},
268 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP89_LAN,
269 	    "NVIDIA nForce MCP89 Networking Adapter"},
270 	{0, 0, NULL}
271 };
272 
273 /* Probe for supported hardware ID's */
274 static int
275 nfe_probe(device_t dev)
276 {
277 	struct nfe_type *t;
278 
279 	t = nfe_devs;
280 	/* Check for matching PCI DEVICE ID's */
281 	while (t->name != NULL) {
282 		if ((pci_get_vendor(dev) == t->vid_id) &&
283 		    (pci_get_device(dev) == t->dev_id)) {
284 			device_set_desc(dev, t->name);
285 			return (BUS_PROBE_DEFAULT);
286 		}
287 		t++;
288 	}
289 
290 	return (ENXIO);
291 }
292 
293 static void
294 nfe_alloc_msix(struct nfe_softc *sc, int count)
295 {
296 	int rid;
297 
298 	rid = PCIR_BAR(2);
299 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
300 	    &rid, RF_ACTIVE);
301 	if (sc->nfe_msix_res == NULL) {
302 		device_printf(sc->nfe_dev,
303 		    "couldn't allocate MSIX table resource\n");
304 		return;
305 	}
306 	rid = PCIR_BAR(3);
307 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
308 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
309 	if (sc->nfe_msix_pba_res == NULL) {
310 		device_printf(sc->nfe_dev,
311 		    "couldn't allocate MSIX PBA resource\n");
312 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
313 		    sc->nfe_msix_res);
314 		sc->nfe_msix_res = NULL;
315 		return;
316 	}
317 
318 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
319 		if (count == NFE_MSI_MESSAGES) {
320 			if (bootverbose)
321 				device_printf(sc->nfe_dev,
322 				    "Using %d MSIX messages\n", count);
323 			sc->nfe_msix = 1;
324 		} else {
325 			if (bootverbose)
326 				device_printf(sc->nfe_dev,
327 				    "couldn't allocate MSIX\n");
328 			pci_release_msi(sc->nfe_dev);
329 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
330 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
331 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
332 			    PCIR_BAR(2), sc->nfe_msix_res);
333 			sc->nfe_msix_pba_res = NULL;
334 			sc->nfe_msix_res = NULL;
335 		}
336 	}
337 }
338 
339 static int
340 nfe_detect_msik9(struct nfe_softc *sc)
341 {
342 	static const char *maker = "MSI";
343 	static const char *product = "K9N6PGM2-V2 (MS-7309)";
344 	char *m, *p;
345 	int found;
346 
347 	found = 0;
348 	m = kern_getenv("smbios.planar.maker");
349 	p = kern_getenv("smbios.planar.product");
350 	if (m != NULL && p != NULL) {
351 		if (strcmp(m, maker) == 0 && strcmp(p, product) == 0)
352 			found = 1;
353 	}
354 	if (m != NULL)
355 		freeenv(m);
356 	if (p != NULL)
357 		freeenv(p);
358 
359 	return (found);
360 }
361 
362 static int
363 nfe_attach(device_t dev)
364 {
365 	struct nfe_softc *sc;
366 	if_t ifp;
367 	bus_addr_t dma_addr_max;
368 	int error = 0, i, msic, phyloc, reg, rid;
369 
370 	sc = device_get_softc(dev);
371 	sc->nfe_dev = dev;
372 
373 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
374 	    MTX_DEF);
375 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
376 
377 	pci_enable_busmaster(dev);
378 
379 	rid = PCIR_BAR(0);
380 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
381 	    RF_ACTIVE);
382 	if (sc->nfe_res[0] == NULL) {
383 		device_printf(dev, "couldn't map memory resources\n");
384 		mtx_destroy(&sc->nfe_mtx);
385 		return (ENXIO);
386 	}
387 
388 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
389 		uint16_t v, width;
390 
391 		v = pci_read_config(dev, reg + 0x08, 2);
392 		/* Change max. read request size to 4096. */
393 		v &= ~(7 << 12);
394 		v |= (5 << 12);
395 		pci_write_config(dev, reg + 0x08, v, 2);
396 
397 		v = pci_read_config(dev, reg + 0x0c, 2);
398 		/* link capability */
399 		v = (v >> 4) & 0x0f;
400 		width = pci_read_config(dev, reg + 0x12, 2);
401 		/* negotiated link width */
402 		width = (width >> 4) & 0x3f;
403 		if (v != width)
404 			device_printf(sc->nfe_dev,
405 			    "warning, negotiated width of link(x%d) != "
406 			    "max. width of link(x%d)\n", width, v);
407 	}
408 
409 	if (nfe_can_use_msix(sc) == 0) {
410 		device_printf(sc->nfe_dev,
411 		    "MSI/MSI-X capability black-listed, will use INTx\n");
412 		msix_disable = 1;
413 		msi_disable = 1;
414 	}
415 
416 	/* Allocate interrupt */
417 	if (msix_disable == 0 || msi_disable == 0) {
418 		if (msix_disable == 0 &&
419 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
420 			nfe_alloc_msix(sc, msic);
421 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
422 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
423 		    pci_alloc_msi(dev, &msic) == 0) {
424 			if (msic == NFE_MSI_MESSAGES) {
425 				if (bootverbose)
426 					device_printf(dev,
427 					    "Using %d MSI messages\n", msic);
428 				sc->nfe_msi = 1;
429 			} else
430 				pci_release_msi(dev);
431 		}
432 	}
433 
434 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
435 		rid = 0;
436 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
437 		    RF_SHAREABLE | RF_ACTIVE);
438 		if (sc->nfe_irq[0] == NULL) {
439 			device_printf(dev, "couldn't allocate IRQ resources\n");
440 			error = ENXIO;
441 			goto fail;
442 		}
443 	} else {
444 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
445 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
446 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
447 			if (sc->nfe_irq[i] == NULL) {
448 				device_printf(dev,
449 				    "couldn't allocate IRQ resources for "
450 				    "message %d\n", rid);
451 				error = ENXIO;
452 				goto fail;
453 			}
454 		}
455 		/* Map interrupts to vector 0. */
456 		if (sc->nfe_msix != 0) {
457 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
458 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
459 		} else if (sc->nfe_msi != 0) {
460 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
461 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
462 		}
463 	}
464 
465 	/* Set IRQ status/mask register. */
466 	sc->nfe_irq_status = NFE_IRQ_STATUS;
467 	sc->nfe_irq_mask = NFE_IRQ_MASK;
468 	sc->nfe_intrs = NFE_IRQ_WANTED;
469 	sc->nfe_nointrs = 0;
470 	if (sc->nfe_msix != 0) {
471 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
472 		sc->nfe_nointrs = NFE_IRQ_WANTED;
473 	} else if (sc->nfe_msi != 0) {
474 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
475 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
476 	}
477 
478 	sc->nfe_devid = pci_get_device(dev);
479 	sc->nfe_revid = pci_get_revid(dev);
480 	sc->nfe_flags = 0;
481 
482 	switch (sc->nfe_devid) {
483 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
484 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
485 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
486 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
487 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
488 		break;
489 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
490 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
491 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
492 		break;
493 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
494 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
495 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
496 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
497 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
498 		    NFE_MIB_V1;
499 		break;
500 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
501 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
502 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
503 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
504 		break;
505 
506 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
507 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
508 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
509 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
510 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
511 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
512 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
513 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
514 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
515 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
516 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
517 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
518 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
519 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
520 		break;
521 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
522 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
523 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
524 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
525 		/* XXX flow control */
526 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
527 		    NFE_CORRECT_MACADDR | NFE_MIB_V3;
528 		break;
529 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
530 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
531 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
532 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
533 	case PCI_PRODUCT_NVIDIA_MCP89_LAN:
534 		/* XXX flow control */
535 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
536 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
537 		break;
538 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
539 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
540 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
541 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
542 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
543 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
544 		    NFE_MIB_V2;
545 		break;
546 	}
547 
548 	nfe_power(sc);
549 	/* Check for reversed ethernet address */
550 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
551 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
552 	nfe_get_macaddr(sc, sc->eaddr);
553 	/*
554 	 * Allocate the parent bus DMA tag appropriate for PCI.
555 	 */
556 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
557 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
558 		dma_addr_max = NFE_DMA_MAXADDR;
559 	error = bus_dma_tag_create(
560 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
561 	    1, 0,				/* alignment, boundary */
562 	    dma_addr_max,			/* lowaddr */
563 	    BUS_SPACE_MAXADDR,			/* highaddr */
564 	    NULL, NULL,				/* filter, filterarg */
565 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
566 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
567 	    0,					/* flags */
568 	    NULL, NULL,				/* lockfunc, lockarg */
569 	    &sc->nfe_parent_tag);
570 	if (error)
571 		goto fail;
572 
573 	ifp = sc->nfe_ifp = if_gethandle(IFT_ETHER);
574 	if (ifp == NULL) {
575 		device_printf(dev, "can not if_gethandle()\n");
576 		error = ENOSPC;
577 		goto fail;
578 	}
579 
580 	/*
581 	 * Allocate Tx and Rx rings.
582 	 */
583 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
584 		goto fail;
585 
586 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
587 		goto fail;
588 
589 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
590 	/* Create sysctl node. */
591 	nfe_sysctl_node(sc);
592 
593 	if_setsoftc(ifp, sc);
594 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
596 	if_setioctlfn(ifp, nfe_ioctl);
597 	if_setstartfn(ifp, nfe_start);
598 	if_sethwassist(ifp, 0);
599 	if_setcapabilities(ifp, 0);
600 	if_setinitfn(ifp, nfe_init);
601 	if_setsendqlen(ifp, NFE_TX_RING_COUNT - 1);
602 	if_setsendqready(ifp);
603 
604 	if (sc->nfe_flags & NFE_HW_CSUM) {
605 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
606 		if_sethwassistbits(ifp, NFE_CSUM_FEATURES | CSUM_TSO, 0);
607 	}
608 	if_setcapenable(ifp, if_getcapabilities(ifp));
609 
610 	sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
611 	/* VLAN capability setup. */
612 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
613 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
614 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0);
615 		if ((if_getcapabilities(ifp) & IFCAP_HWCSUM) != 0)
616 			if_setcapabilitiesbit(ifp,
617 			    (IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO), 0);
618 	}
619 
620 	if (pci_find_cap(dev, PCIY_PMG, &reg) == 0)
621 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
622 	if_setcapenable(ifp, if_getcapabilities(ifp));
623 
624 	/*
625 	 * Tell the upper layer(s) we support long frames.
626 	 * Must appear after the call to ether_ifattach() because
627 	 * ether_ifattach() sets ifi_hdrlen to the default value.
