xref: /freebsd/sys/dev/nfe/if_nfe.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_arp.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/if_vlan_var.h>
51 
52 #include <net/bpf.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/bus.h>
57 #include <sys/rman.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <dev/nfe/if_nfereg.h>
66 #include <dev/nfe/if_nfevar.h>
67 
68 MODULE_DEPEND(nfe, pci, 1, 1, 1);
69 MODULE_DEPEND(nfe, ether, 1, 1, 1);
70 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
71 
72 /* "device miibus" required.  See GENERIC if you get errors here. */
73 #include "miibus_if.h"
74 
75 static int  nfe_probe(device_t);
76 static int  nfe_attach(device_t);
77 static int  nfe_detach(device_t);
78 static int  nfe_suspend(device_t);
79 static int  nfe_resume(device_t);
80 static int nfe_shutdown(device_t);
81 static int  nfe_can_use_msix(struct nfe_softc *);
82 static int  nfe_detect_msik9(struct nfe_softc *);
83 static void nfe_power(struct nfe_softc *);
84 static int  nfe_miibus_readreg(device_t, int, int);
85 static int  nfe_miibus_writereg(device_t, int, int, int);
86 static void nfe_miibus_statchg(device_t);
87 static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
88 static void nfe_set_intr(struct nfe_softc *);
89 static __inline void nfe_enable_intr(struct nfe_softc *);
90 static __inline void nfe_disable_intr(struct nfe_softc *);
91 static int  nfe_ioctl(if_t, u_long, caddr_t);
92 static void nfe_alloc_msix(struct nfe_softc *, int);
93 static int nfe_intr(void *);
94 static void nfe_int_task(void *, int);
95 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
96 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
97 static int nfe_newbuf(struct nfe_softc *, int);
98 static int nfe_jnewbuf(struct nfe_softc *, int);
99 static int  nfe_rxeof(struct nfe_softc *, int, int *);
100 static int  nfe_jrxeof(struct nfe_softc *, int, int *);
101 static void nfe_txeof(struct nfe_softc *);
102 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
103 static void nfe_setmulti(struct nfe_softc *);
104 static void nfe_start(if_t);
105 static void nfe_start_locked(if_t);
106 static void nfe_watchdog(if_t);
107 static void nfe_init(void *);
108 static void nfe_init_locked(void *);
109 static void nfe_stop(if_t);
110 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
111 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
112 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
113 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
114 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
115 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
116 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
118 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
119 static int  nfe_ifmedia_upd(if_t);
120 static void nfe_ifmedia_sts(if_t, struct ifmediareq *);
121 static void nfe_tick(void *);
122 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
123 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
124 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
125 
126 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
127 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
128 static void nfe_sysctl_node(struct nfe_softc *);
129 static void nfe_stats_clear(struct nfe_softc *);
130 static void nfe_stats_update(struct nfe_softc *);
131 static void nfe_set_linkspeed(struct nfe_softc *);
132 static void nfe_set_wol(struct nfe_softc *);
133 
134 #ifdef NFE_DEBUG
135 static int nfedebug = 0;
136 #define	DPRINTF(sc, ...)	do {				\
137 	if (nfedebug)						\
138 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
139 } while (0)
140 #define	DPRINTFN(sc, n, ...)	do {				\
141 	if (nfedebug >= (n))					\
142 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
143 } while (0)
144 #else
145 #define	DPRINTF(sc, ...)
146 #define	DPRINTFN(sc, n, ...)
147 #endif
148 
149 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
150 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
151 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
152 
153 /* Tunables. */
154 static int msi_disable = 0;
155 static int msix_disable = 0;
156 static int jumbo_disable = 0;
157 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
158 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
159 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
160 
161 static device_method_t nfe_methods[] = {
162 	/* Device interface */
163 	DEVMETHOD(device_probe,		nfe_probe),
164 	DEVMETHOD(device_attach,	nfe_attach),
165 	DEVMETHOD(device_detach,	nfe_detach),
166 	DEVMETHOD(device_suspend,	nfe_suspend),
167 	DEVMETHOD(device_resume,	nfe_resume),
168 	DEVMETHOD(device_shutdown,	nfe_shutdown),
169 
170 	/* MII interface */
171 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
172 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
173 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
174 
175 	DEVMETHOD_END
176 };
177 
178 static driver_t nfe_driver = {
179 	"nfe",
180 	nfe_methods,
181 	sizeof(struct nfe_softc)
182 };
183 
184 static devclass_t nfe_devclass;
185 
186 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
187 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
188 
189 static struct nfe_type nfe_devs[] = {
190 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
191 	    "NVIDIA nForce MCP Networking Adapter"},
192 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
193 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
194 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
195 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
196 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
197 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
198 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
199 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
200 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
201 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
202 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
203 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
204 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
205 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
206 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
207 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
208 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
209 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
210 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
211 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
212 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
213 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
214 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
215 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
216 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
217 	    "NVIDIA nForce MCP55 Networking Adapter"},
218 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
219 	    "NVIDIA nForce MCP55 Networking Adapter"},
220 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
221 	    "NVIDIA nForce MCP61 Networking Adapter"},
222 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
223 	    "NVIDIA nForce MCP61 Networking Adapter"},
224 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
225 	    "NVIDIA nForce MCP61 Networking Adapter"},
226 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
227 	    "NVIDIA nForce MCP61 Networking Adapter"},
228 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
229 	    "NVIDIA nForce MCP65 Networking Adapter"},
230 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
231 	    "NVIDIA nForce MCP65 Networking Adapter"},
232 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
233 	    "NVIDIA nForce MCP65 Networking Adapter"},
234 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
235 	    "NVIDIA nForce MCP65 Networking Adapter"},
236 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
237 	    "NVIDIA nForce MCP67 Networking Adapter"},
238 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
239 	    "NVIDIA nForce MCP67 Networking Adapter"},
240 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
241 	    "NVIDIA nForce MCP67 Networking Adapter"},
242 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
243 	    "NVIDIA nForce MCP67 Networking Adapter"},
244 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
245 	    "NVIDIA nForce MCP73 Networking Adapter"},
246 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
247 	    "NVIDIA nForce MCP73 Networking Adapter"},
248 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
249 	    "NVIDIA nForce MCP73 Networking Adapter"},
250 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
251 	    "NVIDIA nForce MCP73 Networking Adapter"},
252 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
253 	    "NVIDIA nForce MCP77 Networking Adapter"},
254 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
255 	    "NVIDIA nForce MCP77 Networking Adapter"},
256 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
257 	    "NVIDIA nForce MCP77 Networking Adapter"},
258 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
259 	    "NVIDIA nForce MCP77 Networking Adapter"},
260 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
261 	    "NVIDIA nForce MCP79 Networking Adapter"},
262 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
263 	    "NVIDIA nForce MCP79 Networking Adapter"},
264 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
265 	    "NVIDIA nForce MCP79 Networking Adapter"},
266 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
267 	    "NVIDIA nForce MCP79 Networking Adapter"},
268 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP89_LAN,
269 	    "NVIDIA nForce MCP89 Networking Adapter"},
270 	{0, 0, NULL}
271 };
272 
273 /* Probe for supported hardware ID's */
274 static int
275 nfe_probe(device_t dev)
276 {
277 	struct nfe_type *t;
278 
279 	t = nfe_devs;
280 	/* Check for matching PCI DEVICE ID's */
281 	while (t->name != NULL) {
282 		if ((pci_get_vendor(dev) == t->vid_id) &&
283 		    (pci_get_device(dev) == t->dev_id)) {
284 			device_set_desc(dev, t->name);
285 			return (BUS_PROBE_DEFAULT);
286 		}
287 		t++;
288 	}
289 
290 	return (ENXIO);
291 }
292 
293 static void
294 nfe_alloc_msix(struct nfe_softc *sc, int count)
295 {
296 	int rid;
297 
298 	rid = PCIR_BAR(2);
299 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
300 	    &rid, RF_ACTIVE);
301 	if (sc->nfe_msix_res == NULL) {
302 		device_printf(sc->nfe_dev,
303 		    "couldn't allocate MSIX table resource\n");
304 		return;
305 	}
306 	rid = PCIR_BAR(3);
307 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
308 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
309 	if (sc->nfe_msix_pba_res == NULL) {
310 		device_printf(sc->nfe_dev,
311 		    "couldn't allocate MSIX PBA resource\n");
312 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
313 		    sc->nfe_msix_res);
314 		sc->nfe_msix_res = NULL;
315 		return;
316 	}
317 
318 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
319 		if (count == NFE_MSI_MESSAGES) {
320 			if (bootverbose)
321 				device_printf(sc->nfe_dev,
322 				    "Using %d MSIX messages\n", count);
323 			sc->nfe_msix = 1;
324 		} else {
325 			if (bootverbose)
326 				device_printf(sc->nfe_dev,
327 				    "couldn't allocate MSIX\n");
328 			pci_release_msi(sc->nfe_dev);
329 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
330 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
331 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
332 			    PCIR_BAR(2), sc->nfe_msix_res);
333 			sc->nfe_msix_pba_res = NULL;
334 			sc->nfe_msix_res = NULL;
335 		}
336 	}
337 }
338 
339 static int
340 nfe_detect_msik9(struct nfe_softc *sc)
341 {
342 	static const char *maker = "MSI";
343 	static const char *product = "K9N6PGM2-V2 (MS-7309)";
344 	char *m, *p;
345 	int found;
346 
347 	found = 0;
348 	m = kern_getenv("smbios.planar.maker");
349 	p = kern_getenv("smbios.planar.product");
350 	if (m != NULL && p != NULL) {
351 		if (strcmp(m, maker) == 0 && strcmp(p, product) == 0)
352 			found = 1;
353 	}
354 	if (m != NULL)
355 		freeenv(m);
356 	if (p != NULL)
357 		freeenv(p);
358 
359 	return (found);
360 }
361 
362 static int
363 nfe_attach(device_t dev)
364 {
365 	struct nfe_softc *sc;
366 	if_t ifp;
367 	bus_addr_t dma_addr_max;
368 	int error = 0, i, msic, phyloc, reg, rid;
369 
370 	sc = device_get_softc(dev);
371 	sc->nfe_dev = dev;
372 
373 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
374 	    MTX_DEF);
375 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
376 
377 	pci_enable_busmaster(dev);
378 
379 	rid = PCIR_BAR(0);
380 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
381 	    RF_ACTIVE);
382 	if (sc->nfe_res[0] == NULL) {
383 		device_printf(dev, "couldn't map memory resources\n");
384 		mtx_destroy(&sc->nfe_mtx);
385 		return (ENXIO);
386 	}
387 
388 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
389 		uint16_t v, width;
390 
391 		v = pci_read_config(dev, reg + 0x08, 2);
392 		/* Change max. read request size to 4096. */
393 		v &= ~(7 << 12);
394 		v |= (5 << 12);
395 		pci_write_config(dev, reg + 0x08, v, 2);
396 
397 		v = pci_read_config(dev, reg + 0x0c, 2);
398 		/* link capability */
399 		v = (v >> 4) & 0x0f;
400 		width = pci_read_config(dev, reg + 0x12, 2);
401 		/* negotiated link width */
402 		width = (width >> 4) & 0x3f;
403 		if (v != width)
404 			device_printf(sc->nfe_dev,
405 			    "warning, negotiated width of link(x%d) != "
406 			    "max. width of link(x%d)\n", width, v);
407 	}
408 
409 	if (nfe_can_use_msix(sc) == 0) {
410 		device_printf(sc->nfe_dev,
411 		    "MSI/MSI-X capability black-listed, will use INTx\n");
412 		msix_disable = 1;
413 		msi_disable = 1;
414 	}
415 
416 	/* Allocate interrupt */
417 	if (msix_disable == 0 || msi_disable == 0) {
418 		if (msix_disable == 0 &&
419 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
420 			nfe_alloc_msix(sc, msic);
421 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
422 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
423 		    pci_alloc_msi(dev, &msic) == 0) {
424 			if (msic == NFE_MSI_MESSAGES) {
425 				if (bootverbose)
426 					device_printf(dev,
427 					    "Using %d MSI messages\n", msic);
428 				sc->nfe_msi = 1;
429 			} else
430 				pci_release_msi(dev);
431 		}
432 	}
433 
434 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
435 		rid = 0;
436 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
437 		    RF_SHAREABLE | RF_ACTIVE);
438 		if (sc->nfe_irq[0] == NULL) {
439 			device_printf(dev, "couldn't allocate IRQ resources\n");
440 			error = ENXIO;
441 			goto fail;
442 		}
443 	} else {
444 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
445 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
446 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
447 			if (sc->nfe_irq[i] == NULL) {
448 				device_printf(dev,
449 				    "couldn't allocate IRQ resources for "
450 				    "message %d\n", rid);
451 				error = ENXIO;
452 				goto fail;
453 			}
454 		}
455 		/* Map interrupts to vector 0. */
456 		if (sc->nfe_msix != 0) {
457 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
458 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
459 		} else if (sc->nfe_msi != 0) {
460 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
461 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
462 		}
463 	}
464 
465 	/* Set IRQ status/mask register. */
466 	sc->nfe_irq_status = NFE_IRQ_STATUS;
467 	sc->nfe_irq_mask = NFE_IRQ_MASK;
468 	sc->nfe_intrs = NFE_IRQ_WANTED;
469 	sc->nfe_nointrs = 0;
470 	if (sc->nfe_msix != 0) {
471 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
472 		sc->nfe_nointrs = NFE_IRQ_WANTED;
473 	} else if (sc->nfe_msi != 0) {
474 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
475 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
476 	}
477 
478 	sc->nfe_devid = pci_get_device(dev);
479 	sc->nfe_revid = pci_get_revid(dev);
480 	sc->nfe_flags = 0;
481 
482 	switch (sc->nfe_devid) {
483 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
484 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
485 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
486 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
487 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
488 		break;
489 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
490 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
491 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
492 		break;
493 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
494 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
495 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
496 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
497 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
498 		    NFE_MIB_V1;
499 		break;
500 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
501 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
502 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
503 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
504 		break;
505 
506 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
507 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
508 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
509 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
510 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
511 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
512 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
513 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
514 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
515 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
516 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
517 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
518 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
519 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
520 		break;
521 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
522 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
523 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
524 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
525 		/* XXX flow control */
526 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
527 		    NFE_CORRECT_MACADDR | NFE_MIB_V3;
528 		break;
529 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
530 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
531 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
532 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
533 	case PCI_PRODUCT_NVIDIA_MCP89_LAN:
534 		/* XXX flow control */
535 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
536 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
537 		break;
538 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
539 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
540 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
541 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
542 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
543 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
544 		    NFE_MIB_V2;
545 		break;
546 	}
547 
548 	nfe_power(sc);
549 	/* Check for reversed ethernet address */
550 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
551 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
552 	nfe_get_macaddr(sc, sc->eaddr);
553 	/*
554 	 * Allocate the parent bus DMA tag appropriate for PCI.
