xref: /freebsd/sys/dev/netmap/netmap_mem2.c (revision ca987d4641cdcd7f27e153db17c5bf064934faf5)
1 /*
2  * Copyright (C) 2012-2014 Matteo Landi
3  * Copyright (C) 2012-2016 Luigi Rizzo
4  * Copyright (C) 2012-2016 Giuseppe Lettieri
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *   1. Redistributions of source code must retain the above copyright
11  *      notice, this list of conditions and the following disclaimer.
12  *   2. Redistributions in binary form must reproduce the above copyright
13  *      notice, this list of conditions and the following disclaimer in the
14  *      documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #ifdef linux
30 #include "bsd_glue.h"
31 #endif /* linux */
32 
33 #ifdef __APPLE__
34 #include "osx_glue.h"
35 #endif /* __APPLE__ */
36 
37 #ifdef __FreeBSD__
38 #include <sys/cdefs.h> /* prerequisite */
39 __FBSDID("$FreeBSD$");
40 
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>		/* MALLOC_DEFINE */
44 #include <sys/proc.h>
45 #include <vm/vm.h>	/* vtophys */
46 #include <vm/pmap.h>	/* vtophys */
47 #include <sys/socket.h> /* sockaddrs */
48 #include <sys/selinfo.h>
49 #include <sys/sysctl.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/vnet.h>
53 #include <machine/bus.h>	/* bus_dmamap_* */
54 
55 /* M_NETMAP only used in here */
56 MALLOC_DECLARE(M_NETMAP);
57 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
58 
59 #endif /* __FreeBSD__ */
60 
61 #ifdef _WIN32
62 #include <win_glue.h>
63 #endif
64 
65 #include <net/netmap.h>
66 #include <dev/netmap/netmap_kern.h>
67 #include <net/netmap_virt.h>
68 #include "netmap_mem2.h"
69 
70 #ifdef _WIN32_USE_SMALL_GENERIC_DEVICES_MEMORY
71 #define NETMAP_BUF_MAX_NUM  8*4096      /* if too big takes too much time to allocate */
72 #else
73 #define NETMAP_BUF_MAX_NUM 20*4096*2	/* large machine */
74 #endif
75 
76 #define NETMAP_POOL_MAX_NAMSZ	32
77 
78 
79 enum {
80 	NETMAP_IF_POOL   = 0,
81 	NETMAP_RING_POOL,
82 	NETMAP_BUF_POOL,
83 	NETMAP_POOLS_NR
84 };
85 
86 
87 struct netmap_obj_params {
88 	u_int size;
89 	u_int num;
90 
91 	u_int last_size;
92 	u_int last_num;
93 };
94 
95 struct netmap_obj_pool {
96 	char name[NETMAP_POOL_MAX_NAMSZ];	/* name of the allocator */
97 
98 	/* ---------------------------------------------------*/
99 	/* these are only meaningful if the pool is finalized */
100 	/* (see 'finalized' field in netmap_mem_d)            */
101 	u_int objtotal;         /* actual total number of objects. */
102 	u_int memtotal;		/* actual total memory space */
103 	u_int numclusters;	/* actual number of clusters */
104 
105 	u_int objfree;          /* number of free objects. */
106 
107 	struct lut_entry *lut;  /* virt,phys addresses, objtotal entries */
108 	uint32_t *bitmap;       /* one bit per buffer, 1 means free */
109 	uint32_t bitmap_slots;	/* number of uint32 entries in bitmap */
110 	/* ---------------------------------------------------*/
111 
112 	/* limits */
113 	u_int objminsize;	/* minimum object size */
114 	u_int objmaxsize;	/* maximum object size */
115 	u_int nummin;		/* minimum number of objects */
116 	u_int nummax;		/* maximum number of objects */
117 
118 	/* these are changed only by config */
119 	u_int _objtotal;	/* total number of objects */
120 	u_int _objsize;		/* object size */
121 	u_int _clustsize;       /* cluster size */
122 	u_int _clustentries;    /* objects per cluster */
123 	u_int _numclusters;	/* number of clusters */
124 
125 	/* requested values */
126 	u_int r_objtotal;
127 	u_int r_objsize;
128 };
129 
130 #define NMA_LOCK_T		NM_MTX_T
131 
132 
133 struct netmap_mem_ops {
134 	int (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*);
135 	int  (*nmd_get_info)(struct netmap_mem_d *, u_int *size,
136 			u_int *memflags, uint16_t *id);
137 
138 	vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t);
139 	int (*nmd_config)(struct netmap_mem_d *);
140 	int (*nmd_finalize)(struct netmap_mem_d *);
141 	void (*nmd_deref)(struct netmap_mem_d *);
142 	ssize_t  (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr);
143 	void (*nmd_delete)(struct netmap_mem_d *);
144 
145 	struct netmap_if * (*nmd_if_new)(struct netmap_adapter *,
146 					 struct netmap_priv_d *);
147 	void (*nmd_if_delete)(struct netmap_adapter *, struct netmap_if *);
148 	int  (*nmd_rings_create)(struct netmap_adapter *);
149 	void (*nmd_rings_delete)(struct netmap_adapter *);
150 };
151 
152 struct netmap_mem_d {
153 	NMA_LOCK_T nm_mtx;  /* protect the allocator */
154 	u_int nm_totalsize; /* shorthand */
155 
156 	u_int flags;
157 #define NETMAP_MEM_FINALIZED	0x1	/* preallocation done */
158 #define NETMAP_MEM_HIDDEN	0x8	/* beeing prepared */
159 	int lasterr;		/* last error for curr config */
160 	int active;		/* active users */
161 	int refcount;
162 	/* the three allocators */
163 	struct netmap_obj_pool pools[NETMAP_POOLS_NR];
164 
165 	nm_memid_t nm_id;	/* allocator identifier */
166 	int nm_grp;	/* iommu groupd id */
167 
168 	/* list of all existing allocators, sorted by nm_id */
169 	struct netmap_mem_d *prev, *next;
170 
171 	struct netmap_mem_ops *ops;
172 
173 	struct netmap_obj_params params[NETMAP_POOLS_NR];
174 
175 #define NM_MEM_NAMESZ	16
176 	char name[NM_MEM_NAMESZ];
177 };
178 
179 /*
180  * XXX need to fix the case of t0 == void
181  */
182 #define NMD_DEFCB(t0, name) \
183 t0 \
184 netmap_mem_##name(struct netmap_mem_d *nmd) \
185 { \
186 	return nmd->ops->nmd_##name(nmd); \
187 }
188 
189 #define NMD_DEFCB1(t0, name, t1) \
190 t0 \
191 netmap_mem_##name(struct netmap_mem_d *nmd, t1 a1) \
192 { \
