xref: /freebsd/sys/dev/nfe/if_nfe.c (revision 0e1497aefd602cea581d2380d22e67dfdcac6b4e)
1 /*	$OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #ifdef HAVE_KERNEL_OPTION_HEADERS
27 #include "opt_device_polling.h"
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/kernel.h>
38 #include <sys/queue.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/taskqueue.h>
42 
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/ethernet.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net/bpf.h>
52 
53 #include <machine/bus.h>
54 #include <machine/resource.h>
55 #include <sys/bus.h>
56 #include <sys/rman.h>
57 
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 
61 #include <dev/pci/pcireg.h>
62 #include <dev/pci/pcivar.h>
63 
64 #include <dev/nfe/if_nfereg.h>
65 #include <dev/nfe/if_nfevar.h>
66 
67 MODULE_DEPEND(nfe, pci, 1, 1, 1);
68 MODULE_DEPEND(nfe, ether, 1, 1, 1);
69 MODULE_DEPEND(nfe, miibus, 1, 1, 1);
70 
71 /* "device miibus" required.  See GENERIC if you get errors here. */
72 #include "miibus_if.h"
73 
74 static int  nfe_probe(device_t);
75 static int  nfe_attach(device_t);
76 static int  nfe_detach(device_t);
77 static int  nfe_suspend(device_t);
78 static int  nfe_resume(device_t);
79 static int nfe_shutdown(device_t);
80 static int  nfe_can_use_msix(struct nfe_softc *);
81 static void nfe_power(struct nfe_softc *);
82 static int  nfe_miibus_readreg(device_t, int, int);
83 static int  nfe_miibus_writereg(device_t, int, int, int);
84 static void nfe_miibus_statchg(device_t);
85 static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
86 static void nfe_set_intr(struct nfe_softc *);
87 static __inline void nfe_enable_intr(struct nfe_softc *);
88 static __inline void nfe_disable_intr(struct nfe_softc *);
89 static int  nfe_ioctl(struct ifnet *, u_long, caddr_t);
90 static void nfe_alloc_msix(struct nfe_softc *, int);
91 static int nfe_intr(void *);
92 static void nfe_int_task(void *, int);
93 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
94 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
95 static int nfe_newbuf(struct nfe_softc *, int);
96 static int nfe_jnewbuf(struct nfe_softc *, int);
97 static int  nfe_rxeof(struct nfe_softc *, int, int *);
98 static int  nfe_jrxeof(struct nfe_softc *, int, int *);
99 static void nfe_txeof(struct nfe_softc *);
100 static int  nfe_encap(struct nfe_softc *, struct mbuf **);
101 static void nfe_setmulti(struct nfe_softc *);
102 static void nfe_tx_task(void *, int);
103 static void nfe_start(struct ifnet *);
104 static void nfe_watchdog(struct ifnet *);
105 static void nfe_init(void *);
106 static void nfe_init_locked(void *);
107 static void nfe_stop(struct ifnet *);
108 static int  nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
109 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
110 static int  nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
111 static int  nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
112 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
113 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
114 static int  nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
115 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
116 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
117 static int  nfe_ifmedia_upd(struct ifnet *);
118 static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
119 static void nfe_tick(void *);
120 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
121 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
122 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
123 
124 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
125 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
126 static void nfe_sysctl_node(struct nfe_softc *);
127 static void nfe_stats_clear(struct nfe_softc *);
128 static void nfe_stats_update(struct nfe_softc *);
129 static void nfe_set_linkspeed(struct nfe_softc *);
130 static void nfe_set_wol(struct nfe_softc *);
131 
132 #ifdef NFE_DEBUG
133 static int nfedebug = 0;
134 #define	DPRINTF(sc, ...)	do {				\
135 	if (nfedebug)						\
136 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
137 } while (0)
138 #define	DPRINTFN(sc, n, ...)	do {				\
139 	if (nfedebug >= (n))					\
140 		device_printf((sc)->nfe_dev, __VA_ARGS__);	\
141 } while (0)
142 #else
143 #define	DPRINTF(sc, ...)
144 #define	DPRINTFN(sc, n, ...)
145 #endif
146 
147 #define	NFE_LOCK(_sc)		mtx_lock(&(_sc)->nfe_mtx)
148 #define	NFE_UNLOCK(_sc)		mtx_unlock(&(_sc)->nfe_mtx)
149 #define	NFE_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
150 
151 /* Tunables. */
152 static int msi_disable = 0;
153 static int msix_disable = 0;
154 static int jumbo_disable = 0;
155 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
156 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
157 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
158 
159 static device_method_t nfe_methods[] = {
160 	/* Device interface */
161 	DEVMETHOD(device_probe,		nfe_probe),
162 	DEVMETHOD(device_attach,	nfe_attach),
163 	DEVMETHOD(device_detach,	nfe_detach),
164 	DEVMETHOD(device_suspend,	nfe_suspend),
165 	DEVMETHOD(device_resume,	nfe_resume),
166 	DEVMETHOD(device_shutdown,	nfe_shutdown),
167 
168 	/* bus interface */
169 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
170 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
171 
172 	/* MII interface */
173 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
174 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
175 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
176 
177 	{ NULL, NULL }
178 };
179 
180 static driver_t nfe_driver = {
181 	"nfe",
182 	nfe_methods,
183 	sizeof(struct nfe_softc)
184 };
185 
186 static devclass_t nfe_devclass;
187 
188 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
189 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
190 
191 static struct nfe_type nfe_devs[] = {
192 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
193 	    "NVIDIA nForce MCP Networking Adapter"},
194 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
195 	    "NVIDIA nForce2 MCP2 Networking Adapter"},
196 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
197 	    "NVIDIA nForce2 400 MCP4 Networking Adapter"},
198 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
199 	    "NVIDIA nForce2 400 MCP5 Networking Adapter"},
200 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
201 	    "NVIDIA nForce3 MCP3 Networking Adapter"},
202 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
203 	    "NVIDIA nForce3 250 MCP6 Networking Adapter"},
204 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
205 	    "NVIDIA nForce3 MCP7 Networking Adapter"},
206 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
207 	    "NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
208 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
209 	    "NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
210 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
211 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP10 */
212 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
213 	    "NVIDIA nForce MCP04 Networking Adapter"},		/* MCP11 */
214 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
215 	    "NVIDIA nForce 430 MCP12 Networking Adapter"},
216 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
217 	    "NVIDIA nForce 430 MCP13 Networking Adapter"},
218 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
219 	    "NVIDIA nForce MCP55 Networking Adapter"},
220 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
221 	    "NVIDIA nForce MCP55 Networking Adapter"},
222 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
223 	    "NVIDIA nForce MCP61 Networking Adapter"},
224 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
225 	    "NVIDIA nForce MCP61 Networking Adapter"},
226 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
227 	    "NVIDIA nForce MCP61 Networking Adapter"},
228 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
229 	    "NVIDIA nForce MCP61 Networking Adapter"},
230 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
231 	    "NVIDIA nForce MCP65 Networking Adapter"},
232 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
233 	    "NVIDIA nForce MCP65 Networking Adapter"},
234 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
235 	    "NVIDIA nForce MCP65 Networking Adapter"},
236 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
237 	    "NVIDIA nForce MCP65 Networking Adapter"},
238 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
239 	    "NVIDIA nForce MCP67 Networking Adapter"},
240 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
241 	    "NVIDIA nForce MCP67 Networking Adapter"},
242 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
243 	    "NVIDIA nForce MCP67 Networking Adapter"},
244 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
245 	    "NVIDIA nForce MCP67 Networking Adapter"},
246 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
247 	    "NVIDIA nForce MCP73 Networking Adapter"},
248 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
249 	    "NVIDIA nForce MCP73 Networking Adapter"},
250 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
251 	    "NVIDIA nForce MCP73 Networking Adapter"},
252 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
253 	    "NVIDIA nForce MCP73 Networking Adapter"},
254 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
255 	    "NVIDIA nForce MCP77 Networking Adapter"},
256 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
257 	    "NVIDIA nForce MCP77 Networking Adapter"},
258 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
259 	    "NVIDIA nForce MCP77 Networking Adapter"},
260 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
261 	    "NVIDIA nForce MCP77 Networking Adapter"},
262 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
263 	    "NVIDIA nForce MCP79 Networking Adapter"},
264 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
265 	    "NVIDIA nForce MCP79 Networking Adapter"},
266 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
267 	    "NVIDIA nForce MCP79 Networking Adapter"},
268 	{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
269 	    "NVIDIA nForce MCP79 Networking Adapter"},
270 	{0, 0, NULL}
271 };
272 
273 
274 /* Probe for supported hardware ID's */
275 static int
276 nfe_probe(device_t dev)
277 {
278 	struct nfe_type *t;
279 
280 	t = nfe_devs;
281 	/* Check for matching PCI DEVICE ID's */
282 	while (t->name != NULL) {
283 		if ((pci_get_vendor(dev) == t->vid_id) &&
284 		    (pci_get_device(dev) == t->dev_id)) {
285 			device_set_desc(dev, t->name);
286 			return (BUS_PROBE_DEFAULT);
287 		}
288 		t++;
289 	}
290 
291 	return (ENXIO);
292 }
293 
294 static void
295 nfe_alloc_msix(struct nfe_softc *sc, int count)
296 {
297 	int rid;
298 
299 	rid = PCIR_BAR(2);
300 	sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
301 	    &rid, RF_ACTIVE);
302 	if (sc->nfe_msix_res == NULL) {
303 		device_printf(sc->nfe_dev,
304 		    "couldn't allocate MSIX table resource\n");
305 		return;
306 	}
307 	rid = PCIR_BAR(3);
308 	sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
309 	    SYS_RES_MEMORY, &rid, RF_ACTIVE);
310 	if (sc->nfe_msix_pba_res == NULL) {
311 		device_printf(sc->nfe_dev,
312 		    "couldn't allocate MSIX PBA resource\n");
313 		bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
314 		    sc->nfe_msix_res);
315 		sc->nfe_msix_res = NULL;
316 		return;
317 	}
318 
319 	if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
320 		if (count == NFE_MSI_MESSAGES) {
321 			if (bootverbose)
322 				device_printf(sc->nfe_dev,
323 				    "Using %d MSIX messages\n", count);
324 			sc->nfe_msix = 1;
325 		} else {
326 			if (bootverbose)
327 				device_printf(sc->nfe_dev,
328 				    "couldn't allocate MSIX\n");
329 			pci_release_msi(sc->nfe_dev);
330 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
331 			    PCIR_BAR(3), sc->nfe_msix_pba_res);
332 			bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
333 			    PCIR_BAR(2), sc->nfe_msix_res);
334 			sc->nfe_msix_pba_res = NULL;
335 			sc->nfe_msix_res = NULL;
336 		}
337 	}
338 }
339 
340 static int
341 nfe_attach(device_t dev)
342 {
343 	struct nfe_softc *sc;
344 	struct ifnet *ifp;
345 	bus_addr_t dma_addr_max;
346 	int error = 0, i, msic, reg, rid;
347 
348 	sc = device_get_softc(dev);
349 	sc->nfe_dev = dev;
350 
351 	mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
352 	    MTX_DEF);
353 	callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
354 
355 	pci_enable_busmaster(dev);
356 
357 	rid = PCIR_BAR(0);
358 	sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
359 	    RF_ACTIVE);
360 	if (sc->nfe_res[0] == NULL) {
361 		device_printf(dev, "couldn't map memory resources\n");
362 		mtx_destroy(&sc->nfe_mtx);
363 		return (ENXIO);
364 	}
365 
366 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
367 		uint16_t v, width;
368 
369 		v = pci_read_config(dev, reg + 0x08, 2);
370 		/* Change max. read request size to 4096. */
371 		v &= ~(7 << 12);
372 		v |= (5 << 12);
373 		pci_write_config(dev, reg + 0x08, v, 2);
374 
375 		v = pci_read_config(dev, reg + 0x0c, 2);
376 		/* link capability */
377 		v = (v >> 4) & 0x0f;
378 		width = pci_read_config(dev, reg + 0x12, 2);
379 		/* negotiated link width */
380 		width = (width >> 4) & 0x3f;
381 		if (v != width)
382 			device_printf(sc->nfe_dev,
383 			    "warning, negotiated width of link(x%d) != "
384 			    "max. width of link(x%d)\n", width, v);
385 	}
386 
387 	if (nfe_can_use_msix(sc) == 0) {
388 		device_printf(sc->nfe_dev,
389 		    "MSI/MSI-X capability black-listed, will use INTx\n");
390 		msix_disable = 1;
391 		msi_disable = 1;
392 	}
393 
394 	/* Allocate interrupt */
395 	if (msix_disable == 0 || msi_disable == 0) {
396 		if (msix_disable == 0 &&
397 		    (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
398 			nfe_alloc_msix(sc, msic);
399 		if (msi_disable == 0 && sc->nfe_msix == 0 &&
400 		    (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
401 		    pci_alloc_msi(dev, &msic) == 0) {
402 			if (msic == NFE_MSI_MESSAGES) {
403 				if (bootverbose)
404 					device_printf(dev,
405 					    "Using %d MSI messages\n", msic);
406 				sc->nfe_msi = 1;
407 			} else
408 				pci_release_msi(dev);
409 		}
410 	}
411 
412 	if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
413 		rid = 0;
414 		sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
415 		    RF_SHAREABLE | RF_ACTIVE);
416 		if (sc->nfe_irq[0] == NULL) {
417 			device_printf(dev, "couldn't allocate IRQ resources\n");
418 			error = ENXIO;
419 			goto fail;
420 		}
421 	} else {
422 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
423 			sc->nfe_irq[i] = bus_alloc_resource_any(dev,
424 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
425 			if (sc->nfe_irq[i] == NULL) {
426 				device_printf(dev,
427 				    "couldn't allocate IRQ resources for "
428 				    "message %d\n", rid);
429 				error = ENXIO;
430 				goto fail;
431 			}
432 		}
433 		/* Map interrupts to vector 0. */
434 		if (sc->nfe_msix != 0) {
435 			NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
436 			NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
437 		} else if (sc->nfe_msi != 0) {
438 			NFE_WRITE(sc, NFE_MSI_MAP0, 0);
439 			NFE_WRITE(sc, NFE_MSI_MAP1, 0);
440 		}
441 	}
442 
443 	/* Set IRQ status/mask register. */
444 	sc->nfe_irq_status = NFE_IRQ_STATUS;
445 	sc->nfe_irq_mask = NFE_IRQ_MASK;
446 	sc->nfe_intrs = NFE_IRQ_WANTED;
447 	sc->nfe_nointrs = 0;
448 	if (sc->nfe_msix != 0) {
449 		sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
450 		sc->nfe_nointrs = NFE_IRQ_WANTED;
451 	} else if (sc->nfe_msi != 0) {
452 		sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
453 		sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
454 	}
455 
456 	sc->nfe_devid = pci_get_device(dev);
457 	sc->nfe_revid = pci_get_revid(dev);
458 	sc->nfe_flags = 0;
459 
460 	switch (sc->nfe_devid) {
461 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
462 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
463 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
464 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
465 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
466 		break;
467 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
468 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
469 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
470 		break;
471 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
472 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
473 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
474 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
475 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
476 		    NFE_MIB_V1;
477 		break;
478 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
479 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
480 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
481 		    NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
482 		break;
483 
484 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
485 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
486 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
487 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
488 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
489 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
490 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
491 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
492 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
493 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
494 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
495 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
496 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
497 		    NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
498 		break;
499 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
500 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
501 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
502 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
503 		/* XXX flow control */
504 		sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
505 		    NFE_CORRECT_MACADDR | NFE_MIB_V3;
506 		break;
507 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
508 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
509 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
510 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
511 		/* XXX flow control */
512 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
513 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
514 		break;
515 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
516 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
517 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
518 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
519 		sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
520 		    NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
521 		    NFE_MIB_V2;
522 		break;
523 	}
524 
525 	nfe_power(sc);
526 	/* Check for reversed ethernet address */
527 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
528 		sc->nfe_flags |= NFE_CORRECT_MACADDR;
529 	nfe_get_macaddr(sc, sc->eaddr);
530 	/*
531 	 * Allocate the parent bus DMA tag appropriate for PCI.