555 	 */
556 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
557 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
558 		dma_addr_max = NFE_DMA_MAXADDR;
559 	error = bus_dma_tag_create(
560 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
561 	    1, 0,				/* alignment, boundary */
562 	    dma_addr_max,			/* lowaddr */
563 	    BUS_SPACE_MAXADDR,			/* highaddr */
564 	    NULL, NULL,				/* filter, filterarg */
565 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
566 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
567 	    0,					/* flags */
568 	    NULL, NULL,				/* lockfunc, lockarg */
569 	    &sc->nfe_parent_tag);
570 	if (error)
571 		goto fail;
572 
573 	ifp = sc->nfe_ifp = if_gethandle(IFT_ETHER);
574 	if (ifp == NULL) {
575 		device_printf(dev, "can not if_gethandle()\n");
576 		error = ENOSPC;
577 		goto fail;
578 	}
579 
580 	/*
581 	 * Allocate Tx and Rx rings.
582 	 */
583 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
584 		goto fail;
585 
586 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
587 		goto fail;
588 
589 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
590 	/* Create sysctl node. */
591 	nfe_sysctl_node(sc);
592 
593 	if_setsoftc(ifp, sc);
594 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
596 	if_setioctlfn(ifp, nfe_ioctl);
597 	if_setstartfn(ifp, nfe_start);
598 	if_sethwassist(ifp, 0);
599 	if_setcapabilities(ifp, 0);
600 	if_setinitfn(ifp, nfe_init);
601 	if_setsendqlen(ifp, NFE_TX_RING_COUNT - 1);
602 	if_setsendqready(ifp);
603 
604 	if (sc->nfe_flags & NFE_HW_CSUM) {
605 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
606 		if_sethwassistbits(ifp, NFE_CSUM_FEATURES | CSUM_TSO, 0);
607 	}
608 	if_setcapenable(ifp, if_getcapabilities(ifp));
609 
610 	sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
611 	/* VLAN capability setup. */
612 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
613 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
614 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0);
615 		if ((if_getcapabilities(ifp) & IFCAP_HWCSUM) != 0)
616 			if_setcapabilitiesbit(ifp,
617 			    (IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO), 0);
618 	}
619 
620 	if (pci_find_cap(dev, PCIY_PMG, &reg) == 0)
621 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
622 	if_setcapenable(ifp, if_getcapabilities(ifp));
623 
624 	/*
625 	 * Tell the upper layer(s) we support long frames.
626 	 * Must appear after the call to ether_ifattach() because
627 	 * ether_ifattach() sets ifi_hdrlen to the default value.
628 	 */
629 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
630 
631 #ifdef DEVICE_POLLING
632 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
633 #endif
634 
635 	/* Do MII setup */
636 	phyloc = MII_PHY_ANY;
637 	if (sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN1 ||
638 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN2 ||
639 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN3 ||
640 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN4) {
641 		if (nfe_detect_msik9(sc) != 0)
642 			phyloc = 0;
643 	}
644 	error = mii_attach(dev, &sc->nfe_miibus, ifp,
645 	    (ifm_change_cb_t)nfe_ifmedia_upd, (ifm_stat_cb_t)nfe_ifmedia_sts,
646 	    BMSR_DEFCAPMASK, phyloc, MII_OFFSET_ANY, MIIF_DOPAUSE);
647 	if (error != 0) {
648 		device_printf(dev, "attaching PHYs failed\n");
649 		goto fail;
650 	}
651 	ether_ifattach(ifp, sc->eaddr);
652 
653 	NET_TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
654 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
655 	    taskqueue_thread_enqueue, &sc->nfe_tq);
656 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
657 	    device_get_nameunit(sc->nfe_dev));
658 	error = 0;
659 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
660 		error = bus_setup_intr(dev, sc->nfe_irq[0],
661 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
662 		    &sc->nfe_intrhand[0]);
663 	} else {
664 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
665 			error = bus_setup_intr(dev, sc->nfe_irq[i],
666 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
667 			    &sc->nfe_intrhand[i]);
668 			if (error != 0)
669 				break;
670 		}
671 	}
672 	if (error) {
673 		device_printf(dev, "couldn't set up irq\n");
674 		taskqueue_free(sc->nfe_tq);
675 		sc->nfe_tq = NULL;
676 		ether_ifdetach(ifp);
677 		goto fail;
678 	}
679 
680 fail:
681 	if (error)
682 		nfe_detach(dev);
683 
684 	return (error);
685 }
686 
687 static int
688 nfe_detach(device_t dev)
689 {
690 	struct nfe_softc *sc;
691 	if_t ifp;
692 	uint8_t eaddr[ETHER_ADDR_LEN];
693 	int i, rid;
694 
695 	sc = device_get_softc(dev);
696 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
697 	ifp = sc->nfe_ifp;
698 
699 #ifdef DEVICE_POLLING
700 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
701 		ether_poll_deregister(ifp);
702 #endif
703 	if (device_is_attached(dev)) {
704 		NFE_LOCK(sc);
705 		nfe_stop(ifp);
706 		if_setflagbits(ifp, 0, IFF_UP);
707 		NFE_UNLOCK(sc);
708 		callout_drain(&sc->nfe_stat_ch);
709 		ether_ifdetach(ifp);
710 	}
711 
712 	if (ifp) {
713 		/* restore ethernet address */
714 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
715 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
716 				eaddr[i] = sc->eaddr[5 - i];
717 			}
718 		} else
719 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
720 		nfe_set_macaddr(sc, eaddr);
721 		if_free(ifp);
722 	}
723 	if (sc->nfe_miibus)
724 		device_delete_child(dev, sc->nfe_miibus);
725 	bus_generic_detach(dev);
726 	if (sc->nfe_tq != NULL) {
727 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
728 		taskqueue_free(sc->nfe_tq);
729 		sc->nfe_tq = NULL;
730 	}
731 
732 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
733 		if (sc->nfe_intrhand[i] != NULL) {
734 			bus_teardown_intr(dev, sc->nfe_irq[i],
735 			    sc->nfe_intrhand[i]);
736 			sc->nfe_intrhand[i] = NULL;
737 		}
738 	}
739 
740 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
741 		if (sc->nfe_irq[0] != NULL)
742 			bus_release_resource(dev, SYS_RES_IRQ, 0,
743 			    sc->nfe_irq[0]);
744 	} else {
745 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
746 			if (sc->nfe_irq[i] != NULL) {
747 				bus_release_resource(dev, SYS_RES_IRQ, rid,
748 				    sc->nfe_irq[i]);
749 				sc->nfe_irq[i] = NULL;
750 			}
751 		}
752 		pci_release_msi(dev);
753 	}
754 	if (sc->nfe_msix_pba_res != NULL) {
755 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
756 		    sc->nfe_msix_pba_res);
757 		sc->nfe_msix_pba_res = NULL;
758 	}
759 	if (sc->nfe_msix_res != NULL) {
760 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
761 		    sc->nfe_msix_res);
762 		sc->nfe_msix_res = NULL;
763 	}
764 	if (sc->nfe_res[0] != NULL) {
765 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
766 		    sc->nfe_res[0]);
767 		sc->nfe_res[0] = NULL;
768 	}
769 
770 	nfe_free_tx_ring(sc, &sc->txq);
771 	nfe_free_rx_ring(sc, &sc->rxq);
772 	nfe_free_jrx_ring(sc, &sc->jrxq);
773 
774 	if (sc->nfe_parent_tag) {
775 		bus_dma_tag_destroy(sc->nfe_parent_tag);
776 		sc->nfe_parent_tag = NULL;
777 	}
778 
779 	mtx_destroy(&sc->nfe_mtx);
780 
781 	return (0);
782 }
783 
784 static int
785 nfe_suspend(device_t dev)
786 {
787 	struct nfe_softc *sc;
788 
789 	sc = device_get_softc(dev);
790 
791 	NFE_LOCK(sc);
792 	nfe_stop(sc->nfe_ifp);
793 	nfe_set_wol(sc);
794 	sc->nfe_suspended = 1;
795 	NFE_UNLOCK(sc);
796 
797 	return (0);
798 }
799 
800 static int
801 nfe_resume(device_t dev)
802 {
803 	struct nfe_softc *sc;
804 	if_t ifp;
805 
806 	sc = device_get_softc(dev);
807 
808 	NFE_LOCK(sc);
809 	nfe_power(sc);
810 	ifp = sc->nfe_ifp;
811 	if (if_getflags(ifp) & IFF_UP)
812 		nfe_init_locked(sc);
813 	sc->nfe_suspended = 0;
814 	NFE_UNLOCK(sc);
815 
816 	return (0);
817 }
818 
819 static int
820 nfe_can_use_msix(struct nfe_softc *sc)
821 {
822 	static struct msix_blacklist {
823 		char	*maker;
824 		char	*product;
825 	} msix_blacklists[] = {
826 		{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
827 	};
828 
829 	struct msix_blacklist *mblp;
830 	char *maker, *product;
831 	int count, n, use_msix;
832 
833 	/*
834 	 * Search base board manufacturer and product name table
835 	 * to see this system has a known MSI/MSI-X issue.
