1 /* $OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp> 5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #ifdef HAVE_KERNEL_OPTION_HEADERS 27 #include "opt_device_polling.h" 28 #endif 29 30 #include <sys/param.h> 31 #include <sys/endian.h> 32 #include <sys/systm.h> 33 #include <sys/sockio.h> 34 #include <sys/mbuf.h> 35 #include <sys/malloc.h> 36 #include <sys/module.h> 37 #include <sys/kernel.h> 38 #include <sys/queue.h> 39 #include <sys/socket.h> 40 #include <sys/sysctl.h> 41 #include <sys/taskqueue.h> 42 43 #include <net/if.h> 44 #include <net/if_var.h> 45 #include <net/if_arp.h> 46 #include <net/ethernet.h> 47 #include <net/if_dl.h> 48 #include <net/if_media.h> 49 #include <net/if_types.h> 50 #include <net/if_vlan_var.h> 51 52 #include <net/bpf.h> 53 54 #include <machine/bus.h> 55 #include <machine/resource.h> 56 #include <sys/bus.h> 57 #include <sys/rman.h> 58 59 #include <dev/mii/mii.h> 60 #include <dev/mii/miivar.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <dev/nfe/if_nfereg.h> 66 #include <dev/nfe/if_nfevar.h> 67 68 MODULE_DEPEND(nfe, pci, 1, 1, 1); 69 MODULE_DEPEND(nfe, ether, 1, 1, 1); 70 MODULE_DEPEND(nfe, miibus, 1, 1, 1); 71 72 /* "device miibus" required. See GENERIC if you get errors here. */ 73 #include "miibus_if.h" 74 75 static int nfe_probe(device_t); 76 static int nfe_attach(device_t); 77 static int nfe_detach(device_t); 78 static int nfe_suspend(device_t); 79 static int nfe_resume(device_t); 80 static int nfe_shutdown(device_t); 81 static int nfe_can_use_msix(struct nfe_softc *); 82 static int nfe_detect_msik9(struct nfe_softc *); 83 static void nfe_power(struct nfe_softc *); 84 static int nfe_miibus_readreg(device_t, int, int); 85 static int nfe_miibus_writereg(device_t, int, int, int); 86 static void nfe_miibus_statchg(device_t); 87 static void nfe_mac_config(struct nfe_softc *, struct mii_data *); 88 static void nfe_set_intr(struct nfe_softc *); 89 static __inline void nfe_enable_intr(struct nfe_softc *); 90 static __inline void nfe_disable_intr(struct nfe_softc *); 91 static int nfe_ioctl(if_t, u_long, caddr_t); 92 static void nfe_alloc_msix(struct nfe_softc *, int); 93 static int nfe_intr(void *); 94 static void nfe_int_task(void *, int); 95 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int); 96 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int); 97 static int nfe_newbuf(struct nfe_softc *, int); 98 static int nfe_jnewbuf(struct nfe_softc *, int); 99 static int nfe_rxeof(struct nfe_softc *, int, int *); 100 static int nfe_jrxeof(struct nfe_softc *, int, int *); 101 static void nfe_txeof(struct nfe_softc *); 102 static int nfe_encap(struct nfe_softc *, struct mbuf **); 103 static void nfe_setmulti(struct nfe_softc *); 104 static void nfe_start(if_t); 105 static void nfe_start_locked(if_t); 106 static void nfe_watchdog(if_t); 107 static void nfe_init(void *); 108 static void nfe_init_locked(void *); 109 static void nfe_stop(if_t); 110 static int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 111 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *); 112 static int nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 113 static int nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *); 114 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 115 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *); 116 static int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 117 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 118 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 119 static int nfe_ifmedia_upd(if_t); 120 static void nfe_ifmedia_sts(if_t, struct ifmediareq *); 121 static void nfe_tick(void *); 122 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *); 123 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *); 124 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int); 125 126 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 127 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS); 128 static void nfe_sysctl_node(struct nfe_softc *); 129 static void nfe_stats_clear(struct nfe_softc *); 130 static void nfe_stats_update(struct nfe_softc *); 131 static void nfe_set_linkspeed(struct nfe_softc *); 132 static void nfe_set_wol(struct nfe_softc *); 133 134 #ifdef NFE_DEBUG 135 static int nfedebug = 0; 136 #define DPRINTF(sc, ...) do { \ 137 if (nfedebug) \ 138 device_printf((sc)->nfe_dev, __VA_ARGS__); \ 139 } while (0) 140 #define DPRINTFN(sc, n, ...) do { \ 141 if (nfedebug >= (n)) \ 142 device_printf((sc)->nfe_dev, __VA_ARGS__); \ 143 } while (0) 144 #else 145 #define DPRINTF(sc, ...) 146 #define DPRINTFN(sc, n, ...) 147 #endif 148 149 #define NFE_LOCK(_sc) mtx_lock(&(_sc)->nfe_mtx) 150 #define NFE_UNLOCK(_sc) mtx_unlock(&(_sc)->nfe_mtx) 151 #define NFE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->nfe_mtx, MA_OWNED) 152 153 /* Tunables. */ 154 static int msi_disable = 0; 155 static int msix_disable = 0; 156 static int jumbo_disable = 0; 157 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable); 158 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable); 159 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable); 160 161 static device_method_t nfe_methods[] = { 162 /* Device interface */ 163 DEVMETHOD(device_probe, nfe_probe), 164 DEVMETHOD(device_attach, nfe_attach), 165 DEVMETHOD(device_detach, nfe_detach), 166 DEVMETHOD(device_suspend, nfe_suspend), 167 DEVMETHOD(device_resume, nfe_resume), 168 DEVMETHOD(device_shutdown, nfe_shutdown), 169 170 /* MII interface */ 171 DEVMETHOD(miibus_readreg, nfe_miibus_readreg), 172 DEVMETHOD(miibus_writereg, nfe_miibus_writereg), 173 DEVMETHOD(miibus_statchg, nfe_miibus_statchg), 174 175 DEVMETHOD_END 176 }; 177 178 static driver_t nfe_driver = { 179 "nfe", 180 nfe_methods, 181 sizeof(struct nfe_softc) 182 }; 183 184 static devclass_t nfe_devclass; 185 186 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0); 187 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0); 188 189 static struct nfe_type nfe_devs[] = { 190 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN, 191 "NVIDIA nForce MCP Networking Adapter"}, 192 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN, 193 "NVIDIA nForce2 MCP2 Networking Adapter"}, 194 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1, 195 "NVIDIA nForce2 400 MCP4 Networking Adapter"}, 196 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2, 197 "NVIDIA nForce2 400 MCP5 Networking Adapter"}, 198 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1, 199 "NVIDIA nForce3 MCP3 Networking Adapter"}, 200 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN, 201 "NVIDIA nForce3 250 MCP6 Networking Adapter"}, 202 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4, 203 "NVIDIA nForce3 MCP7 Networking Adapter"}, 204 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1, 205 "NVIDIA nForce4 CK804 MCP8 Networking Adapter"}, 206 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2, 207 "NVIDIA nForce4 CK804 MCP9 Networking Adapter"}, 208 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1, 209 "NVIDIA nForce MCP04 Networking Adapter"}, /* MCP10 */ 210 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2, 211 "NVIDIA nForce MCP04 Networking Adapter"}, /* MCP11 */ 212 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1, 213 "NVIDIA nForce 430 MCP12 Networking Adapter"}, 214 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2, 215 "NVIDIA nForce 430 MCP13 Networking Adapter"}, 216 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1, 217 "NVIDIA nForce MCP55 Networking Adapter"}, 218 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2, 219 "NVIDIA nForce MCP55 Networking Adapter"}, 220 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1, 221 "NVIDIA nForce MCP61 Networking Adapter"}, 222 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2, 223 "NVIDIA nForce MCP61 Networking Adapter"}, 224 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3, 225 "NVIDIA nForce MCP61 Networking Adapter"}, 226 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4, 227 "NVIDIA nForce MCP61 Networking Adapter"}, 228 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1, 229 "NVIDIA nForce MCP65 Networking Adapter"}, 230 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2, 231 "NVIDIA nForce MCP65 Networking Adapter"}, 232 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3, 233 "NVIDIA nForce MCP65 Networking Adapter"}, 234 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4, 235 "NVIDIA nForce MCP65 Networking Adapter"}, 236 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1, 237 "NVIDIA nForce MCP67 Networking Adapter"}, 238 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2, 239 "NVIDIA nForce MCP67 Networking Adapter"}, 240 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3, 241 "NVIDIA nForce MCP67 Networking Adapter"}, 242 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4, 243 "NVIDIA nForce MCP67 Networking Adapter"}, 244 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1, 245 "NVIDIA nForce MCP73 Networking Adapter"}, 246 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2, 247 "NVIDIA nForce MCP73 Networking Adapter"}, 248 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3, 249 "NVIDIA nForce MCP73 Networking Adapter"}, 250 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4, 251 "NVIDIA nForce MCP73 Networking Adapter"}, 252 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1, 253 "NVIDIA nForce MCP77 Networking Adapter"}, 254 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2, 255 "NVIDIA nForce MCP77 Networking Adapter"}, 256 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3, 257 "NVIDIA nForce MCP77 Networking Adapter"}, 258 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4, 259 "NVIDIA nForce MCP77 Networking Adapter"}, 260 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1, 261 "NVIDIA nForce MCP79 Networking Adapter"}, 262 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2, 263 "NVIDIA nForce MCP79 Networking Adapter"}, 264 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3, 265 "NVIDIA nForce MCP79 Networking Adapter"}, 266 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4, 267 "NVIDIA nForce MCP79 Networking Adapter"}, 268 {0, 0, NULL} 269 }; 270 271 272 /* Probe for supported hardware ID's */ 273 static int 274 nfe_probe(device_t dev) 275 { 276 struct nfe_type *t; 277 278 t = nfe_devs; 279 /* Check for matching PCI DEVICE ID's */ 280 while (t->name != NULL) { 281 if ((pci_get_vendor(dev) == t->vid_id) && 282 (pci_get_device(dev) == t->dev_id)) { 283 device_set_desc(dev, t->name); 284 return (BUS_PROBE_DEFAULT); 285 } 286 t++; 287 } 288 289 return (ENXIO); 290 } 291 292 static void 293 nfe_alloc_msix(struct nfe_softc *sc, int count) 294 { 295 int rid; 296 297 rid = PCIR_BAR(2); 298 sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY, 299 &rid, RF_ACTIVE); 300 if (sc->nfe_msix_res == NULL) { 301 device_printf(sc->nfe_dev, 302 "couldn't allocate MSIX table resource\n"); 303 return; 304 } 305 rid = PCIR_BAR(3); 306 sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev, 307 SYS_RES_MEMORY, &rid, RF_ACTIVE); 308 if (sc->nfe_msix_pba_res == NULL) { 309 device_printf(sc->nfe_dev, 310 "couldn't allocate MSIX PBA resource\n"); 311 bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2), 312 sc->nfe_msix_res); 313 sc->nfe_msix_res = NULL; 314 return; 315 } 316 317 if (pci_alloc_msix(sc->nfe_dev, &count) == 0) { 318 if (count == NFE_MSI_MESSAGES) { 319 if (bootverbose) 320 device_printf(sc->nfe_dev, 321 "Using %d MSIX messages\n", count); 322 sc->nfe_msix = 1; 323 } else { 324 if (bootverbose) 325 device_printf(sc->nfe_dev, 326 "couldn't allocate MSIX\n"); 327 pci_release_msi(sc->nfe_dev); 328 bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, 329 PCIR_BAR(3), sc->nfe_msix_pba_res); 330 bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, 331 PCIR_BAR(2), sc->nfe_msix_res); 332 sc->nfe_msix_pba_res = NULL; 333 sc->nfe_msix_res = NULL; 334 } 335 } 336 } 337 338 339 static int 340 nfe_detect_msik9(struct nfe_softc *sc) 341 { 342 static const char *maker = "MSI"; 343 static const char *product = "K9N6PGM2-V2 (MS-7309)"; 344 char *m, *p; 345 int found; 346 347 found = 0; 348 m = kern_getenv("smbios.planar.maker"); 349 p = kern_getenv("smbios.planar.product"); 350 if (m != NULL && p != NULL) { 351 if (strcmp(m, maker) == 0 && strcmp(p, product) == 0) 352 found = 1; 353 } 354 if (m != NULL) 355 freeenv(m); 356 if (p != NULL) 357 freeenv(p); 358 359 return (found); 360 } 361 362 363 static int 364 nfe_attach(device_t dev) 365 { 366 struct nfe_softc *sc; 367 if_t ifp; 368 bus_addr_t dma_addr_max; 369 int error = 0, i, msic, phyloc, reg, rid; 370 371 sc = device_get_softc(dev); 372 sc->nfe_dev = dev; 373 374 mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 375 MTX_DEF); 376 callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0); 377 378 pci_enable_busmaster(dev); 379 380 rid = PCIR_BAR(0); 381 sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 382 RF_ACTIVE); 383 if (sc->nfe_res[0] == NULL) { 384 device_printf(dev, "couldn't map memory resources\n"); 385 mtx_destroy(&sc->nfe_mtx); 386 return (ENXIO); 387 } 388 389 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 390 uint16_t v, width; 391 392 v = pci_read_config(dev, reg + 0x08, 2); 393 /* Change max. read request size to 4096. */ 394 v &= ~(7 << 12); 395 v |= (5 << 12); 396 pci_write_config(dev, reg + 0x08, v, 2); 397 398 v = pci_read_config(dev, reg + 0x0c, 2); 399 /* link capability */ 400 v = (v >> 4) & 0x0f; 401 width = pci_read_config(dev, reg + 0x12, 2); 402 /* negotiated link width */ 403 width = (width >> 4) & 0x3f; 404 if (v != width) 405 device_printf(sc->nfe_dev, 406 "warning, negotiated width of link(x%d) != " 407 "max. width of link(x%d)\n", width, v); 408 } 409 410 if (nfe_can_use_msix(sc) == 0) { 411 device_printf(sc->nfe_dev, 412 "MSI/MSI-X capability black-listed, will use INTx\n"); 413 msix_disable = 1; 414 msi_disable = 1; 415 } 416 417 /* Allocate interrupt */ 418 if (msix_disable == 0 || msi_disable == 0) { 419 if (msix_disable == 0 && 420 (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES) 421 nfe_alloc_msix(sc, msic); 422 if (msi_disable == 0 && sc->nfe_msix == 0 && 423 (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES && 424 pci_alloc_msi(dev, &msic) == 0) { 425 if (msic == NFE_MSI_MESSAGES) { 426 if (bootverbose) 427 device_printf(dev, 428 "Using %d MSI messages\n", msic); 429 sc->nfe_msi = 1; 430 } else 431 pci_release_msi(dev); 432 } 433 } 434 435 if (sc->nfe_msix == 0 && sc->nfe_msi == 0) { 436 rid = 0; 437 sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 438 RF_SHAREABLE | RF_ACTIVE); 439 if (sc->nfe_irq[0] == NULL) { 440 device_printf(dev, "couldn't allocate IRQ resources\n"); 441 error = ENXIO; 442 goto fail; 443 } 444 } else { 445 for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) { 446 sc->nfe_irq[i] = bus_alloc_resource_any(dev, 447 SYS_RES_IRQ, &rid, RF_ACTIVE); 448 if (sc->nfe_irq[i] == NULL) { 449 device_printf(dev, 450 "couldn't allocate IRQ resources for " 451 "message %d\n", rid); 452 error = ENXIO; 453 goto fail; 454 } 455 } 456 /* Map interrupts to vector 0. */ 457 if (sc->nfe_msix != 0) { 458 NFE_WRITE(sc, NFE_MSIX_MAP0, 0); 459 NFE_WRITE(sc, NFE_MSIX_MAP1, 0); 460 } else if (sc->nfe_msi != 0) { 461 NFE_WRITE(sc, NFE_MSI_MAP0, 0); 462 NFE_WRITE(sc, NFE_MSI_MAP1, 0); 463 } 464 } 465 466 /* Set IRQ status/mask register. */ 467 sc->nfe_irq_status = NFE_IRQ_STATUS; 468 sc->nfe_irq_mask = NFE_IRQ_MASK; 469 sc->nfe_intrs = NFE_IRQ_WANTED; 470 sc->nfe_nointrs = 0; 471 if (sc->nfe_msix != 0) { 472 sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS; 473 sc->nfe_nointrs = NFE_IRQ_WANTED; 474 } else if (sc->nfe_msi != 0) { 475 sc->nfe_irq_mask = NFE_MSI_IRQ_MASK; 476 sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED; 477 } 478 479 sc->nfe_devid = pci_get_device(dev); 480 sc->nfe_revid = pci_get_revid(dev); 481 sc->nfe_flags = 0; 482 483 switch (sc->nfe_devid) { 484 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: 485 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: 486 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: 487 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: 488 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; 489 break; 490 case PCI_PRODUCT_NVIDIA_MCP51_LAN1: 491 case PCI_PRODUCT_NVIDIA_MCP51_LAN2: 492 sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1; 493 break; 494 case PCI_PRODUCT_NVIDIA_CK804_LAN1: 495 case PCI_PRODUCT_NVIDIA_CK804_LAN2: 496 case PCI_PRODUCT_NVIDIA_MCP04_LAN1: 497 case PCI_PRODUCT_NVIDIA_MCP04_LAN2: 498 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 499 NFE_MIB_V1; 500 break; 501 case PCI_PRODUCT_NVIDIA_MCP55_LAN1: 502 case PCI_PRODUCT_NVIDIA_MCP55_LAN2: 503 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 504 NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2; 505 break; 506 507 case PCI_PRODUCT_NVIDIA_MCP61_LAN1: 508 case PCI_PRODUCT_NVIDIA_MCP61_LAN2: 509 case PCI_PRODUCT_NVIDIA_MCP61_LAN3: 510 case PCI_PRODUCT_NVIDIA_MCP61_LAN4: 511 case PCI_PRODUCT_NVIDIA_MCP67_LAN1: 512 case PCI_PRODUCT_NVIDIA_MCP67_LAN2: 513 case PCI_PRODUCT_NVIDIA_MCP67_LAN3: 514 case PCI_PRODUCT_NVIDIA_MCP67_LAN4: 515 case PCI_PRODUCT_NVIDIA_MCP73_LAN1: 516 case PCI_PRODUCT_NVIDIA_MCP73_LAN2: 517 case PCI_PRODUCT_NVIDIA_MCP73_LAN3: 518 case PCI_PRODUCT_NVIDIA_MCP73_LAN4: 519 sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | 520 NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2; 521 break; 522 case PCI_PRODUCT_NVIDIA_MCP77_LAN1: 523 case PCI_PRODUCT_NVIDIA_MCP77_LAN2: 524 case PCI_PRODUCT_NVIDIA_MCP77_LAN3: 525 case PCI_PRODUCT_NVIDIA_MCP77_LAN4: 526 /* XXX flow control */ 527 sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT | 528 NFE_CORRECT_MACADDR | NFE_MIB_V3; 529 break; 530 case PCI_PRODUCT_NVIDIA_MCP79_LAN1: 531 case PCI_PRODUCT_NVIDIA_MCP79_LAN2: 532 case PCI_PRODUCT_NVIDIA_MCP79_LAN3: 533 case PCI_PRODUCT_NVIDIA_MCP79_LAN4: 534 /* XXX flow control */ 535 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 536 NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3; 537 break; 538 case PCI_PRODUCT_NVIDIA_MCP65_LAN1: 539 case PCI_PRODUCT_NVIDIA_MCP65_LAN2: 540 case PCI_PRODUCT_NVIDIA_MCP65_LAN3: 541 case PCI_PRODUCT_NVIDIA_MCP65_LAN4: 542 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | 543 NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | 544 NFE_MIB_V2; 545 break; 546 } 547 548 nfe_power(sc); 549 /* Check for reversed ethernet address */ 550 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0) 551 sc->nfe_flags |= NFE_CORRECT_MACADDR; 552 nfe_get_macaddr(sc, sc->eaddr); 553 /* 554 * Allocate the parent bus DMA tag appropriate for PCI. 555 */ 556 dma_addr_max = BUS_SPACE_MAXADDR_32BIT; 557 if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0) 558 dma_addr_max = NFE_DMA_MAXADDR; 559 error = bus_dma_tag_create( 560 bus_get_dma_tag(sc->nfe_dev), /* parent */ 561 1, 0, /* alignment, boundary */ 562 dma_addr_max, /* lowaddr */ 563 BUS_SPACE_MAXADDR, /* highaddr */ 564 NULL, NULL, /* filter, filterarg */ 565 BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */ 566 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 567 0, /* flags */ 568 NULL, NULL, /* lockfunc, lockarg */ 569 &sc->nfe_parent_tag); 570 if (error) 571 goto fail; 572 573 ifp = sc->nfe_ifp = if_gethandle(IFT_ETHER); 574 if (ifp == NULL) { 575 device_printf(dev, "can not if_gethandle()\n"); 576 error = ENOSPC; 577 goto fail; 578 } 579 580 /* 581 * Allocate Tx and Rx rings. 582 */ 583 if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0) 584 goto fail; 585 586 if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0) 587 goto fail; 588 589 nfe_alloc_jrx_ring(sc, &sc->jrxq); 590 /* Create sysctl node. */ 591 nfe_sysctl_node(sc); 592 593 if_setsoftc(ifp, sc); 594 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 595 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 596 if_setioctlfn(ifp, nfe_ioctl); 597 if_setstartfn(ifp, nfe_start); 598 if_sethwassist(ifp, 0); 599 if_setcapabilities(ifp, 0); 600 if_setinitfn(ifp, nfe_init); 601 if_setsendqlen(ifp, NFE_TX_RING_COUNT - 1); 602 if_setsendqready(ifp); 603 604 605 if (sc->nfe_flags & NFE_HW_CSUM) { 606 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0); 607 if_sethwassistbits(ifp, NFE_CSUM_FEATURES | CSUM_TSO, 0); 608 } 609 if_setcapenable(ifp, if_getcapabilities(ifp)); 610 611 sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS; 612 /* VLAN capability setup. */ 613 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0); 614 if ((sc->nfe_flags & NFE_HW_VLAN) != 0) { 615 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0); 616 if ((if_getcapabilities(ifp) & IFCAP_HWCSUM) != 0) 617 if_setcapabilitiesbit(ifp, 618 (IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO), 0); 619 } 620 621 if (pci_find_cap(dev, PCIY_PMG, ®) == 0) 622 if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0); 623 if_setcapenable(ifp, if_getcapabilities(ifp)); 624 625 /* 626 * Tell the upper layer(s) we support long frames. 627 * Must appear after the call to ether_ifattach() because 628 * ether_ifattach() sets ifi_hdrlen to the default value. 629 */ 630 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 631 632 #ifdef DEVICE_POLLING 633 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 634 #endif 635 636 /* Do MII setup */ 637 phyloc = MII_PHY_ANY; 638 if (sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN1 || 639 sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN2 || 640 sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN3 || 641 sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN4) { 642 if (nfe_detect_msik9(sc) != 0) 643 phyloc = 0; 644 } 645 error = mii_attach(dev, &sc->nfe_miibus, ifp, 646 (ifm_change_cb_t)nfe_ifmedia_upd, (ifm_stat_cb_t)nfe_ifmedia_sts, 647 BMSR_DEFCAPMASK, phyloc, MII_OFFSET_ANY, MIIF_DOPAUSE); 648 if (error != 0) { 649 device_printf(dev, "attaching PHYs failed\n"); 650 goto fail; 651 } 652 ether_ifattach(ifp, sc->eaddr); 653 654 TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc); 655 sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK, 656 taskqueue_thread_enqueue, &sc->nfe_tq); 657 taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq", 658 device_get_nameunit(sc->nfe_dev)); 659 error = 0; 660 if (sc->nfe_msi == 0 && sc->nfe_msix == 0) { 661 error = bus_setup_intr(dev, sc->nfe_irq[0], 662 INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc, 663 &sc->nfe_intrhand[0]); 664 } else { 665 for (i = 0; i < NFE_MSI_MESSAGES; i++) { 666 error = bus_setup_intr(dev, sc->nfe_irq[i], 667 INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc, 668 &sc->nfe_intrhand[i]); 669 if (error != 0) 670 break; 671 } 672 } 673 if (error) { 674 device_printf(dev, "couldn't set up irq\n"); 675 taskqueue_free(sc->nfe_tq); 676 sc->nfe_tq = NULL; 677 ether_ifdetach(ifp); 678 goto fail; 679 } 680 681 fail: 682 if (error) 683 nfe_detach(dev); 684 685 return (error); 686 } 687 688 689 static int 690 nfe_detach(device_t dev) 691 { 692 struct nfe_softc *sc; 693 if_t ifp; 694 uint8_t eaddr[ETHER_ADDR_LEN]; 695 int i, rid; 696 697 sc = device_get_softc(dev); 698 KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized")); 699 ifp = sc->nfe_ifp; 700 701 #ifdef DEVICE_POLLING 702 if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING) 703 ether_poll_deregister(ifp); 704 #endif 705 if (device_is_attached(dev)) { 706 NFE_LOCK(sc); 707 nfe_stop(ifp); 708 if_setflagbits(ifp, 0, IFF_UP); 709 NFE_UNLOCK(sc); 710 callout_drain(&sc->nfe_stat_ch); 711 ether_ifdetach(ifp); 712 } 713 714 if (ifp) { 715 /* restore ethernet address */ 716 if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) { 717 for (i = 0; i < ETHER_ADDR_LEN; i++) { 718 eaddr[i] = sc->eaddr[5 - i]; 719 } 720 } else 721 bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN); 722 nfe_set_macaddr(sc, eaddr); 723 if_free(ifp); 724 } 725 if (sc->nfe_miibus) 726 device_delete_child(dev, sc->nfe_miibus); 727 bus_generic_detach(dev); 728 if (sc->nfe_tq != NULL) { 729 taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task); 730 taskqueue_free(sc->nfe_tq); 731 sc->nfe_tq = NULL; 732 } 733 734 for (i = 0; i < NFE_MSI_MESSAGES; i++) { 735 if (sc->nfe_intrhand[i] != NULL) { 736 bus_teardown_intr(dev, sc->nfe_irq[i], 737 sc->nfe_intrhand[i]); 738 sc->nfe_intrhand[i] = NULL; 739 } 740 } 741 742 if (sc->nfe_msi == 0 && sc->nfe_msix == 0) { 743 if (sc->nfe_irq[0] != NULL) 744 bus_release_resource(dev, SYS_RES_IRQ, 0, 745 sc->nfe_irq[0]); 746 } else { 747 for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) { 748 if (sc->nfe_irq[i] != NULL) { 749 bus_release_resource(dev, SYS_RES_IRQ, rid, 750 sc->nfe_irq[i]); 751 sc->nfe_irq[i] = NULL; 752 } 753 } 754 pci_release_msi(dev); 755 } 756 if (sc->nfe_msix_pba_res != NULL) { 757 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3), 758 sc->nfe_msix_pba_res); 759 sc->nfe_msix_pba_res = NULL; 760 } 761 if (sc->nfe_msix_res != NULL) { 762 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2), 763 sc->nfe_msix_res); 764 sc->nfe_msix_res = NULL; 765 } 766 if (sc->nfe_res[0] != NULL) { 767 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 768 sc->nfe_res[0]); 769 sc->nfe_res[0] = NULL; 770 } 771 772 nfe_free_tx_ring(sc, &sc->txq); 773 nfe_free_rx_ring(sc, &sc->rxq); 774 nfe_free_jrx_ring(sc, &sc->jrxq); 775 776 if (sc->nfe_parent_tag) { 777 bus_dma_tag_destroy(sc->nfe_parent_tag); 778 sc->nfe_parent_tag = NULL; 779 } 780 781 mtx_destroy(&sc->nfe_mtx); 782 783 return (0); 784 } 785 786 787 static int 788 nfe_suspend(device_t dev) 789 { 790 struct nfe_softc *sc; 791 792 sc = device_get_softc(dev); 793 794 NFE_LOCK(sc); 795 nfe_stop(sc->nfe_ifp); 796 nfe_set_wol(sc); 797 sc->nfe_suspended = 1; 798 NFE_UNLOCK(sc); 799 800 return (0); 801 } 802 803 804 static int 805 nfe_resume(device_t dev) 806 { 807 struct nfe_softc *sc; 808 if_t ifp; 809 810 sc = device_get_softc(dev); 811 812 NFE_LOCK(sc); 813 nfe_power(sc); 814 ifp = sc->nfe_ifp; 815 if (if_getflags(ifp) & IFF_UP) 816 nfe_init_locked(sc); 817 sc->nfe_suspended = 0; 818 NFE_UNLOCK(sc); 819 820 return (0); 821 } 822 823 824 static int 825 nfe_can_use_msix(struct nfe_softc *sc) 826 { 827 static struct msix_blacklist { 828 char *maker; 829 char *product; 830 } msix_blacklists[] = { 831 { "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" } 832 }; 833 834 struct msix_blacklist *mblp; 835 char *maker, *product; 836 int count, n, use_msix; 837 838 /* 839 * Search base board manufacturer and product name table 840 * to see this system has a known MSI/MSI-X issue. 