628 	 */
629 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
630 
631 #ifdef DEVICE_POLLING
632 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
633 #endif
634 
635 	/* Do MII setup */
636 	phyloc = MII_PHY_ANY;
637 	if (sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN1 ||
638 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN2 ||
639 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN3 ||
640 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN4) {
641 		if (nfe_detect_msik9(sc) != 0)
642 			phyloc = 0;
643 	}
644 	error = mii_attach(dev, &sc->nfe_miibus, ifp,
645 	    (ifm_change_cb_t)nfe_ifmedia_upd, (ifm_stat_cb_t)nfe_ifmedia_sts,
646 	    BMSR_DEFCAPMASK, phyloc, MII_OFFSET_ANY, MIIF_DOPAUSE);
647 	if (error != 0) {
648 		device_printf(dev, "attaching PHYs failed\n");
649 		goto fail;
650 	}
651 	ether_ifattach(ifp, sc->eaddr);
652 
653 	NET_TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
654 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
655 	    taskqueue_thread_enqueue, &sc->nfe_tq);
656 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
657 	    device_get_nameunit(sc->nfe_dev));
658 	error = 0;
659 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
660 		error = bus_setup_intr(dev, sc->nfe_irq[0],
661 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
662 		    &sc->nfe_intrhand[0]);
663 	} else {
664 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
665 			error = bus_setup_intr(dev, sc->nfe_irq[i],
666 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
667 			    &sc->nfe_intrhand[i]);
668 			if (error != 0)
669 				break;
670 		}
671 	}
672 	if (error) {
673 		device_printf(dev, "couldn't set up irq\n");
674 		taskqueue_free(sc->nfe_tq);
675 		sc->nfe_tq = NULL;
676 		ether_ifdetach(ifp);
677 		goto fail;
678 	}
679 
680 fail:
681 	if (error)
682 		nfe_detach(dev);
683 
684 	return (error);
685 }
686 
687 static int
688 nfe_detach(device_t dev)
689 {
690 	struct nfe_softc *sc;
691 	if_t ifp;
692 	uint8_t eaddr[ETHER_ADDR_LEN];
693 	int i, rid;
694 
695 	sc = device_get_softc(dev);
696 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
697 	ifp = sc->nfe_ifp;
698 
699 #ifdef DEVICE_POLLING
700 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
701 		ether_poll_deregister(ifp);
702 #endif
703 	if (device_is_attached(dev)) {
704 		NFE_LOCK(sc);
705 		nfe_stop(ifp);
706 		if_setflagbits(ifp, 0, IFF_UP);
707 		NFE_UNLOCK(sc);
708 		callout_drain(&sc->nfe_stat_ch);
709 		ether_ifdetach(ifp);
710 	}
711 
712 	if (ifp) {
713 		/* restore ethernet address */
714 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
715 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
716 				eaddr[i] = sc->eaddr[5 - i];
717 			}
718 		} else
719 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
720 		nfe_set_macaddr(sc, eaddr);
721 		if_free(ifp);
722 	}
723 	if (sc->nfe_miibus)
724 		device_delete_child(dev, sc->nfe_miibus);
725 	bus_generic_detach(dev);
726 	if (sc->nfe_tq != NULL) {
727 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
728 		taskqueue_free(sc->nfe_tq);
729 		sc->nfe_tq = NULL;
730 	}
731 
732 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
733 		if (sc->nfe_intrhand[i] != NULL) {
734 			bus_teardown_intr(dev, sc->nfe_irq[i],
735 			    sc->nfe_intrhand[i]);
736 			sc->nfe_intrhand[i] = NULL;
737 		}
738 	}
739 
740 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
741 		if (sc->nfe_irq[0] != NULL)
742 			bus_release_resource(dev, SYS_RES_IRQ, 0,
743 			    sc->nfe_irq[0]);
744 	} else {
745 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
746 			if (sc->nfe_irq[i] != NULL) {
747 				bus_release_resource(dev, SYS_RES_IRQ, rid,
748 				    sc->nfe_irq[i]);
749 				sc->nfe_irq[i] = NULL;
750 			}
751 		}
752 		pci_release_msi(dev);
753 	}
754 	if (sc->nfe_msix_pba_res != NULL) {
755 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
756 		    sc->nfe_msix_pba_res);
757 		sc->nfe_msix_pba_res = NULL;
758 	}
759 	if (sc->nfe_msix_res != NULL) {
760 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
761 		    sc->nfe_msix_res);
762 		sc->nfe_msix_res = NULL;
763 	}
764 	if (sc->nfe_res[0] != NULL) {
765 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
766 		    sc->nfe_res[0]);
767 		sc->nfe_res[0] = NULL;
768 	}
769 
770 	nfe_free_tx_ring(sc, &sc->txq);
771 	nfe_free_rx_ring(sc, &sc->rxq);
772 	nfe_free_jrx_ring(sc, &sc->jrxq);
773 
774 	if (sc->nfe_parent_tag) {
775 		bus_dma_tag_destroy(sc->nfe_parent_tag);
776 		sc->nfe_parent_tag = NULL;
777 	}
778 
779 	mtx_destroy(&sc->nfe_mtx);
780 
781 	return (0);
782 }
783 
784 static int
785 nfe_suspend(device_t dev)
786 {
787 	struct nfe_softc *sc;
788 
789 	sc = device_get_softc(dev);
790 
791 	NFE_LOCK(sc);
792 	nfe_stop(sc->nfe_ifp);
793 	nfe_set_wol(sc);
794 	sc->nfe_suspended = 1;
795 	NFE_UNLOCK(sc);
796 
797 	return (0);
798 }
799 
800 static int
801 nfe_resume(device_t dev)
802 {
803 	struct nfe_softc *sc;
804 	if_t ifp;
805 
806 	sc = device_get_softc(dev);
807 
808 	NFE_LOCK(sc);
809 	nfe_power(sc);
810 	ifp = sc->nfe_ifp;
811 	if (if_getflags(ifp) & IFF_UP)
812 		nfe_init_locked(sc);
813 	sc->nfe_suspended = 0;
814 	NFE_UNLOCK(sc);
815 
816 	return (0);
817 }
818 
819 static int
820 nfe_can_use_msix(struct nfe_softc *sc)
821 {
822 	static struct msix_blacklist {
823 		char	*maker;
824 		char	*product;
825 	} msix_blacklists[] = {
826 		{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
827 	};
828 
829 	struct msix_blacklist *mblp;
830 	char *maker, *product;
831 	int count, n, use_msix;
832 
833 	/*
834 	 * Search base board manufacturer and product name table
835 	 * to see this system has a known MSI/MSI-X issue.
836 	 */
837 	maker = kern_getenv("smbios.planar.maker");
838 	product = kern_getenv("smbios.planar.product");
839 	use_msix = 1;
840 	if (maker != NULL && product != NULL) {
841 		count = nitems(msix_blacklists);
842 		mblp = msix_blacklists;
843 		for (n = 0; n < count; n++) {
844 			if (strcmp(maker, mblp->maker) == 0 &&
845 			    strcmp(product, mblp->product) == 0) {
846 				use_msix = 0;
847 				break;
848 			}
849 			mblp++;
850 		}
851 	}
852 	if (maker != NULL)
853 		freeenv(maker);
854 	if (product != NULL)
855 		freeenv(product);
856 
857 	return (use_msix);
858 }
859 
860 /* Take PHY/NIC out of powerdown, from Linux */
861 static void
862 nfe_power(struct nfe_softc *sc)
863 {
864 	uint32_t pwr;
865 
866 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
867 		return;
868 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
869 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
870 	DELAY(100);
871 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
872 	DELAY(100);
873 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
874 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
875 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
876 	if (sc->nfe_revid >= 0xa3 &&
877 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
878 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
879 		pwr |= NFE_PWR2_REVA3;
880 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
881 }
882 
883 static void
884 nfe_miibus_statchg(device_t dev)
885 {
886 	struct nfe_softc *sc;
887 	struct mii_data *mii;
888 	if_t ifp;
889 	uint32_t rxctl, txctl;
890 
891 	sc = device_get_softc(dev);
892 
893 	mii = device_get_softc(sc->nfe_miibus);
894 	ifp = sc->nfe_ifp;
895 
896 	sc->nfe_link = 0;
897 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
898 	    (IFM_ACTIVE | IFM_AVALID)) {
899 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
900 		case IFM_10_T:
901 		case IFM_100_TX:
902 		case IFM_1000_T:
903 			sc->nfe_link = 1;
904 			break;
905 		default:
906 			break;
907 		}
908 	}
909 
910 	nfe_mac_config(sc, mii);
911 	txctl = NFE_READ(sc, NFE_TX_CTL);
912 	rxctl = NFE_READ(sc, NFE_RX_CTL);
913 	if (sc->nfe_link != 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
914 		txctl |= NFE_TX_START;
915 		rxctl |= NFE_RX_START;
916 	} else {
917 		txctl &= ~NFE_TX_START;
918 		rxctl &= ~NFE_RX_START;
919 	}
920 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
921 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
922 }
923 
924 static void
925 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
926 {
927 	uint32_t link, misc, phy, seed;
928 	uint32_t val;
929 
930 	NFE_LOCK_ASSERT(sc);
931 
932 	phy = NFE_READ(sc, NFE_PHY_IFACE);
933 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
934 
935 	seed = NFE_READ(sc, NFE_RNDSEED);
936 	seed &= ~NFE_SEED_MASK;
937 
938 	misc = NFE_MISC1_MAGIC;
939 	link = NFE_MEDIA_SET;
940 
941 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
942 		phy  |= NFE_PHY_HDX;	/* half-duplex */
943 		misc |= NFE_MISC1_HDX;
944 	}
945 
946 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
947 	case IFM_1000_T:	/* full-duplex only */
948 		link |= NFE_MEDIA_1000T;
949 		seed |= NFE_SEED_1000T;
950 		phy  |= NFE_PHY_1000T;
951 		break;
952 	case IFM_100_TX:
953 		link |= NFE_MEDIA_100TX;
954 		seed |= NFE_SEED_100TX;
955 		phy  |= NFE_PHY_100TX;
956 		break;
957 	case IFM_10_T:
958 		link |= NFE_MEDIA_10T;
959 		seed |= NFE_SEED_10T;
960 		break;
961 	}
962 
963 	if ((phy & 0x10000000) != 0) {
964 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
965 			val = NFE_R1_MAGIC_1000;
966 		else
967 			val = NFE_R1_MAGIC_10_100;
968 	} else
969 		val = NFE_R1_MAGIC_DEFAULT;
970 	NFE_WRITE(sc, NFE_SETUP_R1, val);
971 
972 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
973 
974 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
975 	NFE_WRITE(sc, NFE_MISC1, misc);
976 	NFE_WRITE(sc, NFE_LINKSPEED, link);
977 
978 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
979 		/* It seems all hardwares supports Rx pause frames. */
980 		val = NFE_READ(sc, NFE_RXFILTER);
981 		if ((IFM_OPTIONS(mii->mii_media_active) &
982 		    IFM_ETH_RXPAUSE) != 0)
983 			val |= NFE_PFF_RX_PAUSE;
984 		else