193 	return nmd->ops->nmd_##name(nmd, a1); \
194 }
195 
196 #define NMD_DEFCB3(t0, name, t1, t2, t3) \
197 t0 \
198 netmap_mem_##name(struct netmap_mem_d *nmd, t1 a1, t2 a2, t3 a3) \
199 { \
200 	return nmd->ops->nmd_##name(nmd, a1, a2, a3); \
201 }
202 
203 #define NMD_DEFNACB(t0, name) \
204 t0 \
205 netmap_mem_##name(struct netmap_adapter *na) \
206 { \
207 	return na->nm_mem->ops->nmd_##name(na); \
208 }
209 
210 #define NMD_DEFNACB1(t0, name, t1) \
211 t0 \
212 netmap_mem_##name(struct netmap_adapter *na, t1 a1) \
213 { \
214 	return na->nm_mem->ops->nmd_##name(na, a1); \
215 }
216 
217 NMD_DEFCB1(int, get_lut, struct netmap_lut *);
218 NMD_DEFCB3(int, get_info, u_int *, u_int *, uint16_t *);
219 NMD_DEFCB1(vm_paddr_t, ofstophys, vm_ooffset_t);
220 static int netmap_mem_config(struct netmap_mem_d *);
221 NMD_DEFCB(int, config);
222 NMD_DEFCB1(ssize_t, if_offset, const void *);
223 NMD_DEFCB(void, delete);
224 
225 NMD_DEFNACB1(struct netmap_if *, if_new, struct netmap_priv_d *);
226 NMD_DEFNACB1(void, if_delete, struct netmap_if *);
227 NMD_DEFNACB(int, rings_create);
228 NMD_DEFNACB(void, rings_delete);
229 
230 static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *);
231 static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *);
232 static int nm_mem_assign_group(struct netmap_mem_d *, struct device *);
233 static void nm_mem_release_id(struct netmap_mem_d *);
234 
235 nm_memid_t
236 netmap_mem_get_id(struct netmap_mem_d *nmd)
237 {
238 	return nmd->nm_id;
239 }
240 
241 #define NMA_LOCK_INIT(n)	NM_MTX_INIT((n)->nm_mtx)
242 #define NMA_LOCK_DESTROY(n)	NM_MTX_DESTROY((n)->nm_mtx)
243 #define NMA_LOCK(n)		NM_MTX_LOCK((n)->nm_mtx)
244 #define NMA_UNLOCK(n)		NM_MTX_UNLOCK((n)->nm_mtx)
245 
246 #ifdef NM_DEBUG_MEM_PUTGET
247 #define NM_DBG_REFC(nmd, func, line)	\
248 	nm_prinf("%s:%d mem[%d] -> %d\n", func, line, (nmd)->nm_id, (nmd)->refcount);
249 #else
250 #define NM_DBG_REFC(nmd, func, line)
251 #endif
252 
253 /* circular list of all existing allocators */
254 static struct netmap_mem_d *netmap_last_mem_d = &nm_mem;
255 NM_MTX_T nm_mem_list_lock;
256 
257 struct netmap_mem_d *
258 __netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line)
259 {
260 	NM_MTX_LOCK(nm_mem_list_lock);
261 	nmd->refcount++;
262 	NM_DBG_REFC(nmd, func, line);
263 	NM_MTX_UNLOCK(nm_mem_list_lock);
264 	return nmd;
265 }
266 
267 void
268 __netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line)
269 {
270 	int last;
271 	NM_MTX_LOCK(nm_mem_list_lock);
272 	last = (--nmd->refcount == 0);
273 	if (last)
274 		nm_mem_release_id(nmd);
275 	NM_DBG_REFC(nmd, func, line);
276 	NM_MTX_UNLOCK(nm_mem_list_lock);
277 	if (last)
278 		netmap_mem_delete(nmd);
279 }
280 
281 int
282 netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
283 {
284 	if (nm_mem_assign_group(nmd, na->pdev) < 0) {
285 		return ENOMEM;
286 	} else {
287 		NMA_LOCK(nmd);
288 		nmd->lasterr = nmd->ops->nmd_finalize(nmd);
289 		NMA_UNLOCK(nmd);
290 	}
291 
292 	if (!nmd->lasterr && na->pdev)
293 		netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na);
294 
295 	return nmd->lasterr;
296 }
297 
298 void
299 netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
300 {
301 	NMA_LOCK(nmd);
302 	netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na);
303 	if (nmd->active == 1) {
304 		u_int i;
305 
306 		/*
307 		 * Reset the allocator when it falls out of use so that any
308 		 * pool resources leaked by unclean application exits are
309 		 * reclaimed.
310 		 */
311 		for (i = 0; i < NETMAP_POOLS_NR; i++) {
312 			struct netmap_obj_pool *p;
313 			u_int j;
314 
315 			p = &nmd->pools[i];
316 			p->objfree = p->objtotal;
317 			/*
318 			 * Reproduce the net effect of the M_ZERO malloc()
319 			 * and marking of free entries in the bitmap that
320 			 * occur in finalize_obj_allocator()
321 			 */
322 			memset(p->bitmap,
323 			    '\0',
324 			    sizeof(uint32_t) * ((p->objtotal + 31) / 32));
325 
326 			/*
327 			 * Set all the bits in the bitmap that have
328 			 * corresponding buffers to 1 to indicate they are
329 			 * free.
330 			 */
331 			for (j = 0; j < p->objtotal; j++) {
332 				if (p->lut[j].vaddr != NULL) {
333 					p->bitmap[ (j>>5) ] |=  ( 1 << (j & 31) );
334 				}
335 			}
336 		}
337 
338 		/*
339 		 * Per netmap_mem_finalize_all(),
340 		 * buffers 0 and 1 are reserved
341 		 */
342 		nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
343 		if (nmd->pools[NETMAP_BUF_POOL].bitmap) {
344 			/* XXX This check is a workaround that prevents a
345 			 * NULL pointer crash which currently happens only
346 			 * with ptnetmap guests.
347 			 * Removed shared-info --> is the bug still there? */
348 			nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3;
349 		}
350 	}
351 	nmd->ops->nmd_deref(nmd);
352 
353 	NMA_UNLOCK(nmd);
354 }
355 
356 
357 /* accessor functions */
358 static int
359 netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
360 {
361 	lut->lut = nmd->pools[NETMAP_BUF_POOL].lut;
362 	lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
363 	lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
364 
365 	return 0;
366 }
367 
368 static struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = {
369 	[NETMAP_IF_POOL] = {
370 		.size = 1024,
371 		.num  = 2,
372 	},
373 	[NETMAP_RING_POOL] = {
374 		.size = 5*PAGE_SIZE,
375 		.num  = 4,
376 	},
377 	[NETMAP_BUF_POOL] = {
378 		.size = 2048,
379 		.num  = 4098,
380 	},
381 };
382 
383 
384 /*
385  * nm_mem is the memory allocator used for all physical interfaces
386  * running in netmap mode.