841 */ 842 maker = kern_getenv("smbios.planar.maker"); 843 product = kern_getenv("smbios.planar.product"); 844 use_msix = 1; 845 if (maker != NULL && product != NULL) { 846 count = nitems(msix_blacklists); 847 mblp = msix_blacklists; 848 for (n = 0; n < count; n++) { 849 if (strcmp(maker, mblp->maker) == 0 && 850 strcmp(product, mblp->product) == 0) { 851 use_msix = 0; 852 break; 853 } 854 mblp++; 855 } 856 } 857 if (maker != NULL) 858 freeenv(maker); 859 if (product != NULL) 860 freeenv(product); 861 862 return (use_msix); 863 } 864 865 866 /* Take PHY/NIC out of powerdown, from Linux */ 867 static void 868 nfe_power(struct nfe_softc *sc) 869 { 870 uint32_t pwr; 871 872 if ((sc->nfe_flags & NFE_PWR_MGMT) == 0) 873 return; 874 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2); 875 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC); 876 DELAY(100); 877 NFE_WRITE(sc, NFE_MAC_RESET, 0); 878 DELAY(100); 879 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2); 880 pwr = NFE_READ(sc, NFE_PWR2_CTL); 881 pwr &= ~NFE_PWR2_WAKEUP_MASK; 882 if (sc->nfe_revid >= 0xa3 && 883 (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 || 884 sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2)) 885 pwr |= NFE_PWR2_REVA3; 886 NFE_WRITE(sc, NFE_PWR2_CTL, pwr); 887 } 888 889 890 static void 891 nfe_miibus_statchg(device_t dev) 892 { 893 struct nfe_softc *sc; 894 struct mii_data *mii; 895 if_t ifp; 896 uint32_t rxctl, txctl; 897 898 sc = device_get_softc(dev); 899 900 mii = device_get_softc(sc->nfe_miibus); 901 ifp = sc->nfe_ifp; 902 903 sc->nfe_link = 0; 904 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 905 (IFM_ACTIVE | IFM_AVALID)) { 906 switch (IFM_SUBTYPE(mii->mii_media_active)) { 907 case IFM_10_T: 908 case IFM_100_TX: 909 case IFM_1000_T: 910 sc->nfe_link = 1; 911 break; 912 default: 913 break; 914 } 915 } 916 917 nfe_mac_config(sc, mii); 918 txctl = NFE_READ(sc, NFE_TX_CTL); 919 rxctl = NFE_READ(sc, NFE_RX_CTL); 920 if (sc->nfe_link != 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 921 txctl |= NFE_TX_START; 922 rxctl |= NFE_RX_START; 923 } else { 924 txctl &= ~NFE_TX_START; 925 rxctl &= ~NFE_RX_START; 926 } 927 NFE_WRITE(sc, NFE_TX_CTL, txctl); 928 NFE_WRITE(sc, NFE_RX_CTL, rxctl); 929 } 930 931 932 static void 933 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii) 934 { 935 uint32_t link, misc, phy, seed; 936 uint32_t val; 937 938 NFE_LOCK_ASSERT(sc); 939 940 phy = NFE_READ(sc, NFE_PHY_IFACE); 941 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T); 942 943 seed = NFE_READ(sc, NFE_RNDSEED); 944 seed &= ~NFE_SEED_MASK; 945 946 misc = NFE_MISC1_MAGIC; 947 link = NFE_MEDIA_SET; 948 949 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) { 950 phy |= NFE_PHY_HDX; /* half-duplex */ 951 misc |= NFE_MISC1_HDX; 952 } 953 954 switch (IFM_SUBTYPE(mii->mii_media_active)) { 955 case IFM_1000_T: /* full-duplex only */ 956 link |= NFE_MEDIA_1000T; 957 seed |= NFE_SEED_1000T; 958 phy |= NFE_PHY_1000T; 959 break; 960 case IFM_100_TX: 961 link |= NFE_MEDIA_100TX; 962 seed |= NFE_SEED_100TX; 963 phy |= NFE_PHY_100TX; 964 break; 965 case IFM_10_T: 966 link |= NFE_MEDIA_10T; 967 seed |= NFE_SEED_10T; 968 break; 969 } 970 971 if ((phy & 0x10000000) != 0) { 972 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) 973 val = NFE_R1_MAGIC_1000; 974 else 975 val = NFE_R1_MAGIC_10_100; 976 } else 977 val = NFE_R1_MAGIC_DEFAULT; 978 NFE_WRITE(sc, NFE_SETUP_R1, val); 979 980 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */ 981 982 NFE_WRITE(sc, NFE_PHY_IFACE, phy); 983 NFE_WRITE(sc, NFE_MISC1, misc); 984 NFE_WRITE(sc, NFE_LINKSPEED, link); 985 986 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 987 /* It seems all hardwares supports Rx pause frames. */ 988 val = NFE_READ(sc, NFE_RXFILTER); 989 if ((IFM_OPTIONS(mii->mii_media_active) & 990 IFM_ETH_RXPAUSE) != 0) 991 val |= NFE_PFF_RX_PAUSE; 992 else 993 val &= ~NFE_PFF_RX_PAUSE; 994 NFE_WRITE(sc, NFE_RXFILTER, val); 995 if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) { 996 val = NFE_READ(sc, NFE_MISC1); 997 if ((IFM_OPTIONS(mii->mii_media_active) & 998 IFM_ETH_TXPAUSE) != 0) { 999 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, 1000 NFE_TX_PAUSE_FRAME_ENABLE); 1001 val |= NFE_MISC1_TX_PAUSE; 1002 } else { 1003 val &= ~NFE_MISC1_TX_PAUSE; 1004 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, 1005 NFE_TX_PAUSE_FRAME_DISABLE); 1006 } 1007 NFE_WRITE(sc, NFE_MISC1, val); 1008 } 1009 } else { 1010 /* disable rx/tx pause frames */ 1011 val = NFE_READ(sc, NFE_RXFILTER); 1012 val &= ~NFE_PFF_RX_PAUSE; 1013 NFE_WRITE(sc, NFE_RXFILTER, val); 1014 if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) { 1015 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, 1016 NFE_TX_PAUSE_FRAME_DISABLE); 1017 val = NFE_READ(sc, NFE_MISC1); 1018 val &= ~NFE_MISC1_TX_PAUSE; 1019 NFE_WRITE(sc, NFE_MISC1, val); 1020 } 1021 } 1022 } 1023 1024 1025 static int 1026 nfe_miibus_readreg(device_t dev, int phy, int reg) 1027 { 1028 struct nfe_softc *sc = device_get_softc(dev); 1029 uint32_t val; 1030 int ntries; 1031 1032 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1033 1034 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 1035 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 1036 DELAY(100); 1037 } 1038 1039 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg); 1040 1041 for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) { 1042 DELAY(100); 1043 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 1044 break; 1045 } 1046 if (ntries == NFE_TIMEOUT) { 1047 DPRINTFN(sc, 2, "timeout waiting for PHY\n"); 1048 return 0; 1049 } 1050 1051 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) { 1052 DPRINTFN(sc, 2, "could not read PHY\n"); 1053 return 0; 1054 } 1055 1056 val = NFE_READ(sc, NFE_PHY_DATA); 1057 if (val != 0xffffffff && val != 0) 1058 sc->mii_phyaddr = phy; 1059 1060 DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val); 1061 1062 return (val); 1063 } 1064 1065 1066 static int 1067 nfe_miibus_writereg(device_t dev, int phy, int reg, int val) 1068 { 1069 struct nfe_softc *sc = device_get_softc(dev); 1070 uint32_t ctl; 1071 int ntries; 1072 1073 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1074 1075 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 1076 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 1077 DELAY(100); 1078 } 1079 1080 NFE_WRITE(sc, NFE_PHY_DATA, val); 1081 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg; 1082 NFE_WRITE(sc, NFE_PHY_CTL, ctl); 1083 1084 for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) { 1085 DELAY(100); 1086 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 1087 break; 1088 } 1089 #ifdef NFE_DEBUG 1090 if (nfedebug >= 2 && ntries == NFE_TIMEOUT) 1091 device_printf(sc->nfe_dev, "could not write to PHY\n"); 1092 #endif 1093 return (0); 1094 } 1095 1096 struct nfe_dmamap_arg { 1097 bus_addr_t nfe_busaddr; 1098 }; 1099 1100 static int 1101 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1102 { 1103 struct nfe_dmamap_arg ctx; 1104 struct nfe_rx_data *data; 1105 void *desc; 1106 int i, error, descsize; 1107 1108 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1109 desc = ring->desc64; 1110 descsize = sizeof (struct nfe_desc64); 1111 } else { 1112 desc = ring->desc32; 1113 descsize = sizeof (struct nfe_desc32); 1114 } 1115 1116 ring->cur = ring->next = 0; 1117 1118 error = bus_dma_tag_create(sc->nfe_parent_tag, 1119 NFE_RING_ALIGN, 0, /* alignment, boundary */ 1120 BUS_SPACE_MAXADDR, /* lowaddr */ 1121 BUS_SPACE_MAXADDR, /* highaddr */ 1122 NULL, NULL, /* filter, filterarg */ 1123 NFE_RX_RING_COUNT * descsize, 1, /* maxsize, nsegments */ 1124 NFE_RX_RING_COUNT * descsize, /* maxsegsize */ 1125 0, /* flags */ 1126 NULL, NULL, /* lockfunc, lockarg */ 1127 &ring->rx_desc_tag); 1128 if (error != 0) { 1129 device_printf(sc->nfe_dev, "could not create desc DMA tag\n"); 1130 goto fail; 1131 } 1132 1133 /* allocate memory to desc */ 1134 error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK | 1135 BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map); 1136 if (error != 0) { 1137 device_printf(sc->nfe_dev, "could not create desc DMA map\n"); 1138 goto fail; 1139 } 1140 if (sc->nfe_flags & NFE_40BIT_ADDR) 1141 ring->desc64 = desc; 1142 else 1143 ring->desc32 = desc; 1144 1145 /* map desc to device visible address space */ 1146 ctx.nfe_busaddr = 0; 1147 error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc, 1148 NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0); 1149 if (error != 0) { 1150 device_printf(sc->nfe_dev, "could not load desc DMA map\n"); 1151 goto fail; 1152 } 1153 ring->physaddr = ctx.nfe_busaddr; 1154 1155 error = bus_dma_tag_create(sc->nfe_parent_tag, 1156 1, 0, /* alignment, boundary */ 1157 BUS_SPACE_MAXADDR, /* lowaddr */ 1158 BUS_SPACE_MAXADDR, /* highaddr */ 1159 NULL, NULL, /* filter, filterarg */ 1160 MCLBYTES, 1, /* maxsize, nsegments */ 1161 MCLBYTES, /* maxsegsize */ 1162 0, /* flags */ 1163 NULL, NULL, /* lockfunc, lockarg */ 1164 &ring->rx_data_tag); 1165 if (error != 0) { 1166 device_printf(sc->nfe_dev, "could not create Rx DMA tag\n"); 1167 goto fail; 1168 } 1169 1170 error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map); 1171 if (error != 0) { 1172 device_printf(sc->nfe_dev, 1173 "could not create Rx DMA spare map\n"); 1174 goto fail; 1175 } 1176 1177 /* 1178 * Pre-allocate Rx buffers and populate Rx ring. 1179 */ 1180 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1181 data = &sc->rxq.data[i]; 1182 data->rx_data_map = NULL; 1183 data->m = NULL; 1184 error = bus_dmamap_create(ring->rx_data_tag, 0, 1185 &data->rx_data_map); 1186 if (error != 0) { 1187 device_printf(sc->nfe_dev, 1188 "could not create Rx DMA map\n"); 1189 goto fail; 1190 } 1191 } 1192 1193 fail: 1194 return (error); 1195 } 1196 1197 1198 static void 1199 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring) 1200 { 1201 struct nfe_dmamap_arg ctx; 1202 struct nfe_rx_data *data; 1203 void *desc; 1204 int i, error, descsize; 1205 1206 if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0) 1207 return; 1208 if (jumbo_disable != 0) { 1209 device_printf(sc->nfe_dev, "disabling jumbo frame support\n"); 1210 sc->nfe_jumbo_disable = 1; 1211 return; 1212 } 1213 1214 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1215 desc = ring->jdesc64; 1216 descsize = sizeof (struct nfe_desc64); 1217 } else { 1218 desc = ring->jdesc32; 1219 descsize = sizeof (struct nfe_desc32); 1220 } 1221 1222 ring->jcur = ring->jnext = 0; 1223 1224 /* Create DMA tag for jumbo Rx ring. */ 1225 error = bus_dma_tag_create(sc->nfe_parent_tag, 1226 NFE_RING_ALIGN, 0, /* alignment, boundary */ 1227 BUS_SPACE_MAXADDR, /* lowaddr */ 1228 BUS_SPACE_MAXADDR, /* highaddr */ 1229 NULL, NULL, /* filter, filterarg */ 1230 NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsize */ 1231 1, /* nsegments */ 1232 NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsegsize */ 1233 0, /* flags */ 1234 NULL, NULL, /* lockfunc, lockarg */ 1235 &ring->jrx_desc_tag); 1236 if (error != 0) { 1237 device_printf(sc->nfe_dev, 1238 "could not create jumbo ring DMA tag\n"); 1239 goto fail; 1240 } 1241 1242 /* Create DMA tag for jumbo Rx buffers. */ 1243 error = bus_dma_tag_create(sc->nfe_parent_tag, 1244 1, 0, /* alignment, boundary */ 1245 BUS_SPACE_MAXADDR, /* lowaddr */ 1246 BUS_SPACE_MAXADDR, /* highaddr */ 1247 NULL, NULL, /* filter, filterarg */ 1248 MJUM9BYTES, /* maxsize */ 1249 1, /* nsegments */ 1250 MJUM9BYTES, /* maxsegsize */ 1251 0, /* flags */ 1252 NULL, NULL, /* lockfunc, lockarg */ 1253 &ring->jrx_data_tag); 1254 if (error != 0) { 1255 device_printf(sc->nfe_dev, 1256 "could not create jumbo Rx buffer DMA tag\n"); 1257 goto fail; 1258 } 1259 1260 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */ 1261 error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK | 1262 BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map); 1263 if (error != 0) { 1264 device_printf(sc->nfe_dev, 1265 "could not allocate DMA'able memory for jumbo Rx ring\n"); 1266 goto fail; 1267 } 1268 if (sc->nfe_flags & NFE_40BIT_ADDR) 1269 ring->jdesc64 = desc; 1270 else 1271 ring->jdesc32 = desc; 1272 1273 ctx.nfe_busaddr = 0; 1274 error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc, 1275 NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0); 1276 if (error != 0) { 1277 device_printf(sc->nfe_dev, 1278 "could not load DMA'able memory for jumbo Rx ring\n"); 1279 goto fail; 1280 } 1281 ring->jphysaddr = ctx.nfe_busaddr; 1282 1283 /* Create DMA maps for jumbo Rx buffers. */ 1284 error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map); 1285 if (error != 0) { 1286 device_printf(sc->nfe_dev, 1287 "could not create jumbo Rx DMA spare map\n"); 1288 goto fail; 1289 } 1290 1291 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 1292 data = &sc->jrxq.jdata[i]; 1293 data->rx_data_map = NULL; 1294 data->m = NULL; 1295 error = bus_dmamap_create(ring->jrx_data_tag, 0, 1296 &data->rx_data_map); 1297 if (error != 0) { 1298 device_printf(sc->nfe_dev, 1299 "could not create jumbo Rx DMA map\n"); 1300 goto fail; 1301 } 1302 } 1303 1304 return; 1305 1306 fail: 1307 /* 1308 * Running without jumbo frame support is ok for most cases 1309 * so don't fail on creating dma tag/map for jumbo frame. 