836 	 */
837 	maker = kern_getenv("smbios.planar.maker");
838 	product = kern_getenv("smbios.planar.product");
839 	use_msix = 1;
840 	if (maker != NULL && product != NULL) {
841 		count = nitems(msix_blacklists);
842 		mblp = msix_blacklists;
843 		for (n = 0; n < count; n++) {
844 			if (strcmp(maker, mblp->maker) == 0 &&
845 			    strcmp(product, mblp->product) == 0) {
846 				use_msix = 0;
847 				break;
848 			}
849 			mblp++;
850 		}
851 	}
852 	if (maker != NULL)
853 		freeenv(maker);
854 	if (product != NULL)
855 		freeenv(product);
856 
857 	return (use_msix);
858 }
859 
860 /* Take PHY/NIC out of powerdown, from Linux */
861 static void
862 nfe_power(struct nfe_softc *sc)
863 {
864 	uint32_t pwr;
865 
866 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
867 		return;
868 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
869 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
870 	DELAY(100);
871 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
872 	DELAY(100);
873 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
874 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
875 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
876 	if (sc->nfe_revid >= 0xa3 &&
877 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
878 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
879 		pwr |= NFE_PWR2_REVA3;
880 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
881 }
882 
883 static void
884 nfe_miibus_statchg(device_t dev)
885 {
886 	struct nfe_softc *sc;
887 	struct mii_data *mii;
888 	if_t ifp;
889 	uint32_t rxctl, txctl;
890 
891 	sc = device_get_softc(dev);
892 
893 	mii = device_get_softc(sc->nfe_miibus);
894 	ifp = sc->nfe_ifp;
895 
896 	sc->nfe_link = 0;
897 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
898 	    (IFM_ACTIVE | IFM_AVALID)) {
899 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
900 		case IFM_10_T:
901 		case IFM_100_TX:
902 		case IFM_1000_T:
903 			sc->nfe_link = 1;
904 			break;
905 		default:
906 			break;
907 		}
908 	}
909 
910 	nfe_mac_config(sc, mii);
911 	txctl = NFE_READ(sc, NFE_TX_CTL);
912 	rxctl = NFE_READ(sc, NFE_RX_CTL);
913 	if (sc->nfe_link != 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
914 		txctl |= NFE_TX_START;
915 		rxctl |= NFE_RX_START;
916 	} else {
917 		txctl &= ~NFE_TX_START;
918 		rxctl &= ~NFE_RX_START;
919 	}
920 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
921 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
922 }
923 
924 static void
925 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
926 {
927 	uint32_t link, misc, phy, seed;
928 	uint32_t val;
929 
930 	NFE_LOCK_ASSERT(sc);
931 
932 	phy = NFE_READ(sc, NFE_PHY_IFACE);
933 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
934 
935 	seed = NFE_READ(sc, NFE_RNDSEED);
936 	seed &= ~NFE_SEED_MASK;
937 
938 	misc = NFE_MISC1_MAGIC;
939 	link = NFE_MEDIA_SET;
940 
941 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
942 		phy  |= NFE_PHY_HDX;	/* half-duplex */
943 		misc |= NFE_MISC1_HDX;
944 	}
945 
946 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
947 	case IFM_1000_T:	/* full-duplex only */
948 		link |= NFE_MEDIA_1000T;
949 		seed |= NFE_SEED_1000T;
950 		phy  |= NFE_PHY_1000T;
951 		break;
952 	case IFM_100_TX:
953 		link |= NFE_MEDIA_100TX;
954 		seed |= NFE_SEED_100TX;
955 		phy  |= NFE_PHY_100TX;
956 		break;
957 	case IFM_10_T:
958 		link |= NFE_MEDIA_10T;
959 		seed |= NFE_SEED_10T;
960 		break;
961 	}
962 
963 	if ((phy & 0x10000000) != 0) {
964 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
965 			val = NFE_R1_MAGIC_1000;
966 		else
967 			val = NFE_R1_MAGIC_10_100;
968 	} else
969 		val = NFE_R1_MAGIC_DEFAULT;
970 	NFE_WRITE(sc, NFE_SETUP_R1, val);
971 
972 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
973 
974 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
975 	NFE_WRITE(sc, NFE_MISC1, misc);
976 	NFE_WRITE(sc, NFE_LINKSPEED, link);
977 
978 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
979 		/* It seems all hardwares supports Rx pause frames. */
980 		val = NFE_READ(sc, NFE_RXFILTER);
981 		if ((IFM_OPTIONS(mii->mii_media_active) &
982 		    IFM_ETH_RXPAUSE) != 0)
983 			val |= NFE_PFF_RX_PAUSE;
984 		else
985 			val &= ~NFE_PFF_RX_PAUSE;
986 		NFE_WRITE(sc, NFE_RXFILTER, val);
987 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
988 			val = NFE_READ(sc, NFE_MISC1);
989 			if ((IFM_OPTIONS(mii->mii_media_active) &
990 			    IFM_ETH_TXPAUSE) != 0) {
991 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
992 				    NFE_TX_PAUSE_FRAME_ENABLE);
993 				val |= NFE_MISC1_TX_PAUSE;
994 			} else {
995 				val &= ~NFE_MISC1_TX_PAUSE;
996 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
997 				    NFE_TX_PAUSE_FRAME_DISABLE);
998 			}
999 			NFE_WRITE(sc, NFE_MISC1, val);
1000 		}
1001 	} else {
1002 		/* disable rx/tx pause frames */
1003 		val = NFE_READ(sc, NFE_RXFILTER);
1004 		val &= ~NFE_PFF_RX_PAUSE;
1005 		NFE_WRITE(sc, NFE_RXFILTER, val);
1006 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
1007 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
1008 			    NFE_TX_PAUSE_FRAME_DISABLE);
1009 			val = NFE_READ(sc, NFE_MISC1);
1010 			val &= ~NFE_MISC1_TX_PAUSE;
1011 			NFE_WRITE(sc, NFE_MISC1, val);
1012 		}
1013 	}
1014 }
1015 
1016 static int
1017 nfe_miibus_readreg(device_t dev, int phy, int reg)
1018 {
1019 	struct nfe_softc *sc = device_get_softc(dev);
1020 	uint32_t val;
1021 	int ntries;
1022 
1023 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1024 
1025 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1026 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1027 		DELAY(100);
1028 	}
1029 
1030 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
1031 
1032 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1033 		DELAY(100);
1034 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1035 			break;
1036 	}
1037 	if (ntries == NFE_TIMEOUT) {
1038 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
1039 		return 0;
1040 	}
1041 
1042 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
1043 		DPRINTFN(sc, 2, "could not read PHY\n");
1044 		return 0;
1045 	}
1046 
1047 	val = NFE_READ(sc, NFE_PHY_DATA);
1048 	if (val != 0xffffffff && val != 0)
1049 		sc->mii_phyaddr = phy;
1050 
1051 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
1052 
1053 	return (val);
1054 }
1055 
1056 static int
1057 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
1058 {
1059 	struct nfe_softc *sc = device_get_softc(dev);
1060 	uint32_t ctl;
1061 	int ntries;
1062 
1063 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1064 
1065 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1066 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1067 		DELAY(100);
1068 	}
1069 
1070 	NFE_WRITE(sc, NFE_PHY_DATA, val);
1071 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
1072 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
1073 
1074 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1075 		DELAY(100);
1076 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1077 			break;
1078 	}
1079 #ifdef NFE_DEBUG
1080 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
1081 		device_printf(sc->nfe_dev, "could not write to PHY\n");
1082 #endif
1083 	return (0);
1084 }
1085 
1086 struct nfe_dmamap_arg {
1087 	bus_addr_t nfe_busaddr;
1088 };
1089 
1090 static int
1091 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1092 {
1093 	struct nfe_dmamap_arg ctx;
1094 	struct nfe_rx_data *data;
1095 	void *desc;
1096 	int i, error, descsize;
1097 
1098 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1099 		desc = ring->desc64;
1100 		descsize = sizeof (struct nfe_desc64);
1101 	} else {
1102 		desc = ring->desc32;
1103 		descsize = sizeof (struct nfe_desc32);
1104 	}
1105 
1106 	ring->cur = ring->next = 0;
1107 
1108 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1109 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1110 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1111 	    BUS_SPACE_MAXADDR,			/* highaddr */
1112 	    NULL, NULL,				/* filter, filterarg */
1113 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1114 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1115 	    0,					/* flags */
1116 	    NULL, NULL,				/* lockfunc, lockarg */
1117 	    &ring->rx_desc_tag);
1118 	if (error != 0) {
1119 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1120 		goto fail;
1121 	}
1122 
1123 	/* allocate memory to desc */
1124 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1125 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1126 	if (error != 0) {
1127 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1128 		goto fail;
1129 	}
1130 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1131 		ring->desc64 = desc;
1132 	else
1133 		ring->desc32 = desc;
1134 
1135 	/* map desc to device visible address space */
1136 	ctx.nfe_busaddr = 0;
1137 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1138 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1139 	if (error != 0) {
1140 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1141 		goto fail;
1142 	}
1143 	ring->physaddr = ctx.nfe_busaddr;
1144 
1145 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1146 	    1, 0,			/* alignment, boundary */
1147 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1148 	    BUS_SPACE_MAXADDR,		/* highaddr */
1149 	    NULL, NULL,			/* filter, filterarg */
1150 	    MCLBYTES, 1,		/* maxsize, nsegments */
1151 	    MCLBYTES,			/* maxsegsize */
1152 	    0,				/* flags */
1153 	    NULL, NULL,			/* lockfunc, lockarg */
1154 	    &ring->rx_data_tag);
1155 	if (error != 0) {
1156 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1157 		goto fail;
1158 	}
1159 
1160 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1161 	if (error != 0) {
1162 		device_printf(sc->nfe_dev,
1163 		    "could not create Rx DMA spare map\n");
1164 		goto fail;
1165 	}
1166 
1167 	/*
1168 	 * Pre-allocate Rx buffers and populate Rx ring.
1169 	 */
1170 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1171 		data = &sc->rxq.data[i];
1172 		data->rx_data_map = NULL;
1173 		data->m = NULL;
1174 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1175 		    &data->rx_data_map);
1176 		if (error != 0) {
1177 			device_printf(sc->nfe_dev,
1178 			    "could not create Rx DMA map\n");
1179 			goto fail;
1180 		}
1181 	}
1182 
1183 fail:
1184 	return (error);
1185 }
1186 
1187 static void
1188 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1189 {
1190 	struct nfe_dmamap_arg ctx;
1191 	struct nfe_rx_data *data;
1192 	void *desc;
1193 	int i, error, descsize;
1194 
1195 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1196 		return;
1197 	if (jumbo_disable != 0) {
1198 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1199 		sc->nfe_jumbo_disable = 1;
1200 		return;
1201 	}
1202 
1203 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1204 		desc = ring->jdesc64;
1205 		descsize = sizeof (struct nfe_desc64);
1206 	} else {
1207 		desc = ring->jdesc32;
1208 		descsize = sizeof (struct nfe_desc32);
1209 	}
1210 
1211 	ring->jcur = ring->jnext = 0;
1212 
1213 	/* Create DMA tag for jumbo Rx ring. */
1214 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1215 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1216 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1217 	    BUS_SPACE_MAXADDR,			/* highaddr */
1218 	    NULL, NULL,				/* filter, filterarg */
1219 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1220 	    1, 					/* nsegments */
1221 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1222 	    0,					/* flags */
1223 	    NULL, NULL,				/* lockfunc, lockarg */
1224 	    &ring->jrx_desc_tag);
1225 	if (error != 0) {
1226 		device_printf(sc->nfe_dev,
1227 		    "could not create jumbo ring DMA tag\n");
1228 		goto fail;
1229 	}
1230 
1231 	/* Create DMA tag for jumbo Rx buffers. */
1232 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1233 	    1, 0,				/* alignment, boundary */
1234 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1235 	    BUS_SPACE_MAXADDR,			/* highaddr */
1236 	    NULL, NULL,				/* filter, filterarg */
1237 	    MJUM9BYTES,				/* maxsize */
1238 	    1,					/* nsegments */
1239 	    MJUM9BYTES,				/* maxsegsize */
1240 	    0,					/* flags */
1241 	    NULL, NULL,				/* lockfunc, lockarg */
1242 	    &ring->jrx_data_tag);
1243 	if (error != 0) {
1244 		device_printf(sc->nfe_dev,
1245 		    "could not create jumbo Rx buffer DMA tag\n");
1246 		goto fail;
1247 	}
1248 
1249 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1250 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1251 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1252 	if (error != 0) {
1253 		device_printf(sc->nfe_dev,
1254 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1255 		goto fail;
1256 	}
1257 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1258 		ring->jdesc64 = desc;
1259 	else
1260 		ring->jdesc32 = desc;
1261 
1262 	ctx.nfe_busaddr = 0;
1263 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1264 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1265 	if (error != 0) {
1266 		device_printf(sc->nfe_dev,
1267 		    "could not load DMA'able memory for jumbo Rx ring\n");
1268 		goto fail;
1269 	}
1270 	ring->jphysaddr = ctx.nfe_busaddr;
1271 
1272 	/* Create DMA maps for jumbo Rx buffers. */
1273 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1274 	if (error != 0) {
1275 		device_printf(sc->nfe_dev,
1276 		    "could not create jumbo Rx DMA spare map\n");
1277 		goto fail;
1278 	}
1279 
1280 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1281 		data = &sc->jrxq.jdata[i];
1282 		data->rx_data_map = NULL;
1283 		data->m = NULL;
1284 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1285 		    &data->rx_data_map);
1286 		if (error != 0) {
1287 			device_printf(sc->nfe_dev,
1288 			    "could not create jumbo Rx DMA map\n");
1289 			goto fail;
1290 		}
1291 	}
1292 
1293 	return;
1294 
1295 fail:
1296 	/*
1297 	 * Running without jumbo frame support is ok for most cases
1298 	 * so don't fail on creating dma tag/map for jumbo frame.