387  * Virtual (VALE) ports will have each its own allocator.
388  */
389 extern struct netmap_mem_ops netmap_mem_global_ops; /* forward */
390 struct netmap_mem_d nm_mem = {	/* Our memory allocator. */
391 	.pools = {
392 		[NETMAP_IF_POOL] = {
393 			.name 	= "netmap_if",
394 			.objminsize = sizeof(struct netmap_if),
395 			.objmaxsize = 4096,
396 			.nummin     = 10,	/* don't be stingy */
397 			.nummax	    = 10000,	/* XXX very large */
398 		},
399 		[NETMAP_RING_POOL] = {
400 			.name 	= "netmap_ring",
401 			.objminsize = sizeof(struct netmap_ring),
402 			.objmaxsize = 32*PAGE_SIZE,
403 			.nummin     = 2,
404 			.nummax	    = 1024,
405 		},
406 		[NETMAP_BUF_POOL] = {
407 			.name	= "netmap_buf",
408 			.objminsize = 64,
409 			.objmaxsize = 65536,
410 			.nummin     = 4,
411 			.nummax	    = 1000000, /* one million! */
412 		},
413 	},
414 
415 	.params = {
416 		[NETMAP_IF_POOL] = {
417 			.size = 1024,
418 			.num  = 100,
419 		},
420 		[NETMAP_RING_POOL] = {
421 			.size = 9*PAGE_SIZE,
422 			.num  = 200,
423 		},
424 		[NETMAP_BUF_POOL] = {
425 			.size = 2048,
426 			.num  = NETMAP_BUF_MAX_NUM,
427 		},
428 	},
429 
430 	.nm_id = 1,
431 	.nm_grp = -1,
432 
433 	.prev = &nm_mem,
434 	.next = &nm_mem,
435 
436 	.ops = &netmap_mem_global_ops,
437 
438 	.name = "1"
439 };
440 
441 
442 /* blueprint for the private memory allocators */
443 extern struct netmap_mem_ops netmap_mem_private_ops; /* forward */
444 /* XXX clang is not happy about using name as a print format */
445 static const struct netmap_mem_d nm_blueprint = {
446 	.pools = {
447 		[NETMAP_IF_POOL] = {
448 			.name 	= "%s_if",
449 			.objminsize = sizeof(struct netmap_if),
450 			.objmaxsize = 4096,
451 			.nummin     = 1,
452 			.nummax	    = 100,
453 		},
454 		[NETMAP_RING_POOL] = {
455 			.name 	= "%s_ring",
456 			.objminsize = sizeof(struct netmap_ring),
457 			.objmaxsize = 32*PAGE_SIZE,
458 			.nummin     = 2,
459 			.nummax	    = 1024,
460 		},
461 		[NETMAP_BUF_POOL] = {
462 			.name	= "%s_buf",
463 			.objminsize = 64,
464 			.objmaxsize = 65536,
465 			.nummin     = 4,
466 			.nummax	    = 1000000, /* one million! */
467 		},
468 	},
469 
470 	.nm_grp = -1,
471 
472 	.flags = NETMAP_MEM_PRIVATE,
473 
474 	.ops = &netmap_mem_global_ops,
475 };
476 
477 /* memory allocator related sysctls */
478 
479 #define STRINGIFY(x) #x
480 
481 
482 #define DECLARE_SYSCTLS(id, name) \
483 	SYSBEGIN(mem2_ ## name); \
484 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
485 	    CTLFLAG_RW, &nm_mem.params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
486 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
487 	    CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
488 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
489 	    CTLFLAG_RW, &nm_mem.params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
490 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
491 	    CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \
492 	SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \
493 	    CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \
494 	    "Default size of private netmap " STRINGIFY(name) "s"); \
495 	SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \
496 	    CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \
497 	    "Default number of private netmap " STRINGIFY(name) "s");	\
498 	SYSEND
499 
500 SYSCTL_DECL(_dev_netmap);
501 DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
502 DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
503 DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
504 
505 /* call with nm_mem_list_lock held */
506 static int
507 nm_mem_assign_id_locked(struct netmap_mem_d *nmd)
508 {
509 	nm_memid_t id;
510 	struct netmap_mem_d *scan = netmap_last_mem_d;
511 	int error = ENOMEM;
512 
513 	do {
514 		/* we rely on unsigned wrap around */
515 		id = scan->nm_id + 1;
516 		if (id == 0) /* reserve 0 as error value */
517 			id = 1;
518 		scan = scan->next;
519 		if (id != scan->nm_id) {
520 			nmd->nm_id = id;
521 			nmd->prev = scan->prev;
522 			nmd->next = scan;
523 			scan->prev->next = nmd;
524 			scan->prev = nmd;
525 			netmap_last_mem_d = nmd;
526 			nmd->refcount = 1;
527 			NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
528 			error = 0;
529 			break;
530 		}
531 	} while (scan != netmap_last_mem_d);
532 
533 	return error;
534 }
535 
536 /* call with nm_mem_list_lock *not* held */
537 static int
538 nm_mem_assign_id(struct netmap_mem_d *nmd)
539 {
540         int ret;
541 
542 	NM_MTX_LOCK(nm_mem_list_lock);
543         ret = nm_mem_assign_id_locked(nmd);
544 	NM_MTX_UNLOCK(nm_mem_list_lock);
545 
546 	return ret;
547 }
548 
549 /* call with nm_mem_list_lock held */
550 static void
551 nm_mem_release_id(struct netmap_mem_d *nmd)
552 {
553 	nmd->prev->next = nmd->next;
554 	nmd->next->prev = nmd->prev;
555 
556 	if (netmap_last_mem_d == nmd)
557 		netmap_last_mem_d = nmd->prev;
558 
559 	nmd->prev = nmd->next = NULL;
560 }
561 
562 struct netmap_mem_d *
563 netmap_mem_find(nm_memid_t id)
564 {
565 	struct netmap_mem_d *nmd;
566 
567 	NM_MTX_LOCK(nm_mem_list_lock);
568 	nmd = netmap_last_mem_d;
569 	do {
570 		if (!(nmd->flags & NETMAP_MEM_HIDDEN) && nmd->nm_id == id) {
571 			nmd->refcount++;
572 			NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
573 			NM_MTX_UNLOCK(nm_mem_list_lock);
574 			return nmd;
575 		}
576 		nmd = nmd->next;
577 	} while (nmd != netmap_last_mem_d);
578 	NM_MTX_UNLOCK(nm_mem_list_lock);
579 	return NULL;
580 }
581 
582 static int
583 nm_mem_assign_group(struct netmap_mem_d *nmd, struct device *dev)
584 {
585 	int err = 0, id;
586 	id = nm_iommu_group_id(dev);
587 	if (netmap_verbose)
588 		D("iommu_group %d", id);
589 
590 	NMA_LOCK(nmd);
591 
592 	if (nmd->nm_grp < 0)
593 		nmd->nm_grp = id;
594 
595 	if (nmd->nm_grp != id)
596 		nmd->lasterr = err = ENOMEM;
597 
598 	NMA_UNLOCK(nmd);
599 	return err;
600 }
601 
602 /*
603  * First, find the allocator that contains the requested offset,
604  * then locate the cluster through a lookup table.