1310 */ 1311 nfe_free_jrx_ring(sc, ring); 1312 device_printf(sc->nfe_dev, "disabling jumbo frame support due to " 1313 "resource shortage\n"); 1314 sc->nfe_jumbo_disable = 1; 1315 } 1316 1317 1318 static int 1319 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1320 { 1321 void *desc; 1322 size_t descsize; 1323 int i; 1324 1325 ring->cur = ring->next = 0; 1326 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1327 desc = ring->desc64; 1328 descsize = sizeof (struct nfe_desc64); 1329 } else { 1330 desc = ring->desc32; 1331 descsize = sizeof (struct nfe_desc32); 1332 } 1333 bzero(desc, descsize * NFE_RX_RING_COUNT); 1334 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1335 if (nfe_newbuf(sc, i) != 0) 1336 return (ENOBUFS); 1337 } 1338 1339 bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map, 1340 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1341 1342 return (0); 1343 } 1344 1345 1346 static int 1347 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring) 1348 { 1349 void *desc; 1350 size_t descsize; 1351 int i; 1352 1353 ring->jcur = ring->jnext = 0; 1354 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1355 desc = ring->jdesc64; 1356 descsize = sizeof (struct nfe_desc64); 1357 } else { 1358 desc = ring->jdesc32; 1359 descsize = sizeof (struct nfe_desc32); 1360 } 1361 bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT); 1362 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 1363 if (nfe_jnewbuf(sc, i) != 0) 1364 return (ENOBUFS); 1365 } 1366 1367 bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map, 1368 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1369 1370 return (0); 1371 } 1372 1373 1374 static void 1375 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1376 { 1377 struct nfe_rx_data *data; 1378 void *desc; 1379 int i; 1380 1381 if (sc->nfe_flags & NFE_40BIT_ADDR) 1382 desc = ring->desc64; 1383 else 1384 desc = ring->desc32; 1385 1386 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1387 data = &ring->data[i]; 1388 if (data->rx_data_map != NULL) { 1389 bus_dmamap_destroy(ring->rx_data_tag, 1390 data->rx_data_map); 1391 data->rx_data_map = NULL; 1392 } 1393 if (data->m != NULL) { 1394 m_freem(data->m); 1395 data->m = NULL; 1396 } 1397 } 1398 if (ring->rx_data_tag != NULL) { 1399 if (ring->rx_spare_map != NULL) { 1400 bus_dmamap_destroy(ring->rx_data_tag, 1401 ring->rx_spare_map); 1402 ring->rx_spare_map = NULL; 1403 } 1404 bus_dma_tag_destroy(ring->rx_data_tag); 1405 ring->rx_data_tag = NULL; 1406 } 1407 1408 if (desc != NULL) { 1409 bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map); 1410 bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map); 1411 ring->desc64 = NULL; 1412 ring->desc32 = NULL; 1413 } 1414 if (ring->rx_desc_tag != NULL) { 1415 bus_dma_tag_destroy(ring->rx_desc_tag); 1416 ring->rx_desc_tag = NULL; 1417 } 1418 } 1419 1420 1421 static void 1422 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring) 1423 { 1424 struct nfe_rx_data *data; 1425 void *desc; 1426 int i, descsize; 1427 1428 if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0) 1429 return; 1430 1431 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1432 desc = ring->jdesc64; 1433 descsize = sizeof (struct nfe_desc64); 1434 } else { 1435 desc = ring->jdesc32; 1436 descsize = sizeof (struct nfe_desc32); 1437 } 1438 1439 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 1440 data = &ring->jdata[i]; 1441 if (data->rx_data_map != NULL) { 1442 bus_dmamap_destroy(ring->jrx_data_tag, 1443 data->rx_data_map); 1444 data->rx_data_map = NULL; 1445 } 1446 if (data->m != NULL) { 1447 m_freem(data->m); 1448 data->m = NULL; 1449 } 1450 } 1451 if (ring->jrx_data_tag != NULL) { 1452 if (ring->jrx_spare_map != NULL) { 1453 bus_dmamap_destroy(ring->jrx_data_tag, 1454 ring->jrx_spare_map); 1455 ring->jrx_spare_map = NULL; 1456 } 1457 bus_dma_tag_destroy(ring->jrx_data_tag); 1458 ring->jrx_data_tag = NULL; 1459 } 1460 1461 if (desc != NULL) { 1462 bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map); 1463 bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map); 1464 ring->jdesc64 = NULL; 1465 ring->jdesc32 = NULL; 1466 } 1467 1468 if (ring->jrx_desc_tag != NULL) { 1469 bus_dma_tag_destroy(ring->jrx_desc_tag); 1470 ring->jrx_desc_tag = NULL; 1471 } 1472 } 1473 1474 1475 static int 1476 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1477 { 1478 struct nfe_dmamap_arg ctx; 1479 int i, error; 1480 void *desc; 1481 int descsize; 1482 1483 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1484 desc = ring->desc64; 1485 descsize = sizeof (struct nfe_desc64); 1486 } else { 1487 desc = ring->desc32; 1488 descsize = sizeof (struct nfe_desc32); 1489 } 1490 1491 ring->queued = 0; 1492 ring->cur = ring->next = 0; 1493 1494 error = bus_dma_tag_create(sc->nfe_parent_tag, 1495 NFE_RING_ALIGN, 0, /* alignment, boundary */ 1496 BUS_SPACE_MAXADDR, /* lowaddr */ 1497 BUS_SPACE_MAXADDR, /* highaddr */ 1498 NULL, NULL, /* filter, filterarg */ 1499 NFE_TX_RING_COUNT * descsize, 1, /* maxsize, nsegments */ 1500 NFE_TX_RING_COUNT * descsize, /* maxsegsize */ 1501 0, /* flags */ 1502 NULL, NULL, /* lockfunc, lockarg */ 1503 &ring->tx_desc_tag); 1504 if (error != 0) { 1505 device_printf(sc->nfe_dev, "could not create desc DMA tag\n"); 1506 goto fail; 1507 } 1508 1509 error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK | 1510 BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map); 1511 if (error != 0) { 1512 device_printf(sc->nfe_dev, "could not create desc DMA map\n"); 1513 goto fail; 1514 } 1515 if (sc->nfe_flags & NFE_40BIT_ADDR) 1516 ring->desc64 = desc; 1517 else 1518 ring->desc32 = desc; 1519 1520 ctx.nfe_busaddr = 0; 1521 error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc, 1522 NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0); 1523 if (error != 0) { 1524 device_printf(sc->nfe_dev, "could not load desc DMA map\n"); 1525 goto fail; 1526 } 1527 ring->physaddr = ctx.nfe_busaddr; 1528 1529 error = bus_dma_tag_create(sc->nfe_parent_tag, 1530 1, 0, 1531 BUS_SPACE_MAXADDR, 1532 BUS_SPACE_MAXADDR, 1533 NULL, NULL, 1534 NFE_TSO_MAXSIZE, 1535 NFE_MAX_SCATTER, 1536 NFE_TSO_MAXSGSIZE, 1537 0, 1538 NULL, NULL, 1539 &ring->tx_data_tag); 1540 if (error != 0) { 1541 device_printf(sc->nfe_dev, "could not create Tx DMA tag\n"); 1542 goto fail; 1543 } 1544 1545 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1546 error = bus_dmamap_create(ring->tx_data_tag, 0, 1547 &ring->data[i].tx_data_map); 1548 if (error != 0) { 1549 device_printf(sc->nfe_dev, 1550 "could not create Tx DMA map\n"); 1551 goto fail; 1552 } 1553 } 1554 1555 fail: 1556 return (error); 1557 } 1558 1559 1560 static void 1561 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1562 { 1563 void *desc; 1564 size_t descsize; 1565 1566 sc->nfe_force_tx = 0; 1567 ring->queued = 0; 1568 ring->cur = ring->next = 0; 1569 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1570 desc = ring->desc64; 1571 descsize = sizeof (struct nfe_desc64); 1572 } else { 1573 desc = ring->desc32; 1574 descsize = sizeof (struct nfe_desc32); 1575 } 1576 bzero(desc, descsize * NFE_TX_RING_COUNT); 1577 1578 bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map, 1579 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1580 } 1581 1582 1583 static void 1584 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1585 { 1586 struct nfe_tx_data *data; 1587 void *desc; 1588 int i, descsize; 1589 1590 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1591 desc = ring->desc64; 1592 descsize = sizeof (struct nfe_desc64); 1593 } else { 1594 desc = ring->desc32; 1595 descsize = sizeof (struct nfe_desc32); 1596 } 1597 1598 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1599 data = &ring->data[i]; 1600 1601 if (data->m != NULL) { 1602 bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map, 1603 BUS_DMASYNC_POSTWRITE); 1604 bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map); 1605 m_freem(data->m); 1606 data->m = NULL; 1607 } 1608 if (data->tx_data_map != NULL) { 1609 bus_dmamap_destroy(ring->tx_data_tag, 1610 data->tx_data_map); 1611 data->tx_data_map = NULL; 1612 } 1613 } 1614 1615 if (ring->tx_data_tag != NULL) { 1616 bus_dma_tag_destroy(ring->tx_data_tag); 1617 ring->tx_data_tag = NULL; 1618 } 1619 1620 if (desc != NULL) { 1621 bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map, 1622 BUS_DMASYNC_POSTWRITE); 1623 bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map); 1624 bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map); 1625 ring->desc64 = NULL; 1626 ring->desc32 = NULL; 1627 bus_dma_tag_destroy(ring->tx_desc_tag); 1628 ring->tx_desc_tag = NULL; 1629 } 1630 } 1631 1632 #ifdef DEVICE_POLLING 1633 static poll_handler_t nfe_poll; 1634 1635 1636 static int 1637 nfe_poll(if_t ifp, enum poll_cmd cmd, int count) 1638 { 1639 struct nfe_softc *sc = if_getsoftc(ifp); 1640 uint32_t r; 1641 int rx_npkts = 0; 1642 1643 NFE_LOCK(sc); 1644 1645 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 1646 NFE_UNLOCK(sc); 1647 return (rx_npkts); 1648 } 1649 1650 if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) 1651 rx_npkts = nfe_jrxeof(sc, count, &rx_npkts); 1652 else 1653 rx_npkts = nfe_rxeof(sc, count, &rx_npkts); 1654 nfe_txeof(sc); 1655 if (!if_sendq_empty(ifp)) 1656 nfe_start_locked(ifp); 1657 1658 if (cmd == POLL_AND_CHECK_STATUS) { 1659 if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) { 1660 NFE_UNLOCK(sc); 1661 return (rx_npkts); 1662 } 1663 NFE_WRITE(sc, sc->nfe_irq_status, r); 1664 1665 if (r & NFE_IRQ_LINK) { 1666 NFE_READ(sc, NFE_PHY_STATUS); 1667 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1668 DPRINTF(sc, "link state changed\n"); 1669 } 1670 } 1671 NFE_UNLOCK(sc); 1672 return (rx_npkts); 1673 } 1674 #endif /* DEVICE_POLLING */ 1675 1676 static void 1677 nfe_set_intr(struct nfe_softc *sc) 1678 { 1679 1680 if (sc->nfe_msi != 0) 1681 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); 1682 } 1683 1684 1685 /* In MSIX, a write to mask reegisters behaves as XOR. */ 1686 static __inline void 1687 nfe_enable_intr(struct nfe_softc *sc) 1688 { 1689 1690 if (sc->nfe_msix != 0) { 1691 /* XXX Should have a better way to enable interrupts! */ 1692 if (NFE_READ(sc, sc->nfe_irq_mask) == 0) 1693 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs); 1694 } else 1695 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs); 1696 } 1697 1698 1699 static __inline void 1700 nfe_disable_intr(struct nfe_softc *sc) 1701 { 1702 1703 if (sc->nfe_msix != 0) { 1704 /* XXX Should have a better way to disable interrupts! */ 1705 if (NFE_READ(sc, sc->nfe_irq_mask) != 0) 1706 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs); 1707 } else 1708 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs); 1709 } 1710 1711 1712 static int 1713 nfe_ioctl(if_t ifp, u_long cmd, caddr_t data) 1714 { 1715 struct nfe_softc *sc; 1716 struct ifreq *ifr; 1717 struct mii_data *mii; 1718 int error, init, mask; 1719 1720 sc = if_getsoftc(ifp); 1721 ifr = (struct ifreq *) data; 1722 error = 0; 1723 init = 0; 1724 switch (cmd) { 1725 case SIOCSIFMTU: 1726 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU) 1727 error = EINVAL; 1728 else if (if_getmtu(ifp) != ifr->ifr_mtu) { 1729 if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) || 1730 (sc->nfe_jumbo_disable != 0)) && 1731 ifr->ifr_mtu > ETHERMTU) 1732 error = EINVAL; 1733 else { 1734 NFE_LOCK(sc); 1735 if_setmtu(ifp, ifr->ifr_mtu); 1736 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 1737 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1738 nfe_init_locked(sc); 1739 } 1740 NFE_UNLOCK(sc); 1741 } 1742 } 1743 break; 1744 case SIOCSIFFLAGS: 1745 NFE_LOCK(sc); 1746 if (if_getflags(ifp) & IFF_UP) { 1747 /* 1748 * If only the PROMISC or ALLMULTI flag changes, then 1749 * don't do a full re-init of the chip, just update 1750 * the Rx filter. 