985 			val &= ~NFE_PFF_RX_PAUSE;
986 		NFE_WRITE(sc, NFE_RXFILTER, val);
987 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
988 			val = NFE_READ(sc, NFE_MISC1);
989 			if ((IFM_OPTIONS(mii->mii_media_active) &
990 			    IFM_ETH_TXPAUSE) != 0) {
991 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
992 				    NFE_TX_PAUSE_FRAME_ENABLE);
993 				val |= NFE_MISC1_TX_PAUSE;
994 			} else {
995 				val &= ~NFE_MISC1_TX_PAUSE;
996 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
997 				    NFE_TX_PAUSE_FRAME_DISABLE);
998 			}
999 			NFE_WRITE(sc, NFE_MISC1, val);
1000 		}
1001 	} else {
1002 		/* disable rx/tx pause frames */
1003 		val = NFE_READ(sc, NFE_RXFILTER);
1004 		val &= ~NFE_PFF_RX_PAUSE;
1005 		NFE_WRITE(sc, NFE_RXFILTER, val);
1006 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
1007 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1008 			    NFE_TX_PAUSE_FRAME_DISABLE);
1009 			val = NFE_READ(sc, NFE_MISC1);
1010 			val &= ~NFE_MISC1_TX_PAUSE;
1011 			NFE_WRITE(sc, NFE_MISC1, val);
1012 		}
1013 	}
1014 }
1015 
1016 static int
1017 nfe_miibus_readreg(device_t dev, int phy, int reg)
1018 {
1019 	struct nfe_softc *sc = device_get_softc(dev);
1020 	uint32_t val;
1021 	int ntries;
1022 
1023 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1024 
1025 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1026 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1027 		DELAY(100);
1028 	}
1029 
1030 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
1031 
1032 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1033 		DELAY(100);
1034 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1035 			break;
1036 	}
1037 	if (ntries == NFE_TIMEOUT) {
1038 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
1039 		return 0;
1040 	}
1041 
1042 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
1043 		DPRINTFN(sc, 2, "could not read PHY\n");
1044 		return 0;
1045 	}
1046 
1047 	val = NFE_READ(sc, NFE_PHY_DATA);
1048 	if (val != 0xffffffff && val != 0)
1049 		sc->mii_phyaddr = phy;
1050 
1051 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
1052 
1053 	return (val);
1054 }
1055 
1056 static int
1057 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
1058 {
1059 	struct nfe_softc *sc = device_get_softc(dev);
1060 	uint32_t ctl;
1061 	int ntries;
1062 
1063 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1064 
1065 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1066 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1067 		DELAY(100);
1068 	}
1069 
1070 	NFE_WRITE(sc, NFE_PHY_DATA, val);
1071 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
1072 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
1073 
1074 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1075 		DELAY(100);
1076 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1077 			break;
1078 	}
1079 #ifdef NFE_DEBUG
1080 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
1081 		device_printf(sc->nfe_dev, "could not write to PHY\n");
1082 #endif
1083 	return (0);
1084 }
1085 
1086 struct nfe_dmamap_arg {
1087 	bus_addr_t nfe_busaddr;
1088 };
1089 
1090 static int
1091 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1092 {
1093 	struct nfe_dmamap_arg ctx;
1094 	struct nfe_rx_data *data;
1095 	void *desc;
1096 	int i, error, descsize;
1097 
1098 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1099 		desc = ring->desc64;
1100 		descsize = sizeof (struct nfe_desc64);
1101 	} else {
1102 		desc = ring->desc32;
1103 		descsize = sizeof (struct nfe_desc32);
1104 	}
1105 
1106 	ring->cur = ring->next = 0;
1107 
1108 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1109 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1110 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1111 	    BUS_SPACE_MAXADDR,			/* highaddr */
1112 	    NULL, NULL,				/* filter, filterarg */
1113 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1114 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1115 	    0,					/* flags */
1116 	    NULL, NULL,				/* lockfunc, lockarg */
1117 	    &ring->rx_desc_tag);
1118 	if (error != 0) {
1119 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1120 		goto fail;
1121 	}
1122 
1123 	/* allocate memory to desc */
1124 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1125 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1126 	if (error != 0) {
1127 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1128 		goto fail;
1129 	}
1130 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1131 		ring->desc64 = desc;
1132 	else
1133 		ring->desc32 = desc;
1134 
1135 	/* map desc to device visible address space */
1136 	ctx.nfe_busaddr = 0;
1137 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1138 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1139 	if (error != 0) {
1140 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1141 		goto fail;
1142 	}
1143 	ring->physaddr = ctx.nfe_busaddr;
1144 
1145 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1146 	    1, 0,			/* alignment, boundary */
1147 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1148 	    BUS_SPACE_MAXADDR,		/* highaddr */
1149 	    NULL, NULL,			/* filter, filterarg */
1150 	    MCLBYTES, 1,		/* maxsize, nsegments */
1151 	    MCLBYTES,			/* maxsegsize */
1152 	    0,				/* flags */
1153 	    NULL, NULL,			/* lockfunc, lockarg */
1154 	    &ring->rx_data_tag);
1155 	if (error != 0) {
1156 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1157 		goto fail;
1158 	}
1159 
1160 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1161 	if (error != 0) {
1162 		device_printf(sc->nfe_dev,
1163 		    "could not create Rx DMA spare map\n");
1164 		goto fail;
1165 	}
1166 
1167 	/*
1168 	 * Pre-allocate Rx buffers and populate Rx ring.
1169 	 */
1170 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1171 		data = &sc->rxq.data[i];
1172 		data->rx_data_map = NULL;
1173 		data->m = NULL;
1174 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1175 		    &data->rx_data_map);
1176 		if (error != 0) {
1177 			device_printf(sc->nfe_dev,
1178 			    "could not create Rx DMA map\n");
1179 			goto fail;
1180 		}
1181 	}
1182 
1183 fail:
1184 	return (error);
1185 }
1186 
1187 static void
1188 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1189 {
1190 	struct nfe_dmamap_arg ctx;
1191 	struct nfe_rx_data *data;
1192 	void *desc;
1193 	int i, error, descsize;
1194 
1195 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1196 		return;
1197 	if (jumbo_disable != 0) {
1198 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1199 		sc->nfe_jumbo_disable = 1;
1200 		return;
1201 	}
1202 
1203 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1204 		desc = ring->jdesc64;
1205 		descsize = sizeof (struct nfe_desc64);
1206 	} else {
1207 		desc = ring->jdesc32;
1208 		descsize = sizeof (struct nfe_desc32);
1209 	}
1210 
1211 	ring->jcur = ring->jnext = 0;
1212 
1213 	/* Create DMA tag for jumbo Rx ring. */
1214 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1215 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1216 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1217 	    BUS_SPACE_MAXADDR,			/* highaddr */
1218 	    NULL, NULL,				/* filter, filterarg */
1219 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1220 	    1, 					/* nsegments */
1221 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1222 	    0,					/* flags */
1223 	    NULL, NULL,				/* lockfunc, lockarg */
1224 	    &ring->jrx_desc_tag);
1225 	if (error != 0) {
1226 		device_printf(sc->nfe_dev,
1227 		    "could not create jumbo ring DMA tag\n");
1228 		goto fail;
1229 	}
1230 
1231 	/* Create DMA tag for jumbo Rx buffers. */
1232 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1233 	    1, 0,				/* alignment, boundary */
1234 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1235 	    BUS_SPACE_MAXADDR,			/* highaddr */
1236 	    NULL, NULL,				/* filter, filterarg */
1237 	    MJUM9BYTES,				/* maxsize */
1238 	    1,					/* nsegments */
1239 	    MJUM9BYTES,				/* maxsegsize */
1240 	    0,					/* flags */
1241 	    NULL, NULL,				/* lockfunc, lockarg */
1242 	    &ring->jrx_data_tag);
1243 	if (error != 0) {
1244 		device_printf(sc->nfe_dev,
1245 		    "could not create jumbo Rx buffer DMA tag\n");
1246 		goto fail;
1247 	}
1248 
1249 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1250 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1251 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1252 	if (error != 0) {
1253 		device_printf(sc->nfe_dev,
1254 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1255 		goto fail;
1256 	}
1257 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1258 		ring->jdesc64 = desc;
1259 	else
1260 		ring->jdesc32 = desc;
1261 
1262 	ctx.nfe_busaddr = 0;
1263 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1264 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1265 	if (error != 0) {
1266 		device_printf(sc->nfe_dev,
1267 		    "could not load DMA'able memory for jumbo Rx ring\n");
1268 		goto fail;
1269 	}
1270 	ring->jphysaddr = ctx.nfe_busaddr;
1271 
1272 	/* Create DMA maps for jumbo Rx buffers. */
1273 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1274 	if (error != 0) {
1275 		device_printf(sc->nfe_dev,
1276 		    "could not create jumbo Rx DMA spare map\n");
1277 		goto fail;
1278 	}
1279 
1280 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1281 		data = &sc->jrxq.jdata[i];
1282 		data->rx_data_map = NULL;
1283 		data->m = NULL;
1284 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1285 		    &data->rx_data_map);
1286 		if (error != 0) {
1287 			device_printf(sc->nfe_dev,
1288 			    "could not create jumbo Rx DMA map\n");
1289 			goto fail;
1290 		}
1291 	}
1292 
1293 	return;
1294 
1295 fail:
1296 	/*
1297 	 * Running without jumbo frame support is ok for most cases
1298 	 * so don't fail on creating dma tag/map for jumbo frame.