605  */
606 static vm_paddr_t
607 netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
608 {
609 	int i;
610 	vm_ooffset_t o = offset;
611 	vm_paddr_t pa;
612 	struct netmap_obj_pool *p;
613 
614 	NMA_LOCK(nmd);
615 	p = nmd->pools;
616 
617 	for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
618 		if (offset >= p[i].memtotal)
619 			continue;
620 		// now lookup the cluster's address
621 #ifndef _WIN32
622 		pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) +
623 			offset % p[i]._objsize;
624 #else
625 		pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr);
626 		pa.QuadPart += offset % p[i]._objsize;
627 #endif
628 		NMA_UNLOCK(nmd);
629 		return pa;
630 	}
631 	/* this is only in case of errors */
632 	D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
633 		p[NETMAP_IF_POOL].memtotal,
634 		p[NETMAP_IF_POOL].memtotal
635 			+ p[NETMAP_RING_POOL].memtotal,
636 		p[NETMAP_IF_POOL].memtotal
637 			+ p[NETMAP_RING_POOL].memtotal
638 			+ p[NETMAP_BUF_POOL].memtotal);
639 	NMA_UNLOCK(nmd);
640 #ifndef _WIN32
641 	return 0;	// XXX bad address
642 #else
643 	vm_paddr_t res;
644 	res.QuadPart = 0;
645 	return res;
646 #endif
647 }
648 
649 #ifdef _WIN32
650 
651 /*
652  * win32_build_virtual_memory_for_userspace
653  *
654  * This function get all the object making part of the pools and maps
655  * a contiguous virtual memory space for the userspace
656  * It works this way
657  * 1 - allocate a Memory Descriptor List wide as the sum
658  *		of the memory needed for the pools
659  * 2 - cycle all the objects in every pool and for every object do
660  *
661  *		2a - cycle all the objects in every pool, get the list
662  *				of the physical address descriptors
663  *		2b - calculate the offset in the array of pages desciptor in the
664  *				main MDL
665  *		2c - copy the descriptors of the object in the main MDL
666  *
667  * 3 - return the resulting MDL that needs to be mapped in userland
668  *
669  * In this way we will have an MDL that describes all the memory for the
670  * objects in a single object
671 */
672 
673 PMDL
674 win32_build_user_vm_map(struct netmap_mem_d* nmd)
675 {
676 	int i, j;
677 	u_int memsize, memflags, ofs = 0;
678 	PMDL mainMdl, tempMdl;
679 
680 	if (netmap_mem_get_info(nmd, &memsize, &memflags, NULL)) {
681 		D("memory not finalised yet");
682 		return NULL;
683 	}
684 
685 	mainMdl = IoAllocateMdl(NULL, memsize, FALSE, FALSE, NULL);
686 	if (mainMdl == NULL) {
687 		D("failed to allocate mdl");
688 		return NULL;
689 	}
690 
691 	NMA_LOCK(nmd);
692 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
693 		struct netmap_obj_pool *p = &nmd->pools[i];
694 		int clsz = p->_clustsize;
695 		int clobjs = p->_clustentries; /* objects per cluster */
696 		int mdl_len = sizeof(PFN_NUMBER) * BYTES_TO_PAGES(clsz);
697 		PPFN_NUMBER pSrc, pDst;
698 
699 		/* each pool has a different cluster size so we need to reallocate */
700 		tempMdl = IoAllocateMdl(p->lut[0].vaddr, clsz, FALSE, FALSE, NULL);
701 		if (tempMdl == NULL) {
702 			NMA_UNLOCK(nmd);
703 			D("fail to allocate tempMdl");
704 			IoFreeMdl(mainMdl);
705 			return NULL;
706 		}
707 		pSrc = MmGetMdlPfnArray(tempMdl);
708 		/* create one entry per cluster, the lut[] has one entry per object */
709 		for (j = 0; j < p->numclusters; j++, ofs += clsz) {
710 			pDst = &MmGetMdlPfnArray(mainMdl)[BYTES_TO_PAGES(ofs)];
711 			MmInitializeMdl(tempMdl, p->lut[j*clobjs].vaddr, clsz);
712 			MmBuildMdlForNonPagedPool(tempMdl); /* compute physical page addresses */
713 			RtlCopyMemory(pDst, pSrc, mdl_len); /* copy the page descriptors */
714 			mainMdl->MdlFlags = tempMdl->MdlFlags; /* XXX what is in here ? */
715 		}
716 		IoFreeMdl(tempMdl);
717 	}
718 	NMA_UNLOCK(nmd);
719 	return mainMdl;
720 }
721 
722 #endif /* _WIN32 */
723 
724 /*
725  * helper function for OS-specific mmap routines (currently only windows).
726  * Given an nmd and a pool index, returns the cluster size and number of clusters.
727  * Returns 0 if memory is finalised and the pool is valid, otherwise 1.
728  * It should be called under NMA_LOCK(nmd) otherwise the underlying info can change.
729  */
730 
731 int
732 netmap_mem2_get_pool_info(struct netmap_mem_d* nmd, u_int pool, u_int *clustsize, u_int *numclusters)
733 {
734 	if (!nmd || !clustsize || !numclusters || pool >= NETMAP_POOLS_NR)
735 		return 1; /* invalid arguments */
736 	// NMA_LOCK_ASSERT(nmd);
737 	if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
738 		*clustsize = *numclusters = 0;
739 		return 1; /* not ready yet */
740 	}
741 	*clustsize = nmd->pools[pool]._clustsize;
742 	*numclusters = nmd->pools[pool].numclusters;
743 	return 0; /* success */
744 }
745 
746 static int
747 netmap_mem2_get_info(struct netmap_mem_d* nmd, u_int* size, u_int *memflags,
748 	nm_memid_t *id)
749 {
750 	int error = 0;
751 	NMA_LOCK(nmd);
752 	error = netmap_mem_config(nmd);
753 	if (error)
754 		goto out;
755 	if (size) {
756 		if (nmd->flags & NETMAP_MEM_FINALIZED) {
757 			*size = nmd->nm_totalsize;
758 		} else {
759 			int i;
760 			*size = 0;
761 			for (i = 0; i < NETMAP_POOLS_NR; i++) {
762 				struct netmap_obj_pool *p = nmd->pools + i;
763 				*size += (p->_numclusters * p->_clustsize);
764 			}
765 		}
766 	}
767 	if (memflags)
768 		*memflags = nmd->flags;
769 	if (id)
770 		*id = nmd->nm_id;
771 out:
772 	NMA_UNLOCK(nmd);
773 	return error;
774 }
775 
776 /*
777  * we store objects by kernel address, need to find the offset
778  * within the pool to export the value to userspace.