1751 */ 1752 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) && 1753 ((if_getflags(ifp) ^ sc->nfe_if_flags) & 1754 (IFF_ALLMULTI | IFF_PROMISC)) != 0) 1755 nfe_setmulti(sc); 1756 else 1757 nfe_init_locked(sc); 1758 } else { 1759 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 1760 nfe_stop(ifp); 1761 } 1762 sc->nfe_if_flags = if_getflags(ifp); 1763 NFE_UNLOCK(sc); 1764 error = 0; 1765 break; 1766 case SIOCADDMULTI: 1767 case SIOCDELMULTI: 1768 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1769 NFE_LOCK(sc); 1770 nfe_setmulti(sc); 1771 NFE_UNLOCK(sc); 1772 error = 0; 1773 } 1774 break; 1775 case SIOCSIFMEDIA: 1776 case SIOCGIFMEDIA: 1777 mii = device_get_softc(sc->nfe_miibus); 1778 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1779 break; 1780 case SIOCSIFCAP: 1781 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 1782 #ifdef DEVICE_POLLING 1783 if ((mask & IFCAP_POLLING) != 0) { 1784 if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) { 1785 error = ether_poll_register(nfe_poll, ifp); 1786 if (error) 1787 break; 1788 NFE_LOCK(sc); 1789 nfe_disable_intr(sc); 1790 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 1791 NFE_UNLOCK(sc); 1792 } else { 1793 error = ether_poll_deregister(ifp); 1794 /* Enable interrupt even in error case */ 1795 NFE_LOCK(sc); 1796 nfe_enable_intr(sc); 1797 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 1798 NFE_UNLOCK(sc); 1799 } 1800 } 1801 #endif /* DEVICE_POLLING */ 1802 if ((mask & IFCAP_WOL_MAGIC) != 0 && 1803 (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0) 1804 if_togglecapenable(ifp, IFCAP_WOL_MAGIC); 1805 if ((mask & IFCAP_TXCSUM) != 0 && 1806 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 1807 if_togglecapenable(ifp, IFCAP_TXCSUM); 1808 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 1809 if_sethwassistbits(ifp, NFE_CSUM_FEATURES, 0); 1810 else 1811 if_sethwassistbits(ifp, 0, NFE_CSUM_FEATURES); 1812 } 1813 if ((mask & IFCAP_RXCSUM) != 0 && 1814 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) { 1815 if_togglecapenable(ifp, IFCAP_RXCSUM); 1816 init++; 1817 } 1818 if ((mask & IFCAP_TSO4) != 0 && 1819 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 1820 if_togglecapenable(ifp, IFCAP_TSO4); 1821 if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0) 1822 if_sethwassistbits(ifp, CSUM_TSO, 0); 1823 else 1824 if_sethwassistbits(ifp, 0, CSUM_TSO); 1825 } 1826 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 1827 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 1828 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 1829 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 1830 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 1831 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 1832 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 1833 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO); 1834 init++; 1835 } 1836 /* 1837 * XXX 1838 * It seems that VLAN stripping requires Rx checksum offload. 1839 * Unfortunately FreeBSD has no way to disable only Rx side 1840 * VLAN stripping. So when we know Rx checksum offload is 1841 * disabled turn entire hardware VLAN assist off. 1842 */ 1843 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) == 0) { 1844 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) 1845 init++; 1846 if_setcapenablebit(ifp, 0, 1847 (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO)); 1848 } 1849 if (init > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1850 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1851 nfe_init(sc); 1852 } 1853 if_vlancap(ifp); 1854 break; 1855 default: 1856 error = ether_ioctl(ifp, cmd, data); 1857 break; 1858 } 1859 1860 return (error); 1861 } 1862 1863 1864 static int 1865 nfe_intr(void *arg) 1866 { 1867 struct nfe_softc *sc; 1868 uint32_t status; 1869 1870 sc = (struct nfe_softc *)arg; 1871 1872 status = NFE_READ(sc, sc->nfe_irq_status); 1873 if (status == 0 || status == 0xffffffff) 1874 return (FILTER_STRAY); 1875 nfe_disable_intr(sc); 1876 taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task); 1877 1878 return (FILTER_HANDLED); 1879 } 1880 1881 1882 static void 1883 nfe_int_task(void *arg, int pending) 1884 { 1885 struct nfe_softc *sc = arg; 1886 if_t ifp = sc->nfe_ifp; 1887 uint32_t r; 1888 int domore; 1889 1890 NFE_LOCK(sc); 1891 1892 if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) { 1893 nfe_enable_intr(sc); 1894 NFE_UNLOCK(sc); 1895 return; /* not for us */ 1896 } 1897 NFE_WRITE(sc, sc->nfe_irq_status, r); 1898 1899 DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r); 1900 1901 #ifdef DEVICE_POLLING 1902 if (if_getcapenable(ifp) & IFCAP_POLLING) { 1903 NFE_UNLOCK(sc); 1904 return; 1905 } 1906 #endif 1907 1908 if (r & NFE_IRQ_LINK) { 1909 NFE_READ(sc, NFE_PHY_STATUS); 1910 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1911 DPRINTF(sc, "link state changed\n"); 1912 } 1913 1914 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 1915 NFE_UNLOCK(sc); 1916 nfe_disable_intr(sc); 1917 return; 1918 } 1919 1920 domore = 0; 1921 /* check Rx ring */ 1922 if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) 1923 domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL); 1924 else 1925 domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL); 1926 /* check Tx ring */ 1927 nfe_txeof(sc); 1928 1929 if (!if_sendq_empty(ifp)) 1930 nfe_start_locked(ifp); 1931 1932 NFE_UNLOCK(sc); 1933 1934 if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) { 1935 taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task); 1936 return; 1937 } 1938 1939 /* Reenable interrupts. */ 1940 nfe_enable_intr(sc); 1941 } 1942 1943 1944 static __inline void 1945 nfe_discard_rxbuf(struct nfe_softc *sc, int idx) 1946 { 1947 struct nfe_desc32 *desc32; 1948 struct nfe_desc64 *desc64; 1949 struct nfe_rx_data *data; 1950 struct mbuf *m; 1951 1952 data = &sc->rxq.data[idx]; 1953 m = data->m; 1954 1955 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1956 desc64 = &sc->rxq.desc64[idx]; 1957 /* VLAN packet may have overwritten it. */ 1958 desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr)); 1959 desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr)); 1960 desc64->length = htole16(m->m_len); 1961 desc64->flags = htole16(NFE_RX_READY); 1962 } else { 1963 desc32 = &sc->rxq.desc32[idx]; 1964 desc32->length = htole16(m->m_len); 1965 desc32->flags = htole16(NFE_RX_READY); 1966 } 1967 } 1968 1969 1970 static __inline void 1971 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx) 1972 { 1973 struct nfe_desc32 *desc32; 1974 struct nfe_desc64 *desc64; 1975 struct nfe_rx_data *data; 1976 struct mbuf *m; 1977 1978 data = &sc->jrxq.jdata[idx]; 1979 m = data->m; 1980 1981 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1982 desc64 = &sc->jrxq.jdesc64[idx]; 1983 /* VLAN packet may have overwritten it. */ 1984 desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr)); 1985 desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr)); 1986 desc64->length = htole16(m->m_len); 1987 desc64->flags = htole16(NFE_RX_READY); 1988 } else { 1989 desc32 = &sc->jrxq.jdesc32[idx]; 1990 desc32->length = htole16(m->m_len); 1991 desc32->flags = htole16(NFE_RX_READY); 1992 } 1993 } 1994 1995 1996 static int 1997 nfe_newbuf(struct nfe_softc *sc, int idx) 1998 { 1999 struct nfe_rx_data *data; 2000 struct nfe_desc32 *desc32; 2001 struct nfe_desc64 *desc64; 2002 struct mbuf *m; 2003 bus_dma_segment_t segs[1]; 2004 bus_dmamap_t map; 2005 int nsegs; 2006 2007 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2008 if (m == NULL) 2009 return (ENOBUFS); 2010 2011 m->m_len = m->m_pkthdr.len = MCLBYTES; 2012 m_adj(m, ETHER_ALIGN); 2013 2014 if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map, 2015 m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) { 2016 m_freem(m); 2017 return (ENOBUFS); 2018 } 2019 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 2020 2021 data = &sc->rxq.data[idx]; 2022 if (data->m != NULL) { 2023 bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map, 2024 BUS_DMASYNC_POSTREAD); 2025 bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map); 2026 } 2027 map = data->rx_data_map; 2028 data->rx_data_map = sc->rxq.rx_spare_map; 2029 sc->rxq.rx_spare_map = map; 2030 bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map, 2031 BUS_DMASYNC_PREREAD); 2032 data->paddr = segs[0].ds_addr; 2033 data->m = m; 2034 /* update mapping address in h/w descriptor */ 2035 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2036 desc64 = &sc->rxq.desc64[idx]; 2037 desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr)); 2038 desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 2039 desc64->length = htole16(segs[0].ds_len); 2040 desc64->flags = htole16(NFE_RX_READY); 2041 } else { 2042 desc32 = &sc->rxq.desc32[idx]; 2043 desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 2044 desc32->length = htole16(segs[0].ds_len); 2045 desc32->flags = htole16(NFE_RX_READY); 2046 } 2047 2048 return (0); 2049 } 2050 2051 2052 static int 2053 nfe_jnewbuf(struct nfe_softc *sc, int idx) 2054 { 2055 struct nfe_rx_data *data; 2056 struct nfe_desc32 *desc32; 2057 struct nfe_desc64 *desc64; 2058 struct mbuf *m; 2059 bus_dma_segment_t segs[1]; 2060 bus_dmamap_t map; 2061 int nsegs; 2062 2063 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 2064 if (m == NULL) 2065 return (ENOBUFS); 2066 m->m_pkthdr.len = m->m_len = MJUM9BYTES; 2067 m_adj(m, ETHER_ALIGN); 2068 2069 if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag, 2070 sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) { 2071 m_freem(m); 2072 return (ENOBUFS); 2073 } 2074 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 2075 2076 data = &sc->jrxq.jdata[idx]; 2077 if (data->m != NULL) { 2078 bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map, 2079 BUS_DMASYNC_POSTREAD); 2080 bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map); 2081 } 2082 map = data->rx_data_map; 2083 data->rx_data_map = sc->jrxq.jrx_spare_map; 2084 sc->jrxq.jrx_spare_map = map; 2085 bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map, 2086 BUS_DMASYNC_PREREAD); 2087 data->paddr = segs[0].ds_addr; 2088 data->m = m; 2089 /* update mapping address in h/w descriptor */ 2090 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2091 desc64 = &sc->jrxq.jdesc64[idx]; 2092 desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr)); 2093 desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 2094 desc64->length = htole16(segs[0].ds_len); 2095 desc64->flags = htole16(NFE_RX_READY); 2096 } else { 2097 desc32 = &sc->jrxq.jdesc32[idx]; 2098 desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 2099 desc32->length = htole16(segs[0].ds_len); 2100 desc32->flags = htole16(NFE_RX_READY); 2101 } 2102 2103 return (0); 2104 } 2105 2106 2107 static int 2108 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp) 2109 { 2110 if_t ifp = sc->nfe_ifp; 2111 struct nfe_desc32 *desc32; 2112 struct nfe_desc64 *desc64; 2113 struct nfe_rx_data *data; 2114 struct mbuf *m; 2115 uint16_t flags; 2116 int len, prog, rx_npkts; 2117 uint32_t vtag = 0; 2118 2119 rx_npkts = 0; 2120 NFE_LOCK_ASSERT(sc); 2121 2122 bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map, 2123 BUS_DMASYNC_POSTREAD); 2124 2125 for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) { 2126 if (count <= 0) 2127 break; 2128 count--; 2129 2130 data = &sc->rxq.data[sc->rxq.cur]; 2131 2132 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2133 desc64 = &sc->rxq.desc64[sc->rxq.cur]; 2134 vtag = le32toh(desc64->physaddr[1]); 2135 flags = le16toh(desc64->flags); 2136 len = le16toh(desc64->length) & NFE_RX_LEN_MASK; 2137 } else { 2138 desc32 = &sc->rxq.desc32[sc->rxq.cur]; 2139 flags = le16toh(desc32->flags); 2140 len = le16toh(desc32->length) & NFE_RX_LEN_MASK; 2141 } 2142 2143 if (flags & NFE_RX_READY) 2144 break; 2145 prog++; 2146 if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 2147 if (!