1299 	 */
1300 	nfe_free_jrx_ring(sc, ring);
1301 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1302 	    "resource shortage\n");
1303 	sc->nfe_jumbo_disable = 1;
1304 }
1305 
1306 static int
1307 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1308 {
1309 	void *desc;
1310 	size_t descsize;
1311 	int i;
1312 
1313 	ring->cur = ring->next = 0;
1314 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1315 		desc = ring->desc64;
1316 		descsize = sizeof (struct nfe_desc64);
1317 	} else {
1318 		desc = ring->desc32;
1319 		descsize = sizeof (struct nfe_desc32);
1320 	}
1321 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1322 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1323 		if (nfe_newbuf(sc, i) != 0)
1324 			return (ENOBUFS);
1325 	}
1326 
1327 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1328 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1329 
1330 	return (0);
1331 }
1332 
1333 static int
1334 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1335 {
1336 	void *desc;
1337 	size_t descsize;
1338 	int i;
1339 
1340 	ring->jcur = ring->jnext = 0;
1341 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1342 		desc = ring->jdesc64;
1343 		descsize = sizeof (struct nfe_desc64);
1344 	} else {
1345 		desc = ring->jdesc32;
1346 		descsize = sizeof (struct nfe_desc32);
1347 	}
1348 	bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
1349 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1350 		if (nfe_jnewbuf(sc, i) != 0)
1351 			return (ENOBUFS);
1352 	}
1353 
1354 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1355 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1356 
1357 	return (0);
1358 }
1359 
1360 static void
1361 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1362 {
1363 	struct nfe_rx_data *data;
1364 	void *desc;
1365 	int i;
1366 
1367 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1368 		desc = ring->desc64;
1369 	else
1370 		desc = ring->desc32;
1371 
1372 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1373 		data = &ring->data[i];
1374 		if (data->rx_data_map != NULL) {
1375 			bus_dmamap_destroy(ring->rx_data_tag,
1376 			    data->rx_data_map);
1377 			data->rx_data_map = NULL;
1378 		}
1379 		if (data->m != NULL) {
1380 			m_freem(data->m);
1381 			data->m = NULL;
1382 		}
1383 	}
1384 	if (ring->rx_data_tag != NULL) {
1385 		if (ring->rx_spare_map != NULL) {
1386 			bus_dmamap_destroy(ring->rx_data_tag,
1387 			    ring->rx_spare_map);
1388 			ring->rx_spare_map = NULL;
1389 		}
1390 		bus_dma_tag_destroy(ring->rx_data_tag);
1391 		ring->rx_data_tag = NULL;
1392 	}
1393 
1394 	if (desc != NULL) {
1395 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1396 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1397 		ring->desc64 = NULL;
1398 		ring->desc32 = NULL;
1399 	}
1400 	if (ring->rx_desc_tag != NULL) {
1401 		bus_dma_tag_destroy(ring->rx_desc_tag);
1402 		ring->rx_desc_tag = NULL;
1403 	}
1404 }
1405 
1406 static void
1407 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1408 {
1409 	struct nfe_rx_data *data;
1410 	void *desc;
1411 	int i;
1412 
1413 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1414 		return;
1415 
1416 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1417 		desc = ring->jdesc64;
1418 	} else {
1419 		desc = ring->jdesc32;
1420 	}
1421 
1422 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1423 		data = &ring->jdata[i];
1424 		if (data->rx_data_map != NULL) {
1425 			bus_dmamap_destroy(ring->jrx_data_tag,
1426 			    data->rx_data_map);
1427 			data->rx_data_map = NULL;
1428 		}
1429 		if (data->m != NULL) {
1430 			m_freem(data->m);
1431 			data->m = NULL;
1432 		}
1433 	}
1434 	if (ring->jrx_data_tag != NULL) {
1435 		if (ring->jrx_spare_map != NULL) {
1436 			bus_dmamap_destroy(ring->jrx_data_tag,
1437 			    ring->jrx_spare_map);
1438 			ring->jrx_spare_map = NULL;
1439 		}
1440 		bus_dma_tag_destroy(ring->jrx_data_tag);
1441 		ring->jrx_data_tag = NULL;
1442 	}
1443 
1444 	if (desc != NULL) {
1445 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1446 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1447 		ring->jdesc64 = NULL;
1448 		ring->jdesc32 = NULL;
1449 	}
1450 
1451 	if (ring->jrx_desc_tag != NULL) {
1452 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1453 		ring->jrx_desc_tag = NULL;
1454 	}
1455 }
1456 
1457 static int
1458 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1459 {
1460 	struct nfe_dmamap_arg ctx;
1461 	int i, error;
1462 	void *desc;
1463 	int descsize;
1464 
1465 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1466 		desc = ring->desc64;
1467 		descsize = sizeof (struct nfe_desc64);
1468 	} else {
1469 		desc = ring->desc32;
1470 		descsize = sizeof (struct nfe_desc32);
1471 	}
1472 
1473 	ring->queued = 0;
1474 	ring->cur = ring->next = 0;
1475 
1476 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1477 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1478 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1479 	    BUS_SPACE_MAXADDR,			/* highaddr */
1480 	    NULL, NULL,				/* filter, filterarg */
1481 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1482 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1483 	    0,					/* flags */
1484 	    NULL, NULL,				/* lockfunc, lockarg */
1485 	    &ring->tx_desc_tag);
1486 	if (error != 0) {
1487 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1488 		goto fail;
1489 	}
1490 
1491 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1492 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1493 	if (error != 0) {
1494 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1495 		goto fail;
1496 	}
1497 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1498 		ring->desc64 = desc;
1499 	else
1500 		ring->desc32 = desc;
1501 
1502 	ctx.nfe_busaddr = 0;
1503 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1504 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1505 	if (error != 0) {
1506 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1507 		goto fail;
1508 	}
1509 	ring->physaddr = ctx.nfe_busaddr;
1510 
1511 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1512 	    1, 0,
1513 	    BUS_SPACE_MAXADDR,
1514 	    BUS_SPACE_MAXADDR,
1515 	    NULL, NULL,
1516 	    NFE_TSO_MAXSIZE,
1517 	    NFE_MAX_SCATTER,
1518 	    NFE_TSO_MAXSGSIZE,
1519 	    0,
1520 	    NULL, NULL,
1521 	    &ring->tx_data_tag);
1522 	if (error != 0) {
1523 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1524 		goto fail;
1525 	}
1526 
1527 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1528 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1529 		    &ring->data[i].tx_data_map);
1530 		if (error != 0) {
1531 			device_printf(sc->nfe_dev,
1532 			    "could not create Tx DMA map\n");
1533 			goto fail;
1534 		}
1535 	}
1536 
1537 fail:
1538 	return (error);
1539 }
1540 
1541 static void
1542 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1543 {
1544 	void *desc;
1545 	size_t descsize;
1546 
1547 	sc->nfe_force_tx = 0;
1548 	ring->queued = 0;
1549 	ring->cur = ring->next = 0;
1550 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1551 		desc = ring->desc64;
1552 		descsize = sizeof (struct nfe_desc64);
1553 	} else {
1554 		desc = ring->desc32;
1555 		descsize = sizeof (struct nfe_desc32);
1556 	}
1557 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1558 
1559 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1560 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1561 }
1562 
1563 static void
1564 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1565 {
1566 	struct nfe_tx_data *data;
1567 	void *desc;
1568 	int i;
1569 
1570 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1571 		desc = ring->desc64;
1572 	} else {
1573 		desc = ring->desc32;
1574 	}
1575 
1576 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1577 		data = &ring->data[i];
1578 
1579 		if (data->m != NULL) {
1580 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1581 			    BUS_DMASYNC_POSTWRITE);
1582 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1583 			m_freem(data->m);
1584 			data->m = NULL;
1585 		}
1586 		if (data->tx_data_map != NULL) {
1587 			bus_dmamap_destroy(ring->tx_data_tag,
1588 			    data->tx_data_map);
1589 			data->tx_data_map = NULL;
1590 		}
1591 	}
1592 
1593 	if (ring->tx_data_tag != NULL) {
1594 		bus_dma_tag_destroy(ring->tx_data_tag);
1595 		ring->tx_data_tag = NULL;
1596 	}
1597 
1598 	if (desc != NULL) {
1599 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1600 		    BUS_DMASYNC_POSTWRITE);
1601 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1602 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1603 		ring->desc64 = NULL;
1604 		ring->desc32 = NULL;
1605 		bus_dma_tag_destroy(ring->tx_desc_tag);
1606 		ring->tx_desc_tag = NULL;
1607 	}
1608 }
1609 
1610 #ifdef DEVICE_POLLING
1611 static poll_handler_t nfe_poll;
1612 
1613 static int
1614 nfe_poll(if_t ifp, enum poll_cmd cmd, int count)
1615 {
1616 	struct nfe_softc *sc = if_getsoftc(ifp);
1617 	uint32_t r;
1618 	int rx_npkts = 0;
1619 
1620 	NFE_LOCK(sc);
1621 
1622 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1623 		NFE_UNLOCK(sc);
1624 		return (rx_npkts);
1625 	}
1626 
1627 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1628 		rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
1629 	else
1630 		rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
1631 	nfe_txeof(sc);
1632 	if (!if_sendq_empty(ifp))
1633 		nfe_start_locked(ifp);
1634 
1635 	if (cmd == POLL_AND_CHECK_STATUS) {
1636 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1637 			NFE_UNLOCK(sc);
1638 			return (rx_npkts);
1639 		}
1640 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1641 
1642 		if (r & NFE_IRQ_LINK) {
1643 			NFE_READ(sc, NFE_PHY_STATUS);
1644 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1645 			DPRINTF(sc, "link state changed\n");
1646 		}
1647 	}
1648 	NFE_UNLOCK(sc);
1649 	return (rx_npkts);
1650 }
1651 #endif /* DEVICE_POLLING */
1652 
1653 static void
1654 nfe_set_intr(struct nfe_softc *sc)
1655 {
1656 
1657 	if (sc->nfe_msi != 0)
1658 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1659 }
1660 
1661 /* In MSIX, a write to mask reegisters behaves as XOR. */
1662 static __inline void
1663 nfe_enable_intr(struct nfe_softc *sc)
1664 {
1665 
1666 	if (sc->nfe_msix != 0) {
1667 		/* XXX Should have a better way to enable interrupts! */
1668 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1669 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1670 	} else
1671 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1672 }
1673 
1674 static __inline void
1675 nfe_disable_intr(struct nfe_softc *sc)
1676 {
1677 
1678 	if (sc->nfe_msix != 0) {
1679 		/* XXX Should have a better way to disable interrupts! */
1680 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1681 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1682 	} else
1683 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1684 }
1685 
1686 static int
1687 nfe_ioctl(if_t ifp, u_long cmd, caddr_t data)
1688 {
1689 	struct nfe_softc *sc;
1690 	struct ifreq *ifr;
1691 	struct mii_data *mii;
1692 	int error, init, mask;
1693 
1694 	sc = if_getsoftc(ifp);
1695 	ifr = (struct ifreq *) data;
1696 	error = 0;
1697 	init = 0;
1698 	switch (cmd) {
1699 	case SIOCSIFMTU:
1700 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1701 			error = EINVAL;
1702 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1703 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1704 			    (sc->nfe_jumbo_disable != 0)) &&
1705 			    ifr->ifr_mtu > ETHERMTU)
1706 				error = EINVAL;
1707 			else {
1708 				NFE_LOCK(sc);
1709 				if_setmtu(ifp, ifr->ifr_mtu);
1710 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1711 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1712 					nfe_init_locked(sc);
1713 				}
1714 				NFE_UNLOCK(sc);
1715 			}
1716 		}
1717 		break;
1718 	case SIOCSIFFLAGS:
1719 		NFE_LOCK(sc);
1720 		if (if_getflags(ifp) & IFF_UP) {
1721 			/*
1722 			 * If only the PROMISC or ALLMULTI flag changes, then
1723 			 * don't do a full re-init of the chip, just update
1724 			 * the Rx filter.