779  * Algorithm: scan until we find the cluster, then add the
780  * actual offset in the cluster
781  */
782 static ssize_t
783 netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
784 {
785 	int i, k = p->_clustentries, n = p->objtotal;
786 	ssize_t ofs = 0;
787 
788 	for (i = 0; i < n; i += k, ofs += p->_clustsize) {
789 		const char *base = p->lut[i].vaddr;
790 		ssize_t relofs = (const char *) vaddr - base;
791 
792 		if (relofs < 0 || relofs >= p->_clustsize)
793 			continue;
794 
795 		ofs = ofs + relofs;
796 		ND("%s: return offset %d (cluster %d) for pointer %p",
797 		    p->name, ofs, i, vaddr);
798 		return ofs;
799 	}
800 	D("address %p is not contained inside any cluster (%s)",
801 	    vaddr, p->name);
802 	return 0; /* An error occurred */
803 }
804 
805 /* Helper functions which convert virtual addresses to offsets */
806 #define netmap_if_offset(n, v)					\
807 	netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
808 
809 #define netmap_ring_offset(n, v)				\
810     ((n)->pools[NETMAP_IF_POOL].memtotal + 			\
811 	netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
812 
813 static ssize_t
814 netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr)
815 {
816 	ssize_t v;
817 	NMA_LOCK(nmd);
818 	v = netmap_if_offset(nmd, addr);
819 	NMA_UNLOCK(nmd);
820 	return v;
821 }
822 
823 /*
824  * report the index, and use start position as a hint,
825  * otherwise buffer allocation becomes terribly expensive.
826  */
827 static void *
828 netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
829 {
830 	uint32_t i = 0;			/* index in the bitmap */
831 	uint32_t mask, j = 0;		/* slot counter */
832 	void *vaddr = NULL;
833 
834 	if (len > p->_objsize) {
835 		D("%s request size %d too large", p->name, len);
836 		// XXX cannot reduce the size
837 		return NULL;
838 	}
839 
840 	if (p->objfree == 0) {
841 		D("no more %s objects", p->name);
842 		return NULL;
843 	}
844 	if (start)
845 		i = *start;
846 
847 	/* termination is guaranteed by p->free, but better check bounds on i */
848 	while (vaddr == NULL && i < p->bitmap_slots)  {
849 		uint32_t cur = p->bitmap[i];
850 		if (cur == 0) { /* bitmask is fully used */
851 			i++;
852 			continue;
853 		}
854 		/* locate a slot */
855 		for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
856 			;
857 
858 		p->bitmap[i] &= ~mask; /* mark object as in use */
859 		p->objfree--;
860 
861 		vaddr = p->lut[i * 32 + j].vaddr;
862 		if (index)
863 			*index = i * 32 + j;
864 	}
865 	ND("%s allocator: allocated object @ [%d][%d]: vaddr %p",p->name, i, j, vaddr);
866 
867 	if (start)
868 		*start = i;
869 	return vaddr;
870 }
871 
872 
873 /*
874  * free by index, not by address.
875  * XXX should we also cleanup the content ?
876  */
877 static int
878 netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
879 {
880 	uint32_t *ptr, mask;
881 
882 	if (j >= p->objtotal) {
883 		D("invalid index %u, max %u", j, p->objtotal);
884 		return 1;
885 	}
886 	ptr = &p->bitmap[j / 32];
887 	mask = (1 << (j % 32));
888 	if (*ptr & mask) {
889 		D("ouch, double free on buffer %d", j);
890 		return 1;
891 	} else {
892 		*ptr |= mask;
893 		p->objfree++;
894 		return 0;
895 	}
896 }
897 
898 /*
899  * free by address. This is slow but is only used for a few
900  * objects (rings, nifp)
901  */
902 static void
903 netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
904 {
905 	u_int i, j, n = p->numclusters;
906 
907 	for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
908 		void *base = p->lut[i * p->_clustentries].vaddr;
909 		ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
910 
911 		/* Given address, is out of the scope of the current cluster.*/
912 		if (vaddr < base || relofs >= p->_clustsize)
913 			continue;
914 
915 		j = j + relofs / p->_objsize;
916 		/* KASSERT(j != 0, ("Cannot free object 0")); */
917 		netmap_obj_free(p, j);
918 		return;
919 	}
920 	D("address %p is not contained inside any cluster (%s)",
921 	    vaddr, p->name);
922 }
923 
924 #define netmap_mem_bufsize(n)	\
925 	((n)->pools[NETMAP_BUF_POOL]._objsize)
926 
927 #define netmap_if_malloc(n, len)	netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
928 #define netmap_if_free(n, v)		netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
929 #define netmap_ring_malloc(n, len)	netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
930 #define netmap_ring_free(n, v)		netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
931 #define netmap_buf_malloc(n, _pos, _index)			\
932 	netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index)
933 
934 
935 #if 0 // XXX unused
936 /* Return the index associated to the given packet buffer */
937 #define netmap_buf_index(n, v)						\
938     (netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
939 #endif
940 
941 /*
942  * allocate extra buffers in a linked list.
943  * returns the actual number.