532 	 */
533 	dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
534 	if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
535 		dma_addr_max = NFE_DMA_MAXADDR;
536 	error = bus_dma_tag_create(
537 	    bus_get_dma_tag(sc->nfe_dev),	/* parent */
538 	    1, 0,				/* alignment, boundary */
539 	    dma_addr_max,			/* lowaddr */
540 	    BUS_SPACE_MAXADDR,			/* highaddr */
541 	    NULL, NULL,				/* filter, filterarg */
542 	    BUS_SPACE_MAXSIZE_32BIT, 0,		/* maxsize, nsegments */
543 	    BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
544 	    0,					/* flags */
545 	    NULL, NULL,				/* lockfunc, lockarg */
546 	    &sc->nfe_parent_tag);
547 	if (error)
548 		goto fail;
549 
550 	ifp = sc->nfe_ifp = if_alloc(IFT_ETHER);
551 	if (ifp == NULL) {
552 		device_printf(dev, "can not if_alloc()\n");
553 		error = ENOSPC;
554 		goto fail;
555 	}
556 	TASK_INIT(&sc->nfe_tx_task, 1, nfe_tx_task, ifp);
557 
558 	/*
559 	 * Allocate Tx and Rx rings.
560 	 */
561 	if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
562 		goto fail;
563 
564 	if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
565 		goto fail;
566 
567 	nfe_alloc_jrx_ring(sc, &sc->jrxq);
568 	/* Create sysctl node. */
569 	nfe_sysctl_node(sc);
570 
571 	ifp->if_softc = sc;
572 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
573 	ifp->if_mtu = ETHERMTU;
574 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
575 	ifp->if_ioctl = nfe_ioctl;
576 	ifp->if_start = nfe_start;
577 	ifp->if_hwassist = 0;
578 	ifp->if_capabilities = 0;
579 	ifp->if_init = nfe_init;
580 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_TX_RING_COUNT - 1);
581 	ifp->if_snd.ifq_drv_maxlen = NFE_TX_RING_COUNT - 1;
582 	IFQ_SET_READY(&ifp->if_snd);
583 
584 	if (sc->nfe_flags & NFE_HW_CSUM) {
585 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
586 		ifp->if_hwassist |= NFE_CSUM_FEATURES | CSUM_TSO;
587 	}
588 	ifp->if_capenable = ifp->if_capabilities;
589 
590 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
591 	/* VLAN capability setup. */
592 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
593 	if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
594 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
595 		if ((ifp->if_capabilities & IFCAP_HWCSUM) != 0)
596 			ifp->if_capabilities |= IFCAP_VLAN_HWCSUM |
597 			    IFCAP_VLAN_HWTSO;
598 	}
599 
600 	if (pci_find_extcap(dev, PCIY_PMG, &reg) == 0)
601 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
602 	ifp->if_capenable = ifp->if_capabilities;
603 
604 	/*
605 	 * Tell the upper layer(s) we support long frames.
606 	 * Must appear after the call to ether_ifattach() because
607 	 * ether_ifattach() sets ifi_hdrlen to the default value.
608 	 */
609 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
610 
611 #ifdef DEVICE_POLLING
612 	ifp->if_capabilities |= IFCAP_POLLING;
613 #endif
614 
615 	/* Do MII setup */
616 	error = mii_attach(dev, &sc->nfe_miibus, ifp, nfe_ifmedia_upd,
617 	    nfe_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
618 	    MIIF_DOPAUSE);
619 	if (error != 0) {
620 		device_printf(dev, "attaching PHYs failed\n");
621 		goto fail;
622 	}
623 	ether_ifattach(ifp, sc->eaddr);
624 
625 	TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
626 	sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
627 	    taskqueue_thread_enqueue, &sc->nfe_tq);
628 	taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
629 	    device_get_nameunit(sc->nfe_dev));
630 	error = 0;
631 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
632 		error = bus_setup_intr(dev, sc->nfe_irq[0],
633 		    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
634 		    &sc->nfe_intrhand[0]);
635 	} else {
636 		for (i = 0; i < NFE_MSI_MESSAGES; i++) {
637 			error = bus_setup_intr(dev, sc->nfe_irq[i],
638 			    INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
639 			    &sc->nfe_intrhand[i]);
640 			if (error != 0)
641 				break;
642 		}
643 	}
644 	if (error) {
645 		device_printf(dev, "couldn't set up irq\n");
646 		taskqueue_free(sc->nfe_tq);
647 		sc->nfe_tq = NULL;
648 		ether_ifdetach(ifp);
649 		goto fail;
650 	}
651 
652 fail:
653 	if (error)
654 		nfe_detach(dev);
655 
656 	return (error);
657 }
658 
659 
660 static int
661 nfe_detach(device_t dev)
662 {
663 	struct nfe_softc *sc;
664 	struct ifnet *ifp;
665 	uint8_t eaddr[ETHER_ADDR_LEN];
666 	int i, rid;
667 
668 	sc = device_get_softc(dev);
669 	KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
670 	ifp = sc->nfe_ifp;
671 
672 #ifdef DEVICE_POLLING
673 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
674 		ether_poll_deregister(ifp);
675 #endif
676 	if (device_is_attached(dev)) {
677 		NFE_LOCK(sc);
678 		nfe_stop(ifp);
679 		ifp->if_flags &= ~IFF_UP;
680 		NFE_UNLOCK(sc);
681 		callout_drain(&sc->nfe_stat_ch);
682 		taskqueue_drain(taskqueue_fast, &sc->nfe_tx_task);
683 		ether_ifdetach(ifp);
684 	}
685 
686 	if (ifp) {
687 		/* restore ethernet address */
688 		if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
689 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
690 				eaddr[i] = sc->eaddr[5 - i];
691 			}
692 		} else
693 			bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
694 		nfe_set_macaddr(sc, eaddr);
695 		if_free(ifp);
696 	}
697 	if (sc->nfe_miibus)
698 		device_delete_child(dev, sc->nfe_miibus);
699 	bus_generic_detach(dev);
700 	if (sc->nfe_tq != NULL) {
701 		taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
702 		taskqueue_free(sc->nfe_tq);
703 		sc->nfe_tq = NULL;
704 	}
705 
706 	for (i = 0; i < NFE_MSI_MESSAGES; i++) {
707 		if (sc->nfe_intrhand[i] != NULL) {
708 			bus_teardown_intr(dev, sc->nfe_irq[i],
709 			    sc->nfe_intrhand[i]);
710 			sc->nfe_intrhand[i] = NULL;
711 		}
712 	}
713 
714 	if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
715 		if (sc->nfe_irq[0] != NULL)
716 			bus_release_resource(dev, SYS_RES_IRQ, 0,
717 			    sc->nfe_irq[0]);
718 	} else {
719 		for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
720 			if (sc->nfe_irq[i] != NULL) {
721 				bus_release_resource(dev, SYS_RES_IRQ, rid,
722 				    sc->nfe_irq[i]);
723 				sc->nfe_irq[i] = NULL;
724 			}
725 		}
726 		pci_release_msi(dev);
727 	}
728 	if (sc->nfe_msix_pba_res != NULL) {
729 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
730 		    sc->nfe_msix_pba_res);
731 		sc->nfe_msix_pba_res = NULL;
732 	}
733 	if (sc->nfe_msix_res != NULL) {
734 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
735 		    sc->nfe_msix_res);
736 		sc->nfe_msix_res = NULL;
737 	}
738 	if (sc->nfe_res[0] != NULL) {
739 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
740 		    sc->nfe_res[0]);
741 		sc->nfe_res[0] = NULL;
742 	}
743 
744 	nfe_free_tx_ring(sc, &sc->txq);
745 	nfe_free_rx_ring(sc, &sc->rxq);
746 	nfe_free_jrx_ring(sc, &sc->jrxq);
747 
748 	if (sc->nfe_parent_tag) {
749 		bus_dma_tag_destroy(sc->nfe_parent_tag);
750 		sc->nfe_parent_tag = NULL;
751 	}
752 
753 	mtx_destroy(&sc->nfe_mtx);
754 
755 	return (0);
756 }
757 
758 
759 static int
760 nfe_suspend(device_t dev)
761 {
762 	struct nfe_softc *sc;
763 
764 	sc = device_get_softc(dev);
765 
766 	NFE_LOCK(sc);
767 	nfe_stop(sc->nfe_ifp);
768 	nfe_set_wol(sc);
769 	sc->nfe_suspended = 1;
770 	NFE_UNLOCK(sc);
771 
772 	return (0);
773 }
774 
775 
776 static int
777 nfe_resume(device_t dev)
778 {
779 	struct nfe_softc *sc;
780 	struct ifnet *ifp;
781 
782 	sc = device_get_softc(dev);
783 
784 	NFE_LOCK(sc);
785 	nfe_power(sc);
786 	ifp = sc->nfe_ifp;
787 	if (ifp->if_flags & IFF_UP)
788 		nfe_init_locked(sc);
789 	sc->nfe_suspended = 0;
790 	NFE_UNLOCK(sc);
791 
792 	return (0);
793 }
794 
795 
796 static int
797 nfe_can_use_msix(struct nfe_softc *sc)
798 {
799 	static struct msix_blacklist {
800 		char	*maker;
801 		char	*product;
802 	} msix_blacklists[] = {
803 		{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
804 	};
805 
806 	struct msix_blacklist *mblp;
807 	char *maker, *product;
808 	int count, n, use_msix;
809 
810 	/*
811 	 * Search base board manufacturer and product name table
812 	 * to see this system has a known MSI/MSI-X issue.