1299 	 */
1300 	nfe_free_jrx_ring(sc, ring);
1301 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1302 	    "resource shortage\n");
1303 	sc->nfe_jumbo_disable = 1;
1304 }
1305 
1306 static int
1307 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1308 {
1309 	void *desc;
1310 	size_t descsize;
1311 	int i;
1312 
1313 	ring->cur = ring->next = 0;
1314 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1315 		desc = ring->desc64;
1316 		descsize = sizeof (struct nfe_desc64);
1317 	} else {
1318 		desc = ring->desc32;
1319 		descsize = sizeof (struct nfe_desc32);
1320 	}
1321 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1322 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1323 		if (nfe_newbuf(sc, i) != 0)
1324 			return (ENOBUFS);
1325 	}
1326 
1327 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1328 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1329 
1330 	return (0);
1331 }
1332 
1333 static int
1334 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1335 {
1336 	void *desc;
1337 	size_t descsize;
1338 	int i;
1339 
1340 	ring->jcur = ring->jnext = 0;
1341 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1342 		desc = ring->jdesc64;
1343 		descsize = sizeof (struct nfe_desc64);
1344 	} else {
1345 		desc = ring->jdesc32;
1346 		descsize = sizeof (struct nfe_desc32);
1347 	}
1348 	bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
1349 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1350 		if (nfe_jnewbuf(sc, i) != 0)
1351 			return (ENOBUFS);
1352 	}
1353 
1354 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1355 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1356 
1357 	return (0);
1358 }
1359 
1360 static void
1361 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1362 {
1363 	struct nfe_rx_data *data;
1364 	void *desc;
1365 	int i;
1366 
1367 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1368 		desc = ring->desc64;
1369 	else
1370 		desc = ring->desc32;
1371 
1372 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1373 		data = &ring->data[i];
1374 		if (data->rx_data_map != NULL) {
1375 			bus_dmamap_destroy(ring->rx_data_tag,
1376 			    data->rx_data_map);
1377 			data->rx_data_map = NULL;
1378 		}
1379 		if (data->m != NULL) {
1380 			m_freem(data->m);
1381 			data->m = NULL;
1382 		}
1383 	}
1384 	if (ring->rx_data_tag != NULL) {
1385 		if (ring->rx_spare_map != NULL) {
1386 			bus_dmamap_destroy(ring->rx_data_tag,
1387 			    ring->rx_spare_map);
1388 			ring->rx_spare_map = NULL;
1389 		}
1390 		bus_dma_tag_destroy(ring->rx_data_tag);
1391 		ring->rx_data_tag = NULL;
1392 	}
1393 
1394 	if (desc != NULL) {
1395 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1396 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1397 		ring->desc64 = NULL;
1398 		ring->desc32 = NULL;
1399 	}
1400 	if (ring->rx_desc_tag != NULL) {
1401 		bus_dma_tag_destroy(ring->rx_desc_tag);
1402 		ring->rx_desc_tag = NULL;
1403 	}
1404 }
1405 
1406 static void
1407 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1408 {
1409 	struct nfe_rx_data *data;
1410 	void *desc;
1411 	int i, descsize;
1412 
1413 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1414 		return;
1415 
1416 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1417 		desc = ring->jdesc64;
1418 		descsize = sizeof (struct nfe_desc64);
1419 	} else {
1420 		desc = ring->jdesc32;
1421 		descsize = sizeof (struct nfe_desc32);
1422 	}
1423 
1424 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1425 		data = &ring->jdata[i];
1426 		if (data->rx_data_map != NULL) {
1427 			bus_dmamap_destroy(ring->jrx_data_tag,
1428 			    data->rx_data_map);
1429 			data->rx_data_map = NULL;
1430 		}
1431 		if (data->m != NULL) {
1432 			m_freem(data->m);
1433 			data->m = NULL;
1434 		}
1435 	}
1436 	if (ring->jrx_data_tag != NULL) {
1437 		if (ring->jrx_spare_map != NULL) {
1438 			bus_dmamap_destroy(ring->jrx_data_tag,
1439 			    ring->jrx_spare_map);
1440 			ring->jrx_spare_map = NULL;
1441 		}
1442 		bus_dma_tag_destroy(ring->jrx_data_tag);
1443 		ring->jrx_data_tag = NULL;
1444 	}
1445 
1446 	if (desc != NULL) {
1447 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1448 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1449 		ring->jdesc64 = NULL;
1450 		ring->jdesc32 = NULL;
1451 	}
1452 
1453 	if (ring->jrx_desc_tag != NULL) {
1454 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1455 		ring->jrx_desc_tag = NULL;
1456 	}
1457 }
1458 
1459 static int
1460 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1461 {
1462 	struct nfe_dmamap_arg ctx;
1463 	int i, error;
1464 	void *desc;
1465 	int descsize;
1466 
1467 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1468 		desc = ring->desc64;
1469 		descsize = sizeof (struct nfe_desc64);
1470 	} else {
1471 		desc = ring->desc32;
1472 		descsize = sizeof (struct nfe_desc32);
1473 	}
1474 
1475 	ring->queued = 0;
1476 	ring->cur = ring->next = 0;
1477 
1478 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1479 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1480 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1481 	    BUS_SPACE_MAXADDR,			/* highaddr */
1482 	    NULL, NULL,				/* filter, filterarg */
1483 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1484 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1485 	    0,					/* flags */
1486 	    NULL, NULL,				/* lockfunc, lockarg */
1487 	    &ring->tx_desc_tag);
1488 	if (error != 0) {
1489 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1490 		goto fail;
1491 	}
1492 
1493 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1494 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1495 	if (error != 0) {
1496 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1497 		goto fail;
1498 	}
1499 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1500 		ring->desc64 = desc;
1501 	else
1502 		ring->desc32 = desc;
1503 
1504 	ctx.nfe_busaddr = 0;
1505 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1506 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1507 	if (error != 0) {
1508 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1509 		goto fail;
1510 	}
1511 	ring->physaddr = ctx.nfe_busaddr;
1512 
1513 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1514 	    1, 0,
1515 	    BUS_SPACE_MAXADDR,
1516 	    BUS_SPACE_MAXADDR,
1517 	    NULL, NULL,
1518 	    NFE_TSO_MAXSIZE,
1519 	    NFE_MAX_SCATTER,
1520 	    NFE_TSO_MAXSGSIZE,
1521 	    0,
1522 	    NULL, NULL,
1523 	    &ring->tx_data_tag);
1524 	if (error != 0) {
1525 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1526 		goto fail;
1527 	}
1528 
1529 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1530 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1531 		    &ring->data[i].tx_data_map);
1532 		if (error != 0) {
1533 			device_printf(sc->nfe_dev,
1534 			    "could not create Tx DMA map\n");
1535 			goto fail;
1536 		}
1537 	}
1538 
1539 fail:
1540 	return (error);
1541 }
1542 
1543 static void
1544 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1545 {
1546 	void *desc;
1547 	size_t descsize;
1548 
1549 	sc->nfe_force_tx = 0;
1550 	ring->queued = 0;
1551 	ring->cur = ring->next = 0;
1552 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1553 		desc = ring->desc64;
1554 		descsize = sizeof (struct nfe_desc64);
1555 	} else {
1556 		desc = ring->desc32;
1557 		descsize = sizeof (struct nfe_desc32);
1558 	}
1559 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1560 
1561 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1562 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1563 }
1564 
1565 static void
1566 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1567 {
1568 	struct nfe_tx_data *data;
1569 	void *desc;
1570 	int i, descsize;
1571 
1572 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1573 		desc = ring->desc64;
1574 		descsize = sizeof (struct nfe_desc64);
1575 	} else {
1576 		desc = ring->desc32;
1577 		descsize = sizeof (struct nfe_desc32);
1578 	}
1579 
1580 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1581 		data = &ring->data[i];
1582 
1583 		if (data->m != NULL) {
1584 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1585 			    BUS_DMASYNC_POSTWRITE);
1586 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1587 			m_freem(data->m);
1588 			data->m = NULL;
1589 		}
1590 		if (data->tx_data_map != NULL) {
1591 			bus_dmamap_destroy(ring->tx_data_tag,
1592 			    data->tx_data_map);
1593 			data->tx_data_map = NULL;
1594 		}
1595 	}
1596 
1597 	if (ring->tx_data_tag != NULL) {
1598 		bus_dma_tag_destroy(ring->tx_data_tag);
1599 		ring->tx_data_tag = NULL;
1600 	}
1601 
1602 	if (desc != NULL) {
1603 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1604 		    BUS_DMASYNC_POSTWRITE);
1605 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1606 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1607 		ring->desc64 = NULL;
1608 		ring->desc32 = NULL;
1609 		bus_dma_tag_destroy(ring->tx_desc_tag);
1610 		ring->tx_desc_tag = NULL;
1611 	}
1612 }
1613 
1614 #ifdef DEVICE_POLLING
1615 static poll_handler_t nfe_poll;
1616 
1617 static int
1618 nfe_poll(if_t ifp, enum poll_cmd cmd, int count)
1619 {
1620 	struct nfe_softc *sc = if_getsoftc(ifp);
1621 	uint32_t r;
1622 	int rx_npkts = 0;
1623 
1624 	NFE_LOCK(sc);
1625 
1626 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1627 		NFE_UNLOCK(sc);
1628 		return (rx_npkts);
1629 	}
1630 
1631 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1632 		rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
1633 	else
1634 		rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
1635 	nfe_txeof(sc);
1636 	if (!if_sendq_empty(ifp))
1637 		nfe_start_locked(ifp);
1638 
1639 	if (cmd == POLL_AND_CHECK_STATUS) {
1640 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1641 			NFE_UNLOCK(sc);
1642 			return (rx_npkts);
1643 		}
1644 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1645 
1646 		if (r & NFE_IRQ_LINK) {
1647 			NFE_READ(sc, NFE_PHY_STATUS);
1648 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1649 			DPRINTF(sc, "link state changed\n");
1650 		}
1651 	}
1652 	NFE_UNLOCK(sc);
1653 	return (rx_npkts);
1654 }
1655 #endif /* DEVICE_POLLING */
1656 
1657 static void
1658 nfe_set_intr(struct nfe_softc *sc)
1659 {
1660 
1661 	if (sc->nfe_msi != 0)
1662 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1663 }
1664 
1665 /* In MSIX, a write to mask reegisters behaves as XOR. */
1666 static __inline void
1667 nfe_enable_intr(struct nfe_softc *sc)
1668 {
1669 
1670 	if (sc->nfe_msix != 0) {
1671 		/* XXX Should have a better way to enable interrupts! */
1672 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1673 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1674 	} else
1675 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1676 }
1677 
1678 static __inline void
1679 nfe_disable_intr(struct nfe_softc *sc)
1680 {
1681 
1682 	if (sc->nfe_msix != 0) {
1683 		/* XXX Should have a better way to disable interrupts! */
1684 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1685 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1686 	} else
1687 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1688 }
1689 
1690 static int
1691 nfe_ioctl(if_t ifp, u_long cmd, caddr_t data)
1692 {
1693 	struct nfe_softc *sc;
1694 	struct ifreq *ifr;
1695 	struct mii_data *mii;
1696 	int error, init, mask;
1697 
1698 	sc = if_getsoftc(ifp);
1699 	ifr = (struct ifreq *) data;
1700 	error = 0;
1701 	init = 0;
1702 	switch (cmd) {
1703 	case SIOCSIFMTU:
1704 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1705 			error = EINVAL;
1706 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1707 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1708 			    (sc->nfe_jumbo_disable != 0)) &&
1709 			    ifr->ifr_mtu > ETHERMTU)
1710 				error = EINVAL;
1711 			else {
1712 				NFE_LOCK(sc);
1713 				if_setmtu(ifp, ifr->ifr_mtu);
1714 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1715 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1716 					nfe_init_locked(sc);
1717 				}
1718 				NFE_UNLOCK(sc);
1719 			}
1720 		}
1721 		break;
1722 	case SIOCSIFFLAGS:
1723 		NFE_LOCK(sc);
1724 		if (if_getflags(ifp) & IFF_UP) {
1725 			/*
1726 			 * If only the PROMISC or ALLMULTI flag changes, then
1727 			 * don't do a full re-init of the chip, just update
1728 			 * the Rx filter.
1729 			 */
1730 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) &&
1731 			    ((if_getflags(ifp) ^ sc->nfe_if_flags) &
1732 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1733 				nfe_setmulti(sc);
1734 			else
1735 				nfe_init_locked(sc);
1736 		} else {
1737 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1738 				nfe_stop(ifp);
1739 		}
1740 		sc->nfe_if_flags = if_getflags(ifp);
1741 		NFE_UNLOCK(sc);
1742 		error = 0;
1743 		break;
1744 	case SIOCADDMULTI:
1745 	case SIOCDELMULTI:
1746 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1747 			NFE_LOCK(sc);
1748 			nfe_setmulti(sc);
1749 			NFE_UNLOCK(sc);
1750 			error = 0;
1751 		}
1752 		break;
1753 	case SIOCSIFMEDIA:
1754 	case SIOCGIFMEDIA:
1755 		mii = device_get_softc(sc->nfe_miibus);
1756 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1757 		break;
1758 	case SIOCSIFCAP:
1759 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1760 #ifdef DEVICE_POLLING
1761 		if ((mask & IFCAP_POLLING) != 0) {
1762 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1763 				error = ether_poll_register(nfe_poll, ifp);
1764 				if (error)
1765 					break;
1766 				NFE_LOCK(sc);
1767 				nfe_disable_intr(sc);
1768 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1769 				NFE_UNLOCK(sc);
1770 			} else {
1771 				error = ether_poll_deregister(ifp);
1772 				/* Enable interrupt even in error case */
1773 				NFE_LOCK(sc);
1774 				nfe_enable_intr(sc);
1775 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1776 				NFE_UNLOCK(sc);
1777 			}
1778 		}
1779 #endif /* DEVICE_POLLING */
1780 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1781 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1782 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1783 		if ((mask & IFCAP_TXCSUM) != 0 &&
1784 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1785 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1786 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1787 				if_sethwassistbits(ifp, NFE_CSUM_FEATURES, 0);
1788 			else
1789 				if_sethwassistbits(ifp, 0, NFE_CSUM_FEATURES);
1790 		}
1791 		if ((mask & IFCAP_RXCSUM) != 0 &&
1792 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1793 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1794 			init++;
1795 		}
1796 		if ((mask & IFCAP_TSO4) != 0 &&
1797 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1798 			if_togglecapenable(ifp, IFCAP_TSO4);
1799 			if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
1800 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1801 			else
1802 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1803 		}
1804 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1805 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1806 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1807 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1808 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1809 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1810 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1811 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1812 			init++;
1813 		}
1814 		/*
1815 		 * XXX
1816 		 * It seems that VLAN stripping requires Rx checksum offload.