944  */
945 uint32_t
946 netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n)
947 {
948 	struct netmap_mem_d *nmd = na->nm_mem;
949 	uint32_t i, pos = 0; /* opaque, scan position in the bitmap */
950 
951 	NMA_LOCK(nmd);
952 
953 	*head = 0;	/* default, 'null' index ie empty list */
954 	for (i = 0 ; i < n; i++) {
955 		uint32_t cur = *head;	/* save current head */
956 		uint32_t *p = netmap_buf_malloc(nmd, &pos, head);
957 		if (p == NULL) {
958 			D("no more buffers after %d of %d", i, n);
959 			*head = cur; /* restore */
960 			break;
961 		}
962 		ND(5, "allocate buffer %d -> %d", *head, cur);
963 		*p = cur; /* link to previous head */
964 	}
965 
966 	NMA_UNLOCK(nmd);
967 
968 	return i;
969 }
970 
971 static void
972 netmap_extra_free(struct netmap_adapter *na, uint32_t head)
973 {
974         struct lut_entry *lut = na->na_lut.lut;
975 	struct netmap_mem_d *nmd = na->nm_mem;
976 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
977 	uint32_t i, cur, *buf;
978 
979 	ND("freeing the extra list");
980 	for (i = 0; head >=2 && head < p->objtotal; i++) {
981 		cur = head;
982 		buf = lut[head].vaddr;
983 		head = *buf;
984 		*buf = 0;
985 		if (netmap_obj_free(p, cur))
986 			break;
987 	}
988 	if (head != 0)
989 		D("breaking with head %d", head);
990 	if (netmap_verbose)
991 		D("freed %d buffers", i);
992 }
993 
994 
995 /* Return nonzero on error */
996 static int
997 netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
998 {
999 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1000 	u_int i = 0;	/* slot counter */
1001 	uint32_t pos = 0;	/* slot in p->bitmap */
1002 	uint32_t index = 0;	/* buffer index */
1003 
1004 	for (i = 0; i < n; i++) {
1005 		void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
1006 		if (vaddr == NULL) {
1007 			D("no more buffers after %d of %d", i, n);
1008 			goto cleanup;
1009 		}
1010 		slot[i].buf_idx = index;
1011 		slot[i].len = p->_objsize;
1012 		slot[i].flags = 0;
1013 	}
1014 
1015 	ND("allocated %d buffers, %d available, first at %d", n, p->objfree, pos);
1016 	return (0);
1017 
1018 cleanup:
1019 	while (i > 0) {
1020 		i--;
1021 		netmap_obj_free(p, slot[i].buf_idx);
1022 	}
1023 	bzero(slot, n * sizeof(slot[0]));
1024 	return (ENOMEM);
1025 }
1026 
1027 static void
1028 netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index)
1029 {
1030 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1031 	u_int i;
1032 
1033 	for (i = 0; i < n; i++) {
1034 		slot[i].buf_idx = index;
1035 		slot[i].len = p->_objsize;
1036 		slot[i].flags = 0;
1037 	}
1038 }
1039 
1040 
1041 static void
1042 netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
1043 {
1044 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1045 
1046 	if (i < 2 || i >= p->objtotal) {
1047 		D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
1048 		return;
1049 	}
1050 	netmap_obj_free(p, i);
1051 }
1052 
1053 
1054 static void
1055 netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
1056 {
1057 	u_int i;
1058 
1059 	for (i = 0; i < n; i++) {
1060 		if (slot[i].buf_idx > 2)
1061 			netmap_free_buf(nmd, slot[i].buf_idx);
1062 	}
1063 }
1064 
1065 static void
1066 netmap_reset_obj_allocator(struct netmap_obj_pool *p)
1067 {
1068 
1069 	if (p == NULL)
1070 		return;
1071 	if (p->bitmap)
1072 		nm_os_free(p->bitmap);
1073 	p->bitmap = NULL;
1074 	if (p->lut) {
1075 		u_int i;
1076 
1077 		/*
1078 		 * Free each cluster allocated in
1079 		 * netmap_finalize_obj_allocator().  The cluster start
1080 		 * addresses are stored at multiples of p->_clusterentries
1081 		 * in the lut.
1082 		 */
1083 		for (i = 0; i < p->objtotal; i += p->_clustentries) {
1084 			if (p->lut[i].vaddr)
1085 				contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
1086 		}
1087 		bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
1088 #ifdef linux
1089 		vfree(p->lut);
1090 #else
1091 		nm_os_free(p->lut);
1092 #endif
1093 	}
1094 	p->lut = NULL;
1095 	p->objtotal = 0;
1096 	p->memtotal = 0;
1097 	p->numclusters = 0;
1098 	p->objfree = 0;
1099 }
1100 
1101 /*
1102  * Free all resources related to an allocator.
1103  */
1104 static void
1105 netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
1106 {
1107 	if (p == NULL)
1108 		return;
1109 	netmap_reset_obj_allocator(p);
1110 }
1111 
1112 /*
1113  * We receive a request for objtotal objects, of size objsize each.
1114  * Internally we may round up both numbers, as we allocate objects
1115  * in small clusters multiple of the page size.
1116  * We need to keep track of objtotal and clustentries,
1117  * as they are needed when freeing memory.
1118  *
1119  * XXX note -- userspace needs the buffers to be contiguous,
1120  *	so we cannot afford gaps at the end of a cluster.
1121  */
1122 
1123 
1124 /* call with NMA_LOCK held */
1125 static int
1126 netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
1127 {
1128 	int i;
1129 	u_int clustsize;	/* the cluster size, multiple of page size */
1130 	u_int clustentries;	/* how many objects per entry */
1131 
1132 	/* we store the current request, so we can
1133 	 * detect configuration changes later */
1134 	p->r_objtotal = objtotal;
1135 	p->r_objsize = objsize;
1136 
1137 #define MAX_CLUSTSIZE	(1<<22)		// 4 MB
1138 #define LINE_ROUND	NM_CACHE_ALIGN	// 64
1139 	if (objsize >= MAX_CLUSTSIZE) {
1140 		/* we could do it but there is no point */
1141 		D("unsupported allocation for %d bytes", objsize);
1142 		return EINVAL;
1143 	}
1144 	/* make sure objsize is a multiple of LINE_ROUND */
1145 	i = (objsize & (LINE_ROUND - 1));
1146 	if (i) {
1147 		D("XXX aligning object by %d bytes", LINE_ROUND - i);
1148 		objsize += LINE_ROUND - i;
1149 	}
1150 	if (objsize < p->objminsize || objsize > p->objmaxsize) {
1151 		D("requested objsize %d out of range [%d, %d]",
1152 			objsize, p->objminsize, p->objmaxsize);
1153 		return EINVAL;
1154 	}
1155 	if (objtotal < p->nummin || objtotal > p->nummax) {
1156 		D("requested objtotal %d out of range [%d, %d]",
1157 			objtotal, p->nummin, p->nummax);
1158 		return EINVAL;
1159 	}
1160 	/*
1161 	 * Compute number of objects using a brute-force approach:
1162 	 * given a max cluster size,
1163 	 * we try to fill it with objects keeping track of the
1164 	 * wasted space to the next page boundary.