813 	 */
814 	maker = getenv("smbios.planar.maker");
815 	product = getenv("smbios.planar.product");
816 	use_msix = 1;
817 	if (maker != NULL && product != NULL) {
818 		count = sizeof(msix_blacklists) / sizeof(msix_blacklists[0]);
819 		mblp = msix_blacklists;
820 		for (n = 0; n < count; n++) {
821 			if (strcmp(maker, mblp->maker) == 0 &&
822 			    strcmp(product, mblp->product) == 0) {
823 				use_msix = 0;
824 				break;
825 			}
826 			mblp++;
827 		}
828 	}
829 	if (maker != NULL)
830 		freeenv(maker);
831 	if (product != NULL)
832 		freeenv(product);
833 
834 	return (use_msix);
835 }
836 
837 
838 /* Take PHY/NIC out of powerdown, from Linux */
839 static void
840 nfe_power(struct nfe_softc *sc)
841 {
842 	uint32_t pwr;
843 
844 	if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
845 		return;
846 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
847 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
848 	DELAY(100);
849 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
850 	DELAY(100);
851 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
852 	pwr = NFE_READ(sc, NFE_PWR2_CTL);
853 	pwr &= ~NFE_PWR2_WAKEUP_MASK;
854 	if (sc->nfe_revid >= 0xa3 &&
855 	    (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
856 	    sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
857 		pwr |= NFE_PWR2_REVA3;
858 	NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
859 }
860 
861 
862 static void
863 nfe_miibus_statchg(device_t dev)
864 {
865 	struct nfe_softc *sc;
866 	struct mii_data *mii;
867 	struct ifnet *ifp;
868 	uint32_t rxctl, txctl;
869 
870 	sc = device_get_softc(dev);
871 
872 	mii = device_get_softc(sc->nfe_miibus);
873 	ifp = sc->nfe_ifp;
874 
875 	sc->nfe_link = 0;
876 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
877 	    (IFM_ACTIVE | IFM_AVALID)) {
878 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
879 		case IFM_10_T:
880 		case IFM_100_TX:
881 		case IFM_1000_T:
882 			sc->nfe_link = 1;
883 			break;
884 		default:
885 			break;
886 		}
887 	}
888 
889 	nfe_mac_config(sc, mii);
890 	txctl = NFE_READ(sc, NFE_TX_CTL);
891 	rxctl = NFE_READ(sc, NFE_RX_CTL);
892 	if (sc->nfe_link != 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
893 		txctl |= NFE_TX_START;
894 		rxctl |= NFE_RX_START;
895 	} else {
896 		txctl &= ~NFE_TX_START;
897 		rxctl &= ~NFE_RX_START;
898 	}
899 	NFE_WRITE(sc, NFE_TX_CTL, txctl);
900 	NFE_WRITE(sc, NFE_RX_CTL, rxctl);
901 }
902 
903 
904 static void
905 nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
906 {
907 	uint32_t link, misc, phy, seed;
908 	uint32_t val;
909 
910 	NFE_LOCK_ASSERT(sc);
911 
912 	phy = NFE_READ(sc, NFE_PHY_IFACE);
913 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
914 
915 	seed = NFE_READ(sc, NFE_RNDSEED);
916 	seed &= ~NFE_SEED_MASK;
917 
918 	misc = NFE_MISC1_MAGIC;
919 	link = NFE_MEDIA_SET;
920 
921 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
922 		phy  |= NFE_PHY_HDX;	/* half-duplex */
923 		misc |= NFE_MISC1_HDX;
924 	}
925 
926 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
927 	case IFM_1000_T:	/* full-duplex only */
928 		link |= NFE_MEDIA_1000T;
929 		seed |= NFE_SEED_1000T;
930 		phy  |= NFE_PHY_1000T;
931 		break;
932 	case IFM_100_TX:
933 		link |= NFE_MEDIA_100TX;
934 		seed |= NFE_SEED_100TX;
935 		phy  |= NFE_PHY_100TX;
936 		break;
937 	case IFM_10_T:
938 		link |= NFE_MEDIA_10T;
939 		seed |= NFE_SEED_10T;
940 		break;
941 	}
942 
943 	if ((phy & 0x10000000) != 0) {
944 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
945 			val = NFE_R1_MAGIC_1000;
946 		else
947 			val = NFE_R1_MAGIC_10_100;
948 	} else
949 		val = NFE_R1_MAGIC_DEFAULT;
950 	NFE_WRITE(sc, NFE_SETUP_R1, val);
951 
952 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
953 
954 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
955 	NFE_WRITE(sc, NFE_MISC1, misc);
956 	NFE_WRITE(sc, NFE_LINKSPEED, link);
957 
958 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
959 		/* It seems all hardwares supports Rx pause frames. */
960 		val = NFE_READ(sc, NFE_RXFILTER);
961 		if ((IFM_OPTIONS(mii->mii_media_active) &
962 		    IFM_ETH_RXPAUSE) != 0)
963 			val |= NFE_PFF_RX_PAUSE;
964 		else
965 			val &= ~NFE_PFF_RX_PAUSE;
966 		NFE_WRITE(sc, NFE_RXFILTER, val);
967 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
968 			val = NFE_READ(sc, NFE_MISC1);
969 			if ((IFM_OPTIONS(mii->mii_media_active) &
970 			    IFM_ETH_TXPAUSE) != 0) {
971 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
972 				    NFE_TX_PAUSE_FRAME_ENABLE);
973 				val |= NFE_MISC1_TX_PAUSE;
974 			} else {
975 				val &= ~NFE_MISC1_TX_PAUSE;
976 				NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
977 				    NFE_TX_PAUSE_FRAME_DISABLE);
978 			}
979 			NFE_WRITE(sc, NFE_MISC1, val);
980 		}
981 	} else {
982 		/* disable rx/tx pause frames */
983 		val = NFE_READ(sc, NFE_RXFILTER);
984 		val &= ~NFE_PFF_RX_PAUSE;
985 		NFE_WRITE(sc, NFE_RXFILTER, val);
986 		if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
987 			NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
988 			    NFE_TX_PAUSE_FRAME_DISABLE);
989 			val = NFE_READ(sc, NFE_MISC1);
990 			val &= ~NFE_MISC1_TX_PAUSE;
991 			NFE_WRITE(sc, NFE_MISC1, val);
992 		}
993 	}
994 }
995 
996 
997 static int
998 nfe_miibus_readreg(device_t dev, int phy, int reg)
999 {
1000 	struct nfe_softc *sc = device_get_softc(dev);
1001 	uint32_t val;
1002 	int ntries;
1003 
1004 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1005 
1006 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1007 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1008 		DELAY(100);
1009 	}
1010 
1011 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
1012 
1013 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1014 		DELAY(100);
1015 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1016 			break;
1017 	}
1018 	if (ntries == NFE_TIMEOUT) {
1019 		DPRINTFN(sc, 2, "timeout waiting for PHY\n");
1020 		return 0;
1021 	}
1022 
1023 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
1024 		DPRINTFN(sc, 2, "could not read PHY\n");
1025 		return 0;
1026 	}
1027 
1028 	val = NFE_READ(sc, NFE_PHY_DATA);
1029 	if (val != 0xffffffff && val != 0)
1030 		sc->mii_phyaddr = phy;
1031 
1032 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
1033 
1034 	return (val);
1035 }
1036 
1037 
1038 static int
1039 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
1040 {
1041 	struct nfe_softc *sc = device_get_softc(dev);
1042 	uint32_t ctl;
1043 	int ntries;
1044 
1045 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1046 
1047 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
1048 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
1049 		DELAY(100);
1050 	}
1051 
1052 	NFE_WRITE(sc, NFE_PHY_DATA, val);
1053 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
1054 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
1055 
1056 	for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
1057 		DELAY(100);
1058 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
1059 			break;
1060 	}
1061 #ifdef NFE_DEBUG
1062 	if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
1063 		device_printf(sc->nfe_dev, "could not write to PHY\n");
1064 #endif
1065 	return (0);
1066 }
1067 
1068 struct nfe_dmamap_arg {
1069 	bus_addr_t nfe_busaddr;
1070 };
1071 
1072 static int
1073 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1074 {
1075 	struct nfe_dmamap_arg ctx;
1076 	struct nfe_rx_data *data;
1077 	void *desc;
1078 	int i, error, descsize;
1079 
1080 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1081 		desc = ring->desc64;
1082 		descsize = sizeof (struct nfe_desc64);
1083 	} else {
1084 		desc = ring->desc32;
1085 		descsize = sizeof (struct nfe_desc32);
1086 	}
1087 
1088 	ring->cur = ring->next = 0;
1089 
1090 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1091 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1092 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1093 	    BUS_SPACE_MAXADDR,			/* highaddr */
1094 	    NULL, NULL,				/* filter, filterarg */
1095 	    NFE_RX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1096 	    NFE_RX_RING_COUNT * descsize,	/* maxsegsize */
1097 	    0,					/* flags */
1098 	    NULL, NULL,				/* lockfunc, lockarg */
1099 	    &ring->rx_desc_tag);
1100 	if (error != 0) {
1101 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1102 		goto fail;
1103 	}
1104 
1105 	/* allocate memory to desc */
1106 	error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
1107 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
1108 	if (error != 0) {
1109 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1110 		goto fail;
1111 	}
1112 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1113 		ring->desc64 = desc;
1114 	else
1115 		ring->desc32 = desc;
1116 
1117 	/* map desc to device visible address space */
1118 	ctx.nfe_busaddr = 0;
1119 	error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
1120 	    NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1121 	if (error != 0) {
1122 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1123 		goto fail;
1124 	}
1125 	ring->physaddr = ctx.nfe_busaddr;
1126 
1127 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1128 	    1, 0,			/* alignment, boundary */
1129 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1130 	    BUS_SPACE_MAXADDR,		/* highaddr */
1131 	    NULL, NULL,			/* filter, filterarg */
1132 	    MCLBYTES, 1,		/* maxsize, nsegments */
1133 	    MCLBYTES,			/* maxsegsize */
1134 	    0,				/* flags */
1135 	    NULL, NULL,			/* lockfunc, lockarg */
1136 	    &ring->rx_data_tag);
1137 	if (error != 0) {
1138 		device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
1139 		goto fail;
1140 	}
1141 
1142 	error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
1143 	if (error != 0) {
1144 		device_printf(sc->nfe_dev,
1145 		    "could not create Rx DMA spare map\n");
1146 		goto fail;
1147 	}
1148 
1149 	/*
1150 	 * Pre-allocate Rx buffers and populate Rx ring.
1151 	 */
1152 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1153 		data = &sc->rxq.data[i];
1154 		data->rx_data_map = NULL;
1155 		data->m = NULL;
1156 		error = bus_dmamap_create(ring->rx_data_tag, 0,
1157 		    &data->rx_data_map);
1158 		if (error != 0) {
1159 			device_printf(sc->nfe_dev,
1160 			    "could not create Rx DMA map\n");
1161 			goto fail;
1162 		}
1163 	}
1164 
1165 fail:
1166 	return (error);
1167 }
1168 
1169 
1170 static void
1171 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1172 {
1173 	struct nfe_dmamap_arg ctx;
1174 	struct nfe_rx_data *data;
1175 	void *desc;
1176 	int i, error, descsize;
1177 
1178 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1179 		return;
1180 	if (jumbo_disable != 0) {
1181 		device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
1182 		sc->nfe_jumbo_disable = 1;
1183 		return;
1184 	}
1185 
1186 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1187 		desc = ring->jdesc64;
1188 		descsize = sizeof (struct nfe_desc64);
1189 	} else {
1190 		desc = ring->jdesc32;
1191 		descsize = sizeof (struct nfe_desc32);
1192 	}
1193 
1194 	ring->jcur = ring->jnext = 0;
1195 
1196 	/* Create DMA tag for jumbo Rx ring. */
1197 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1198 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1199 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1200 	    BUS_SPACE_MAXADDR,			/* highaddr */
1201 	    NULL, NULL,				/* filter, filterarg */
1202 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsize */
1203 	    1, 					/* nsegments */
1204 	    NFE_JUMBO_RX_RING_COUNT * descsize,	/* maxsegsize */
1205 	    0,					/* flags */
1206 	    NULL, NULL,				/* lockfunc, lockarg */
1207 	    &ring->jrx_desc_tag);
1208 	if (error != 0) {
1209 		device_printf(sc->nfe_dev,
1210 		    "could not create jumbo ring DMA tag\n");
1211 		goto fail;
1212 	}
1213 
1214 	/* Create DMA tag for jumbo Rx buffers. */
1215 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1216 	    1, 0,				/* alignment, boundary */
1217 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1218 	    BUS_SPACE_MAXADDR,			/* highaddr */
1219 	    NULL, NULL,				/* filter, filterarg */
1220 	    MJUM9BYTES,				/* maxsize */
1221 	    1,					/* nsegments */
1222 	    MJUM9BYTES,				/* maxsegsize */
1223 	    0,					/* flags */
1224 	    NULL, NULL,				/* lockfunc, lockarg */
1225 	    &ring->jrx_data_tag);
1226 	if (error != 0) {
1227 		device_printf(sc->nfe_dev,
1228 		    "could not create jumbo Rx buffer DMA tag\n");
1229 		goto fail;
1230 	}
1231 
1232 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1233 	error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
1234 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
1235 	if (error != 0) {
1236 		device_printf(sc->nfe_dev,
1237 		    "could not allocate DMA'able memory for jumbo Rx ring\n");
1238 		goto fail;
1239 	}
1240 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1241 		ring->jdesc64 = desc;
1242 	else
1243 		ring->jdesc32 = desc;
1244 
1245 	ctx.nfe_busaddr = 0;
1246 	error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
1247 	    NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1248 	if (error != 0) {
1249 		device_printf(sc->nfe_dev,
1250 		    "could not load DMA'able memory for jumbo Rx ring\n");
1251 		goto fail;
1252 	}
1253 	ring->jphysaddr = ctx.nfe_busaddr;
1254 
1255 	/* Create DMA maps for jumbo Rx buffers. */
1256 	error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
1257 	if (error != 0) {
1258 		device_printf(sc->nfe_dev,
1259 		    "could not create jumbo Rx DMA spare map\n");
1260 		goto fail;
1261 	}
1262 
1263 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1264 		data = &sc->jrxq.jdata[i];
1265 		data->rx_data_map = NULL;
1266 		data->m = NULL;
1267 		error = bus_dmamap_create(ring->jrx_data_tag, 0,
1268 		    &data->rx_data_map);
1269 		if (error != 0) {
1270 			device_printf(sc->nfe_dev,
1271 			    "could not create jumbo Rx DMA map\n");
1272 			goto fail;
1273 		}
1274 	}
1275 
1276 	return;
1277 
1278 fail:
1279 	/*
1280 	 * Running without jumbo frame support is ok for most cases
1281 	 * so don't fail on creating dma tag/map for jumbo frame.