(flags & NFE_RX_VALID_V1)) { 2148 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2149 nfe_discard_rxbuf(sc, sc->rxq.cur); 2150 continue; 2151 } 2152 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { 2153 flags &= ~NFE_RX_ERROR; 2154 len--; /* fix buffer length */ 2155 } 2156 } else { 2157 if (!(flags & NFE_RX_VALID_V2)) { 2158 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2159 nfe_discard_rxbuf(sc, sc->rxq.cur); 2160 continue; 2161 } 2162 2163 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { 2164 flags &= ~NFE_RX_ERROR; 2165 len--; /* fix buffer length */ 2166 } 2167 } 2168 2169 if (flags & NFE_RX_ERROR) { 2170 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2171 nfe_discard_rxbuf(sc, sc->rxq.cur); 2172 continue; 2173 } 2174 2175 m = data->m; 2176 if (nfe_newbuf(sc, sc->rxq.cur) != 0) { 2177 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2178 nfe_discard_rxbuf(sc, sc->rxq.cur); 2179 continue; 2180 } 2181 2182 if ((vtag & NFE_RX_VTAG) != 0 && 2183 (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 2184 m->m_pkthdr.ether_vtag = vtag & 0xffff; 2185 m->m_flags |= M_VLANTAG; 2186 } 2187 2188 m->m_pkthdr.len = m->m_len = len; 2189 m->m_pkthdr.rcvif = ifp; 2190 2191 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { 2192 if ((flags & NFE_RX_IP_CSUMOK) != 0) { 2193 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2194 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2195 if ((flags & NFE_RX_TCP_CSUMOK) != 0 || 2196 (flags & NFE_RX_UDP_CSUMOK) != 0) { 2197 m->m_pkthdr.csum_flags |= 2198 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2199 m->m_pkthdr.csum_data = 0xffff; 2200 } 2201 } 2202 } 2203 2204 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2205 2206 NFE_UNLOCK(sc); 2207 if_input(ifp, m); 2208 NFE_LOCK(sc); 2209 rx_npkts++; 2210 } 2211 2212 if (prog > 0) 2213 bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map, 2214 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2215 2216 if (rx_npktsp != NULL) 2217 *rx_npktsp = rx_npkts; 2218 return (count > 0 ? 0 : EAGAIN); 2219 } 2220 2221 2222 static int 2223 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp) 2224 { 2225 if_t ifp = sc->nfe_ifp; 2226 struct nfe_desc32 *desc32; 2227 struct nfe_desc64 *desc64; 2228 struct nfe_rx_data *data; 2229 struct mbuf *m; 2230 uint16_t flags; 2231 int len, prog, rx_npkts; 2232 uint32_t vtag = 0; 2233 2234 rx_npkts = 0; 2235 NFE_LOCK_ASSERT(sc); 2236 2237 bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map, 2238 BUS_DMASYNC_POSTREAD); 2239 2240 for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT), 2241 vtag = 0) { 2242 if (count <= 0) 2243 break; 2244 count--; 2245 2246 data = &sc->jrxq.jdata[sc->jrxq.jcur]; 2247 2248 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2249 desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur]; 2250 vtag = le32toh(desc64->physaddr[1]); 2251 flags = le16toh(desc64->flags); 2252 len = le16toh(desc64->length) & NFE_RX_LEN_MASK; 2253 } else { 2254 desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur]; 2255 flags = le16toh(desc32->flags); 2256 len = le16toh(desc32->length) & NFE_RX_LEN_MASK; 2257 } 2258 2259 if (flags & NFE_RX_READY) 2260 break; 2261 prog++; 2262 if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 2263 if (!(flags & NFE_RX_VALID_V1)) { 2264 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2265 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2266 continue; 2267 } 2268 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { 2269 flags &= ~NFE_RX_ERROR; 2270 len--; /* fix buffer length */ 2271 } 2272 } else { 2273 if (!(flags & NFE_RX_VALID_V2)) { 2274 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2275 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2276 continue; 2277 } 2278 2279 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { 2280 flags &= ~NFE_RX_ERROR; 2281 len--; /* fix buffer length */ 2282 } 2283 } 2284 2285 if (flags & NFE_RX_ERROR) { 2286 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2287 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2288 continue; 2289 } 2290 2291 m = data->m; 2292 if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) { 2293 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2294 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2295 continue; 2296 } 2297 2298 if ((vtag & NFE_RX_VTAG) != 0 && 2299 (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 2300 m->m_pkthdr.ether_vtag = vtag & 0xffff; 2301 m->m_flags |= M_VLANTAG; 2302 } 2303 2304 m->m_pkthdr.len = m->m_len = len; 2305 m->m_pkthdr.rcvif = ifp; 2306 2307 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { 2308 if ((flags & NFE_RX_IP_CSUMOK) != 0) { 2309 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2310 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2311 if ((flags & NFE_RX_TCP_CSUMOK) != 0 || 2312 (flags & NFE_RX_UDP_CSUMOK) != 0) { 2313 m->m_pkthdr.csum_flags |= 2314 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2315 m->m_pkthdr.csum_data = 0xffff; 2316 } 2317 } 2318 } 2319 2320 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2321 2322 NFE_UNLOCK(sc); 2323 if_input(ifp, m); 2324 NFE_LOCK(sc); 2325 rx_npkts++; 2326 } 2327 2328 if (prog > 0) 2329 bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map, 2330 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2331 2332 if (rx_npktsp != NULL) 2333 *rx_npktsp = rx_npkts; 2334 return (count > 0 ? 0 : EAGAIN); 2335 } 2336 2337 2338 static void 2339 nfe_txeof(struct nfe_softc *sc) 2340 { 2341 if_t ifp = sc->nfe_ifp; 2342 struct nfe_desc32 *desc32; 2343 struct nfe_desc64 *desc64; 2344 struct nfe_tx_data *data = NULL; 2345 uint16_t flags; 2346 int cons, prog; 2347 2348 NFE_LOCK_ASSERT(sc); 2349 2350 bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, 2351 BUS_DMASYNC_POSTREAD); 2352 2353 prog = 0; 2354 for (cons = sc->txq.next; cons != sc->txq.cur; 2355 NFE_INC(cons, NFE_TX_RING_COUNT)) { 2356 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2357 desc64 = &sc->txq.desc64[cons]; 2358 flags = le16toh(desc64->flags); 2359 } else { 2360 desc32 = &sc->txq.desc32[cons]; 2361 flags = le16toh(desc32->flags); 2362 } 2363 2364 if (flags & NFE_TX_VALID) 2365 break; 2366 2367 prog++; 2368 sc->txq.queued--; 2369 data = &sc->txq.data[cons]; 2370 2371 if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 2372 if ((flags & NFE_TX_LASTFRAG_V1) == 0) 2373 continue; 2374 if ((flags & NFE_TX_ERROR_V1) != 0) { 2375 device_printf(sc->nfe_dev, 2376 "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR); 2377 2378 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2379 } else 2380 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2381 } else { 2382 if ((flags & NFE_TX_LASTFRAG_V2) == 0) 2383 continue; 2384 if ((flags & NFE_TX_ERROR_V2) != 0) { 2385 device_printf(sc->nfe_dev, 2386 "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR); 2387 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2388 } else 2389 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2390 } 2391 2392 /* last fragment of the mbuf chain transmitted */ 2393 KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__)); 2394 bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map, 2395 BUS_DMASYNC_POSTWRITE); 2396 bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map); 2397 m_freem(data->m); 2398 data->m = NULL; 2399 } 2400 2401 if (prog > 0) { 2402 sc->nfe_force_tx = 0; 2403 sc->txq.next = cons; 2404 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 2405 if (sc->txq.queued == 0) 2406 sc->nfe_watchdog_timer = 0; 2407 } 2408 } 2409 2410 static int 2411 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head) 2412 { 2413 struct nfe_desc32 *desc32 = NULL; 2414 struct nfe_desc64 *desc64 = NULL; 2415 bus_dmamap_t map; 2416 bus_dma_segment_t segs[NFE_MAX_SCATTER]; 2417 int error, i, nsegs, prod, si; 2418 uint32_t tsosegsz; 2419 uint16_t cflags, flags; 2420 struct mbuf *m; 2421 2422 prod = si = sc->txq.cur; 2423 map = sc->txq.data[prod].tx_data_map; 2424 2425 error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs, 2426 &nsegs, BUS_DMA_NOWAIT); 2427 if (error == EFBIG) { 2428 m = m_collapse(*m_head, M_NOWAIT, NFE_MAX_SCATTER); 2429 if (m == NULL) { 2430 m_freem(*m_head); 2431 *m_head = NULL; 2432 return (ENOBUFS); 2433 } 2434 *m_head = m; 2435 error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, 2436 *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2437 if (error != 0) { 2438 m_freem(*m_head); 2439 *m_head = NULL; 2440 return (ENOBUFS); 2441 } 2442 } else if (error != 0) 2443 return (error); 2444 if (nsegs == 0) { 2445 m_freem(*m_head); 2446 *m_head = NULL; 2447 return (EIO); 2448 } 2449 2450 if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) { 2451 bus_dmamap_unload(sc->txq.tx_data_tag, map); 2452 return (ENOBUFS); 2453 } 2454 2455 m = *m_head; 2456 cflags = flags = 0; 2457 tsosegsz = 0; 2458 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2459 tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz << 2460 NFE_TX_TSO_SHIFT; 2461 cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM); 2462 cflags |= NFE_TX_TSO; 2463 } else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) { 2464 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 2465 cflags |= NFE_TX_IP_CSUM; 2466 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 2467 cflags |= NFE_TX_TCP_UDP_CSUM; 2468 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 2469 cflags |= NFE_TX_TCP_UDP_CSUM; 2470 } 2471 2472 for (i = 0; i < nsegs; i++) { 2473 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2474 desc64 = &sc->txq.desc64[prod]; 2475 desc64->physaddr[0] = 2476 htole32(NFE_ADDR_HI(segs[i].ds_addr)); 2477 desc64->physaddr[1] = 2478 htole32(NFE_ADDR_LO(segs[i].ds_addr)); 2479 desc64->vtag = 0; 2480 desc64->length = htole16(segs[i].ds_len - 1); 2481 desc64->flags = htole16(flags); 2482 } else { 2483 desc32 = &sc->txq.desc32[prod]; 2484 desc32->physaddr = 2485 htole32(NFE_ADDR_LO(segs[i].ds_addr)); 2486 desc32->length = htole16(segs[i].ds_len - 1); 2487 desc32->flags = htole16(flags); 2488 } 2489 2490 /* 2491 * Setting of the valid bit in the first descriptor is 2492 * deferred until the whole chain is fully setup. 2493 */ 2494 flags |= NFE_TX_VALID; 2495 2496 sc->txq.queued++; 2497 NFE_INC(prod, NFE_TX_RING_COUNT); 2498 } 2499 2500 /* 2501 * the whole mbuf chain has been DMA mapped, fix last/first descriptor. 2502 * csum flags, vtag and TSO belong to the first fragment only. 2503 */ 2504 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2505 desc64->flags |= htole16(NFE_TX_LASTFRAG_V2); 2506 desc64 = &sc->txq.desc64[si]; 2507 if ((m->m_flags & M_VLANTAG) != 0) 2508 desc64->vtag = htole32(NFE_TX_VTAG | 2509 m->m_pkthdr.ether_vtag); 2510 if (tsosegsz != 0) { 2511 /* 2512 * XXX 2513 * The following indicates the descriptor element 2514 * is a 32bit quantity. 2515 */ 2516 desc64->length |= htole16((uint16_t)tsosegsz); 2517 desc64->flags |= htole16(tsosegsz >> 16); 2518 } 2519 /* 2520 * finally, set the valid/checksum/TSO bit in the first 2521 * descriptor. 2522 */ 2523 desc64->flags |= htole16(NFE_TX_VALID | cflags); 2524 } else { 2525 if (sc->nfe_flags & NFE_JUMBO_SUP) 2526 desc32->flags |= htole16(NFE_TX_LASTFRAG_V2); 2527 else 2528 desc32->flags |= htole16(NFE_TX_LASTFRAG_V1); 2529 desc32 = &sc->txq.desc32[si]; 2530 if (tsosegsz != 0) { 2531 /* 2532 * XXX 2533 * The following indicates the descriptor element 2534 * is a 32bit quantity. 2535 */ 2536 desc32->length |= htole16((uint16_t)tsosegsz); 2537 desc32->flags |= htole16(tsosegsz >> 16); 2538 } 2539 /* 2540 * finally, set the valid/checksum/TSO bit in the first 2541 * descriptor. 2542 */ 2543 desc32->flags |= htole16(NFE_TX_VALID | cflags); 2544 } 2545 2546 sc->txq.cur = prod; 2547 prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT; 2548 sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map; 2549 sc->txq.data[prod].tx_data_map = map; 2550 sc->txq.data[prod].m = m; 2551 2552 bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE); 2553 2554 return (0); 2555 } 2556 2557 2558 static void 2559 nfe_setmulti(struct nfe_softc *sc) 2560 { 2561 if_t ifp = sc->nfe_ifp; 2562 int i, mc_count, mcnt; 2563 uint32_t filter; 2564 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN]; 2565 uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 2566 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2567 }; 2568 uint8_t *mta; 2569 2570 NFE_LOCK_ASSERT(sc); 2571 2572 if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 2573 bzero(addr, ETHER_ADDR_LEN); 2574 bzero(mask, ETHER_ADDR_LEN); 2575 goto done; 2576 } 2577 2578 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN); 2579 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN); 2580 2581 mc_count = if_multiaddr_count(ifp, -1); 2582 mta = malloc(sizeof(uint8_t) * ETHER_ADDR_LEN * mc_count, M_DEVBUF, 2583 M_NOWAIT); 2584 2585 /* Unable to get memory - process without filtering */ 2586 if (mta == NULL) { 2587 device_printf(sc->nfe_dev, "nfe_setmulti: failed to allocate" 2588 "temp multicast buffer!