1165 	 */
1166 	for (clustentries = 0, i = 1;; i++) {
1167 		u_int delta, used = i * objsize;
1168 		if (used > MAX_CLUSTSIZE)
1169 			break;
1170 		delta = used % PAGE_SIZE;
1171 		if (delta == 0) { // exact solution
1172 			clustentries = i;
1173 			break;
1174 		}
1175 	}
1176 	/* exact solution not found */
1177 	if (clustentries == 0) {
1178 		D("unsupported allocation for %d bytes", objsize);
1179 		return EINVAL;
1180 	}
1181 	/* compute clustsize */
1182 	clustsize = clustentries * objsize;
1183 	if (netmap_verbose)
1184 		D("objsize %d clustsize %d objects %d",
1185 			objsize, clustsize, clustentries);
1186 
1187 	/*
1188 	 * The number of clusters is n = ceil(objtotal/clustentries)
1189 	 * objtotal' = n * clustentries
1190 	 */
1191 	p->_clustentries = clustentries;
1192 	p->_clustsize = clustsize;
1193 	p->_numclusters = (objtotal + clustentries - 1) / clustentries;
1194 
1195 	/* actual values (may be larger than requested) */
1196 	p->_objsize = objsize;
1197 	p->_objtotal = p->_numclusters * clustentries;
1198 
1199 	return 0;
1200 }
1201 
1202 static struct lut_entry *
1203 nm_alloc_lut(u_int nobj)
1204 {
1205 	size_t n = sizeof(struct lut_entry) * nobj;
1206 	struct lut_entry *lut;
1207 #ifdef linux
1208 	lut = vmalloc(n);
1209 #else
1210 	lut = nm_os_malloc(n);
1211 #endif
1212 	return lut;
1213 }
1214 
1215 /* call with NMA_LOCK held */
1216 static int
1217 netmap_finalize_obj_allocator(struct netmap_obj_pool *p)
1218 {
1219 	int i; /* must be signed */
1220 	size_t n;
1221 
1222 	/* optimistically assume we have enough memory */
1223 	p->numclusters = p->_numclusters;
1224 	p->objtotal = p->_objtotal;
1225 
1226 	p->lut = nm_alloc_lut(p->objtotal);
1227 	if (p->lut == NULL) {
1228 		D("Unable to create lookup table for '%s'", p->name);
1229 		goto clean;
1230 	}
1231 
1232 	/* Allocate the bitmap */
1233 	n = (p->objtotal + 31) / 32;
1234 	p->bitmap = nm_os_malloc(sizeof(uint32_t) * n);
1235 	if (p->bitmap == NULL) {
1236 		D("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
1237 		    p->name);
1238 		goto clean;
1239 	}
1240 	p->bitmap_slots = n;
1241 
1242 	/*
1243 	 * Allocate clusters, init pointers and bitmap
1244 	 */
1245 
1246 	n = p->_clustsize;
1247 	for (i = 0; i < (int)p->objtotal;) {
1248 		int lim = i + p->_clustentries;
1249 		char *clust;
1250 
1251 		/*
1252 		 * XXX Note, we only need contigmalloc() for buffers attached
1253 		 * to native interfaces. In all other cases (nifp, netmap rings
1254 		 * and even buffers for VALE ports or emulated interfaces) we
1255 		 * can live with standard malloc, because the hardware will not
1256 		 * access the pages directly.
1257 		 */
1258 		clust = contigmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO,
1259 		    (size_t)0, -1UL, PAGE_SIZE, 0);
1260 		if (clust == NULL) {
1261 			/*
1262 			 * If we get here, there is a severe memory shortage,
1263 			 * so halve the allocated memory to reclaim some.
1264 			 */
1265 			D("Unable to create cluster at %d for '%s' allocator",
1266 			    i, p->name);
1267 			if (i < 2) /* nothing to halve */
1268 				goto out;
1269 			lim = i / 2;
1270 			for (i--; i >= lim; i--) {
1271 				p->bitmap[ (i>>5) ] &=  ~( 1 << (i & 31) );
1272 				if (i % p->_clustentries == 0 && p->lut[i].vaddr)
1273 					contigfree(p->lut[i].vaddr,
1274 						n, M_NETMAP);
1275 				p->lut[i].vaddr = NULL;
1276 			}
1277 		out:
1278 			p->objtotal = i;
1279 			/* we may have stopped in the middle of a cluster */
1280 			p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
1281 			break;
1282 		}
1283 		/*
1284 		 * Set bitmap and lut state for all buffers in the current
1285 		 * cluster.
1286 		 *
1287 		 * [i, lim) is the set of buffer indexes that cover the
1288 		 * current cluster.
1289 		 *
1290 		 * 'clust' is really the address of the current buffer in
1291 		 * the current cluster as we index through it with a stride
1292 		 * of p->_objsize.
1293 		 */
1294 		for (; i < lim; i++, clust += p->_objsize) {
1295 			p->bitmap[ (i>>5) ] |=  ( 1 << (i & 31) );
1296 			p->lut[i].vaddr = clust;
1297 			p->lut[i].paddr = vtophys(clust);
1298 		}
1299 	}
1300 	p->objfree = p->objtotal;
1301 	p->memtotal = p->numclusters * p->_clustsize;
1302 	if (p->objfree == 0)
1303 		goto clean;
1304 	if (netmap_verbose)
1305 		D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
1306 		    p->numclusters, p->_clustsize >> 10,
1307 		    p->memtotal >> 10, p->name);
1308 
1309 	return 0;
1310 
1311 clean:
1312 	netmap_reset_obj_allocator(p);
1313 	return ENOMEM;
1314 }
1315 
1316 /* call with lock held */
1317 static int
1318 netmap_mem_params_changed(struct netmap_obj_params* p)
1319 {
1320 	int i, rv = 0;
1321 
1322 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1323 		if (p[i].last_size != p[i].size || p[i].last_num != p[i].num) {
1324 			p[i].last_size = p[i].size;
1325 			p[i].last_num = p[i].num;
1326 			rv = 1;
1327 		}
1328 	}
1329 	return rv;
1330 }
1331 
1332 static void
1333 netmap_mem_reset_all(struct netmap_mem_d *nmd)
1334 {
1335 	int i;
1336 
1337 	if (netmap_verbose)
1338 		D("resetting %p", nmd);
1339 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1340 		netmap_reset_obj_allocator(&nmd->pools[i]);
1341 	}
1342 	nmd->flags  &= ~NETMAP_MEM_FINALIZED;
1343 }
1344 
1345 static int
1346 netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na)
1347 {
1348 	int i, lim = p->_objtotal;
1349 
1350 	if (na == NULL || na->pdev == NULL)
1351 		return 0;
1352 
1353 #if defined(__FreeBSD__)
1354 	(void)i;
1355 	(void)lim;
1356 	D("unsupported on FreeBSD");
1357 
1358 #elif defined(_WIN32)
1359 	(void)i;
1360 	(void)lim;
1361 	D("unsupported on Windows");	//XXX_ale, really?
1362 #else /* linux */
1363 	for (i = 2; i < lim; i++) {
1364 		netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &p->lut[i].paddr);
1365 	}
1366 #endif /* linux */
1367 
1368 	return 0;
1369 }
1370 
1371 static int
1372 netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na)
1373 {
1374 #if defined(__FreeBSD__)
1375 	D("unsupported on FreeBSD");
1376 #elif defined(_WIN32)