1282 	 */
1283 	nfe_free_jrx_ring(sc, ring);
1284 	device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
1285 	    "resource shortage\n");
1286 	sc->nfe_jumbo_disable = 1;
1287 }
1288 
1289 
1290 static int
1291 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1292 {
1293 	void *desc;
1294 	size_t descsize;
1295 	int i;
1296 
1297 	ring->cur = ring->next = 0;
1298 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1299 		desc = ring->desc64;
1300 		descsize = sizeof (struct nfe_desc64);
1301 	} else {
1302 		desc = ring->desc32;
1303 		descsize = sizeof (struct nfe_desc32);
1304 	}
1305 	bzero(desc, descsize * NFE_RX_RING_COUNT);
1306 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1307 		if (nfe_newbuf(sc, i) != 0)
1308 			return (ENOBUFS);
1309 	}
1310 
1311 	bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
1312 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1313 
1314 	return (0);
1315 }
1316 
1317 
1318 static int
1319 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1320 {
1321 	void *desc;
1322 	size_t descsize;
1323 	int i;
1324 
1325 	ring->jcur = ring->jnext = 0;
1326 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1327 		desc = ring->jdesc64;
1328 		descsize = sizeof (struct nfe_desc64);
1329 	} else {
1330 		desc = ring->jdesc32;
1331 		descsize = sizeof (struct nfe_desc32);
1332 	}
1333 	bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
1334 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1335 		if (nfe_jnewbuf(sc, i) != 0)
1336 			return (ENOBUFS);
1337 	}
1338 
1339 	bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
1340 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1341 
1342 	return (0);
1343 }
1344 
1345 
1346 static void
1347 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1348 {
1349 	struct nfe_rx_data *data;
1350 	void *desc;
1351 	int i, descsize;
1352 
1353 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1354 		desc = ring->desc64;
1355 		descsize = sizeof (struct nfe_desc64);
1356 	} else {
1357 		desc = ring->desc32;
1358 		descsize = sizeof (struct nfe_desc32);
1359 	}
1360 
1361 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1362 		data = &ring->data[i];
1363 		if (data->rx_data_map != NULL) {
1364 			bus_dmamap_destroy(ring->rx_data_tag,
1365 			    data->rx_data_map);
1366 			data->rx_data_map = NULL;
1367 		}
1368 		if (data->m != NULL) {
1369 			m_freem(data->m);
1370 			data->m = NULL;
1371 		}
1372 	}
1373 	if (ring->rx_data_tag != NULL) {
1374 		if (ring->rx_spare_map != NULL) {
1375 			bus_dmamap_destroy(ring->rx_data_tag,
1376 			    ring->rx_spare_map);
1377 			ring->rx_spare_map = NULL;
1378 		}
1379 		bus_dma_tag_destroy(ring->rx_data_tag);
1380 		ring->rx_data_tag = NULL;
1381 	}
1382 
1383 	if (desc != NULL) {
1384 		bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
1385 		bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
1386 		ring->desc64 = NULL;
1387 		ring->desc32 = NULL;
1388 		ring->rx_desc_map = NULL;
1389 	}
1390 	if (ring->rx_desc_tag != NULL) {
1391 		bus_dma_tag_destroy(ring->rx_desc_tag);
1392 		ring->rx_desc_tag = NULL;
1393 	}
1394 }
1395 
1396 
1397 static void
1398 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
1399 {
1400 	struct nfe_rx_data *data;
1401 	void *desc;
1402 	int i, descsize;
1403 
1404 	if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
1405 		return;
1406 
1407 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1408 		desc = ring->jdesc64;
1409 		descsize = sizeof (struct nfe_desc64);
1410 	} else {
1411 		desc = ring->jdesc32;
1412 		descsize = sizeof (struct nfe_desc32);
1413 	}
1414 
1415 	for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
1416 		data = &ring->jdata[i];
1417 		if (data->rx_data_map != NULL) {
1418 			bus_dmamap_destroy(ring->jrx_data_tag,
1419 			    data->rx_data_map);
1420 			data->rx_data_map = NULL;
1421 		}
1422 		if (data->m != NULL) {
1423 			m_freem(data->m);
1424 			data->m = NULL;
1425 		}
1426 	}
1427 	if (ring->jrx_data_tag != NULL) {
1428 		if (ring->jrx_spare_map != NULL) {
1429 			bus_dmamap_destroy(ring->jrx_data_tag,
1430 			    ring->jrx_spare_map);
1431 			ring->jrx_spare_map = NULL;
1432 		}
1433 		bus_dma_tag_destroy(ring->jrx_data_tag);
1434 		ring->jrx_data_tag = NULL;
1435 	}
1436 
1437 	if (desc != NULL) {
1438 		bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
1439 		bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
1440 		ring->jdesc64 = NULL;
1441 		ring->jdesc32 = NULL;
1442 		ring->jrx_desc_map = NULL;
1443 	}
1444 
1445 	if (ring->jrx_desc_tag != NULL) {
1446 		bus_dma_tag_destroy(ring->jrx_desc_tag);
1447 		ring->jrx_desc_tag = NULL;
1448 	}
1449 }
1450 
1451 
1452 static int
1453 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1454 {
1455 	struct nfe_dmamap_arg ctx;
1456 	int i, error;
1457 	void *desc;
1458 	int descsize;
1459 
1460 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1461 		desc = ring->desc64;
1462 		descsize = sizeof (struct nfe_desc64);
1463 	} else {
1464 		desc = ring->desc32;
1465 		descsize = sizeof (struct nfe_desc32);
1466 	}
1467 
1468 	ring->queued = 0;
1469 	ring->cur = ring->next = 0;
1470 
1471 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1472 	    NFE_RING_ALIGN, 0,			/* alignment, boundary */
1473 	    BUS_SPACE_MAXADDR,			/* lowaddr */
1474 	    BUS_SPACE_MAXADDR,			/* highaddr */
1475 	    NULL, NULL,				/* filter, filterarg */
1476 	    NFE_TX_RING_COUNT * descsize, 1,	/* maxsize, nsegments */
1477 	    NFE_TX_RING_COUNT * descsize,	/* maxsegsize */
1478 	    0,					/* flags */
1479 	    NULL, NULL,				/* lockfunc, lockarg */
1480 	    &ring->tx_desc_tag);
1481 	if (error != 0) {
1482 		device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
1483 		goto fail;
1484 	}
1485 
1486 	error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
1487 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
1488 	if (error != 0) {
1489 		device_printf(sc->nfe_dev, "could not create desc DMA map\n");
1490 		goto fail;
1491 	}
1492 	if (sc->nfe_flags & NFE_40BIT_ADDR)
1493 		ring->desc64 = desc;
1494 	else
1495 		ring->desc32 = desc;
1496 
1497 	ctx.nfe_busaddr = 0;
1498 	error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
1499 	    NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
1500 	if (error != 0) {
1501 		device_printf(sc->nfe_dev, "could not load desc DMA map\n");
1502 		goto fail;
1503 	}
1504 	ring->physaddr = ctx.nfe_busaddr;
1505 
1506 	error = bus_dma_tag_create(sc->nfe_parent_tag,
1507 	    1, 0,
1508 	    BUS_SPACE_MAXADDR,
1509 	    BUS_SPACE_MAXADDR,
1510 	    NULL, NULL,
1511 	    NFE_TSO_MAXSIZE,
1512 	    NFE_MAX_SCATTER,
1513 	    NFE_TSO_MAXSGSIZE,
1514 	    0,
1515 	    NULL, NULL,
1516 	    &ring->tx_data_tag);
1517 	if (error != 0) {
1518 		device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
1519 		goto fail;
1520 	}
1521 
1522 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1523 		error = bus_dmamap_create(ring->tx_data_tag, 0,
1524 		    &ring->data[i].tx_data_map);
1525 		if (error != 0) {
1526 			device_printf(sc->nfe_dev,
1527 			    "could not create Tx DMA map\n");
1528 			goto fail;
1529 		}
1530 	}
1531 
1532 fail:
1533 	return (error);
1534 }
1535 
1536 
1537 static void
1538 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1539 {
1540 	void *desc;
1541 	size_t descsize;
1542 
1543 	sc->nfe_force_tx = 0;
1544 	ring->queued = 0;
1545 	ring->cur = ring->next = 0;
1546 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1547 		desc = ring->desc64;
1548 		descsize = sizeof (struct nfe_desc64);
1549 	} else {
1550 		desc = ring->desc32;
1551 		descsize = sizeof (struct nfe_desc32);
1552 	}
1553 	bzero(desc, descsize * NFE_TX_RING_COUNT);
1554 
1555 	bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1556 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1557 }
1558 
1559 
1560 static void
1561 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1562 {
1563 	struct nfe_tx_data *data;
1564 	void *desc;
1565 	int i, descsize;
1566 
1567 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1568 		desc = ring->desc64;
1569 		descsize = sizeof (struct nfe_desc64);
1570 	} else {
1571 		desc = ring->desc32;
1572 		descsize = sizeof (struct nfe_desc32);
1573 	}
1574 
1575 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1576 		data = &ring->data[i];
1577 
1578 		if (data->m != NULL) {
1579 			bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
1580 			    BUS_DMASYNC_POSTWRITE);
1581 			bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
1582 			m_freem(data->m);
1583 			data->m = NULL;
1584 		}
1585 		if (data->tx_data_map != NULL) {
1586 			bus_dmamap_destroy(ring->tx_data_tag,
1587 			    data->tx_data_map);
1588 			data->tx_data_map = NULL;
1589 		}
1590 	}
1591 
1592 	if (ring->tx_data_tag != NULL) {
1593 		bus_dma_tag_destroy(ring->tx_data_tag);
1594 		ring->tx_data_tag = NULL;
1595 	}
1596 
1597 	if (desc != NULL) {
1598 		bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
1599 		    BUS_DMASYNC_POSTWRITE);
1600 		bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
1601 		bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
1602 		ring->desc64 = NULL;
1603 		ring->desc32 = NULL;
1604 		ring->tx_desc_map = NULL;
1605 		bus_dma_tag_destroy(ring->tx_desc_tag);
1606 		ring->tx_desc_tag = NULL;
1607 	}
1608 }
1609 
1610 #ifdef DEVICE_POLLING
1611 static poll_handler_t nfe_poll;
1612 
1613 
1614 static int
1615 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1616 {
1617 	struct nfe_softc *sc = ifp->if_softc;
1618 	uint32_t r;
1619 	int rx_npkts = 0;
1620 
1621 	NFE_LOCK(sc);
1622 
1623 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1624 		NFE_UNLOCK(sc);
1625 		return (rx_npkts);
1626 	}
1627 
1628 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1629 		rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
1630 	else
1631 		rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
1632 	nfe_txeof(sc);
1633 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1634 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task);
1635 
1636 	if (cmd == POLL_AND_CHECK_STATUS) {
1637 		if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1638 			NFE_UNLOCK(sc);
1639 			return (rx_npkts);
1640 		}
1641 		NFE_WRITE(sc, sc->nfe_irq_status, r);
1642 
1643 		if (r & NFE_IRQ_LINK) {
1644 			NFE_READ(sc, NFE_PHY_STATUS);
1645 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1646 			DPRINTF(sc, "link state changed\n");
1647 		}
1648 	}
1649 	NFE_UNLOCK(sc);
1650 	return (rx_npkts);
1651 }
1652 #endif /* DEVICE_POLLING */
1653 
1654 static void
1655 nfe_set_intr(struct nfe_softc *sc)
1656 {
1657 
1658 	if (sc->nfe_msi != 0)
1659 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1660 }
1661 
1662 
1663 /* In MSIX, a write to mask reegisters behaves as XOR. */
1664 static __inline void
1665 nfe_enable_intr(struct nfe_softc *sc)
1666 {
1667 
1668 	if (sc->nfe_msix != 0) {
1669 		/* XXX Should have a better way to enable interrupts! */
1670 		if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
1671 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1672 	} else
1673 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
1674 }
1675 
1676 
1677 static __inline void
1678 nfe_disable_intr(struct nfe_softc *sc)
1679 {
1680 
1681 	if (sc->nfe_msix != 0) {
1682 		/* XXX Should have a better way to disable interrupts! */
1683 		if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
1684 			NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1685 	} else
1686 		NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
1687 }
1688 
1689 
1690 static int
1691 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1692 {
1693 	struct nfe_softc *sc;
1694 	struct ifreq *ifr;
1695 	struct mii_data *mii;
1696 	int error, init, mask;
1697 
1698 	sc = ifp->if_softc;
1699 	ifr = (struct ifreq *) data;
1700 	error = 0;
1701 	init = 0;
1702 	switch (cmd) {
1703 	case SIOCSIFMTU:
1704 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
1705 			error = EINVAL;
1706 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1707 			if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
1708 			    (sc->nfe_jumbo_disable != 0)) &&
1709 			    ifr->ifr_mtu > ETHERMTU)
1710 				error = EINVAL;
1711 			else {
1712 				NFE_LOCK(sc);
1713 				ifp->if_mtu = ifr->ifr_mtu;
1714 				if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1715 					nfe_init_locked(sc);
1716 				NFE_UNLOCK(sc);
1717 			}
1718 		}
1719 		break;
1720 	case SIOCSIFFLAGS:
1721 		NFE_LOCK(sc);
1722 		if (ifp->if_flags & IFF_UP) {
1723 			/*
1724 			 * If only the PROMISC or ALLMULTI flag changes, then
1725 			 * don't do a full re-init of the chip, just update
1726 			 * the Rx filter.