1725 			 */
1726 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) &&
1727 			    ((if_getflags(ifp) ^ sc->nfe_if_flags) &
1728 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1729 				nfe_setmulti(sc);
1730 			else
1731 				nfe_init_locked(sc);
1732 		} else {
1733 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1734 				nfe_stop(ifp);
1735 		}
1736 		sc->nfe_if_flags = if_getflags(ifp);
1737 		NFE_UNLOCK(sc);
1738 		error = 0;
1739 		break;
1740 	case SIOCADDMULTI:
1741 	case SIOCDELMULTI:
1742 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1743 			NFE_LOCK(sc);
1744 			nfe_setmulti(sc);
1745 			NFE_UNLOCK(sc);
1746 			error = 0;
1747 		}
1748 		break;
1749 	case SIOCSIFMEDIA:
1750 	case SIOCGIFMEDIA:
1751 		mii = device_get_softc(sc->nfe_miibus);
1752 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1753 		break;
1754 	case SIOCSIFCAP:
1755 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1756 #ifdef DEVICE_POLLING
1757 		if ((mask & IFCAP_POLLING) != 0) {
1758 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1759 				error = ether_poll_register(nfe_poll, ifp);
1760 				if (error)
1761 					break;
1762 				NFE_LOCK(sc);
1763 				nfe_disable_intr(sc);
1764 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1765 				NFE_UNLOCK(sc);
1766 			} else {
1767 				error = ether_poll_deregister(ifp);
1768 				/* Enable interrupt even in error case */
1769 				NFE_LOCK(sc);
1770 				nfe_enable_intr(sc);
1771 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1772 				NFE_UNLOCK(sc);
1773 			}
1774 		}
1775 #endif /* DEVICE_POLLING */
1776 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1777 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1778 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1779 		if ((mask & IFCAP_TXCSUM) != 0 &&
1780 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1781 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1782 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1783 				if_sethwassistbits(ifp, NFE_CSUM_FEATURES, 0);
1784 			else
1785 				if_sethwassistbits(ifp, 0, NFE_CSUM_FEATURES);
1786 		}
1787 		if ((mask & IFCAP_RXCSUM) != 0 &&
1788 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1789 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1790 			init++;
1791 		}
1792 		if ((mask & IFCAP_TSO4) != 0 &&
1793 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1794 			if_togglecapenable(ifp, IFCAP_TSO4);
1795 			if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
1796 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1797 			else
1798 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1799 		}
1800 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1801 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1802 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1803 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1804 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1805 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1806 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1807 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1808 			init++;
1809 		}
1810 		/*
1811 		 * XXX
1812 		 * It seems that VLAN stripping requires Rx checksum offload.
1813 		 * Unfortunately FreeBSD has no way to disable only Rx side
1814 		 * VLAN stripping. So when we know Rx checksum offload is
1815 		 * disabled turn entire hardware VLAN assist off.
1816 		 */
1817 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) == 0) {
1818 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
1819 				init++;
1820 			if_setcapenablebit(ifp, 0,
1821 			    (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO));
1822 		}
1823 		if (init > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1824 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1825 			nfe_init(sc);
1826 		}
1827 		if_vlancap(ifp);
1828 		break;
1829 	default:
1830 		error = ether_ioctl(ifp, cmd, data);
1831 		break;
1832 	}
1833 
1834 	return (error);
1835 }
1836 
1837 static int
1838 nfe_intr(void *arg)
1839 {
1840 	struct nfe_softc *sc;
1841 	uint32_t status;
1842 
1843 	sc = (struct nfe_softc *)arg;
1844 
1845 	status = NFE_READ(sc, sc->nfe_irq_status);
1846 	if (status == 0 || status == 0xffffffff)
1847 		return (FILTER_STRAY);
1848 	nfe_disable_intr(sc);
1849 	taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task);
1850 
1851 	return (FILTER_HANDLED);
1852 }
1853 
1854 static void
1855 nfe_int_task(void *arg, int pending)
1856 {
1857 	struct nfe_softc *sc = arg;
1858 	if_t ifp = sc->nfe_ifp;
1859 	uint32_t r;
1860 	int domore;
1861 
1862 	NFE_LOCK(sc);
1863 
1864 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1865 		nfe_enable_intr(sc);
1866 		NFE_UNLOCK(sc);
1867 		return;	/* not for us */
1868 	}
1869 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1870 
1871 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1872 
1873 #ifdef DEVICE_POLLING
1874 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1875 		NFE_UNLOCK(sc);
1876 		return;
1877 	}
1878 #endif
1879 
1880 	if (r & NFE_IRQ_LINK) {
1881 		NFE_READ(sc, NFE_PHY_STATUS);
1882 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1883 		DPRINTF(sc, "link state changed\n");
1884 	}
1885 
1886 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1887 		NFE_UNLOCK(sc);
1888 		nfe_disable_intr(sc);
1889 		return;
1890 	}
1891 
1892 	domore = 0;
1893 	/* check Rx ring */
1894 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1895 		domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
1896 	else
1897 		domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
1898 	/* check Tx ring */
1899 	nfe_txeof(sc);
1900 
1901 	if (!if_sendq_empty(ifp))
1902 		nfe_start_locked(ifp);
1903 
1904 	NFE_UNLOCK(sc);
1905 
1906 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1907 		taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task);
1908 		return;
1909 	}
1910 
1911 	/* Reenable interrupts. */
1912 	nfe_enable_intr(sc);
1913 }
1914 
1915 static __inline void
1916 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1917 {
1918 	struct nfe_desc32 *desc32;
1919 	struct nfe_desc64 *desc64;
1920 	struct nfe_rx_data *data;
1921 	struct mbuf *m;
1922 
1923 	data = &sc->rxq.data[idx];
1924 	m = data->m;
1925 
1926 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1927 		desc64 = &sc->rxq.desc64[idx];
1928 		/* VLAN packet may have overwritten it. */
1929 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1930 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1931 		desc64->length = htole16(m->m_len);
1932 		desc64->flags = htole16(NFE_RX_READY);
1933 	} else {
1934 		desc32 = &sc->rxq.desc32[idx];
1935 		desc32->length = htole16(m->m_len);
1936 		desc32->flags = htole16(NFE_RX_READY);
1937 	}
1938 }
1939 
1940 static __inline void
1941 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1942 {
1943 	struct nfe_desc32 *desc32;
1944 	struct nfe_desc64 *desc64;
1945 	struct nfe_rx_data *data;
1946 	struct mbuf *m;
1947 
1948 	data = &sc->jrxq.jdata[idx];
1949 	m = data->m;
1950 
1951 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1952 		desc64 = &sc->jrxq.jdesc64[idx];
1953 		/* VLAN packet may have overwritten it. */
1954 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1955 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1956 		desc64->length = htole16(m->m_len);
1957 		desc64->flags = htole16(NFE_RX_READY);
1958 	} else {
1959 		desc32 = &sc->jrxq.jdesc32[idx];
1960 		desc32->length = htole16(m->m_len);
1961 		desc32->flags = htole16(NFE_RX_READY);
1962 	}
1963 }
1964 
1965 static int
1966 nfe_newbuf(struct nfe_softc *sc, int idx)
1967 {
1968 	struct nfe_rx_data *data;
1969 	struct nfe_desc32 *desc32;
1970 	struct nfe_desc64 *desc64;
1971 	struct mbuf *m;
1972 	bus_dma_segment_t segs[1];
1973 	bus_dmamap_t map;
1974 	int nsegs;
1975 
1976 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1977 	if (m == NULL)
1978 		return (ENOBUFS);
1979 
1980 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1981 	m_adj(m, ETHER_ALIGN);
1982 
1983 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
1984 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
1985 		m_freem(m);
1986 		return (ENOBUFS);
1987 	}
1988 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1989 
1990 	data = &sc->rxq.data[idx];
1991 	if (data->m != NULL) {
1992 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
1993 		    BUS_DMASYNC_POSTREAD);
1994 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
1995 	}
1996 	map = data->rx_data_map;
1997 	data->rx_data_map = sc->rxq.rx_spare_map;
1998 	sc->rxq.rx_spare_map = map;
1999 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2000 	    BUS_DMASYNC_PREREAD);
2001 	data->paddr = segs[0].ds_addr;
2002 	data->m = m;
2003 	/* update mapping address in h/w descriptor */
2004 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2005 		desc64 = &sc->rxq.desc64[idx];
2006 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2007 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2008 		desc64->length = htole16(segs[0].ds_len);
2009 		desc64->flags = htole16(NFE_RX_READY);
2010 	} else {
2011 		desc32 = &sc->rxq.desc32[idx];
2012 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2013 		desc32->length = htole16(segs[0].ds_len);
2014 		desc32->flags = htole16(NFE_RX_READY);
2015 	}
2016 
2017 	return (0);
2018 }
2019 
2020 static int
2021 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2022 {
2023 	struct nfe_rx_data *data;
2024 	struct nfe_desc32 *desc32;
2025 	struct nfe_desc64 *desc64;
2026 	struct mbuf *m;
2027 	bus_dma_segment_t segs[1];
2028 	bus_dmamap_t map;
2029 	int nsegs;
2030 
2031 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2032 	if (m == NULL)
2033 		return (ENOBUFS);
2034 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
2035 	m_adj(m, ETHER_ALIGN);
2036 
2037 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2038 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2039 		m_freem(m);
2040 		return (ENOBUFS);
2041 	}
2042 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2043 
2044 	data = &sc->jrxq.jdata[idx];
2045 	if (data->m != NULL) {
2046 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2047 		    BUS_DMASYNC_POSTREAD);
2048 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2049 	}
2050 	map = data->rx_data_map;
2051 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2052 	sc->jrxq.jrx_spare_map = map;
2053 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2054 	    BUS_DMASYNC_PREREAD);
2055 	data->paddr = segs[0].ds_addr;
2056 	data->m = m;
2057 	/* update mapping address in h/w descriptor */
2058 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2059 		desc64 = &sc->jrxq.jdesc64[idx];
2060 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2061 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2062 		desc64->length = htole16(segs[0].ds_len);
2063 		desc64->flags = htole16(NFE_RX_READY);
2064 	} else {
2065 		desc32 = &sc->jrxq.jdesc32[idx];
2066 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2067 		desc32->length = htole16(segs[0].ds_len);
2068 		desc32->flags = htole16(NFE_RX_READY);
2069 	}
2070 
2071 	return (0);
2072 }
2073 
2074 static int
2075 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2076 {
2077 	if_t ifp = sc->nfe_ifp;
2078 	struct nfe_desc32 *desc32;
2079 	struct nfe_desc64 *desc64;
2080 	struct nfe_rx_data *data;
2081 	struct mbuf *m;
2082 	uint16_t flags;
2083 	int len, prog, rx_npkts;
2084 	uint32_t vtag = 0;
2085 
2086 	rx_npkts = 0;
2087 	NFE_LOCK_ASSERT(sc);
2088 
2089 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2090 	    BUS_DMASYNC_POSTREAD);
2091 
2092 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2093 		if (count <= 0)
2094 			break;
2095 		count--;
2096 
2097 		data = &sc->rxq.data[sc->rxq.cur];
2098 
2099 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2100 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2101 			vtag = le32toh(desc64->physaddr[1]);
2102 			flags = le16toh(desc64->flags);
2103 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2104 		} else {
2105 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2106 			flags = le16toh(desc32->flags);
2107 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2108 		}
2109 
2110 		if (flags & NFE_RX_READY)
2111 			break;
2112 		prog++;
2113 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2114 			if (!(flags & NFE_RX_VALID_V1)) {