\n"); 2589 2590 bzero(addr, ETHER_ADDR_LEN); 2591 bzero(mask, ETHER_ADDR_LEN); 2592 goto done; 2593 } 2594 2595 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 2596 2597 for (i = 0; i < mcnt; i++) { 2598 uint8_t *addrp; 2599 int j; 2600 2601 addrp = mta + (i * ETHER_ADDR_LEN); 2602 for (j = 0; j < ETHER_ADDR_LEN; j++) { 2603 u_int8_t mcaddr = addrp[j]; 2604 addr[j] &= mcaddr; 2605 mask[j] &= ~mcaddr; 2606 } 2607 } 2608 2609 free(mta, M_DEVBUF); 2610 2611 for (i = 0; i < ETHER_ADDR_LEN; i++) { 2612 mask[i] |= addr[i]; 2613 } 2614 2615 done: 2616 addr[0] |= 0x01; /* make sure multicast bit is set */ 2617 2618 NFE_WRITE(sc, NFE_MULTIADDR_HI, 2619 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); 2620 NFE_WRITE(sc, NFE_MULTIADDR_LO, 2621 addr[5] << 8 | addr[4]); 2622 NFE_WRITE(sc, NFE_MULTIMASK_HI, 2623 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]); 2624 NFE_WRITE(sc, NFE_MULTIMASK_LO, 2625 mask[5] << 8 | mask[4]); 2626 2627 filter = NFE_READ(sc, NFE_RXFILTER); 2628 filter &= NFE_PFF_RX_PAUSE; 2629 filter |= NFE_RXFILTER_MAGIC; 2630 filter |= (if_getflags(ifp) & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M; 2631 NFE_WRITE(sc, NFE_RXFILTER, filter); 2632 } 2633 2634 2635 static void 2636 nfe_start(if_t ifp) 2637 { 2638 struct nfe_softc *sc = if_getsoftc(ifp); 2639 2640 NFE_LOCK(sc); 2641 nfe_start_locked(ifp); 2642 NFE_UNLOCK(sc); 2643 } 2644 2645 static void 2646 nfe_start_locked(if_t ifp) 2647 { 2648 struct nfe_softc *sc = if_getsoftc(ifp); 2649 struct mbuf *m0; 2650 int enq = 0; 2651 2652 NFE_LOCK_ASSERT(sc); 2653 2654 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2655 IFF_DRV_RUNNING || sc->nfe_link == 0) 2656 return; 2657 2658 while (!if_sendq_empty(ifp)) { 2659 m0 = if_dequeue(ifp); 2660 2661 if (m0 == NULL) 2662 break; 2663 2664 if (nfe_encap(sc, &m0) != 0) { 2665 if (m0 == NULL) 2666 break; 2667 if_sendq_prepend(ifp, m0); 2668 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 2669 break; 2670 } 2671 enq++; 2672 if_etherbpfmtap(ifp, m0); 2673 } 2674 2675 if (enq > 0) { 2676 bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, 2677 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2678 2679 /* kick Tx */ 2680 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); 2681 2682 /* 2683 * Set a timeout in case the chip goes out to lunch. 2684 */ 2685 sc->nfe_watchdog_timer = 5; 2686 } 2687 } 2688 2689 2690 static void 2691 nfe_watchdog(if_t ifp) 2692 { 2693 struct nfe_softc *sc = if_getsoftc(ifp); 2694 2695 if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer) 2696 return; 2697 2698 /* Check if we've lost Tx completion interrupt. */ 2699 nfe_txeof(sc); 2700 if (sc->txq.queued == 0) { 2701 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 2702 "-- recovering\n"); 2703 if (!if_sendq_empty(ifp)) 2704 nfe_start_locked(ifp); 2705 return; 2706 } 2707 /* Check if we've lost start Tx command. */ 2708 sc->nfe_force_tx++; 2709 if (sc->nfe_force_tx <= 3) { 2710 /* 2711 * If this is the case for watchdog timeout, the following 2712 * code should go to nfe_txeof(). 2713 */ 2714 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); 2715 return; 2716 } 2717 sc->nfe_force_tx = 0; 2718 2719 if_printf(ifp, "watchdog timeout\n"); 2720 2721 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2722 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2723 nfe_init_locked(sc); 2724 } 2725 2726 2727 static void 2728 nfe_init(void *xsc) 2729 { 2730 struct nfe_softc *sc = xsc; 2731 2732 NFE_LOCK(sc); 2733 nfe_init_locked(sc); 2734 NFE_UNLOCK(sc); 2735 } 2736 2737 2738 static void 2739 nfe_init_locked(void *xsc) 2740 { 2741 struct nfe_softc *sc = xsc; 2742 if_t ifp = sc->nfe_ifp; 2743 struct mii_data *mii; 2744 uint32_t val; 2745 int error; 2746 2747 NFE_LOCK_ASSERT(sc); 2748 2749 mii = device_get_softc(sc->nfe_miibus); 2750 2751 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2752 return; 2753 2754 nfe_stop(ifp); 2755 2756 sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS; 2757 2758 nfe_init_tx_ring(sc, &sc->txq); 2759 if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN)) 2760 error = nfe_init_jrx_ring(sc, &sc->jrxq); 2761 else 2762 error = nfe_init_rx_ring(sc, &sc->rxq); 2763 if (error != 0) { 2764 device_printf(sc->nfe_dev, 2765 "initialization failed: no memory for rx buffers\n"); 2766 nfe_stop(ifp); 2767 return; 2768 } 2769 2770 val = 0; 2771 if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0) 2772 val |= NFE_MAC_ADDR_INORDER; 2773 NFE_WRITE(sc, NFE_TX_UNK, val); 2774 NFE_WRITE(sc, NFE_STATUS, 0); 2775 2776 if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) 2777 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE); 2778 2779 sc->rxtxctl = NFE_RXTX_BIT2; 2780 if (sc->nfe_flags & NFE_40BIT_ADDR) 2781 sc->rxtxctl |= NFE_RXTX_V3MAGIC; 2782 else if (sc->nfe_flags & NFE_JUMBO_SUP) 2783 sc->rxtxctl |= NFE_RXTX_V2MAGIC; 2784 2785 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) 2786 sc->rxtxctl |= NFE_RXTX_RXCSUM; 2787 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) 2788 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP; 2789 2790 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl); 2791 DELAY(10); 2792 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 2793 2794 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) 2795 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE); 2796 else 2797 NFE_WRITE(sc, NFE_VTAG_CTL, 0); 2798 2799 NFE_WRITE(sc, NFE_SETUP_R6, 0); 2800 2801 /* set MAC address */ 2802 nfe_set_macaddr(sc, if_getlladdr(ifp)); 2803 2804 /* tell MAC where rings are in memory */ 2805 if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) { 2806 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 2807 NFE_ADDR_HI(sc->jrxq.jphysaddr)); 2808 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 2809 NFE_ADDR_LO(sc->jrxq.jphysaddr)); 2810 } else { 2811 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 2812 NFE_ADDR_HI(sc->rxq.physaddr)); 2813 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 2814 NFE_ADDR_LO(sc->rxq.physaddr)); 2815 } 2816 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr)); 2817 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr)); 2818 2819 NFE_WRITE(sc, NFE_RING_SIZE, 2820 (NFE_RX_RING_COUNT - 1) << 16 | 2821 (NFE_TX_RING_COUNT - 1)); 2822 2823 NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize); 2824 2825 /* force MAC to wakeup */ 2826 val = NFE_READ(sc, NFE_PWR_STATE); 2827 if ((val & NFE_PWR_WAKEUP) == 0) 2828 NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP); 2829 DELAY(10); 2830 val = NFE_READ(sc, NFE_PWR_STATE); 2831 NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID); 2832 2833 #if 1 2834 /* configure interrupts coalescing/mitigation */ 2835 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT); 2836 #else 2837 /* no interrupt mitigation: one interrupt per packet */ 2838 NFE_WRITE(sc, NFE_IMTIMER, 970); 2839 #endif 2840 2841 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100); 2842 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); 2843 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC); 2844 2845 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */ 2846 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC); 2847 2848 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); 2849 /* Disable WOL. */ 2850 NFE_WRITE(sc, NFE_WOL_CTL, 0); 2851 2852 sc->rxtxctl &= ~NFE_RXTX_BIT2; 2853 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 2854 DELAY(10); 2855 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl); 2856 2857 /* set Rx filter */ 2858 nfe_setmulti(sc); 2859 2860 /* enable Rx */ 2861 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); 2862 2863 /* enable Tx */ 2864 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START); 2865 2866 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 2867 2868 /* Clear hardware stats. */ 2869 nfe_stats_clear(sc); 2870 2871 #ifdef DEVICE_POLLING 2872 if (if_getcapenable(ifp) & IFCAP_POLLING) 2873 nfe_disable_intr(sc); 2874 else 2875 #endif 2876 nfe_set_intr(sc); 2877 nfe_enable_intr(sc); /* enable interrupts */ 2878 2879 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 2880 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 2881 2882 sc->nfe_link = 0; 2883 mii_mediachg(mii); 2884 2885 callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc); 2886 } 2887 2888 2889 static void 2890 nfe_stop(if_t ifp) 2891 { 2892 struct nfe_softc *sc = if_getsoftc(ifp); 2893 struct nfe_rx_ring *rx_ring; 2894 struct nfe_jrx_ring *jrx_ring; 2895 struct nfe_tx_ring *tx_ring; 2896 struct nfe_rx_data *rdata; 2897 struct nfe_tx_data *tdata; 2898 int i; 2899 2900 NFE_LOCK_ASSERT(sc); 2901 2902 sc->nfe_watchdog_timer = 0; 2903 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 2904 2905 callout_stop(&sc->nfe_stat_ch); 2906 2907 /* abort Tx */ 2908 NFE_WRITE(sc, NFE_TX_CTL, 0); 2909 2910 /* disable Rx */ 2911 NFE_WRITE(sc, NFE_RX_CTL, 0); 2912 2913 /* disable interrupts */ 2914 nfe_disable_intr(sc); 2915 2916 sc->nfe_link = 0; 2917 2918 /* free Rx and Tx mbufs still in the queues. */ 2919 rx_ring = &sc->rxq; 2920 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 2921 rdata = &rx_ring->data[i]; 2922 if (rdata->m != NULL) { 2923 bus_dmamap_sync(rx_ring->rx_data_tag, 2924 rdata->rx_data_map, BUS_DMASYNC_POSTREAD); 2925 bus_dmamap_unload(rx_ring->rx_data_tag, 2926 rdata->rx_data_map); 2927 m_freem(rdata->m); 2928 rdata->m = NULL; 2929 } 2930 } 2931 2932 if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) { 2933 jrx_ring = &sc->jrxq; 2934 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 2935 rdata = &jrx_ring->jdata[i]; 2936 if (rdata->m != NULL) { 2937 bus_dmamap_sync(jrx_ring->jrx_data_tag, 2938 rdata->rx_data_map, BUS_DMASYNC_POSTREAD); 2939 bus_dmamap_unload(jrx_ring->jrx_data_tag, 2940 rdata->rx_data_map); 2941 m_freem(rdata->m); 2942 rdata->m = NULL; 2943 } 2944 } 2945 } 2946 2947 tx_ring = &sc->txq; 2948 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 2949 tdata = &tx_ring->data[i]; 2950 if (tdata->m != NULL) { 2951 bus_dmamap_sync(tx_ring->tx_data_tag, 2952 tdata->tx_data_map, BUS_DMASYNC_POSTWRITE); 2953 bus_dmamap_unload(tx_ring->tx_data_tag, 2954 tdata->tx_data_map); 2955 m_freem(tdata->m); 2956 tdata->m = NULL; 2957 } 2958 } 2959 /* Update hardware stats. */ 2960 nfe_stats_update(sc); 2961 } 2962 2963 2964 static int 2965 nfe_ifmedia_upd(if_t ifp) 2966 { 2967 struct nfe_softc *sc = if_getsoftc(ifp); 2968 struct mii_data *mii; 2969 2970 NFE_LOCK(sc); 2971 mii = device_get_softc(sc->nfe_miibus); 2972 mii_mediachg(mii); 2973 NFE_UNLOCK(sc); 2974 2975 return (0); 2976 } 2977 2978 2979 static void 2980 nfe_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2981 { 2982 struct nfe_softc *sc; 2983 struct mii_data *mii; 2984 2985 sc = if_getsoftc(ifp); 2986 2987 NFE_LOCK(sc); 2988 mii = device_get_softc(sc->nfe_miibus); 2989 mii_pollstat(mii); 2990 2991 ifmr->ifm_active = mii->mii_media_active; 2992 ifmr->ifm_status = mii->mii_media_status; 2993 NFE_UNLOCK(sc); 2994 } 2995 2996 2997 void 2998 nfe_tick(void *xsc) 2999 { 3000 struct nfe_softc *sc; 3001 struct mii_data *mii; 3002 if_t ifp; 3003 3004 sc = (struct nfe_softc *)xsc; 3005 3006 NFE_LOCK_ASSERT(sc); 3007 3008 ifp = sc->nfe_ifp; 3009 3010 mii = device_get_softc(sc->nfe_miibus); 3011 mii_tick(mii); 3012 nfe_stats_update(sc); 3013 nfe_watchdog(ifp); 3014 callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc); 3015 } 3016 3017 3018 static int 3019 nfe_shutdown(device_t dev) 3020 { 3021 3022 return (nfe_suspend(dev)); 3023 } 3024 3025 3026 static void 3027 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr) 3028 { 3029 uint32_t val; 3030 3031 if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) { 3032 val = NFE_READ(sc, NFE_MACADDR_LO); 3033 addr[0] = (val >> 8) & 0xff; 3034 addr[1] = (val & 0xff); 3035 3036 val = NFE_READ(sc, NFE_MACADDR_HI); 3037 addr[2] = (val >> 24) & 0xff; 3038 addr[3] = (val >> 16) & 0xff; 3039 addr[4] = (val >> 8) & 0xff; 3040 addr[5] = (val & 0xff); 3041 } else { 3042 val = NFE_READ(sc, NFE_MACADDR_LO); 3043 addr[5] = (val >> 8) & 0xff; 3044 addr[4] = (val & 0xff); 3045 3046 val = NFE_READ(sc, NFE_MACADDR_HI); 3047 addr[3] = (val >> 24) & 0xff; 3048 addr[2] = (val >> 16) & 0xff; 3049 addr[1] = (val >> 8) & 0xff; 3050 addr[0] = (val & 0xff); 3051 } 3052 } 3053 3054 3055 static void 3056 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr) 3057 { 3058 3059 NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] << 8 | addr[4]); 3060 NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 | 3061 addr[1] << 8 | addr[0]); 3062 } 3063 3064 3065 /* 3066 * Map a single buffer address. 