1727 			 */
1728 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1729 			    ((ifp->if_flags ^ sc->nfe_if_flags) &
1730 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
1731 				nfe_setmulti(sc);
1732 			else
1733 				nfe_init_locked(sc);
1734 		} else {
1735 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1736 				nfe_stop(ifp);
1737 		}
1738 		sc->nfe_if_flags = ifp->if_flags;
1739 		NFE_UNLOCK(sc);
1740 		error = 0;
1741 		break;
1742 	case SIOCADDMULTI:
1743 	case SIOCDELMULTI:
1744 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1745 			NFE_LOCK(sc);
1746 			nfe_setmulti(sc);
1747 			NFE_UNLOCK(sc);
1748 			error = 0;
1749 		}
1750 		break;
1751 	case SIOCSIFMEDIA:
1752 	case SIOCGIFMEDIA:
1753 		mii = device_get_softc(sc->nfe_miibus);
1754 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1755 		break;
1756 	case SIOCSIFCAP:
1757 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1758 #ifdef DEVICE_POLLING
1759 		if ((mask & IFCAP_POLLING) != 0) {
1760 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1761 				error = ether_poll_register(nfe_poll, ifp);
1762 				if (error)
1763 					break;
1764 				NFE_LOCK(sc);
1765 				nfe_disable_intr(sc);
1766 				ifp->if_capenable |= IFCAP_POLLING;
1767 				NFE_UNLOCK(sc);
1768 			} else {
1769 				error = ether_poll_deregister(ifp);
1770 				/* Enable interrupt even in error case */
1771 				NFE_LOCK(sc);
1772 				nfe_enable_intr(sc);
1773 				ifp->if_capenable &= ~IFCAP_POLLING;
1774 				NFE_UNLOCK(sc);
1775 			}
1776 		}
1777 #endif /* DEVICE_POLLING */
1778 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1779 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1780 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1781 		if ((mask & IFCAP_TXCSUM) != 0 &&
1782 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1783 			ifp->if_capenable ^= IFCAP_TXCSUM;
1784 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1785 				ifp->if_hwassist |= NFE_CSUM_FEATURES;
1786 			else
1787 				ifp->if_hwassist &= ~NFE_CSUM_FEATURES;
1788 		}
1789 		if ((mask & IFCAP_RXCSUM) != 0 &&
1790 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1791 			ifp->if_capenable ^= IFCAP_RXCSUM;
1792 			init++;
1793 		}
1794 		if ((mask & IFCAP_TSO4) != 0 &&
1795 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1796 			ifp->if_capenable ^= IFCAP_TSO4;
1797 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1798 				ifp->if_hwassist |= CSUM_TSO;
1799 			else
1800 				ifp->if_hwassist &= ~CSUM_TSO;
1801 		}
1802 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1803 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1804 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1805 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1806 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1807 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1808 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1809 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1810 			init++;
1811 		}
1812 		/*
1813 		 * XXX
1814 		 * It seems that VLAN stripping requires Rx checksum offload.
1815 		 * Unfortunately FreeBSD has no way to disable only Rx side
1816 		 * VLAN stripping. So when we know Rx checksum offload is
1817 		 * disabled turn entire hardware VLAN assist off.
1818 		 */
1819 		if ((ifp->if_capenable & IFCAP_RXCSUM) == 0) {
1820 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
1821 				init++;
1822 			ifp->if_capenable &= ~(IFCAP_VLAN_HWTAGGING |
1823 			    IFCAP_VLAN_HWTSO);
1824 		}
1825 		if (init > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1826 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1827 			nfe_init(sc);
1828 		}
1829 		VLAN_CAPABILITIES(ifp);
1830 		break;
1831 	default:
1832 		error = ether_ioctl(ifp, cmd, data);
1833 		break;
1834 	}
1835 
1836 	return (error);
1837 }
1838 
1839 
1840 static int
1841 nfe_intr(void *arg)
1842 {
1843 	struct nfe_softc *sc;
1844 	uint32_t status;
1845 
1846 	sc = (struct nfe_softc *)arg;
1847 
1848 	status = NFE_READ(sc, sc->nfe_irq_status);
1849 	if (status == 0 || status == 0xffffffff)
1850 		return (FILTER_STRAY);
1851 	nfe_disable_intr(sc);
1852 	taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1853 
1854 	return (FILTER_HANDLED);
1855 }
1856 
1857 
1858 static void
1859 nfe_int_task(void *arg, int pending)
1860 {
1861 	struct nfe_softc *sc = arg;
1862 	struct ifnet *ifp = sc->nfe_ifp;
1863 	uint32_t r;
1864 	int domore;
1865 
1866 	NFE_LOCK(sc);
1867 
1868 	if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
1869 		nfe_enable_intr(sc);
1870 		NFE_UNLOCK(sc);
1871 		return;	/* not for us */
1872 	}
1873 	NFE_WRITE(sc, sc->nfe_irq_status, r);
1874 
1875 	DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
1876 
1877 #ifdef DEVICE_POLLING
1878 	if (ifp->if_capenable & IFCAP_POLLING) {
1879 		NFE_UNLOCK(sc);
1880 		return;
1881 	}
1882 #endif
1883 
1884 	if (r & NFE_IRQ_LINK) {
1885 		NFE_READ(sc, NFE_PHY_STATUS);
1886 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1887 		DPRINTF(sc, "link state changed\n");
1888 	}
1889 
1890 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1891 		NFE_UNLOCK(sc);
1892 		nfe_enable_intr(sc);
1893 		return;
1894 	}
1895 
1896 	domore = 0;
1897 	/* check Rx ring */
1898 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
1899 		domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
1900 	else
1901 		domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
1902 	/* check Tx ring */
1903 	nfe_txeof(sc);
1904 
1905 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1906 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task);
1907 
1908 	NFE_UNLOCK(sc);
1909 
1910 	if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
1911 		taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task);
1912 		return;
1913 	}
1914 
1915 	/* Reenable interrupts. */
1916 	nfe_enable_intr(sc);
1917 }
1918 
1919 
1920 static __inline void
1921 nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
1922 {
1923 	struct nfe_desc32 *desc32;
1924 	struct nfe_desc64 *desc64;
1925 	struct nfe_rx_data *data;
1926 	struct mbuf *m;
1927 
1928 	data = &sc->rxq.data[idx];
1929 	m = data->m;
1930 
1931 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1932 		desc64 = &sc->rxq.desc64[idx];
1933 		/* VLAN packet may have overwritten it. */
1934 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1935 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1936 		desc64->length = htole16(m->m_len);
1937 		desc64->flags = htole16(NFE_RX_READY);
1938 	} else {
1939 		desc32 = &sc->rxq.desc32[idx];
1940 		desc32->length = htole16(m->m_len);
1941 		desc32->flags = htole16(NFE_RX_READY);
1942 	}
1943 }
1944 
1945 
1946 static __inline void
1947 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
1948 {
1949 	struct nfe_desc32 *desc32;
1950 	struct nfe_desc64 *desc64;
1951 	struct nfe_rx_data *data;
1952 	struct mbuf *m;
1953 
1954 	data = &sc->jrxq.jdata[idx];
1955 	m = data->m;
1956 
1957 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
1958 		desc64 = &sc->jrxq.jdesc64[idx];
1959 		/* VLAN packet may have overwritten it. */
1960 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
1961 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
1962 		desc64->length = htole16(m->m_len);
1963 		desc64->flags = htole16(NFE_RX_READY);
1964 	} else {
1965 		desc32 = &sc->jrxq.jdesc32[idx];
1966 		desc32->length = htole16(m->m_len);
1967 		desc32->flags = htole16(NFE_RX_READY);
1968 	}
1969 }
1970 
1971 
1972 static int
1973 nfe_newbuf(struct nfe_softc *sc, int idx)
1974 {
1975 	struct nfe_rx_data *data;
1976 	struct nfe_desc32 *desc32;
1977 	struct nfe_desc64 *desc64;
1978 	struct mbuf *m;
1979 	bus_dma_segment_t segs[1];
1980 	bus_dmamap_t map;
1981 	int nsegs;
1982 
1983 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1984 	if (m == NULL)
1985 		return (ENOBUFS);
1986 
1987 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1988 	m_adj(m, ETHER_ALIGN);
1989 
1990 	if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
1991 	    m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
1992 		m_freem(m);
1993 		return (ENOBUFS);
1994 	}
1995 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1996 
1997 	data = &sc->rxq.data[idx];
1998 	if (data->m != NULL) {
1999 		bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2000 		    BUS_DMASYNC_POSTREAD);
2001 		bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
2002 	}
2003 	map = data->rx_data_map;
2004 	data->rx_data_map = sc->rxq.rx_spare_map;
2005 	sc->rxq.rx_spare_map = map;
2006 	bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
2007 	    BUS_DMASYNC_PREREAD);
2008 	data->paddr = segs[0].ds_addr;
2009 	data->m = m;
2010 	/* update mapping address in h/w descriptor */
2011 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2012 		desc64 = &sc->rxq.desc64[idx];
2013 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2014 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2015 		desc64->length = htole16(segs[0].ds_len);
2016 		desc64->flags = htole16(NFE_RX_READY);
2017 	} else {
2018 		desc32 = &sc->rxq.desc32[idx];
2019 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2020 		desc32->length = htole16(segs[0].ds_len);
2021 		desc32->flags = htole16(NFE_RX_READY);
2022 	}
2023 
2024 	return (0);
2025 }
2026 
2027 
2028 static int
2029 nfe_jnewbuf(struct nfe_softc *sc, int idx)
2030 {
2031 	struct nfe_rx_data *data;
2032 	struct nfe_desc32 *desc32;
2033 	struct nfe_desc64 *desc64;
2034 	struct mbuf *m;
2035 	bus_dma_segment_t segs[1];
2036 	bus_dmamap_t map;
2037 	int nsegs;
2038 
2039 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2040 	if (m == NULL)
2041 		return (ENOBUFS);
2042 	if ((m->m_flags & M_EXT) == 0) {
2043 		m_freem(m);
2044 		return (ENOBUFS);
2045 	}
2046 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
2047 	m_adj(m, ETHER_ALIGN);
2048 
2049 	if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
2050 	    sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
2051 		m_freem(m);
2052 		return (ENOBUFS);
2053 	}
2054 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2055 
2056 	data = &sc->jrxq.jdata[idx];
2057 	if (data->m != NULL) {
2058 		bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2059 		    BUS_DMASYNC_POSTREAD);
2060 		bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
2061 	}
2062 	map = data->rx_data_map;
2063 	data->rx_data_map = sc->jrxq.jrx_spare_map;
2064 	sc->jrxq.jrx_spare_map = map;
2065 	bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
2066 	    BUS_DMASYNC_PREREAD);
2067 	data->paddr = segs[0].ds_addr;
2068 	data->m = m;
2069 	/* update mapping address in h/w descriptor */
2070 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2071 		desc64 = &sc->jrxq.jdesc64[idx];
2072 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
2073 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2074 		desc64->length = htole16(segs[0].ds_len);
2075 		desc64->flags = htole16(NFE_RX_READY);
2076 	} else {
2077 		desc32 = &sc->jrxq.jdesc32[idx];
2078 		desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
2079 		desc32->length = htole16(segs[0].ds_len);
2080 		desc32->flags = htole16(NFE_RX_READY);
2081 	}
2082 
2083 	return (0);
2084 }
2085 
2086 
2087 static int
2088 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2089 {
2090 	struct ifnet *ifp = sc->nfe_ifp;
2091 	struct nfe_desc32 *desc32;
2092 	struct nfe_desc64 *desc64;
2093 	struct nfe_rx_data *data;
2094 	struct mbuf *m;
2095 	uint16_t flags;
2096 	int len, prog, rx_npkts;
2097 	uint32_t vtag = 0;
2098 
2099 	rx_npkts = 0;
2100 	NFE_LOCK_ASSERT(sc);
2101 
2102 	bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2103 	    BUS_DMASYNC_POSTREAD);
2104 
2105 	for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
2106 		if (count <= 0)
2107 			break;
2108 		count--;
2109 
2110 		data = &sc->rxq.data[sc->rxq.cur];
2111 
2112 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2113 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