1817 		 * Unfortunately FreeBSD has no way to disable only Rx side
1818 		 * VLAN stripping. So when we know Rx checksum offload is
1819 		 * disabled turn entire hardware VLAN assist off.
1820 		 */
1821 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) == 0) {
1822 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
1823 				init++;
1824 			if_setcapenablebit(ifp, 0,
1825 			    (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO));
1826 		}
1827 		if (init > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1828 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1829 			nfe_init(sc);
1830 		}
1831 		if_vlancap(ifp);
1832 		break;
1833 	default:
1834 		error = ether_ioctl(ifp, cmd, data);
1835 		break;
1836 	}
1837 
1838 	return (error);
1839 }
1840 
1841 static int
1842 nfe_intr(void *arg)
1843 {
1844 	struct nfe_softc *sc;
1845 	uint32_t status;
1846 
1847 	sc = (struct nfe_softc *)arg;
1848 
1849 	status = NFE_READ(sc, sc->nfe_irq_status);
1850 	if (status == 0 || status == 0xffffffff)
1851 		return (FILTER_STRAY);
1852 	nfe_disable_intr(sc);
1853 	taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task);
1854 
1855 	return (FILTER_HANDLED);
1856 }
1857 
1858 static void
1859 nfe_int_task(void *arg, int pending)
1860 {
1861 	struct nfe_softc *sc = arg;
1862 	if_t ifp = sc->nfe_ifp;
1863 	uint32_t r;
1864 	int domore;
1865 
1866 	NFE_LOCK(sc);
1867 
1868 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1869 		nfe_enable_intr(sc);
1870 		NFE_UNLOCK(sc);
1871 		return;	/* not for us */
1872 	}
1873 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1874 
1875 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1876 
1877 #ifdef DEVICE_POLLING
1878 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1879 		NFE_UNLOCK(sc);
1880 		return;
1881 	}
1882 #endif
1883 
1884 	if (r & NFE_IRQ_LINK) {
1885 		NFE_READ(sc, NFE_PHY_STATUS);
1886 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1887 		DPRINTF(sc, "link state changed\n");
1888 	}
1889 
1890 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1891 		NFE_UNLOCK(sc);
1892 		nfe_disable_intr(sc);
1893 		return;
1894 	}
1895 
1896 	domore = 0;
1897 	/* check Rx ring */
1898 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1899 		domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
1900 	else
1901 		domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
1902 	/* check Tx ring */
1903 	nfe_txeof(sc);
1904 
1905 	if (!if_sendq_empty(ifp))
1906 		nfe_start_locked(ifp);
1907 
1908 	NFE_UNLOCK(sc);
1909 
1910 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1911 		taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task);
1912 		return;
1913 	}
1914 
1915 	/* Reenable interrupts. */
1916 	nfe_enable_intr(sc);
1917 }
1918 
1919 static __inline void
1920 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1921 {
1922 	struct nfe_desc32 *desc32;
1923 	struct nfe_desc64 *desc64;
1924 	struct nfe_rx_data *data;
1925 	struct mbuf *m;
1926 
1927 	data = &sc->rxq.data[idx];
1928 	m = data->m;
1929 
1930 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1931 		desc64 = &sc->rxq.desc64[idx];
1932 		/* VLAN packet may have overwritten it. */
1933 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1934 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1935 		desc64->length = htole16(m->m_len);
1936 		desc64->flags = htole16(NFE_RX_READY);
1937 	} else {
1938 		desc32 = &sc->rxq.desc32[idx];
1939 		desc32->length = htole16(m->m_len);
1940 		desc32->flags = htole16(NFE_RX_READY);
1941 	}
1942 }
1943 
1944 static __inline void
1945 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1946 {
1947 	struct nfe_desc32 *desc32;
1948 	struct nfe_desc64 *desc64;
1949 	struct nfe_rx_data *data;
1950 	struct mbuf *m;
1951 
1952 	data = &sc->jrxq.jdata[idx];
1953 	m = data->m;
1954 
1955 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1956 		desc64 = &sc->jrxq.jdesc64[idx];
1957 		/* VLAN packet may have overwritten it. */
1958 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1959 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1960 		desc64->length = htole16(m->m_len);
1961 		desc64->flags = htole16(NFE_RX_READY);
1962 	} else {
1963 		desc32 = &sc->jrxq.jdesc32[idx];
1964 		desc32->length = htole16(m->m_len);
1965 		desc32->flags = htole16(NFE_RX_READY);
1966 	}
1967 }
1968 
1969 static int
1970 nfe_newbuf(struct nfe_softc *sc, int idx)
1971 {
1972 	struct nfe_rx_data *data;
1973 	struct nfe_desc32 *desc32;
1974 	struct nfe_desc64 *desc64;
1975 	struct mbuf *m;
1976 	bus_dma_segment_t segs[1];
1977 	bus_dmamap_t map;
1978 	int nsegs;
1979 
1980 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1981 	if (m == NULL)
1982 		return (ENOBUFS);
1983 
1984 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1985 	m_adj(m, ETHER_ALIGN);
1986 
1987 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
1988 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
1989 		m_freem(m);
1990 		return (ENOBUFS);
1991 	}
1992 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1993 
1994 	data = &sc->rxq.data[idx];
1995 	if (data->m != NULL) {
1996 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
1997 		    BUS_DMASYNC_POSTREAD);
1998 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
1999 	}
2000 	map = data->rx_data_map;
2001 	data->rx_data_map = sc->rxq.rx_spare_map;
2002 	sc->rxq.rx_spare_map = map;
2003 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2004 	    BUS_DMASYNC_PREREAD);
2005 	data->paddr = segs[0].ds_addr;
2006 	data->m = m;
2007 	/* update mapping address in h/w descriptor */
2008 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2009 		desc64 = &sc->rxq.desc64[idx];
2010 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2011 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2012 		desc64->length = htole16(segs[0].ds_len);
2013 		desc64->flags = htole16(NFE_RX_READY);
2014 	} else {
2015 		desc32 = &sc->rxq.desc32[idx];
2016 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2017 		desc32->length = htole16(segs[0].ds_len);
2018 		desc32->flags = htole16(NFE_RX_READY);
2019 	}
2020 
2021 	return (0);
2022 }
2023 
2024 static int
2025 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2026 {
2027 	struct nfe_rx_data *data;
2028 	struct nfe_desc32 *desc32;
2029 	struct nfe_desc64 *desc64;
2030 	struct mbuf *m;
2031 	bus_dma_segment_t segs[1];
2032 	bus_dmamap_t map;
2033 	int nsegs;
2034 
2035 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2036 	if (m == NULL)
2037 		return (ENOBUFS);
2038 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
2039 	m_adj(m, ETHER_ALIGN);
2040 
2041 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2042 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2043 		m_freem(m);
2044 		return (ENOBUFS);
2045 	}
2046 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2047 
2048 	data = &sc->jrxq.jdata[idx];
2049 	if (data->m != NULL) {
2050 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2051 		    BUS_DMASYNC_POSTREAD);
2052 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2053 	}
2054 	map = data->rx_data_map;
2055 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2056 	sc->jrxq.jrx_spare_map = map;
2057 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2058 	    BUS_DMASYNC_PREREAD);
2059 	data->paddr = segs[0].ds_addr;
2060 	data->m = m;
2061 	/* update mapping address in h/w descriptor */
2062 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2063 		desc64 = &sc->jrxq.jdesc64[idx];
2064 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2065 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2066 		desc64->length = htole16(segs[0].ds_len);
2067 		desc64->flags = htole16(NFE_RX_READY);
2068 	} else {
2069 		desc32 = &sc->jrxq.jdesc32[idx];
2070 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2071 		desc32->length = htole16(segs[0].ds_len);
2072 		desc32->flags = htole16(NFE_RX_READY);
2073 	}
2074 
2075 	return (0);
2076 }
2077 
2078 static int
2079 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2080 {
2081 	if_t ifp = sc->nfe_ifp;
2082 	struct nfe_desc32 *desc32;
2083 	struct nfe_desc64 *desc64;
2084 	struct nfe_rx_data *data;
2085 	struct mbuf *m;
2086 	uint16_t flags;
2087 	int len, prog, rx_npkts;
2088 	uint32_t vtag = 0;
2089 
2090 	rx_npkts = 0;
2091 	NFE_LOCK_ASSERT(sc);
2092 
2093 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2094 	    BUS_DMASYNC_POSTREAD);
2095 
2096 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2097 		if (count <= 0)
2098 			break;
2099 		count--;
2100 
2101 		data = &sc->rxq.data[sc->rxq.cur];
2102 
2103 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2104 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2105 			vtag = le32toh(desc64->physaddr[1]);
2106 			flags = le16toh(desc64->flags);
2107 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2108 		} else {
2109 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2110 			flags = le16toh(desc32->flags);
2111 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2112 		}
2113 
2114 		if (flags & NFE_RX_READY)
2115 			break;
2116 		prog++;
2117 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2118 			if (!(flags & NFE_RX_VALID_V1)) {
2119 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2120 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2121 				continue;
2122 			}
2123 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2124 				flags &= ~NFE_RX_ERROR;
2125 				len--;	/* fix buffer length */
2126 			}
2127 		} else {
2128 			if (!(flags & NFE_RX_VALID_V2)) {
2129 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2130 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2131 				continue;
2132 			}
2133 
2134 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2135 				flags &= ~NFE_RX_ERROR;
2136 				len--;	/* fix buffer length */
2137 			}
2138 		}
2139 
2140 		if (flags & NFE_RX_ERROR) {
2141 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2142 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2143 			continue;
2144 		}
2145 
2146 		m = data->m;
2147 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2148 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2149 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2150 			continue;
2151 		}
2152 
2153 		if ((vtag & NFE_RX_VTAG) != 0 &&
2154 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2155 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2156 			m->m_flags |= M_VLANTAG;
2157 		}
2158 
2159 		m->m_pkthdr.len = m->m_len = len;
2160 		m->m_pkthdr.rcvif = ifp;
2161 
2162 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
2163 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2164 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2165 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2166 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2167 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2168 					m->m_pkthdr.csum_flags |=
2169 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2170 					m->m_pkthdr.csum_data = 0xffff;
2171 				}
2172 			}
2173 		}
2174 
2175 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2176 
2177 		NFE_UNLOCK(sc);
2178 		if_input(ifp, m);
2179 		NFE_LOCK(sc);
2180 		rx_npkts++;
2181 	}
2182 
2183 	if (prog > 0)
2184 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2185 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2186 
2187 	if (rx_npktsp != NULL)
2188 		*rx_npktsp = rx_npkts;
2189 	return (count > 0 ? 0 : EAGAIN);
2190 }
2191 
2192 static int
2193 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2194 {
2195 	if_t ifp = sc->nfe_ifp;
2196 	struct nfe_desc32 *desc32;
2197 	struct nfe_desc64 *desc64;
2198 	struct nfe_rx_data *data;
2199 	struct mbuf *m;
2200 	uint16_t flags;
2201 	int len, prog, rx_npkts;
2202 	uint32_t vtag = 0;
2203 
2204 	rx_npkts = 0;
2205 	NFE_LOCK_ASSERT(sc);
2206 
2207 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2208 	    BUS_DMASYNC_POSTREAD);
2209 
2210 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2211 	    vtag = 0) {
2212 		if (count <= 0)
2213 			break;
2214 		count--;
2215 
2216 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2217 
2218 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2219 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2220 			vtag = le32toh(desc64->physaddr[1]);
2221 			flags = le16toh(desc64->flags);
2222 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2223 		} else {
2224 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2225 			flags = le16toh(desc32->flags);
2226 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2227 		}
2228 
2229 		if (flags & NFE_RX_READY)
2230 			break;
2231 		prog++;