2115 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2116 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2117 				continue;
2118 			}
2119 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2120 				flags &= ~NFE_RX_ERROR;
2121 				len--;	/* fix buffer length */
2122 			}
2123 		} else {
2124 			if (!(flags & NFE_RX_VALID_V2)) {
2125 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2126 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2127 				continue;
2128 			}
2129 
2130 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2131 				flags &= ~NFE_RX_ERROR;
2132 				len--;	/* fix buffer length */
2133 			}
2134 		}
2135 
2136 		if (flags & NFE_RX_ERROR) {
2137 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2138 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2139 			continue;
2140 		}
2141 
2142 		m = data->m;
2143 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2144 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2145 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2146 			continue;
2147 		}
2148 
2149 		if ((vtag & NFE_RX_VTAG) != 0 &&
2150 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2151 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2152 			m->m_flags |= M_VLANTAG;
2153 		}
2154 
2155 		m->m_pkthdr.len = m->m_len = len;
2156 		m->m_pkthdr.rcvif = ifp;
2157 
2158 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
2159 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2160 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2161 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2162 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2163 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2164 					m->m_pkthdr.csum_flags |=
2165 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2166 					m->m_pkthdr.csum_data = 0xffff;
2167 				}
2168 			}
2169 		}
2170 
2171 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2172 
2173 		NFE_UNLOCK(sc);
2174 		if_input(ifp, m);
2175 		NFE_LOCK(sc);
2176 		rx_npkts++;
2177 	}
2178 
2179 	if (prog > 0)
2180 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2181 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2182 
2183 	if (rx_npktsp != NULL)
2184 		*rx_npktsp = rx_npkts;
2185 	return (count > 0 ? 0 : EAGAIN);
2186 }
2187 
2188 static int
2189 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2190 {
2191 	if_t ifp = sc->nfe_ifp;
2192 	struct nfe_desc32 *desc32;
2193 	struct nfe_desc64 *desc64;
2194 	struct nfe_rx_data *data;
2195 	struct mbuf *m;
2196 	uint16_t flags;
2197 	int len, prog, rx_npkts;
2198 	uint32_t vtag = 0;
2199 
2200 	rx_npkts = 0;
2201 	NFE_LOCK_ASSERT(sc);
2202 
2203 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2204 	    BUS_DMASYNC_POSTREAD);
2205 
2206 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2207 	    vtag = 0) {
2208 		if (count <= 0)
2209 			break;
2210 		count--;
2211 
2212 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2213 
2214 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2215 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2216 			vtag = le32toh(desc64->physaddr[1]);
2217 			flags = le16toh(desc64->flags);
2218 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2219 		} else {
2220 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2221 			flags = le16toh(desc32->flags);
2222 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2223 		}
2224 
2225 		if (flags & NFE_RX_READY)
2226 			break;
2227 		prog++;
2228 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2229 			if (!(flags & NFE_RX_VALID_V1)) {
2230 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2231 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2232 				continue;
2233 			}
2234 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2235 				flags &= ~NFE_RX_ERROR;
2236 				len--;	/* fix buffer length */
2237 			}
2238 		} else {
2239 			if (!(flags & NFE_RX_VALID_V2)) {
2240 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2241 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2242 				continue;
2243 			}
2244 
2245 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2246 				flags &= ~NFE_RX_ERROR;
2247 				len--;	/* fix buffer length */
2248 			}
2249 		}
2250 
2251 		if (flags & NFE_RX_ERROR) {
2252 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2253 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2254 			continue;
2255 		}
2256 
2257 		m = data->m;
2258 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2259 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2260 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2261 			continue;
2262 		}
2263 
2264 		if ((vtag & NFE_RX_VTAG) != 0 &&
2265 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2266 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2267 			m->m_flags |= M_VLANTAG;
2268 		}
2269 
2270 		m->m_pkthdr.len = m->m_len = len;
2271 		m->m_pkthdr.rcvif = ifp;
2272 
2273 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
2274 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2275 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2276 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2277 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2278 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2279 					m->m_pkthdr.csum_flags |=
2280 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2281 					m->m_pkthdr.csum_data = 0xffff;
2282 				}
2283 			}
2284 		}
2285 
2286 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2287 
2288 		NFE_UNLOCK(sc);
2289 		if_input(ifp, m);
2290 		NFE_LOCK(sc);
2291 		rx_npkts++;
2292 	}
2293 
2294 	if (prog > 0)
2295 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2296 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2297 
2298 	if (rx_npktsp != NULL)
2299 		*rx_npktsp = rx_npkts;
2300 	return (count > 0 ? 0 : EAGAIN);
2301 }
2302 
2303 static void
2304 nfe_txeof(struct nfe_softc *sc)
2305 {
2306 	if_t ifp = sc->nfe_ifp;
2307 	struct nfe_desc32 *desc32;
2308 	struct nfe_desc64 *desc64;
2309 	struct nfe_tx_data *data = NULL;
2310 	uint16_t flags;
2311 	int cons, prog;
2312 
2313 	NFE_LOCK_ASSERT(sc);
2314 
2315 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2316 	    BUS_DMASYNC_POSTREAD);
2317 
2318 	prog = 0;
2319 	for (cons = sc->txq.next; cons != sc->txq.cur;
2320 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2321 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2322 			desc64 = &sc->txq.desc64[cons];
2323 			flags = le16toh(desc64->flags);
2324 		} else {
2325 			desc32 = &sc->txq.desc32[cons];
2326 			flags = le16toh(desc32->flags);
2327 		}
2328 
2329 		if (flags & NFE_TX_VALID)
2330 			break;
2331 
2332 		prog++;
2333 		sc->txq.queued--;
2334 		data = &sc->txq.data[cons];
2335 
2336 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2337 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2338 				continue;
2339 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2340 				device_printf(sc->nfe_dev,
2341 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2342 
2343 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2344 			} else
2345 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2346 		} else {
2347 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2348 				continue;
2349 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2350 				device_printf(sc->nfe_dev,
2351 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2352 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2353 			} else
2354 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2355 		}
2356 
2357 		/* last fragment of the mbuf chain transmitted */
2358 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2359 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2360 		    BUS_DMASYNC_POSTWRITE);
2361 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2362 		m_freem(data->m);
2363 		data->m = NULL;
2364 	}
2365 
2366 	if (prog > 0) {
2367 		sc->nfe_force_tx = 0;
2368 		sc->txq.next = cons;
2369 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2370 		if (sc->txq.queued == 0)
2371 			sc->nfe_watchdog_timer = 0;
2372 	}
2373 }
2374 
2375 static int
2376 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2377 {
2378 	struct nfe_desc32 *desc32 = NULL;
2379 	struct nfe_desc64 *desc64 = NULL;
2380 	bus_dmamap_t map;
2381 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2382 	int error, i, nsegs, prod, si;
2383 	uint32_t tsosegsz;
2384 	uint16_t cflags, flags;
2385 	struct mbuf *m;
2386 
2387 	prod = si = sc->txq.cur;
2388 	map = sc->txq.data[prod].tx_data_map;
2389 
2390 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2391 	    &nsegs, BUS_DMA_NOWAIT);
2392 	if (error == EFBIG) {
2393 		m = m_collapse(*m_head, M_NOWAIT, NFE_MAX_SCATTER);
2394 		if (m == NULL) {
2395 			m_freem(*m_head);
2396 			*m_head = NULL;
2397 			return (ENOBUFS);
2398 		}
2399 		*m_head = m;
2400 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2401 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2402 		if (error != 0) {
2403 			m_freem(*m_head);
2404 			*m_head = NULL;
2405 			return (ENOBUFS);
2406 		}
2407 	} else if (error != 0)
2408 		return (error);
2409 	if (nsegs == 0) {
2410 		m_freem(*m_head);
2411 		*m_head = NULL;
2412 		return (EIO);
2413 	}
2414 
2415 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2416 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2417 		return (ENOBUFS);
2418 	}
2419 
2420 	m = *m_head;
2421 	cflags = flags = 0;
2422 	tsosegsz = 0;
2423 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2424 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2425 		    NFE_TX_TSO_SHIFT;
2426 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2427 		cflags |= NFE_TX_TSO;
2428 	} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2429 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2430 			cflags |= NFE_TX_IP_CSUM;
2431 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2432 			cflags |= NFE_TX_TCP_UDP_CSUM;
2433 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2434 			cflags |= NFE_TX_TCP_UDP_CSUM;
2435 	}
2436 
2437 	for (i = 0; i < nsegs; i++) {
2438 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2439 			desc64 = &sc->txq.desc64[prod];
2440 			desc64->physaddr[0] =
2441 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2442 			desc64->physaddr[1] =
2443 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2444 			desc64->vtag = 0;
2445 			desc64->length = htole16(segs[i].ds_len - 1);
2446 			desc64->flags = htole16(flags);
2447 		} else {
2448 			desc32 = &sc->txq.desc32[prod];
2449 			desc32->physaddr =
2450 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2451 			desc32->length = htole16(segs[i].ds_len - 1);
2452 			desc32->flags = htole16(flags);
2453 		}
2454 
2455 		/*
2456 		 * Setting of the valid bit in the first descriptor is
2457 		 * deferred until the whole chain is fully setup.
2458 		 */
2459 		flags |= NFE_TX_VALID;
2460 
2461 		sc->txq.queued++;
2462 		NFE_INC(prod, NFE_TX_RING_COUNT);
2463 	}
2464 
2465 	/*
2466 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2467 	 * csum flags, vtag and TSO belong to the first fragment only.
2468 	 */
2469 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2470 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2471 		desc64 = &sc->txq.desc64[si];
2472 		if ((m->m_flags & M_VLANTAG) != 0)
2473 			desc64->vtag = htole32(NFE_TX_VTAG |
2474 			    m->m_pkthdr.ether_vtag);
2475 		if (tsosegsz != 0) {
2476 			/*
2477 			 * XXX
2478 			 * The following indicates the descriptor element
2479 			 * is a 32bit quantity.
2480 			 */
2481 			desc64->length |= htole16((uint16_t)tsosegsz);
2482 			desc64->flags |= htole16(tsosegsz >> 16);
2483 		}
2484 		/*
2485 		 * finally, set the valid/checksum/TSO bit in the first
2486 		 * descriptor.
2487 		 */
2488 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2489 	} else {
2490 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2491 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2492 		else
2493 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2494 		desc32 = &sc->txq.desc32[si];
2495 		if (tsosegsz != 0) {
2496 			/*
2497 			 * XXX
2498 			 * The following indicates the descriptor element
2499 			 * is a 32bit quantity.
2500 			 */
2501 			desc32->length |= htole16((uint16_t)tsosegsz);
2502 			desc32->flags |= htole16(tsosegsz >> 16);
2503 		}
2504 		/*
2505 		 * finally, set the valid/checksum/TSO bit in the first
2506 		 * descriptor.