2114 			vtag = le32toh(desc64->physaddr[1]);
2115 			flags = le16toh(desc64->flags);
2116 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2117 		} else {
2118 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
2119 			flags = le16toh(desc32->flags);
2120 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2121 		}
2122 
2123 		if (flags & NFE_RX_READY)
2124 			break;
2125 		prog++;
2126 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2127 			if (!(flags & NFE_RX_VALID_V1)) {
2128 				ifp->if_ierrors++;
2129 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2130 				continue;
2131 			}
2132 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2133 				flags &= ~NFE_RX_ERROR;
2134 				len--;	/* fix buffer length */
2135 			}
2136 		} else {
2137 			if (!(flags & NFE_RX_VALID_V2)) {
2138 				ifp->if_ierrors++;
2139 				nfe_discard_rxbuf(sc, sc->rxq.cur);
2140 				continue;
2141 			}
2142 
2143 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2144 				flags &= ~NFE_RX_ERROR;
2145 				len--;	/* fix buffer length */
2146 			}
2147 		}
2148 
2149 		if (flags & NFE_RX_ERROR) {
2150 			ifp->if_ierrors++;
2151 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2152 			continue;
2153 		}
2154 
2155 		m = data->m;
2156 		if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
2157 			ifp->if_iqdrops++;
2158 			nfe_discard_rxbuf(sc, sc->rxq.cur);
2159 			continue;
2160 		}
2161 
2162 		if ((vtag & NFE_RX_VTAG) != 0 &&
2163 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2164 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2165 			m->m_flags |= M_VLANTAG;
2166 		}
2167 
2168 		m->m_pkthdr.len = m->m_len = len;
2169 		m->m_pkthdr.rcvif = ifp;
2170 
2171 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2172 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2173 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2174 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2175 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2176 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2177 					m->m_pkthdr.csum_flags |=
2178 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2179 					m->m_pkthdr.csum_data = 0xffff;
2180 				}
2181 			}
2182 		}
2183 
2184 		ifp->if_ipackets++;
2185 
2186 		NFE_UNLOCK(sc);
2187 		(*ifp->if_input)(ifp, m);
2188 		NFE_LOCK(sc);
2189 		rx_npkts++;
2190 	}
2191 
2192 	if (prog > 0)
2193 		bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
2194 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2195 
2196 	if (rx_npktsp != NULL)
2197 		*rx_npktsp = rx_npkts;
2198 	return (count > 0 ? 0 : EAGAIN);
2199 }
2200 
2201 
2202 static int
2203 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
2204 {
2205 	struct ifnet *ifp = sc->nfe_ifp;
2206 	struct nfe_desc32 *desc32;
2207 	struct nfe_desc64 *desc64;
2208 	struct nfe_rx_data *data;
2209 	struct mbuf *m;
2210 	uint16_t flags;
2211 	int len, prog, rx_npkts;
2212 	uint32_t vtag = 0;
2213 
2214 	rx_npkts = 0;
2215 	NFE_LOCK_ASSERT(sc);
2216 
2217 	bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2218 	    BUS_DMASYNC_POSTREAD);
2219 
2220 	for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
2221 	    vtag = 0) {
2222 		if (count <= 0)
2223 			break;
2224 		count--;
2225 
2226 		data = &sc->jrxq.jdata[sc->jrxq.jcur];
2227 
2228 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2229 			desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
2230 			vtag = le32toh(desc64->physaddr[1]);
2231 			flags = le16toh(desc64->flags);
2232 			len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
2233 		} else {
2234 			desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
2235 			flags = le16toh(desc32->flags);
2236 			len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
2237 		}
2238 
2239 		if (flags & NFE_RX_READY)
2240 			break;
2241 		prog++;
2242 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2243 			if (!(flags & NFE_RX_VALID_V1)) {
2244 				ifp->if_ierrors++;
2245 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2246 				continue;
2247 			}
2248 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
2249 				flags &= ~NFE_RX_ERROR;
2250 				len--;	/* fix buffer length */
2251 			}
2252 		} else {
2253 			if (!(flags & NFE_RX_VALID_V2)) {
2254 				ifp->if_ierrors++;
2255 				nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2256 				continue;
2257 			}
2258 
2259 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
2260 				flags &= ~NFE_RX_ERROR;
2261 				len--;	/* fix buffer length */
2262 			}
2263 		}
2264 
2265 		if (flags & NFE_RX_ERROR) {
2266 			ifp->if_ierrors++;
2267 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2268 			continue;
2269 		}
2270 
2271 		m = data->m;
2272 		if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
2273 			ifp->if_iqdrops++;
2274 			nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
2275 			continue;
2276 		}
2277 
2278 		if ((vtag & NFE_RX_VTAG) != 0 &&
2279 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2280 			m->m_pkthdr.ether_vtag = vtag & 0xffff;
2281 			m->m_flags |= M_VLANTAG;
2282 		}
2283 
2284 		m->m_pkthdr.len = m->m_len = len;
2285 		m->m_pkthdr.rcvif = ifp;
2286 
2287 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
2288 			if ((flags & NFE_RX_IP_CSUMOK) != 0) {
2289 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2290 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2291 				if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
2292 				    (flags & NFE_RX_UDP_CSUMOK) != 0) {
2293 					m->m_pkthdr.csum_flags |=
2294 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2295 					m->m_pkthdr.csum_data = 0xffff;
2296 				}
2297 			}
2298 		}
2299 
2300 		ifp->if_ipackets++;
2301 
2302 		NFE_UNLOCK(sc);
2303 		(*ifp->if_input)(ifp, m);
2304 		NFE_LOCK(sc);
2305 		rx_npkts++;
2306 	}
2307 
2308 	if (prog > 0)
2309 		bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
2310 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2311 
2312 	if (rx_npktsp != NULL)
2313 		*rx_npktsp = rx_npkts;
2314 	return (count > 0 ? 0 : EAGAIN);
2315 }
2316 
2317 
2318 static void
2319 nfe_txeof(struct nfe_softc *sc)
2320 {
2321 	struct ifnet *ifp = sc->nfe_ifp;
2322 	struct nfe_desc32 *desc32;
2323 	struct nfe_desc64 *desc64;
2324 	struct nfe_tx_data *data = NULL;
2325 	uint16_t flags;
2326 	int cons, prog;
2327 
2328 	NFE_LOCK_ASSERT(sc);
2329 
2330 	bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2331 	    BUS_DMASYNC_POSTREAD);
2332 
2333 	prog = 0;
2334 	for (cons = sc->txq.next; cons != sc->txq.cur;
2335 	    NFE_INC(cons, NFE_TX_RING_COUNT)) {
2336 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2337 			desc64 = &sc->txq.desc64[cons];
2338 			flags = le16toh(desc64->flags);
2339 		} else {
2340 			desc32 = &sc->txq.desc32[cons];
2341 			flags = le16toh(desc32->flags);
2342 		}
2343 
2344 		if (flags & NFE_TX_VALID)
2345 			break;
2346 
2347 		prog++;
2348 		sc->txq.queued--;
2349 		data = &sc->txq.data[cons];
2350 
2351 		if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
2352 			if ((flags & NFE_TX_LASTFRAG_V1) == 0)
2353 				continue;
2354 			if ((flags & NFE_TX_ERROR_V1) != 0) {
2355 				device_printf(sc->nfe_dev,
2356 				    "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
2357 
2358 				ifp->if_oerrors++;
2359 			} else
2360 				ifp->if_opackets++;
2361 		} else {
2362 			if ((flags & NFE_TX_LASTFRAG_V2) == 0)
2363 				continue;
2364 			if ((flags & NFE_TX_ERROR_V2) != 0) {
2365 				device_printf(sc->nfe_dev,
2366 				    "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
2367 				ifp->if_oerrors++;
2368 			} else
2369 				ifp->if_opackets++;
2370 		}
2371 
2372 		/* last fragment of the mbuf chain transmitted */
2373 		KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
2374 		bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
2375 		    BUS_DMASYNC_POSTWRITE);
2376 		bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
2377 		m_freem(data->m);
2378 		data->m = NULL;
2379 	}
2380 
2381 	if (prog > 0) {
2382 		sc->nfe_force_tx = 0;
2383 		sc->txq.next = cons;
2384 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2385 		if (sc->txq.queued == 0)
2386 			sc->nfe_watchdog_timer = 0;
2387 	}
2388 }
2389 
2390 static int
2391 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
2392 {
2393 	struct nfe_desc32 *desc32 = NULL;
2394 	struct nfe_desc64 *desc64 = NULL;
2395 	bus_dmamap_t map;
2396 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
2397 	int error, i, nsegs, prod, si;
2398 	uint32_t tso_segsz;
2399 	uint16_t cflags, flags;
2400 	struct mbuf *m;
2401 
2402 	prod = si = sc->txq.cur;
2403 	map = sc->txq.data[prod].tx_data_map;
2404 
2405 	error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
2406 	    &nsegs, BUS_DMA_NOWAIT);
2407 	if (error == EFBIG) {
2408 		m = m_collapse(*m_head, M_DONTWAIT, NFE_MAX_SCATTER);
2409 		if (m == NULL) {
2410 			m_freem(*m_head);
2411 			*m_head = NULL;
2412 			return (ENOBUFS);
2413 		}
2414 		*m_head = m;
2415 		error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
2416 		    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2417 		if (error != 0) {
2418 			m_freem(*m_head);
2419 			*m_head = NULL;
2420 			return (ENOBUFS);
2421 		}
2422 	} else if (error != 0)
2423 		return (error);
2424 	if (nsegs == 0) {
2425 		m_freem(*m_head);
2426 		*m_head = NULL;
2427 		return (EIO);
2428 	}
2429 
2430 	if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
2431 		bus_dmamap_unload(sc->txq.tx_data_tag, map);
2432 		return (ENOBUFS);
2433 	}
2434 
2435 	m = *m_head;
2436 	cflags = flags = 0;
2437 	tso_segsz = 0;
2438 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2439 		tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
2440 		    NFE_TX_TSO_SHIFT;
2441 		cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
2442 		cflags |= NFE_TX_TSO;
2443 	} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
2444 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2445 			cflags |= NFE_TX_IP_CSUM;
2446 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2447 			cflags |= NFE_TX_TCP_UDP_CSUM;
2448 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2449 			cflags |= NFE_TX_TCP_UDP_CSUM;
2450 	}
2451 
2452 	for (i = 0; i < nsegs; i++) {
2453 		if (sc->nfe_flags & NFE_40BIT_ADDR) {
2454 			desc64 = &sc->txq.desc64[prod];
2455 			desc64->physaddr[0] =
2456 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
2457 			desc64->physaddr[1] =
2458 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2459 			desc64->vtag = 0;
2460 			desc64->length = htole16(segs[i].ds_len - 1);
2461 			desc64->flags = htole16(flags);
2462 		} else {
2463 			desc32 = &sc->txq.desc32[prod];
2464 			desc32->physaddr =
2465 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
2466 			desc32->length = htole16(segs[i].ds_len - 1);
2467 			desc32->flags = htole16(flags);
2468 		}
2469 
2470 		/*
2471 		 * Setting of the valid bit in the first descriptor is
2472 		 * deferred until the whole chain is fully setup.
2473 		 */
2474 		flags |= NFE_TX_VALID;
2475 
2476 		sc->txq.queued++;
2477 		NFE_INC(prod, NFE_TX_RING_COUNT);
2478 	}
2479 
2480 	/*
2481 	 * the whole mbuf chain has been DMA mapped, fix last/first descriptor.
2482 	 * csum flags, vtag and TSO belong to the first fragment only.
2483 	 */
2484 	if (sc->nfe_flags & NFE_40BIT_ADDR) {
2485 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
2486 		desc64 = &sc->txq.desc64[si];
2487 		if ((m->m_flags & M_VLANTAG) != 0)
2488 			desc64->vtag = htole32(NFE_TX_VTAG |
2489 			    m->m_pkthdr.ether_vtag);
2490 		if (tso_segsz != 0) {
2491 			/*
2492 			 * XXX
2493 			 * The following indicates the descriptor element
2494 			 * is a 32bit quantity.
2495 			 */
2496 			desc64->length |= htole16((uint16_t)tso_segsz);
2497 			desc64->flags |= htole16(tso_segsz >> 16);
2498 		}
2499 		/*
2500 		 * finally, set the valid/checksum/TSO bit in the first
2501 		 * descriptor.