2232 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2233 			if (!(flags & NFE_RX_VALID_V1)) {
2234 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2235 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2236 				continue;
2237 			}
2238 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2239 				flags &= ~NFE_RX_ERROR;
2240 				len--;	/* fix buffer length */
2241 			}
2242 		} else {
2243 			if (!(flags & NFE_RX_VALID_V2)) {
2244 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2245 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2246 				continue;
2247 			}
2248 
2249 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2250 				flags &= ~NFE_RX_ERROR;
2251 				len--;	/* fix buffer length */
2252 			}
2253 		}
2254 
2255 		if (flags & NFE_RX_ERROR) {
2256 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2257 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2258 			continue;
2259 		}
2260 
2261 		m = data->m;
2262 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2263 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2264 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2265 			continue;
2266 		}
2267 
2268 		if ((vtag & NFE_RX_VTAG) != 0 &&
2269 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2270 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2271 			m->m_flags |= M_VLANTAG;
2272 		}
2273 
2274 		m->m_pkthdr.len = m->m_len = len;
2275 		m->m_pkthdr.rcvif = ifp;
2276 
2277 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
2278 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2279 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2280 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2281 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2282 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2283 					m->m_pkthdr.csum_flags |=
2284 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2285 					m->m_pkthdr.csum_data = 0xffff;
2286 				}
2287 			}
2288 		}
2289 
2290 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2291 
2292 		NFE_UNLOCK(sc);
2293 		if_input(ifp, m);
2294 		NFE_LOCK(sc);
2295 		rx_npkts++;
2296 	}
2297 
2298 	if (prog > 0)
2299 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2300 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2301 
2302 	if (rx_npktsp != NULL)
2303 		*rx_npktsp = rx_npkts;
2304 	return (count > 0 ? 0 : EAGAIN);
2305 }
2306 
2307 static void
2308 nfe_txeof(struct nfe_softc *sc)
2309 {
2310 	if_t ifp = sc->nfe_ifp;
2311 	struct nfe_desc32 *desc32;
2312 	struct nfe_desc64 *desc64;
2313 	struct nfe_tx_data *data = NULL;
2314 	uint16_t flags;
2315 	int cons, prog;
2316 
2317 	NFE_LOCK_ASSERT(sc);
2318 
2319 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2320 	    BUS_DMASYNC_POSTREAD);
2321 
2322 	prog = 0;
2323 	for (cons = sc->txq.next; cons != sc->txq.cur;
2324 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2325 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2326 			desc64 = &sc->txq.desc64[cons];
2327 			flags = le16toh(desc64->flags);
2328 		} else {
2329 			desc32 = &sc->txq.desc32[cons];
2330 			flags = le16toh(desc32->flags);
2331 		}
2332 
2333 		if (flags & NFE_TX_VALID)
2334 			break;
2335 
2336 		prog++;
2337 		sc->txq.queued--;
2338 		data = &sc->txq.data[cons];
2339 
2340 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2341 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2342 				continue;
2343 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2344 				device_printf(sc->nfe_dev,
2345 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2346 
2347 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2348 			} else
2349 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2350 		} else {
2351 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2352 				continue;
2353 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2354 				device_printf(sc->nfe_dev,
2355 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2356 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2357 			} else
2358 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2359 		}
2360 
2361 		/* last fragment of the mbuf chain transmitted */
2362 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2363 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2364 		    BUS_DMASYNC_POSTWRITE);
2365 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2366 		m_freem(data->m);
2367 		data->m = NULL;
2368 	}
2369 
2370 	if (prog > 0) {
2371 		sc->nfe_force_tx = 0;
2372 		sc->txq.next = cons;
2373 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2374 		if (sc->txq.queued == 0)
2375 			sc->nfe_watchdog_timer = 0;
2376 	}
2377 }
2378 
2379 static int
2380 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2381 {
2382 	struct nfe_desc32 *desc32 = NULL;
2383 	struct nfe_desc64 *desc64 = NULL;
2384 	bus_dmamap_t map;
2385 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2386 	int error, i, nsegs, prod, si;
2387 	uint32_t tsosegsz;
2388 	uint16_t cflags, flags;
2389 	struct mbuf *m;
2390 
2391 	prod = si = sc->txq.cur;
2392 	map = sc->txq.data[prod].tx_data_map;
2393 
2394 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2395 	    &nsegs, BUS_DMA_NOWAIT);
2396 	if (error == EFBIG) {
2397 		m = m_collapse(*m_head, M_NOWAIT, NFE_MAX_SCATTER);
2398 		if (m == NULL) {
2399 			m_freem(*m_head);
2400 			*m_head = NULL;
2401 			return (ENOBUFS);
2402 		}
2403 		*m_head = m;
2404 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2405 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2406 		if (error != 0) {
2407 			m_freem(*m_head);
2408 			*m_head = NULL;
2409 			return (ENOBUFS);
2410 		}
2411 	} else if (error != 0)
2412 		return (error);
2413 	if (nsegs == 0) {
2414 		m_freem(*m_head);
2415 		*m_head = NULL;
2416 		return (EIO);
2417 	}
2418 
2419 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2420 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2421 		return (ENOBUFS);
2422 	}
2423 
2424 	m = *m_head;
2425 	cflags = flags = 0;
2426 	tsosegsz = 0;
2427 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2428 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2429 		    NFE_TX_TSO_SHIFT;
2430 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2431 		cflags |= NFE_TX_TSO;
2432 	} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2433 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2434 			cflags |= NFE_TX_IP_CSUM;
2435 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2436 			cflags |= NFE_TX_TCP_UDP_CSUM;
2437 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2438 			cflags |= NFE_TX_TCP_UDP_CSUM;
2439 	}
2440 
2441 	for (i = 0; i < nsegs; i++) {
2442 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2443 			desc64 = &sc->txq.desc64[prod];
2444 			desc64->physaddr[0] =
2445 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2446 			desc64->physaddr[1] =
2447 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2448 			desc64->vtag = 0;
2449 			desc64->length = htole16(segs[i].ds_len - 1);
2450 			desc64->flags = htole16(flags);
2451 		} else {
2452 			desc32 = &sc->txq.desc32[prod];
2453 			desc32->physaddr =
2454 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2455 			desc32->length = htole16(segs[i].ds_len - 1);
2456 			desc32->flags = htole16(flags);
2457 		}
2458 
2459 		/*
2460 		 * Setting of the valid bit in the first descriptor is
2461 		 * deferred until the whole chain is fully setup.
2462 		 */
2463 		flags |= NFE_TX_VALID;
2464 
2465 		sc->txq.queued++;
2466 		NFE_INC(prod, NFE_TX_RING_COUNT);
2467 	}
2468 
2469 	/*
2470 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2471 	 * csum flags, vtag and TSO belong to the first fragment only.
2472 	 */
2473 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2474 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2475 		desc64 = &sc->txq.desc64[si];
2476 		if ((m->m_flags & M_VLANTAG) != 0)
2477 			desc64->vtag = htole32(NFE_TX_VTAG |
2478 			    m->m_pkthdr.ether_vtag);
2479 		if (tsosegsz != 0) {
2480 			/*
2481 			 * XXX
2482 			 * The following indicates the descriptor element
2483 			 * is a 32bit quantity.
2484 			 */
2485 			desc64->length |= htole16((uint16_t)tsosegsz);
2486 			desc64->flags |= htole16(tsosegsz >> 16);
2487 		}
2488 		/*
2489 		 * finally, set the valid/checksum/TSO bit in the first
2490 		 * descriptor.
2491 		 */
2492 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2493 	} else {
2494 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2495 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2496 		else
2497 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2498 		desc32 = &sc->txq.desc32[si];
2499 		if (tsosegsz != 0) {
2500 			/*
2501 			 * XXX
2502 			 * The following indicates the descriptor element
2503 			 * is a 32bit quantity.
2504 			 */
2505 			desc32->length |= htole16((uint16_t)tsosegsz);
2506 			desc32->flags |= htole16(tsosegsz >> 16);
2507 		}
2508 		/*
2509 		 * finally, set the valid/checksum/TSO bit in the first
2510 		 * descriptor.
2511 		 */
2512 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2513 	}
2514 
2515 	sc->txq.cur = prod;
2516 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2517 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2518 	sc->txq.data[prod].tx_data_map = map;
2519 	sc->txq.data[prod].m = m;
2520 
2521 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2522 
2523 	return (0);
2524 }
2525 
2526 struct nfe_hash_maddr_ctx {
2527 	uint8_t addr[ETHER_ADDR_LEN];
2528 	uint8_t mask[ETHER_ADDR_LEN];
2529 };
2530 
2531 static u_int
2532 nfe_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2533 {
2534 	struct nfe_hash_maddr_ctx *ctx = arg;
2535 	uint8_t *addrp, mcaddr;
2536 	int j;
2537 
2538 	addrp = LLADDR(sdl);
2539 	for (j = 0; j < ETHER_ADDR_LEN; j++) {
2540 		mcaddr = addrp[j];
2541 		ctx->addr[j] &= mcaddr;
2542 		ctx->mask[j] &= ~mcaddr;
2543 	}
2544 
2545 	return (1);
2546 }
2547 
2548 static void
2549 nfe_setmulti(struct nfe_softc *sc)
2550 {
2551 	if_t ifp = sc->nfe_ifp;
2552 	struct nfe_hash_maddr_ctx ctx;
2553 	uint32_t filter;
2554 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2555 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2556 	};
2557 	int i;
2558 
2559 	NFE_LOCK_ASSERT(sc);
2560 
2561 	if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2562 		bzero(ctx.addr, ETHER_ADDR_LEN);
2563 		bzero(ctx.mask, ETHER_ADDR_LEN);
2564 		goto done;
2565 	}
2566 
2567 	bcopy(etherbroadcastaddr, ctx.addr, ETHER_ADDR_LEN);
2568 	bcopy(etherbroadcastaddr, ctx.mask, ETHER_ADDR_LEN);
2569 
2570 	if_foreach_llmaddr(ifp, nfe_hash_maddr, &ctx);
2571 
2572 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2573 		ctx.mask[i] |= ctx.addr[i];
2574 	}
2575 
2576 done:
2577 	ctx.addr[0] |= 0x01;	/* make sure multicast bit is set */
2578 
2579 	NFE_WRITE(sc, NFE_MULTIADDR_HI, ctx.addr[3] << 24 | ctx.addr[2] << 16 |
2580 	    ctx.addr[1] << 8 | ctx.addr[0]);
2581 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2582 	    ctx.addr[5] <<  8 | ctx.addr[4]);
2583 	NFE_WRITE(sc, NFE_MULTIMASK_HI, ctx.mask[3] << 24 | ctx.mask[2] << 16 |
2584 	    ctx.mask[1] << 8 | ctx.mask[0]);
2585 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2586 	    ctx.mask[5] <<  8 | ctx.mask[4]);
2587 
2588 	filter = NFE_READ(sc, NFE_RXFILTER);
2589 	filter &= NFE_PFF_RX_PAUSE;
2590 	filter |= NFE_RXFILTER_MAGIC;
2591 	filter |= (if_getflags(ifp) & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2592 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2593 }
2594 
2595 static void
2596 nfe_start(if_t ifp)
2597 {
2598 	struct nfe_softc *sc = if_getsoftc(ifp);
2599 
2600 	NFE_LOCK(sc);
2601 	nfe_start_locked(ifp);
2602 	NFE_UNLOCK(sc);
2603 }
2604 
2605 static void
2606 nfe_start_locked(if_t ifp)
2607 {
2608 	struct nfe_softc *sc = if_getsoftc(ifp);
2609 	struct mbuf *m0;
2610 	int enq = 0;
2611 
2612 	NFE_LOCK_ASSERT(sc);
2613 
2614 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2615 	    IFF_DRV_RUNNING || sc->nfe_link == 0)
2616 		return;
2617 
2618 	while (!if_sendq_empty(ifp)) {
2619 		m0 = if_dequeue(ifp);
2620 
2621 		if (m0 == NULL)
2622 			break;
2623 
2624 		if (nfe_encap(sc, &m0) != 0) {
2625 			if (m0 == NULL)
2626 				break;
2627 			if_sendq_prepend(ifp, m0);
2628 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2629 			break;
2630 		}
2631 		enq++;
2632 		if_etherbpfmtap(ifp, m0);
2633 	}
2634 
2635 	if (enq > 0) {
2636 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2637 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2638 
2639 		/* kick Tx */
2640 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2641 
2642 		/*
2643 		 * Set a timeout in case the chip goes out to lunch.