2507 		 */
2508 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2509 	}
2510 
2511 	sc->txq.cur = prod;
2512 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2513 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2514 	sc->txq.data[prod].tx_data_map = map;
2515 	sc->txq.data[prod].m = m;
2516 
2517 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2518 
2519 	return (0);
2520 }
2521 
2522 struct nfe_hash_maddr_ctx {
2523 	uint8_t addr[ETHER_ADDR_LEN];
2524 	uint8_t mask[ETHER_ADDR_LEN];
2525 };
2526 
2527 static u_int
2528 nfe_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2529 {
2530 	struct nfe_hash_maddr_ctx *ctx = arg;
2531 	uint8_t *addrp, mcaddr;
2532 	int j;
2533 
2534 	addrp = LLADDR(sdl);
2535 	for (j = 0; j < ETHER_ADDR_LEN; j++) {
2536 		mcaddr = addrp[j];
2537 		ctx->addr[j] &= mcaddr;
2538 		ctx->mask[j] &= ~mcaddr;
2539 	}
2540 
2541 	return (1);
2542 }
2543 
2544 static void
2545 nfe_setmulti(struct nfe_softc *sc)
2546 {
2547 	if_t ifp = sc->nfe_ifp;
2548 	struct nfe_hash_maddr_ctx ctx;
2549 	uint32_t filter;
2550 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2551 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2552 	};
2553 	int i;
2554 
2555 	NFE_LOCK_ASSERT(sc);
2556 
2557 	if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2558 		bzero(ctx.addr, ETHER_ADDR_LEN);
2559 		bzero(ctx.mask, ETHER_ADDR_LEN);
2560 		goto done;
2561 	}
2562 
2563 	bcopy(etherbroadcastaddr, ctx.addr, ETHER_ADDR_LEN);
2564 	bcopy(etherbroadcastaddr, ctx.mask, ETHER_ADDR_LEN);
2565 
2566 	if_foreach_llmaddr(ifp, nfe_hash_maddr, &ctx);
2567 
2568 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2569 		ctx.mask[i] |= ctx.addr[i];
2570 	}
2571 
2572 done:
2573 	ctx.addr[0] |= 0x01;	/* make sure multicast bit is set */
2574 
2575 	NFE_WRITE(sc, NFE_MULTIADDR_HI, ctx.addr[3] << 24 | ctx.addr[2] << 16 |
2576 	    ctx.addr[1] << 8 | ctx.addr[0]);
2577 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2578 	    ctx.addr[5] <<  8 | ctx.addr[4]);
2579 	NFE_WRITE(sc, NFE_MULTIMASK_HI, ctx.mask[3] << 24 | ctx.mask[2] << 16 |
2580 	    ctx.mask[1] << 8 | ctx.mask[0]);
2581 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2582 	    ctx.mask[5] <<  8 | ctx.mask[4]);
2583 
2584 	filter = NFE_READ(sc, NFE_RXFILTER);
2585 	filter &= NFE_PFF_RX_PAUSE;
2586 	filter |= NFE_RXFILTER_MAGIC;
2587 	filter |= (if_getflags(ifp) & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2588 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2589 }
2590 
2591 static void
2592 nfe_start(if_t ifp)
2593 {
2594 	struct nfe_softc *sc = if_getsoftc(ifp);
2595 
2596 	NFE_LOCK(sc);
2597 	nfe_start_locked(ifp);
2598 	NFE_UNLOCK(sc);
2599 }
2600 
2601 static void
2602 nfe_start_locked(if_t ifp)
2603 {
2604 	struct nfe_softc *sc = if_getsoftc(ifp);
2605 	struct mbuf *m0;
2606 	int enq = 0;
2607 
2608 	NFE_LOCK_ASSERT(sc);
2609 
2610 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2611 	    IFF_DRV_RUNNING || sc->nfe_link == 0)
2612 		return;
2613 
2614 	while (!if_sendq_empty(ifp)) {
2615 		m0 = if_dequeue(ifp);
2616 
2617 		if (m0 == NULL)
2618 			break;
2619 
2620 		if (nfe_encap(sc, &m0) != 0) {
2621 			if (m0 == NULL)
2622 				break;
2623 			if_sendq_prepend(ifp, m0);
2624 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2625 			break;
2626 		}
2627 		enq++;
2628 		if_etherbpfmtap(ifp, m0);
2629 	}
2630 
2631 	if (enq > 0) {
2632 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2633 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2634 
2635 		/* kick Tx */
2636 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2637 
2638 		/*
2639 		 * Set a timeout in case the chip goes out to lunch.
2640 		 */
2641 		sc->nfe_watchdog_timer = 5;
2642 	}
2643 }
2644 
2645 static void
2646 nfe_watchdog(if_t ifp)
2647 {
2648 	struct nfe_softc *sc = if_getsoftc(ifp);
2649 
2650 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2651 		return;
2652 
2653 	/* Check if we've lost Tx completion interrupt. */
2654 	nfe_txeof(sc);
2655 	if (sc->txq.queued == 0) {
2656 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2657 		    "-- recovering\n");
2658 		if (!if_sendq_empty(ifp))
2659 			nfe_start_locked(ifp);
2660 		return;
2661 	}
2662 	/* Check if we've lost start Tx command. */
2663 	sc->nfe_force_tx++;
2664 	if (sc->nfe_force_tx <= 3) {
2665 		/*
2666 		 * If this is the case for watchdog timeout, the following
2667 		 * code should go to nfe_txeof().
2668 		 */
2669 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2670 		return;
2671 	}
2672 	sc->nfe_force_tx = 0;
2673 
2674 	if_printf(ifp, "watchdog timeout\n");
2675 
2676 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2677 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2678 	nfe_init_locked(sc);
2679 }
2680 
2681 static void
2682 nfe_init(void *xsc)
2683 {
2684 	struct nfe_softc *sc = xsc;
2685 
2686 	NFE_LOCK(sc);
2687 	nfe_init_locked(sc);
2688 	NFE_UNLOCK(sc);
2689 }
2690 
2691 static void
2692 nfe_init_locked(void *xsc)
2693 {
2694 	struct nfe_softc *sc = xsc;
2695 	if_t ifp = sc->nfe_ifp;
2696 	struct mii_data *mii;
2697 	uint32_t val;
2698 	int error;
2699 
2700 	NFE_LOCK_ASSERT(sc);
2701 
2702 	mii = device_get_softc(sc->nfe_miibus);
2703 
2704 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2705 		return;
2706 
2707 	nfe_stop(ifp);
2708 
2709 	sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
2710 
2711 	nfe_init_tx_ring(sc, &sc->txq);
2712 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2713 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2714 	else
2715 		error = nfe_init_rx_ring(sc, &sc->rxq);
2716 	if (error != 0) {
2717 		device_printf(sc->nfe_dev,
2718 		    "initialization failed: no memory for rx buffers\n");
2719 		nfe_stop(ifp);
2720 		return;
2721 	}
2722 
2723 	val = 0;
2724 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2725 		val |= NFE_MAC_ADDR_INORDER;
2726 	NFE_WRITE(sc, NFE_TX_UNK, val);
2727 	NFE_WRITE(sc, NFE_STATUS, 0);
2728 
2729 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2730 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2731 
2732 	sc->rxtxctl = NFE_RXTX_BIT2;
2733 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2734 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2735 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2736 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2737 
2738 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2739 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2740 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2741 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2742 
2743 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2744 	DELAY(10);
2745 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2746 
2747 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2748 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2749 	else
2750 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2751 
2752 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2753 
2754 	/* set MAC address */
2755 	nfe_set_macaddr(sc, if_getlladdr(ifp));
2756 
2757 	/* tell MAC where rings are in memory */
2758 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2759 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2760 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2761 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2762 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2763 	} else {
2764 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2765 		    NFE_ADDR_HI(sc->rxq.physaddr));
2766 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2767 		    NFE_ADDR_LO(sc->rxq.physaddr));
2768 	}
2769 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2770 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2771 
2772 	NFE_WRITE(sc, NFE_RING_SIZE,
2773 	    (NFE_RX_RING_COUNT - 1) << 16 |
2774 	    (NFE_TX_RING_COUNT - 1));
2775 
2776 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2777 
2778 	/* force MAC to wakeup */
2779 	val = NFE_READ(sc, NFE_PWR_STATE);
2780 	if ((val & NFE_PWR_WAKEUP) == 0)
2781 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2782 	DELAY(10);
2783 	val = NFE_READ(sc, NFE_PWR_STATE);
2784 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2785 
2786 #if 1
2787 	/* configure interrupts coalescing/mitigation */
2788 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2789 #else
2790 	/* no interrupt mitigation: one interrupt per packet */
2791 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2792 #endif
2793 
2794 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2795 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2796 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2797 
2798 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2799 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2800 
2801 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2802 	/* Disable WOL. */
2803 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
2804 
2805 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2806 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2807 	DELAY(10);
2808 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2809 
2810 	/* set Rx filter */
2811 	nfe_setmulti(sc);
2812 
2813 	/* enable Rx */
2814 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2815 
2816 	/* enable Tx */
2817 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2818 
2819 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2820 
2821 	/* Clear hardware stats. */
2822 	nfe_stats_clear(sc);
2823 
2824 #ifdef DEVICE_POLLING
2825 	if (if_getcapenable(ifp) & IFCAP_POLLING)
2826 		nfe_disable_intr(sc);
2827 	else
2828 #endif
2829 	nfe_set_intr(sc);
2830 	nfe_enable_intr(sc); /* enable interrupts */
2831 
2832 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2833 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2834 
2835 	sc->nfe_link = 0;
2836 	mii_mediachg(mii);
2837 
2838 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2839 }
2840 
2841 static void
2842 nfe_stop(if_t ifp)
2843 {
2844 	struct nfe_softc *sc = if_getsoftc(ifp);
2845 	struct nfe_rx_ring *rx_ring;
2846 	struct nfe_jrx_ring *jrx_ring;
2847 	struct nfe_tx_ring *tx_ring;
2848 	struct nfe_rx_data *rdata;
2849 	struct nfe_tx_data *tdata;
2850 	int i;
2851 
2852 	NFE_LOCK_ASSERT(sc);
2853 
2854 	sc->nfe_watchdog_timer = 0;
2855 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2856 
2857 	callout_stop(&sc->nfe_stat_ch);
2858 
2859 	/* abort Tx */
2860 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2861 
2862 	/* disable Rx */
2863 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2864 
2865 	/* disable interrupts */
2866 	nfe_disable_intr(sc);
2867 
2868 	sc->nfe_link = 0;
2869 
2870 	/* free Rx and Tx mbufs still in the queues. */
2871 	rx_ring = &sc->rxq;
2872 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2873 		rdata = &rx_ring->data[i];
2874 		if (rdata->m != NULL) {
2875 			bus_dmamap_sync(rx_ring->rx_data_tag,
2876 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2877 			bus_dmamap_unload(rx_ring->rx_data_tag,
2878 			    rdata->rx_data_map);
2879 			m_freem(rdata->m);
2880 			rdata->m = NULL;
2881 		}
2882 	}
2883 
2884 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2885 		jrx_ring = &sc->jrxq;
2886 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2887 			rdata = &jrx_ring->jdata[i];
2888 			if (rdata->m != NULL) {
2889 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2890 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2891 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2892 				    rdata->rx_data_map);
2893 				m_freem(rdata->m);
2894 				rdata->m = NULL;
2895 			}
2896 		}
2897 	}
2898 
2899 	tx_ring = &sc->txq;
2900 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2901 		tdata = &tx_ring->data[i];
2902 		if (tdata->m != NULL) {
2903 			bus_dmamap_sync(tx_ring->tx_data_tag,
2904 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2905 			bus_dmamap_unload(tx_ring->tx_data_tag,
2906 			    tdata->tx_data_map);
2907 			m_freem(tdata->m);
2908 			tdata->m = NULL;
2909 		}
2910 	}
2911 	/* Update hardware stats. */
2912 	nfe_stats_update(sc);
2913 }
2914 
2915 static int
2916 nfe_ifmedia_upd(if_t ifp)
2917 {
2918 	struct nfe_softc *sc = if_getsoftc(ifp);
2919 	struct mii_data *mii;
2920 
2921 	NFE_LOCK(sc);
2922 	mii = device_get_softc(sc->nfe_miibus);
2923 	mii_mediachg(mii);
2924 	NFE_UNLOCK(sc);
2925 
2926 	return (0);
2927 }
2928 
2929 static void
2930 nfe_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2931 {
2932 	struct nfe_softc *sc;
2933 	struct mii_data *mii;
2934 
2935 	sc = if_getsoftc(ifp);
2936 
2937 	NFE_LOCK(sc);
2938 	mii = device_get_softc(sc->nfe_miibus);
2939 	mii_pollstat(mii);
2940 
2941 	ifmr->ifm_active = mii->mii_media_active;
2942 	ifmr->ifm_status = mii->mii_media_status;
2943 	NFE_UNLOCK(sc);
2944 }
2945 
2946 void
2947 nfe_tick(void *xsc)
2948 {
2949 	struct nfe_softc *sc;
2950 	struct mii_data *mii;
2951 	if_t ifp;
2952 
2953 	sc = (struct nfe_softc *)xsc;
2954 
2955 	NFE_LOCK_ASSERT(sc);
2956 
2957 	ifp = sc->nfe_ifp;
2958 
2959 	mii = device_get_softc(sc->nfe_miibus);
2960 	mii_tick(mii);
2961 	nfe_stats_update(sc);
2962 	nfe_watchdog(ifp);
2963 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2964 }
2965 
2966 static int
2967 nfe_shutdown(device_t dev)
2968 {
2969 
2970 	return (nfe_suspend(dev));
2971 }
2972 
2973 static void
2974 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2975 {
2976 	uint32_t val;
2977 
2978 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
2979 		val = NFE_READ(sc, NFE_MACADDR_LO);
2980 		addr[0] = (val >> 8) & 0xff;
2981 		addr[1] = (val & 0xff);
2982 
2983 		val = NFE_READ(sc, NFE_MACADDR_HI);
2984 		addr[2] = (val >> 24) & 0xff;
2985 		addr[3] = (val >> 16) & 0xff;
2986 		addr[4] = (val >>  8) & 0xff;
2987 		addr[5] = (val & 0xff);
2988 	} else {
2989 		val = NFE_READ(sc, NFE_MACADDR_LO);
2990 		addr[5] = (val >> 8) & 0xff;
2991 		addr[4] = (val & 0xff);
2992 
2993 		val = NFE_READ(sc, NFE_MACADDR_HI);
2994 		addr[3] = (val >> 24) & 0xff;
2995 		addr[2] = (val >> 16) & 0xff;
2996 		addr[1] = (val >>  8) & 0xff;
2997 		addr[0] = (val & 0xff);
2998 	}
2999 }
3000 
3001 static void
3002 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3003 {
3004 
3005 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3006 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3007 	    addr[1] << 8 | addr[0]);
3008 }
3009 
3010 /*
3011  * Map a single buffer address.