2502 		 */
2503 		desc64->flags |= htole16(NFE_TX_VALID | cflags);
2504 	} else {
2505 		if (sc->nfe_flags & NFE_JUMBO_SUP)
2506 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
2507 		else
2508 			desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
2509 		desc32 = &sc->txq.desc32[si];
2510 		if (tso_segsz != 0) {
2511 			/*
2512 			 * XXX
2513 			 * The following indicates the descriptor element
2514 			 * is a 32bit quantity.
2515 			 */
2516 			desc32->length |= htole16((uint16_t)tso_segsz);
2517 			desc32->flags |= htole16(tso_segsz >> 16);
2518 		}
2519 		/*
2520 		 * finally, set the valid/checksum/TSO bit in the first
2521 		 * descriptor.
2522 		 */
2523 		desc32->flags |= htole16(NFE_TX_VALID | cflags);
2524 	}
2525 
2526 	sc->txq.cur = prod;
2527 	prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
2528 	sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
2529 	sc->txq.data[prod].tx_data_map = map;
2530 	sc->txq.data[prod].m = m;
2531 
2532 	bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
2533 
2534 	return (0);
2535 }
2536 
2537 
2538 static void
2539 nfe_setmulti(struct nfe_softc *sc)
2540 {
2541 	struct ifnet *ifp = sc->nfe_ifp;
2542 	struct ifmultiaddr *ifma;
2543 	int i;
2544 	uint32_t filter;
2545 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2546 	uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
2547 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2548 	};
2549 
2550 	NFE_LOCK_ASSERT(sc);
2551 
2552 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2553 		bzero(addr, ETHER_ADDR_LEN);
2554 		bzero(mask, ETHER_ADDR_LEN);
2555 		goto done;
2556 	}
2557 
2558 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2559 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2560 
2561 	if_maddr_rlock(ifp);
2562 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2563 		u_char *addrp;
2564 
2565 		if (ifma->ifma_addr->sa_family != AF_LINK)
2566 			continue;
2567 
2568 		addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2569 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
2570 			u_int8_t mcaddr = addrp[i];
2571 			addr[i] &= mcaddr;
2572 			mask[i] &= ~mcaddr;
2573 		}
2574 	}
2575 	if_maddr_runlock(ifp);
2576 
2577 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2578 		mask[i] |= addr[i];
2579 	}
2580 
2581 done:
2582 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2583 
2584 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2585 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2586 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2587 	    addr[5] <<  8 | addr[4]);
2588 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2589 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2590 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2591 	    mask[5] <<  8 | mask[4]);
2592 
2593 	filter = NFE_READ(sc, NFE_RXFILTER);
2594 	filter &= NFE_PFF_RX_PAUSE;
2595 	filter |= NFE_RXFILTER_MAGIC;
2596 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
2597 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2598 }
2599 
2600 
2601 static void
2602 nfe_tx_task(void *arg, int pending)
2603 {
2604 	struct ifnet *ifp;
2605 
2606 	ifp = (struct ifnet *)arg;
2607 	nfe_start(ifp);
2608 }
2609 
2610 
2611 static void
2612 nfe_start(struct ifnet *ifp)
2613 {
2614 	struct nfe_softc *sc = ifp->if_softc;
2615 	struct mbuf *m0;
2616 	int enq;
2617 
2618 	NFE_LOCK(sc);
2619 
2620 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2621 	    IFF_DRV_RUNNING || sc->nfe_link == 0) {
2622 		NFE_UNLOCK(sc);
2623 		return;
2624 	}
2625 
2626 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2627 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2628 		if (m0 == NULL)
2629 			break;
2630 
2631 		if (nfe_encap(sc, &m0) != 0) {
2632 			if (m0 == NULL)
2633 				break;
2634 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2635 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2636 			break;
2637 		}
2638 		enq++;
2639 		ETHER_BPF_MTAP(ifp, m0);
2640 	}
2641 
2642 	if (enq > 0) {
2643 		bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
2644 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2645 
2646 		/* kick Tx */
2647 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2648 
2649 		/*
2650 		 * Set a timeout in case the chip goes out to lunch.
2651 		 */
2652 		sc->nfe_watchdog_timer = 5;
2653 	}
2654 
2655 	NFE_UNLOCK(sc);
2656 }
2657 
2658 
2659 static void
2660 nfe_watchdog(struct ifnet *ifp)
2661 {
2662 	struct nfe_softc *sc = ifp->if_softc;
2663 
2664 	if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
2665 		return;
2666 
2667 	/* Check if we've lost Tx completion interrupt. */
2668 	nfe_txeof(sc);
2669 	if (sc->txq.queued == 0) {
2670 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2671 		    "-- recovering\n");
2672 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2673 			taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task);
2674 		return;
2675 	}
2676 	/* Check if we've lost start Tx command. */
2677 	sc->nfe_force_tx++;
2678 	if (sc->nfe_force_tx <= 3) {
2679 		/*
2680 		 * If this is the case for watchdog timeout, the following
2681 		 * code should go to nfe_txeof().
2682 		 */
2683 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
2684 		return;
2685 	}
2686 	sc->nfe_force_tx = 0;
2687 
2688 	if_printf(ifp, "watchdog timeout\n");
2689 
2690 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2691 	ifp->if_oerrors++;
2692 	nfe_init_locked(sc);
2693 }
2694 
2695 
2696 static void
2697 nfe_init(void *xsc)
2698 {
2699 	struct nfe_softc *sc = xsc;
2700 
2701 	NFE_LOCK(sc);
2702 	nfe_init_locked(sc);
2703 	NFE_UNLOCK(sc);
2704 }
2705 
2706 
2707 static void
2708 nfe_init_locked(void *xsc)
2709 {
2710 	struct nfe_softc *sc = xsc;
2711 	struct ifnet *ifp = sc->nfe_ifp;
2712 	struct mii_data *mii;
2713 	uint32_t val;
2714 	int error;
2715 
2716 	NFE_LOCK_ASSERT(sc);
2717 
2718 	mii = device_get_softc(sc->nfe_miibus);
2719 
2720 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2721 		return;
2722 
2723 	nfe_stop(ifp);
2724 
2725 	sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
2726 
2727 	nfe_init_tx_ring(sc, &sc->txq);
2728 	if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
2729 		error = nfe_init_jrx_ring(sc, &sc->jrxq);
2730 	else
2731 		error = nfe_init_rx_ring(sc, &sc->rxq);
2732 	if (error != 0) {
2733 		device_printf(sc->nfe_dev,
2734 		    "initialization failed: no memory for rx buffers\n");
2735 		nfe_stop(ifp);
2736 		return;
2737 	}
2738 
2739 	val = 0;
2740 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
2741 		val |= NFE_MAC_ADDR_INORDER;
2742 	NFE_WRITE(sc, NFE_TX_UNK, val);
2743 	NFE_WRITE(sc, NFE_STATUS, 0);
2744 
2745 	if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
2746 		NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
2747 
2748 	sc->rxtxctl = NFE_RXTX_BIT2;
2749 	if (sc->nfe_flags & NFE_40BIT_ADDR)
2750 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
2751 	else if (sc->nfe_flags & NFE_JUMBO_SUP)
2752 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
2753 
2754 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2755 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
2756 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2757 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
2758 
2759 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
2760 	DELAY(10);
2761 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2762 
2763 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2764 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
2765 	else
2766 		NFE_WRITE(sc, NFE_VTAG_CTL, 0);
2767 
2768 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
2769 
2770 	/* set MAC address */
2771 	nfe_set_macaddr(sc, IF_LLADDR(ifp));
2772 
2773 	/* tell MAC where rings are in memory */
2774 	if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
2775 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2776 		    NFE_ADDR_HI(sc->jrxq.jphysaddr));
2777 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2778 		    NFE_ADDR_LO(sc->jrxq.jphysaddr));
2779 	} else {
2780 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
2781 		    NFE_ADDR_HI(sc->rxq.physaddr));
2782 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
2783 		    NFE_ADDR_LO(sc->rxq.physaddr));
2784 	}
2785 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
2786 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
2787 
2788 	NFE_WRITE(sc, NFE_RING_SIZE,
2789 	    (NFE_RX_RING_COUNT - 1) << 16 |
2790 	    (NFE_TX_RING_COUNT - 1));
2791 
2792 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
2793 
2794 	/* force MAC to wakeup */
2795 	val = NFE_READ(sc, NFE_PWR_STATE);
2796 	if ((val & NFE_PWR_WAKEUP) == 0)
2797 		NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
2798 	DELAY(10);
2799 	val = NFE_READ(sc, NFE_PWR_STATE);
2800 	NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
2801 
2802 #if 1
2803 	/* configure interrupts coalescing/mitigation */
2804 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
2805 #else
2806 	/* no interrupt mitigation: one interrupt per packet */
2807 	NFE_WRITE(sc, NFE_IMTIMER, 970);
2808 #endif
2809 
2810 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
2811 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
2812 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
2813 
2814 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
2815 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
2816 
2817 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
2818 	/* Disable WOL. */
2819 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
2820 
2821 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
2822 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
2823 	DELAY(10);
2824 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
2825 
2826 	/* set Rx filter */
2827 	nfe_setmulti(sc);
2828 
2829 	/* enable Rx */
2830 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
2831 
2832 	/* enable Tx */
2833 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
2834 
2835 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
2836 
2837 	/* Clear hardware stats. */
2838 	nfe_stats_clear(sc);
2839 
2840 #ifdef DEVICE_POLLING
2841 	if (ifp->if_capenable & IFCAP_POLLING)
2842 		nfe_disable_intr(sc);
2843 	else
2844 #endif
2845 	nfe_set_intr(sc);
2846 	nfe_enable_intr(sc); /* enable interrupts */
2847 
2848 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2849 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2850 
2851 	sc->nfe_link = 0;
2852 	mii_mediachg(mii);
2853 
2854 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2855 }
2856 
2857 
2858 static void
2859 nfe_stop(struct ifnet *ifp)
2860 {
2861 	struct nfe_softc *sc = ifp->if_softc;
2862 	struct nfe_rx_ring *rx_ring;
2863 	struct nfe_jrx_ring *jrx_ring;
2864 	struct nfe_tx_ring *tx_ring;
2865 	struct nfe_rx_data *rdata;
2866 	struct nfe_tx_data *tdata;
2867 	int i;
2868 
2869 	NFE_LOCK_ASSERT(sc);
2870 
2871 	sc->nfe_watchdog_timer = 0;
2872 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2873 
2874 	callout_stop(&sc->nfe_stat_ch);
2875 
2876 	/* abort Tx */
2877 	NFE_WRITE(sc, NFE_TX_CTL, 0);
2878 
2879 	/* disable Rx */
2880 	NFE_WRITE(sc, NFE_RX_CTL, 0);
2881 
2882 	/* disable interrupts */
2883 	nfe_disable_intr(sc);
2884 
2885 	sc->nfe_link = 0;
2886 
2887 	/* free Rx and Tx mbufs still in the queues. */
2888 	rx_ring = &sc->rxq;
2889 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2890 		rdata = &rx_ring->data[i];
2891 		if (rdata->m != NULL) {
2892 			bus_dmamap_sync(rx_ring->rx_data_tag,
2893 			    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2894 			bus_dmamap_unload(rx_ring->rx_data_tag,
2895 			    rdata->rx_data_map);
2896 			m_freem(rdata->m);
2897 			rdata->m = NULL;
2898 		}
2899 	}
2900 
2901 	if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
2902 		jrx_ring = &sc->jrxq;
2903 		for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
2904 			rdata = &jrx_ring->jdata[i];
2905 			if (rdata->m != NULL) {
2906 				bus_dmamap_sync(jrx_ring->jrx_data_tag,
2907 				    rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
2908 				bus_dmamap_unload(jrx_ring->jrx_data_tag,
2909 				    rdata->rx_data_map);
2910 				m_freem(rdata->m);
2911 				rdata->m = NULL;
2912 			}
2913 		}
2914 	}
2915 
2916 	tx_ring = &sc->txq;
2917 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
2918 		tdata = &tx_ring->data[i];
2919 		if (tdata->m != NULL) {
2920 			bus_dmamap_sync(tx_ring->tx_data_tag,
2921 			    tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
2922 			bus_dmamap_unload(tx_ring->tx_data_tag,
2923 			    tdata->tx_data_map);
2924 			m_freem(tdata->m);
2925 			tdata->m = NULL;
2926 		}
2927 	}
2928 	/* Update hardware stats. */
2929 	nfe_stats_update(sc);
2930 }
2931 
2932 
2933 static int
2934 nfe_ifmedia_upd(struct ifnet *ifp)
2935 {
2936 	struct nfe_softc *sc = ifp->if_softc;
2937 	struct mii_data *mii;
2938 
2939 	NFE_LOCK(sc);
2940 	mii = device_get_softc(sc->nfe_miibus);
2941 	mii_mediachg(mii);
2942 	NFE_UNLOCK(sc);
2943 
2944 	return (0);
2945 }
2946 
2947 
2948 static void
2949 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2950 {
2951 	struct nfe_softc *sc;
2952 	struct mii_data *mii;
2953 
2954 	sc = ifp->if_softc;
2955 
2956 	NFE_LOCK(sc);
2957 	mii = device_get_softc(sc->nfe_miibus);
2958 	mii_pollstat(mii);
2959 	NFE_UNLOCK(sc);
2960 
2961 	ifmr->ifm_active = mii->mii_media_active;
2962 	ifmr->ifm_status = mii->mii_media_status;
2963 }
2964 
2965 
2966 void
2967 nfe_tick(void *xsc)
2968 {
2969 	struct nfe_softc *sc;
2970 	struct mii_data *mii;
2971 	struct ifnet *ifp;
2972 
2973 	sc = (struct nfe_softc *)xsc;
2974 
2975 	NFE_LOCK_ASSERT(sc);
2976 
2977 	ifp = sc->nfe_ifp;
2978 
2979 	mii = device_get_softc(sc->nfe_miibus);
2980 	mii_tick(mii);
2981 	nfe_stats_update(sc);
2982 	nfe_watchdog(ifp);
2983 	callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
2984 }
2985 
2986 
2987 static int
2988 nfe_shutdown(device_t dev)
2989 {
2990 
2991 	return (nfe_suspend(dev));
2992 }
2993 
2994 
2995 static void
2996 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2997 {
2998 	uint32_t val;
2999 
3000 	if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
3001 		val = NFE_READ(sc, NFE_MACADDR_LO);
3002 		addr[0] = (val >> 8) & 0xff;
3003 		addr[1] = (val & 0xff);
3004 
3005 		val = NFE_READ(sc, NFE_MACADDR_HI);
3006 		addr[2] = (val >> 24) & 0xff;
3007 		addr[3] = (val >> 16) & 0xff;
3008 		addr[4] = (val >>  8) & 0xff;
3009 		addr[5] = (val & 0xff);
3010 	} else {
3011 		val = NFE_READ(sc, NFE_MACADDR_LO);
3012 		addr[5] = (val >> 8) & 0xff;
3013 		addr[4] = (val & 0xff);
3014 
3015 		val = NFE_READ(sc, NFE_MACADDR_HI);
3016 		addr[3] = (val >> 24) & 0xff;
3017 		addr[2] = (val >> 16) & 0xff;
3018 		addr[1] = (val >>  8) & 0xff;
3019 		addr[0] = (val & 0xff);
3020 	}
3021 }
3022 
3023 
3024 static void
3025 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
3026 {
3027 
3028 	NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] <<  8 | addr[4]);
3029 	NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
3030 	    addr[1] << 8 | addr[0]);
3031 }
3032 
3033 
3034 /*
3035  * Map a single buffer address.