2644 		 */
2645 		sc->nfe_watchdog_timer = 5;
2646 	}
2647 }
2648 
2649 static void
2650 nfe_watchdog(if_t ifp)
2651 {
2652 	struct nfe_softc *sc = if_getsoftc(ifp);
2653 
2654 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2655 		return;
2656 
2657 	/* Check if we've lost Tx completion interrupt. */
2658 	nfe_txeof(sc);
2659 	if (sc->txq.queued == 0) {
2660 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2661 		    "-- recovering\n");
2662 		if (!if_sendq_empty(ifp))
2663 			nfe_start_locked(ifp);
2664 		return;
2665 	}
2666 	/* Check if we've lost start Tx command. */
2667 	sc->nfe_force_tx++;
2668 	if (sc->nfe_force_tx <= 3) {
2669 		/*
2670 		 * If this is the case for watchdog timeout, the following
2671 		 * code should go to nfe_txeof().
2672 		 */
2673 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2674 		return;
2675 	}
2676 	sc->nfe_force_tx = 0;
2677 
2678 	if_printf(ifp, "watchdog timeout\n");
2679 
2680 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2681 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2682 	nfe_init_locked(sc);
2683 }
2684 
2685 static void
2686 nfe_init(void *xsc)
2687 {
2688 	struct nfe_softc *sc = xsc;
2689 
2690 	NFE_LOCK(sc);
2691 	nfe_init_locked(sc);
2692 	NFE_UNLOCK(sc);
2693 }
2694 
2695 static void
2696 nfe_init_locked(void *xsc)
2697 {
2698 	struct nfe_softc *sc = xsc;
2699 	if_t ifp = sc->nfe_ifp;
2700 	struct mii_data *mii;
2701 	uint32_t val;
2702 	int error;
2703 
2704 	NFE_LOCK_ASSERT(sc);
2705 
2706 	mii = device_get_softc(sc->nfe_miibus);
2707 
2708 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2709 		return;
2710 
2711 	nfe_stop(ifp);
2712 
2713 	sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
2714 
2715 	nfe_init_tx_ring(sc, &sc->txq);
2716 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2717 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2718 	else
2719 		error = nfe_init_rx_ring(sc, &sc->rxq);
2720 	if (error != 0) {
2721 		device_printf(sc->nfe_dev,
2722 		    "initialization failed: no memory for rx buffers\n");
2723 		nfe_stop(ifp);
2724 		return;
2725 	}
2726 
2727 	val = 0;
2728 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2729 		val |= NFE_MAC_ADDR_INORDER;
2730 	NFE_WRITE(sc, NFE_TX_UNK, val);
2731 	NFE_WRITE(sc, NFE_STATUS, 0);
2732 
2733 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2734 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2735 
2736 	sc->rxtxctl = NFE_RXTX_BIT2;
2737 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2738 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2739 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2740 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2741 
2742 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2743 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2744 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2745 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2746 
2747 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2748 	DELAY(10);
2749 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2750 
2751 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2752 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2753 	else
2754 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2755 
2756 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2757 
2758 	/* set MAC address */
2759 	nfe_set_macaddr(sc, if_getlladdr(ifp));
2760 
2761 	/* tell MAC where rings are in memory */
2762 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2763 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2764 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2765 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2766 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2767 	} else {
2768 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2769 		    NFE_ADDR_HI(sc->rxq.physaddr));
2770 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2771 		    NFE_ADDR_LO(sc->rxq.physaddr));
2772 	}
2773 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2774 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2775 
2776 	NFE_WRITE(sc, NFE_RING_SIZE,
2777 	    (NFE_RX_RING_COUNT - 1) << 16 |
2778 	    (NFE_TX_RING_COUNT - 1));
2779 
2780 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2781 
2782 	/* force MAC to wakeup */
2783 	val = NFE_READ(sc, NFE_PWR_STATE);
2784 	if ((val & NFE_PWR_WAKEUP) == 0)
2785 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2786 	DELAY(10);
2787 	val = NFE_READ(sc, NFE_PWR_STATE);
2788 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2789 
2790 #if 1
2791 	/* configure interrupts coalescing/mitigation */
2792 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2793 #else
2794 	/* no interrupt mitigation: one interrupt per packet */
2795 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2796 #endif
2797 
2798 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2799 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2800 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2801 
2802 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2803 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2804 
2805 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2806 	/* Disable WOL. */
2807 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
2808 
2809 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2810 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2811 	DELAY(10);
2812 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2813 
2814 	/* set Rx filter */
2815 	nfe_setmulti(sc);
2816 
2817 	/* enable Rx */
2818 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2819 
2820 	/* enable Tx */
2821 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2822 
2823 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2824 
2825 	/* Clear hardware stats. */
2826 	nfe_stats_clear(sc);
2827 
2828 #ifdef DEVICE_POLLING
2829 	if (if_getcapenable(ifp) & IFCAP_POLLING)
2830 		nfe_disable_intr(sc);
2831 	else
2832 #endif
2833 	nfe_set_intr(sc);
2834 	nfe_enable_intr(sc); /* enable interrupts */
2835 
2836 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2837 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2838 
2839 	sc->nfe_link = 0;
2840 	mii_mediachg(mii);
2841 
2842 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2843 }
2844 
2845 static void
2846 nfe_stop(if_t ifp)
2847 {
2848 	struct nfe_softc *sc = if_getsoftc(ifp);
2849 	struct nfe_rx_ring *rx_ring;
2850 	struct nfe_jrx_ring *jrx_ring;
2851 	struct nfe_tx_ring *tx_ring;
2852 	struct nfe_rx_data *rdata;
2853 	struct nfe_tx_data *tdata;
2854 	int i;
2855 
2856 	NFE_LOCK_ASSERT(sc);
2857 
2858 	sc->nfe_watchdog_timer = 0;
2859 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2860 
2861 	callout_stop(&sc->nfe_stat_ch);
2862 
2863 	/* abort Tx */
2864 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2865 
2866 	/* disable Rx */
2867 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2868 
2869 	/* disable interrupts */
2870 	nfe_disable_intr(sc);
2871 
2872 	sc->nfe_link = 0;
2873 
2874 	/* free Rx and Tx mbufs still in the queues. */
2875 	rx_ring = &sc->rxq;
2876 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2877 		rdata = &rx_ring->data[i];
2878 		if (rdata->m != NULL) {
2879 			bus_dmamap_sync(rx_ring->rx_data_tag,
2880 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2881 			bus_dmamap_unload(rx_ring->rx_data_tag,
2882 			    rdata->rx_data_map);
2883 			m_freem(rdata->m);
2884 			rdata->m = NULL;
2885 		}
2886 	}
2887 
2888 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2889 		jrx_ring = &sc->jrxq;
2890 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2891 			rdata = &jrx_ring->jdata[i];
2892 			if (rdata->m != NULL) {
2893 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2894 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2895 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2896 				    rdata->rx_data_map);
2897 				m_freem(rdata->m);
2898 				rdata->m = NULL;
2899 			}
2900 		}
2901 	}
2902 
2903 	tx_ring = &sc->txq;
2904 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2905 		tdata = &tx_ring->data[i];
2906 		if (tdata->m != NULL) {
2907 			bus_dmamap_sync(tx_ring->tx_data_tag,
2908 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2909 			bus_dmamap_unload(tx_ring->tx_data_tag,
2910 			    tdata->tx_data_map);
2911 			m_freem(tdata->m);
2912 			tdata->m = NULL;
2913 		}
2914 	}
2915 	/* Update hardware stats. */
2916 	nfe_stats_update(sc);
2917 }
2918 
2919 static int
2920 nfe_ifmedia_upd(if_t ifp)
2921 {
2922 	struct nfe_softc *sc = if_getsoftc(ifp);
2923 	struct mii_data *mii;
2924 
2925 	NFE_LOCK(sc);
2926 	mii = device_get_softc(sc->nfe_miibus);
2927 	mii_mediachg(mii);
2928 	NFE_UNLOCK(sc);
2929 
2930 	return (0);
2931 }
2932 
2933 static void
2934 nfe_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2935 {
2936 	struct nfe_softc *sc;
2937 	struct mii_data *mii;
2938 
2939 	sc = if_getsoftc(ifp);
2940 
2941 	NFE_LOCK(sc);
2942 	mii = device_get_softc(sc->nfe_miibus);
2943 	mii_pollstat(mii);
2944 
2945 	ifmr->ifm_active = mii->mii_media_active;
2946 	ifmr->ifm_status = mii->mii_media_status;
2947 	NFE_UNLOCK(sc);
2948 }
2949 
2950 void
2951 nfe_tick(void *xsc)
2952 {
2953 	struct nfe_softc *sc;
2954 	struct mii_data *mii;
2955 	if_t ifp;
2956 
2957 	sc = (struct nfe_softc *)xsc;
2958 
2959 	NFE_LOCK_ASSERT(sc);
2960 
2961 	ifp = sc->nfe_ifp;
2962 
2963 	mii = device_get_softc(sc->nfe_miibus);
2964 	mii_tick(mii);
2965 	nfe_stats_update(sc);
2966 	nfe_watchdog(ifp);
2967 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2968 }
2969 
2970 static int
2971 nfe_shutdown(device_t dev)
2972 {
2973 
2974 	return (nfe_suspend(dev));
2975 }
2976 
2977 static void
2978 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2979 {
2980 	uint32_t val;
2981 
2982 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
2983 		val = NFE_READ(sc, NFE_MACADDR_LO);
2984 		addr[0] = (val >> 8) & 0xff;
2985 		addr[1] = (val & 0xff);
2986 
2987 		val = NFE_READ(sc, NFE_MACADDR_HI);
2988 		addr[2] = (val >> 24) & 0xff;
2989 		addr[3] = (val >> 16) & 0xff;
2990 		addr[4] = (val >>  8) & 0xff;
2991 		addr[5] = (val & 0xff);
2992 	} else {
2993 		val = NFE_READ(sc, NFE_MACADDR_LO);
2994 		addr[5] = (val >> 8) & 0xff;
2995 		addr[4] = (val & 0xff);
2996 
2997 		val = NFE_READ(sc, NFE_MACADDR_HI);
2998 		addr[3] = (val >> 24) & 0xff;
2999 		addr[2] = (val >> 16) & 0xff;
3000 		addr[1] = (val >>  8) & 0xff;
3001 		addr[0] = (val & 0xff);
3002 	}
3003 }
3004 
3005 static void
3006 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3007 {
3008 
3009 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3010 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3011 	    addr[1] << 8 | addr[0]);
3012 }
3013 
3014 /*
3015  * Map a single buffer address.