3012  */
3013 
3014 static void
3015 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3016 {
3017 	struct nfe_dmamap_arg *ctx;
3018 
3019 	if (error != 0)
3020 		return;
3021 
3022 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3023 
3024 	ctx = (struct nfe_dmamap_arg *)arg;
3025 	ctx->nfe_busaddr = segs[0].ds_addr;
3026 }
3027 
3028 static int
3029 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3030 {
3031 	int error, value;
3032 
3033 	if (!arg1)
3034 		return (EINVAL);
3035 	value = *(int *)arg1;
3036 	error = sysctl_handle_int(oidp, &value, 0, req);
3037 	if (error || !req->newptr)
3038 		return (error);
3039 	if (value < low || value > high)
3040 		return (EINVAL);
3041 	*(int *)arg1 = value;
3042 
3043 	return (0);
3044 }
3045 
3046 static int
3047 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3048 {
3049 
3050 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3051 	    NFE_PROC_MAX));
3052 }
3053 
3054 #define	NFE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
3055 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3056 #define	NFE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
3057 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
3058 
3059 static void
3060 nfe_sysctl_node(struct nfe_softc *sc)
3061 {
3062 	struct sysctl_ctx_list *ctx;
3063 	struct sysctl_oid_list *child, *parent;
3064 	struct sysctl_oid *tree;
3065 	struct nfe_hw_stats *stats;
3066 	int error;
3067 
3068 	stats = &sc->nfe_stats;
3069 	ctx = device_get_sysctl_ctx(sc->nfe_dev);
3070 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
3071 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
3072 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3073 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
3074 	    "max number of Rx events to process");
3075 
3076 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
3077 	error = resource_int_value(device_get_name(sc->nfe_dev),
3078 	    device_get_unit(sc->nfe_dev), "process_limit",
3079 	    &sc->nfe_process_limit);
3080 	if (error == 0) {
3081 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
3082 		    sc->nfe_process_limit > NFE_PROC_MAX) {
3083 			device_printf(sc->nfe_dev,
3084 			    "process_limit value out of range; "
3085 			    "using default: %d\n", NFE_PROC_DEFAULT);
3086 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
3087 		}
3088 	}
3089 
3090 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3091 		return;
3092 
3093 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3094 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NFE statistics");
3095 	parent = SYSCTL_CHILDREN(tree);
3096 
3097 	/* Rx statistics. */
3098 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3099 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3100 	child = SYSCTL_CHILDREN(tree);
3101 
3102 	NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
3103 	    &stats->rx_frame_errors, "Framing Errors");
3104 	NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
3105 	    &stats->rx_extra_bytes, "Extra Bytes");
3106 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3107 	    &stats->rx_late_cols, "Late Collisions");
3108 	NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
3109 	    &stats->rx_runts, "Runts");
3110 	NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
3111 	    &stats->rx_jumbos, "Jumbos");
3112 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
3113 	    &stats->rx_fifo_overuns, "FIFO Overruns");
3114 	NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
3115 	    &stats->rx_crc_errors, "CRC Errors");
3116 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
3117 	    &stats->rx_fae, "Frame Alignment Errors");
3118 	NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
3119 	    &stats->rx_len_errors, "Length Errors");
3120 	NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3121 	    &stats->rx_unicast, "Unicast Frames");
3122 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3123 	    &stats->rx_multicast, "Multicast Frames");
3124 	NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3125 	    &stats->rx_broadcast, "Broadcast Frames");
3126 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3127 		NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3128 		    &stats->rx_octets, "Octets");
3129 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3130 		    &stats->rx_pause, "Pause frames");
3131 		NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
3132 		    &stats->rx_drops, "Drop frames");
3133 	}
3134 
3135 	/* Tx statistics. */
3136 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3137 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3138 	child = SYSCTL_CHILDREN(tree);
3139 	NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3140 	    &stats->tx_octets, "Octets");
3141 	NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
3142 	    &stats->tx_zero_rexmits, "Zero Retransmits");
3143 	NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
3144 	    &stats->tx_one_rexmits, "One Retransmits");
3145 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
3146 	    &stats->tx_multi_rexmits, "Multiple Retransmits");
3147 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3148 	    &stats->tx_late_cols, "Late Collisions");
3149 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
3150 	    &stats->tx_fifo_underuns, "FIFO Underruns");
3151 	NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
3152 	    &stats->tx_carrier_losts, "Carrier Losts");
3153 	NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
3154 	    &stats->tx_excess_deferals, "Excess Deferrals");
3155 	NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
3156 	    &stats->tx_retry_errors, "Retry Errors");
3157 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3158 		NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
3159 		    &stats->tx_deferals, "Deferrals");
3160 		NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
3161 		    &stats->tx_frames, "Frames");
3162 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3163 		    &stats->tx_pause, "Pause Frames");
3164 	}
3165 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3166 		NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3167 		    &stats->tx_deferals, "Unicast Frames");
3168 		NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3169 		    &stats->tx_frames, "Multicast Frames");
3170 		NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3171 		    &stats->tx_pause, "Broadcast Frames");
3172 	}
3173 }
3174 
3175 #undef NFE_SYSCTL_STAT_ADD32
3176 #undef NFE_SYSCTL_STAT_ADD64
3177 
3178 static void
3179 nfe_stats_clear(struct nfe_softc *sc)
3180 {
3181 	int i, mib_cnt;
3182 
3183 	if ((sc->nfe_flags & NFE_MIB_V1) != 0)
3184 		mib_cnt = NFE_NUM_MIB_STATV1;
3185 	else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
3186 		mib_cnt = NFE_NUM_MIB_STATV2;
3187 	else
3188 		return;
3189 
3190 	for (i = 0; i < mib_cnt; i++)
3191 		NFE_READ(sc, NFE_TX_OCTET + i * sizeof(uint32_t));
3192 
3193 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3194 		NFE_READ(sc, NFE_TX_UNICAST);
3195 		NFE_READ(sc, NFE_TX_MULTICAST);
3196 		NFE_READ(sc, NFE_TX_BROADCAST);
3197 	}
3198 }
3199 
3200 static void
3201 nfe_stats_update(struct nfe_softc *sc)
3202 {
3203 	struct nfe_hw_stats *stats;
3204 
3205 	NFE_LOCK_ASSERT(sc);
3206 
3207 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3208 		return;
3209 
3210 	stats = &sc->nfe_stats;
3211 	stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
3212 	stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
3213 	stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
3214 	stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
3215 	stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
3216 	stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
3217 	stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
3218 	stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
3219 	stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
3220 	stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
3221 	stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
3222 	stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
3223 	stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
3224 	stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
3225 	stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
3226 	stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
3227 	stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
3228 	stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
3229 	stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
3230 	stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
3231 	stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
3232 
3233 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3234 		stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
3235 		stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
3236 		stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
3237 		stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
3238 		stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
3239 		stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
3240 	}
3241 
3242 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3243 		stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
3244 		stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
3245 		stats->tx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
3246 	}
3247 }
3248 
3249 static void
3250 nfe_set_linkspeed(struct nfe_softc *sc)
3251 {
3252 	struct mii_softc *miisc;
3253 	struct mii_data *mii;
3254 	int aneg, i, phyno;
3255 
3256 	NFE_LOCK_ASSERT(sc);
3257 
3258 	mii = device_get_softc(sc->nfe_miibus);
3259 	mii_pollstat(mii);
3260 	aneg = 0;
3261 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3262 	    (IFM_ACTIVE | IFM_AVALID)) {
3263 		switch IFM_SUBTYPE(mii->mii_media_active) {
3264 		case IFM_10_T:
3265 		case IFM_100_TX:
3266 			return;
3267 		case IFM_1000_T:
3268 			aneg++;
3269 			break;
3270 		default:
3271 			break;
3272 		}
3273 	}
3274 	miisc = LIST_FIRST(&mii->mii_phys);
3275 	phyno = miisc->mii_phy;
3276 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3277 		PHY_RESET(miisc);
3278 	nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
3279 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3280 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3281 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3282 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
3283 	DELAY(1000);
3284 	if (aneg != 0) {
3285 		/*
3286 		 * Poll link state until nfe(4) get a 10/100Mbps link.
3287 		 */
3288 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3289 			mii_pollstat(mii);
3290 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3291 			    == (IFM_ACTIVE | IFM_AVALID)) {
3292 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3293 				case IFM_10_T:
3294 				case IFM_100_TX:
3295 					nfe_mac_config(sc, mii);
3296 					return;
3297 				default:
3298 					break;
3299 				}
3300 			}
3301 			NFE_UNLOCK(sc);
3302 			pause("nfelnk", hz);
3303 			NFE_LOCK(sc);
3304 		}
3305 		if (i == MII_ANEGTICKS_GIGE)
3306 			device_printf(sc->nfe_dev,
3307 			    "establishing a link failed, WOL may not work!");
3308 	}
3309 	/*
3310 	 * No link, force MAC to have 100Mbps, full-duplex link.
3311 	 * This is the last resort and may/may not work.
3312 	 */
3313 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3314 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3315 	nfe_mac_config(sc, mii);
3316 }
3317 
3318 static void
3319 nfe_set_wol(struct nfe_softc *sc)
3320 {
3321 	if_t ifp;
3322 	uint32_t wolctl;
3323 	int pmc;
3324 	uint16_t pmstat;
3325 
3326 	NFE_LOCK_ASSERT(sc);
3327 
3328 	if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
3329 		return;
3330 	ifp = sc->nfe_ifp;
3331 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
3332 		wolctl = NFE_WOL_MAGIC;
3333 	else
3334 		wolctl = 0;
3335 	NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
3336 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
3337 		nfe_set_linkspeed(sc);
3338 		if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
3339 			NFE_WRITE(sc, NFE_PWR2_CTL,
3340 			    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
3341 		/* Enable RX. */
3342 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
3343 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
3344 		NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
3345 		    NFE_RX_START);
3346 	}
3347 	/* Request PME if WOL is requested. */
3348 	pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
3349 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3350 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3351 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3352 	pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3353 }
3354