3067 */ 3068 3069 static void 3070 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3071 { 3072 struct nfe_dmamap_arg *ctx; 3073 3074 if (error != 0) 3075 return; 3076 3077 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 3078 3079 ctx = (struct nfe_dmamap_arg *)arg; 3080 ctx->nfe_busaddr = segs[0].ds_addr; 3081 } 3082 3083 3084 static int 3085 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3086 { 3087 int error, value; 3088 3089 if (!arg1) 3090 return (EINVAL); 3091 value = *(int *)arg1; 3092 error = sysctl_handle_int(oidp, &value, 0, req); 3093 if (error || !req->newptr) 3094 return (error); 3095 if (value < low || value > high) 3096 return (EINVAL); 3097 *(int *)arg1 = value; 3098 3099 return (0); 3100 } 3101 3102 3103 static int 3104 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS) 3105 { 3106 3107 return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN, 3108 NFE_PROC_MAX)); 3109 } 3110 3111 3112 #define NFE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 3113 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 3114 #define NFE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 3115 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 3116 3117 static void 3118 nfe_sysctl_node(struct nfe_softc *sc) 3119 { 3120 struct sysctl_ctx_list *ctx; 3121 struct sysctl_oid_list *child, *parent; 3122 struct sysctl_oid *tree; 3123 struct nfe_hw_stats *stats; 3124 int error; 3125 3126 stats = &sc->nfe_stats; 3127 ctx = device_get_sysctl_ctx(sc->nfe_dev); 3128 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev)); 3129 SYSCTL_ADD_PROC(ctx, child, 3130 OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, 3131 &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I", 3132 "max number of Rx events to process"); 3133 3134 sc->nfe_process_limit = NFE_PROC_DEFAULT; 3135 error = resource_int_value(device_get_name(sc->nfe_dev), 3136 device_get_unit(sc->nfe_dev), "process_limit", 3137 &sc->nfe_process_limit); 3138 if (error == 0) { 3139 if (sc->nfe_process_limit < NFE_PROC_MIN || 3140 sc->nfe_process_limit > NFE_PROC_MAX) { 3141 device_printf(sc->nfe_dev, 3142 "process_limit value out of range; " 3143 "using default: %d\n", NFE_PROC_DEFAULT); 3144 sc->nfe_process_limit = NFE_PROC_DEFAULT; 3145 } 3146 } 3147 3148 if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0) 3149 return; 3150 3151 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 3152 NULL, "NFE statistics"); 3153 parent = SYSCTL_CHILDREN(tree); 3154 3155 /* Rx statistics. */ 3156 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 3157 NULL, "Rx MAC statistics"); 3158 child = SYSCTL_CHILDREN(tree); 3159 3160 NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors", 3161 &stats->rx_frame_errors, "Framing Errors"); 3162 NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes", 3163 &stats->rx_extra_bytes, "Extra Bytes"); 3164 NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols", 3165 &stats->rx_late_cols, "Late Collisions"); 3166 NFE_SYSCTL_STAT_ADD32(ctx, child, "runts", 3167 &stats->rx_runts, "Runts"); 3168 NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos", 3169 &stats->rx_jumbos, "Jumbos"); 3170 NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns", 3171 &stats->rx_fifo_overuns, "FIFO Overruns"); 3172 NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors", 3173 &stats->rx_crc_errors, "CRC Errors"); 3174 NFE_SYSCTL_STAT_ADD32(ctx, child, "fae", 3175 &stats->rx_fae, "Frame Alignment Errors"); 3176 NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors", 3177 &stats->rx_len_errors, "Length Errors"); 3178 NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast", 3179 &stats->rx_unicast, "Unicast Frames"); 3180 NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast", 3181 &stats->rx_multicast, "Multicast Frames"); 3182 NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast", 3183 &stats->rx_broadcast, "Broadcast Frames"); 3184 if ((sc->nfe_flags & NFE_MIB_V2) != 0) { 3185 NFE_SYSCTL_STAT_ADD64(ctx, child, "octets", 3186 &stats->rx_octets, "Octets"); 3187 NFE_SYSCTL_STAT_ADD32(ctx, child, "pause", 3188 &stats->rx_pause, "Pause frames"); 3189 NFE_SYSCTL_STAT_ADD32(ctx, child, "drops", 3190 &stats->rx_drops, "Drop frames"); 3191 } 3192 3193 /* Tx statistics. */ 3194 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 3195 NULL, "Tx MAC statistics"); 3196 child = SYSCTL_CHILDREN(tree); 3197 NFE_SYSCTL_STAT_ADD64(ctx, child, "octets", 3198 &stats->tx_octets, "Octets"); 3199 NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits", 3200 &stats->tx_zero_rexmits, "Zero Retransmits"); 3201 NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits", 3202 &stats->tx_one_rexmits, "One Retransmits"); 3203 NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits", 3204 &stats->tx_multi_rexmits, "Multiple Retransmits"); 3205 NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols", 3206 &stats->tx_late_cols, "Late Collisions"); 3207 NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns", 3208 &stats->tx_fifo_underuns, "FIFO Underruns"); 3209 NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts", 3210 &stats->tx_carrier_losts, "Carrier Losts"); 3211 NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals", 3212 &stats->tx_excess_deferals, "Excess Deferrals"); 3213 NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors", 3214 &stats->tx_retry_errors, "Retry Errors"); 3215 if ((sc->nfe_flags & NFE_MIB_V2) != 0) { 3216 NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals", 3217 &stats->tx_deferals, "Deferrals"); 3218 NFE_SYSCTL_STAT_ADD32(ctx, child, "frames", 3219 &stats->tx_frames, "Frames"); 3220 NFE_SYSCTL_STAT_ADD32(ctx, child, "pause", 3221 &stats->tx_pause, "Pause Frames"); 3222 } 3223 if ((sc->nfe_flags & NFE_MIB_V3) != 0) { 3224 NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast", 3225 &stats->tx_deferals, "Unicast Frames"); 3226 NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast", 3227 &stats->tx_frames, "Multicast Frames"); 3228 NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast", 3229 &stats->tx_pause, "Broadcast Frames"); 3230 } 3231 } 3232 3233 #undef NFE_SYSCTL_STAT_ADD32 3234 #undef NFE_SYSCTL_STAT_ADD64 3235 3236 static void 3237 nfe_stats_clear(struct nfe_softc *sc) 3238 { 3239 int i, mib_cnt; 3240 3241 if ((sc->nfe_flags & NFE_MIB_V1) != 0) 3242 mib_cnt = NFE_NUM_MIB_STATV1; 3243 else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0) 3244 mib_cnt = NFE_NUM_MIB_STATV2; 3245 else 3246 return; 3247 3248 for (i = 0; i < mib_cnt; i++) 3249 NFE_READ(sc, NFE_TX_OCTET + i * sizeof(uint32_t)); 3250 3251 if ((sc->nfe_flags & NFE_MIB_V3) != 0) { 3252 NFE_READ(sc, NFE_TX_UNICAST); 3253 NFE_READ(sc, NFE_TX_MULTICAST); 3254 NFE_READ(sc, NFE_TX_BROADCAST); 3255 } 3256 } 3257 3258 static void 3259 nfe_stats_update(struct nfe_softc *sc) 3260 { 3261 struct nfe_hw_stats *stats; 3262 3263 NFE_LOCK_ASSERT(sc); 3264 3265 if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0) 3266 return; 3267 3268 stats = &sc->nfe_stats; 3269 stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET); 3270 stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT); 3271 stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT); 3272 stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT); 3273 stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL); 3274 stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN); 3275 stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST); 3276 stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL); 3277 stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR); 3278 stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR); 3279 stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES); 3280 stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL); 3281 stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT); 3282 stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO); 3283 stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN); 3284 stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR); 3285 stats->rx_fae += NFE_READ(sc, NFE_RX_FAE); 3286 stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR); 3287 stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST); 3288 stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST); 3289 stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST); 3290 3291 if ((sc->nfe_flags & NFE_MIB_V2) != 0) { 3292 stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL); 3293 stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME); 3294 stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET); 3295 stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE); 3296 stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE); 3297 stats->rx_drops += NFE_READ(sc, NFE_RX_DROP); 3298 } 3299 3300 if ((sc->nfe_flags & NFE_MIB_V3) != 0) { 3301 stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST); 3302 stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST); 3303 stats->tx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST); 3304 } 3305 } 3306 3307 3308 static void 3309 nfe_set_linkspeed(struct nfe_softc *sc) 3310 { 3311 struct mii_softc *miisc; 3312 struct mii_data *mii; 3313 int aneg, i, phyno; 3314 3315 NFE_LOCK_ASSERT(sc); 3316 3317 mii = device_get_softc(sc->nfe_miibus); 3318 mii_pollstat(mii); 3319 aneg = 0; 3320 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 3321 (IFM_ACTIVE | IFM_AVALID)) { 3322 switch IFM_SUBTYPE(mii->mii_media_active) { 3323 case IFM_10_T: 3324 case IFM_100_TX: 3325 return; 3326 case IFM_1000_T: 3327 aneg++; 3328 break; 3329 default: 3330 break; 3331 } 3332 } 3333 miisc = LIST_FIRST(&mii->mii_phys); 3334 phyno = miisc->mii_phy; 3335 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 3336 PHY_RESET(miisc); 3337 nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0); 3338 nfe_miibus_writereg(sc->nfe_dev, phyno, 3339 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 3340 nfe_miibus_writereg(sc->nfe_dev, phyno, 3341 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 3342 DELAY(1000); 3343 if (aneg != 0) { 3344 /* 3345 * Poll link state until nfe(4) get a 10/100Mbps link. 3346 */ 3347 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 3348 mii_pollstat(mii); 3349 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 3350 == (IFM_ACTIVE | IFM_AVALID)) { 3351 switch (IFM_SUBTYPE(mii->mii_media_active)) { 3352 case IFM_10_T: 3353 case IFM_100_TX: 3354 nfe_mac_config(sc, mii); 3355 return; 3356 default: 3357 break; 3358 } 3359 } 3360 NFE_UNLOCK(sc); 3361 pause("nfelnk", hz); 3362 NFE_LOCK(sc); 3363 } 3364 if (i == MII_ANEGTICKS_GIGE) 3365 device_printf(sc->nfe_dev, 3366 "establishing a link failed, WOL may not work!"); 3367 } 3368 /* 3369 * No link, force MAC to have 100Mbps, full-duplex link. 3370 * This is the last resort and may/may not work. 3371 */ 3372 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 3373 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 3374 nfe_mac_config(sc, mii); 3375 } 3376 3377 3378 static void 3379 nfe_set_wol(struct nfe_softc *sc) 3380 { 3381 if_t ifp; 3382 uint32_t wolctl; 3383 int pmc; 3384 uint16_t pmstat; 3385 3386 NFE_LOCK_ASSERT(sc); 3387 3388 if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0) 3389 return; 3390 ifp = sc->nfe_ifp; 3391 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) 3392 wolctl = NFE_WOL_MAGIC; 3393 else 3394 wolctl = 0; 3395 NFE_WRITE(sc, NFE_WOL_CTL, wolctl); 3396 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) { 3397 nfe_set_linkspeed(sc); 3398 if ((sc->nfe_flags & NFE_PWR_MGMT) != 0) 3399 NFE_WRITE(sc, NFE_PWR2_CTL, 3400 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS); 3401 /* Enable RX. */ 3402 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0); 3403 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0); 3404 NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) | 3405 NFE_RX_START); 3406 } 3407 /* Request PME if WOL is requested. */ 3408 pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2); 3409 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3410 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) 3411 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3412 pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 3413 } 3414