3016  */
3017 
3018 static void
3019 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3020 {
3021 	struct nfe_dmamap_arg *ctx;
3022 
3023 	if (error != 0)
3024 		return;
3025 
3026 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3027 
3028 	ctx = (struct nfe_dmamap_arg *)arg;
3029 	ctx->nfe_busaddr = segs[0].ds_addr;
3030 }
3031 
3032 static int
3033 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3034 {
3035 	int error, value;
3036 
3037 	if (!arg1)
3038 		return (EINVAL);
3039 	value = *(int *)arg1;
3040 	error = sysctl_handle_int(oidp, &value, 0, req);
3041 	if (error || !req->newptr)
3042 		return (error);
3043 	if (value < low || value > high)
3044 		return (EINVAL);
3045 	*(int *)arg1 = value;
3046 
3047 	return (0);
3048 }
3049 
3050 static int
3051 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3052 {
3053 
3054 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3055 	    NFE_PROC_MAX));
3056 }
3057 
3058 #define	NFE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
3059 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3060 #define	NFE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
3061 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
3062 
3063 static void
3064 nfe_sysctl_node(struct nfe_softc *sc)
3065 {
3066 	struct sysctl_ctx_list *ctx;
3067 	struct sysctl_oid_list *child, *parent;
3068 	struct sysctl_oid *tree;
3069 	struct nfe_hw_stats *stats;
3070 	int error;
3071 
3072 	stats = &sc->nfe_stats;
3073 	ctx = device_get_sysctl_ctx(sc->nfe_dev);
3074 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
3075 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
3076 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3077 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
3078 	    "max number of Rx events to process");
3079 
3080 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
3081 	error = resource_int_value(device_get_name(sc->nfe_dev),
3082 	    device_get_unit(sc->nfe_dev), "process_limit",
3083 	    &sc->nfe_process_limit);
3084 	if (error == 0) {
3085 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
3086 		    sc->nfe_process_limit > NFE_PROC_MAX) {
3087 			device_printf(sc->nfe_dev,
3088 			    "process_limit value out of range; "
3089 			    "using default: %d\n", NFE_PROC_DEFAULT);
3090 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
3091 		}
3092 	}
3093 
3094 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3095 		return;
3096 
3097 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3098 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NFE statistics");
3099 	parent = SYSCTL_CHILDREN(tree);
3100 
3101 	/* Rx statistics. */
3102 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3103 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3104 	child = SYSCTL_CHILDREN(tree);
3105 
3106 	NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
3107 	    &stats->rx_frame_errors, "Framing Errors");
3108 	NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
3109 	    &stats->rx_extra_bytes, "Extra Bytes");
3110 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3111 	    &stats->rx_late_cols, "Late Collisions");
3112 	NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
3113 	    &stats->rx_runts, "Runts");
3114 	NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
3115 	    &stats->rx_jumbos, "Jumbos");
3116 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
3117 	    &stats->rx_fifo_overuns, "FIFO Overruns");
3118 	NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
3119 	    &stats->rx_crc_errors, "CRC Errors");
3120 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
3121 	    &stats->rx_fae, "Frame Alignment Errors");
3122 	NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
3123 	    &stats->rx_len_errors, "Length Errors");
3124 	NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3125 	    &stats->rx_unicast, "Unicast Frames");
3126 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3127 	    &stats->rx_multicast, "Multicast Frames");
3128 	NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3129 	    &stats->rx_broadcast, "Broadcast Frames");
3130 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3131 		NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3132 		    &stats->rx_octets, "Octets");
3133 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3134 		    &stats->rx_pause, "Pause frames");
3135 		NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
3136 		    &stats->rx_drops, "Drop frames");
3137 	}
3138 
3139 	/* Tx statistics. */
3140 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3141 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3142 	child = SYSCTL_CHILDREN(tree);
3143 	NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3144 	    &stats->tx_octets, "Octets");
3145 	NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
3146 	    &stats->tx_zero_rexmits, "Zero Retransmits");
3147 	NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
3148 	    &stats->tx_one_rexmits, "One Retransmits");
3149 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
3150 	    &stats->tx_multi_rexmits, "Multiple Retransmits");
3151 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3152 	    &stats->tx_late_cols, "Late Collisions");
3153 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
3154 	    &stats->tx_fifo_underuns, "FIFO Underruns");
3155 	NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
3156 	    &stats->tx_carrier_losts, "Carrier Losts");
3157 	NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
3158 	    &stats->tx_excess_deferals, "Excess Deferrals");
3159 	NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
3160 	    &stats->tx_retry_errors, "Retry Errors");
3161 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3162 		NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
3163 		    &stats->tx_deferals, "Deferrals");
3164 		NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
3165 		    &stats->tx_frames, "Frames");
3166 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3167 		    &stats->tx_pause, "Pause Frames");
3168 	}
3169 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3170 		NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3171 		    &stats->tx_deferals, "Unicast Frames");
3172 		NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3173 		    &stats->tx_frames, "Multicast Frames");
3174 		NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3175 		    &stats->tx_pause, "Broadcast Frames");
3176 	}
3177 }
3178 
3179 #undef NFE_SYSCTL_STAT_ADD32
3180 #undef NFE_SYSCTL_STAT_ADD64
3181 
3182 static void
3183 nfe_stats_clear(struct nfe_softc *sc)
3184 {
3185 	int i, mib_cnt;
3186 
3187 	if ((sc->nfe_flags & NFE_MIB_V1) != 0)
3188 		mib_cnt = NFE_NUM_MIB_STATV1;
3189 	else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
3190 		mib_cnt = NFE_NUM_MIB_STATV2;
3191 	else
3192 		return;
3193 
3194 	for (i = 0; i < mib_cnt; i++)
3195 		NFE_READ(sc, NFE_TX_OCTET + i * sizeof(uint32_t));
3196 
3197 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3198 		NFE_READ(sc, NFE_TX_UNICAST);
3199 		NFE_READ(sc, NFE_TX_MULTICAST);
3200 		NFE_READ(sc, NFE_TX_BROADCAST);
3201 	}
3202 }
3203 
3204 static void
3205 nfe_stats_update(struct nfe_softc *sc)
3206 {
3207 	struct nfe_hw_stats *stats;
3208 
3209 	NFE_LOCK_ASSERT(sc);
3210 
3211 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3212 		return;
3213 
3214 	stats = &sc->nfe_stats;
3215 	stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
3216 	stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
3217 	stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
3218 	stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
3219 	stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
3220 	stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
3221 	stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
3222 	stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
3223 	stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
3224 	stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
3225 	stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
3226 	stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
3227 	stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
3228 	stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
3229 	stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
3230 	stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
3231 	stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
3232 	stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
3233 	stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
3234 	stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
3235 	stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
3236 
3237 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3238 		stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
3239 		stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
3240 		stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
3241 		stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
3242 		stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
3243 		stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
3244 	}
3245 
3246 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3247 		stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
3248 		stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
3249 		stats->tx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
3250 	}
3251 }
3252 
3253 static void
3254 nfe_set_linkspeed(struct nfe_softc *sc)
3255 {
3256 	struct mii_softc *miisc;
3257 	struct mii_data *mii;
3258 	int aneg, i, phyno;
3259 
3260 	NFE_LOCK_ASSERT(sc);
3261 
3262 	mii = device_get_softc(sc->nfe_miibus);
3263 	mii_pollstat(mii);
3264 	aneg = 0;
3265 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3266 	    (IFM_ACTIVE | IFM_AVALID)) {
3267 		switch IFM_SUBTYPE(mii->mii_media_active) {
3268 		case IFM_10_T:
3269 		case IFM_100_TX:
3270 			return;
3271 		case IFM_1000_T:
3272 			aneg++;
3273 			break;
3274 		default:
3275 			break;
3276 		}
3277 	}
3278 	miisc = LIST_FIRST(&mii->mii_phys);
3279 	phyno = miisc->mii_phy;
3280 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3281 		PHY_RESET(miisc);
3282 	nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
3283 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3284 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3285 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3286 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
3287 	DELAY(1000);
3288 	if (aneg != 0) {
3289 		/*
3290 		 * Poll link state until nfe(4) get a 10/100Mbps link.
3291 		 */
3292 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3293 			mii_pollstat(mii);
3294 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3295 			    == (IFM_ACTIVE | IFM_AVALID)) {
3296 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3297 				case IFM_10_T:
3298 				case IFM_100_TX:
3299 					nfe_mac_config(sc, mii);
3300 					return;
3301 				default:
3302 					break;
3303 				}
3304 			}
3305 			NFE_UNLOCK(sc);
3306 			pause("nfelnk", hz);
3307 			NFE_LOCK(sc);
3308 		}
3309 		if (i == MII_ANEGTICKS_GIGE)
3310 			device_printf(sc->nfe_dev,
3311 			    "establishing a link failed, WOL may not work!");
3312 	}
3313 	/*
3314 	 * No link, force MAC to have 100Mbps, full-duplex link.
3315 	 * This is the last resort and may/may not work.
3316 	 */
3317 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3318 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3319 	nfe_mac_config(sc, mii);
3320 }
3321 
3322 static void
3323 nfe_set_wol(struct nfe_softc *sc)
3324 {
3325 	if_t ifp;
3326 	uint32_t wolctl;
3327 	int pmc;
3328 	uint16_t pmstat;
3329 
3330 	NFE_LOCK_ASSERT(sc);
3331 
3332 	if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
3333 		return;
3334 	ifp = sc->nfe_ifp;
3335 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
3336 		wolctl = NFE_WOL_MAGIC;
3337 	else
3338 		wolctl = 0;
3339 	NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
3340 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
3341 		nfe_set_linkspeed(sc);
3342 		if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
3343 			NFE_WRITE(sc, NFE_PWR2_CTL,
3344 			    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
3345 		/* Enable RX. */
3346 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
3347 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
3348 		NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
3349 		    NFE_RX_START);
3350 	}
3351 	/* Request PME if WOL is requested. */
3352 	pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
3353 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3354 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3355 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3356 	pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3357 }
3358