3036  */
3037 
3038 static void
3039 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3040 {
3041 	struct nfe_dmamap_arg *ctx;
3042 
3043 	if (error != 0)
3044 		return;
3045 
3046 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
3047 
3048 	ctx = (struct nfe_dmamap_arg *)arg;
3049 	ctx->nfe_busaddr = segs[0].ds_addr;
3050 }
3051 
3052 
3053 static int
3054 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3055 {
3056 	int error, value;
3057 
3058 	if (!arg1)
3059 		return (EINVAL);
3060 	value = *(int *)arg1;
3061 	error = sysctl_handle_int(oidp, &value, 0, req);
3062 	if (error || !req->newptr)
3063 		return (error);
3064 	if (value < low || value > high)
3065 		return (EINVAL);
3066 	*(int *)arg1 = value;
3067 
3068 	return (0);
3069 }
3070 
3071 
3072 static int
3073 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
3074 {
3075 
3076 	return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
3077 	    NFE_PROC_MAX));
3078 }
3079 
3080 
3081 #define	NFE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
3082 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3083 #define	NFE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
3084 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
3085 
3086 static void
3087 nfe_sysctl_node(struct nfe_softc *sc)
3088 {
3089 	struct sysctl_ctx_list *ctx;
3090 	struct sysctl_oid_list *child, *parent;
3091 	struct sysctl_oid *tree;
3092 	struct nfe_hw_stats *stats;
3093 	int error;
3094 
3095 	stats = &sc->nfe_stats;
3096 	ctx = device_get_sysctl_ctx(sc->nfe_dev);
3097 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
3098 	SYSCTL_ADD_PROC(ctx, child,
3099 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
3100 	    &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
3101 	    "max number of Rx events to process");
3102 
3103 	sc->nfe_process_limit = NFE_PROC_DEFAULT;
3104 	error = resource_int_value(device_get_name(sc->nfe_dev),
3105 	    device_get_unit(sc->nfe_dev), "process_limit",
3106 	    &sc->nfe_process_limit);
3107 	if (error == 0) {
3108 		if (sc->nfe_process_limit < NFE_PROC_MIN ||
3109 		    sc->nfe_process_limit > NFE_PROC_MAX) {
3110 			device_printf(sc->nfe_dev,
3111 			    "process_limit value out of range; "
3112 			    "using default: %d\n", NFE_PROC_DEFAULT);
3113 			sc->nfe_process_limit = NFE_PROC_DEFAULT;
3114 		}
3115 	}
3116 
3117 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3118 		return;
3119 
3120 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3121 	    NULL, "NFE statistics");
3122 	parent = SYSCTL_CHILDREN(tree);
3123 
3124 	/* Rx statistics. */
3125 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3126 	    NULL, "Rx MAC statistics");
3127 	child = SYSCTL_CHILDREN(tree);
3128 
3129 	NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
3130 	    &stats->rx_frame_errors, "Framing Errors");
3131 	NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
3132 	    &stats->rx_extra_bytes, "Extra Bytes");
3133 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3134 	    &stats->rx_late_cols, "Late Collisions");
3135 	NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
3136 	    &stats->rx_runts, "Runts");
3137 	NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
3138 	    &stats->rx_jumbos, "Jumbos");
3139 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
3140 	    &stats->rx_fifo_overuns, "FIFO Overruns");
3141 	NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
3142 	    &stats->rx_crc_errors, "CRC Errors");
3143 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
3144 	    &stats->rx_fae, "Frame Alignment Errors");
3145 	NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
3146 	    &stats->rx_len_errors, "Length Errors");
3147 	NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3148 	    &stats->rx_unicast, "Unicast Frames");
3149 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3150 	    &stats->rx_multicast, "Multicast Frames");
3151 	NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3152 	    &stats->rx_broadcast, "Broadcast Frames");
3153 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3154 		NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3155 		    &stats->rx_octets, "Octets");
3156 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3157 		    &stats->rx_pause, "Pause frames");
3158 		NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
3159 		    &stats->rx_drops, "Drop frames");
3160 	}
3161 
3162 	/* Tx statistics. */
3163 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3164 	    NULL, "Tx MAC statistics");
3165 	child = SYSCTL_CHILDREN(tree);
3166 	NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
3167 	    &stats->tx_octets, "Octets");
3168 	NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
3169 	    &stats->tx_zero_rexmits, "Zero Retransmits");
3170 	NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
3171 	    &stats->tx_one_rexmits, "One Retransmits");
3172 	NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
3173 	    &stats->tx_multi_rexmits, "Multiple Retransmits");
3174 	NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
3175 	    &stats->tx_late_cols, "Late Collisions");
3176 	NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
3177 	    &stats->tx_fifo_underuns, "FIFO Underruns");
3178 	NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
3179 	    &stats->tx_carrier_losts, "Carrier Losts");
3180 	NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
3181 	    &stats->tx_excess_deferals, "Excess Deferrals");
3182 	NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
3183 	    &stats->tx_retry_errors, "Retry Errors");
3184 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3185 		NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
3186 		    &stats->tx_deferals, "Deferrals");
3187 		NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
3188 		    &stats->tx_frames, "Frames");
3189 		NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
3190 		    &stats->tx_pause, "Pause Frames");
3191 	}
3192 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3193 		NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
3194 		    &stats->tx_deferals, "Unicast Frames");
3195 		NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
3196 		    &stats->tx_frames, "Multicast Frames");
3197 		NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
3198 		    &stats->tx_pause, "Broadcast Frames");
3199 	}
3200 }
3201 
3202 #undef NFE_SYSCTL_STAT_ADD32
3203 #undef NFE_SYSCTL_STAT_ADD64
3204 
3205 static void
3206 nfe_stats_clear(struct nfe_softc *sc)
3207 {
3208 	int i, mib_cnt;
3209 
3210 	if ((sc->nfe_flags & NFE_MIB_V1) != 0)
3211 		mib_cnt = NFE_NUM_MIB_STATV1;
3212 	else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
3213 		mib_cnt = NFE_NUM_MIB_STATV2;
3214 	else
3215 		return;
3216 
3217 	for (i = 0; i < mib_cnt; i += sizeof(uint32_t))
3218 		NFE_READ(sc, NFE_TX_OCTET + i);
3219 
3220 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3221 		NFE_READ(sc, NFE_TX_UNICAST);
3222 		NFE_READ(sc, NFE_TX_MULTICAST);
3223 		NFE_READ(sc, NFE_TX_BROADCAST);
3224 	}
3225 }
3226 
3227 static void
3228 nfe_stats_update(struct nfe_softc *sc)
3229 {
3230 	struct nfe_hw_stats *stats;
3231 
3232 	NFE_LOCK_ASSERT(sc);
3233 
3234 	if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
3235 		return;
3236 
3237 	stats = &sc->nfe_stats;
3238 	stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
3239 	stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
3240 	stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
3241 	stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
3242 	stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
3243 	stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
3244 	stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
3245 	stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
3246 	stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
3247 	stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
3248 	stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
3249 	stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
3250 	stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
3251 	stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
3252 	stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
3253 	stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
3254 	stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
3255 	stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
3256 	stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
3257 	stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
3258 	stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
3259 
3260 	if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
3261 		stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
3262 		stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
3263 		stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
3264 		stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
3265 		stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
3266 		stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
3267 	}
3268 
3269 	if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
3270 		stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
3271 		stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
3272 		stats->rx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
3273 	}
3274 }
3275 
3276 
3277 static void
3278 nfe_set_linkspeed(struct nfe_softc *sc)
3279 {
3280 	struct mii_softc *miisc;
3281 	struct mii_data *mii;
3282 	int aneg, i, phyno;
3283 
3284 	NFE_LOCK_ASSERT(sc);
3285 
3286 	mii = device_get_softc(sc->nfe_miibus);
3287 	mii_pollstat(mii);
3288 	aneg = 0;
3289 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3290 	    (IFM_ACTIVE | IFM_AVALID)) {
3291 		switch IFM_SUBTYPE(mii->mii_media_active) {
3292 		case IFM_10_T:
3293 		case IFM_100_TX:
3294 			return;
3295 		case IFM_1000_T:
3296 			aneg++;
3297 			break;
3298 		default:
3299 			break;
3300 		}
3301 	}
3302 	phyno = 0;
3303 	if (mii->mii_instance) {
3304 		miisc = LIST_FIRST(&mii->mii_phys);
3305 		phyno = miisc->mii_phy;
3306 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3307 			mii_phy_reset(miisc);
3308 	} else
3309 		return;
3310 	nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
3311 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3312 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3313 	nfe_miibus_writereg(sc->nfe_dev, phyno,
3314 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
3315 	DELAY(1000);
3316 	if (aneg != 0) {
3317 		/*
3318 		 * Poll link state until nfe(4) get a 10/100Mbps link.
3319 		 */
3320 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3321 			mii_pollstat(mii);
3322 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3323 			    == (IFM_ACTIVE | IFM_AVALID)) {
3324 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3325 				case IFM_10_T:
3326 				case IFM_100_TX:
3327 					nfe_mac_config(sc, mii);
3328 					return;
3329 				default:
3330 					break;
3331 				}
3332 			}
3333 			NFE_UNLOCK(sc);
3334 			pause("nfelnk", hz);
3335 			NFE_LOCK(sc);
3336 		}
3337 		if (i == MII_ANEGTICKS_GIGE)
3338 			device_printf(sc->nfe_dev,
3339 			    "establishing a link failed, WOL may not work!");
3340 	}
3341 	/*
3342 	 * No link, force MAC to have 100Mbps, full-duplex link.
3343 	 * This is the last resort and may/may not work.
3344 	 */
3345 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3346 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3347 	nfe_mac_config(sc, mii);
3348 }
3349 
3350 
3351 static void
3352 nfe_set_wol(struct nfe_softc *sc)
3353 {
3354 	struct ifnet *ifp;
3355 	uint32_t wolctl;
3356 	int pmc;
3357 	uint16_t pmstat;
3358 
3359 	NFE_LOCK_ASSERT(sc);
3360 
3361 	if (pci_find_extcap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
3362 		return;
3363 	ifp = sc->nfe_ifp;
3364 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3365 		wolctl = NFE_WOL_MAGIC;
3366 	else
3367 		wolctl = 0;
3368 	NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
3369 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
3370 		nfe_set_linkspeed(sc);
3371 		if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
3372 			NFE_WRITE(sc, NFE_PWR2_CTL,
3373 			    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
3374 		/* Enable RX. */
3375 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
3376 		NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
3377 		NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
3378 		    NFE_RX_START);
3379 	}
3380 	/* Request PME if WOL is requested. */
3381 	pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
3382 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3383 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3384 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3385 	pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3386 }
3387