1377 	D("unsupported on Windows");	//XXX_ale, really?
1378 #else /* linux */
1379 	int i, lim = p->_objtotal;
1380 
1381 	if (na->pdev == NULL)
1382 		return 0;
1383 
1384 	for (i = 2; i < lim; i++) {
1385 		netmap_load_map(na, (bus_dma_tag_t) na->pdev, &p->lut[i].paddr,
1386 				p->lut[i].vaddr);
1387 	}
1388 #endif /* linux */
1389 
1390 	return 0;
1391 }
1392 
1393 static int
1394 netmap_mem_finalize_all(struct netmap_mem_d *nmd)
1395 {
1396 	int i;
1397 	if (nmd->flags & NETMAP_MEM_FINALIZED)
1398 		return 0;
1399 	nmd->lasterr = 0;
1400 	nmd->nm_totalsize = 0;
1401 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1402 		nmd->lasterr = netmap_finalize_obj_allocator(&nmd->pools[i]);
1403 		if (nmd->lasterr)
1404 			goto error;
1405 		nmd->nm_totalsize += nmd->pools[i].memtotal;
1406 	}
1407 	/* buffers 0 and 1 are reserved */
1408 	nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
1409 	nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3;
1410 	nmd->flags |= NETMAP_MEM_FINALIZED;
1411 
1412 	if (netmap_verbose)
1413 		D("interfaces %d KB, rings %d KB, buffers %d MB",
1414 		    nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
1415 		    nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
1416 		    nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
1417 
1418 	if (netmap_verbose)
1419 		D("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
1420 
1421 
1422 	return 0;
1423 error:
1424 	netmap_mem_reset_all(nmd);
1425 	return nmd->lasterr;
1426 }
1427 
1428 /*
1429  * allocator for private memory
1430  */
1431 static struct netmap_mem_d *
1432 _netmap_mem_private_new(struct netmap_obj_params *p, int *perr)
1433 {
1434 	struct netmap_mem_d *d = NULL;
1435 	int i, err = 0;
1436 
1437 	d = nm_os_malloc(sizeof(struct netmap_mem_d));
1438 	if (d == NULL) {
1439 		err = ENOMEM;
1440 		goto error;
1441 	}
1442 
1443 	*d = nm_blueprint;
1444 
1445 	err = nm_mem_assign_id(d);
1446 	if (err)
1447 		goto error;
1448 	snprintf(d->name, NM_MEM_NAMESZ, "%d", d->nm_id);
1449 
1450 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1451 		snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
1452 				nm_blueprint.pools[i].name,
1453 				d->name);
1454 		d->params[i].num = p[i].num;
1455 		d->params[i].size = p[i].size;
1456 	}
1457 
1458 	NMA_LOCK_INIT(d);
1459 
1460 	err = netmap_mem_config(d);
1461 	if (err)
1462 		goto error;
1463 
1464 	d->flags &= ~NETMAP_MEM_FINALIZED;
1465 
1466 	return d;
1467 
1468 error:
1469 	netmap_mem_delete(d);
1470 	if (perr)
1471 		*perr = err;
1472 	return NULL;
1473 }
1474 
1475 struct netmap_mem_d *
1476 netmap_mem_private_new(u_int txr, u_int txd, u_int rxr, u_int rxd,
1477 		u_int extra_bufs, u_int npipes, int *perr)
1478 {
1479 	struct netmap_mem_d *d = NULL;
1480 	struct netmap_obj_params p[NETMAP_POOLS_NR];
1481 	int i, err = 0;
1482 	u_int v, maxd;
1483 	/* account for the fake host rings */
1484 	txr++;
1485 	rxr++;
1486 
1487 	/* copy the min values */
1488 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1489 		p[i] = netmap_min_priv_params[i];
1490 	}
1491 
1492 	/* possibly increase them to fit user request */
1493 	v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr);
1494 	if (p[NETMAP_IF_POOL].size < v)
1495 		p[NETMAP_IF_POOL].size = v;
1496 	v = 2 + 4 * npipes;
1497 	if (p[NETMAP_IF_POOL].num < v)
1498 		p[NETMAP_IF_POOL].num = v;
1499 	maxd = (txd > rxd) ? txd : rxd;
1500 	v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd;
1501 	if (p[NETMAP_RING_POOL].size < v)
1502 		p[NETMAP_RING_POOL].size = v;
1503 	/* each pipe endpoint needs two tx rings (1 normal + 1 host, fake)
1504          * and two rx rings (again, 1 normal and 1 fake host)
1505          */
1506 	v = txr + rxr + 8 * npipes;
1507 	if (p[NETMAP_RING_POOL].num < v)
1508 		p[NETMAP_RING_POOL].num = v;
1509 	/* for each pipe we only need the buffers for the 4 "real" rings.
1510          * On the other end, the pipe ring dimension may be different from
1511          * the parent port ring dimension. As a compromise, we allocate twice the
1512          * space actually needed if the pipe rings were the same size as the parent rings
1513          */
1514 	v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs;
1515 		/* the +2 is for the tx and rx fake buffers (indices 0 and 1) */
1516 	if (p[NETMAP_BUF_POOL].num < v)
1517 		p[NETMAP_BUF_POOL].num = v;
1518 
1519 	if (netmap_verbose)
1520 		D("req if %d*%d ring %d*%d buf %d*%d",
1521 			p[NETMAP_IF_POOL].num,
1522 			p[NETMAP_IF_POOL].size,
1523 			p[NETMAP_RING_POOL].num,
1524 			p[NETMAP_RING_POOL].size,
1525 			p[NETMAP_BUF_POOL].num,
1526 			p[NETMAP_BUF_POOL].size);
1527 
1528 	d = _netmap_mem_private_new(p, perr);
1529 	if (d == NULL)
1530 		goto error;
1531 
1532 	return d;
1533 error:
1534 	netmap_mem_delete(d);
1535 	if (perr)
1536 		*perr = err;
1537 	return NULL;
1538 }
1539 
1540 
1541 /* call with lock held */
1542 static int
1543 netmap_mem2_config(struct netmap_mem_d *nmd)
1544 {
1545 	int i;
1546 
1547 	if (nmd->active)
1548 		/* already in use, we cannot change the configuration */
1549 		goto out;
1550 
1551 	if (!netmap_mem_params_changed(nmd->params))
1552 		goto out;
1553 
1554 	ND("reconfiguring");
1555 
1556 	if (nmd->flags & NETMAP_MEM_FINALIZED) {
1557 		/* reset previous allocation */
1558 		for (i = 0; i < NETMAP_POOLS_NR; i++) {
1559 			netmap_reset_obj_allocator(&nmd->pools[i]);
1560 		}
1561 		nmd->flags &= ~NETMAP_MEM_FINALIZED;
1562 	}
1563 
1564 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1565 		nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
1566 				nmd->params[i].num, nmd->params[i].size);
1567 		if (nmd->lasterr)
1568 			goto out;
1569 	}
1570 
1571 out:
1572 
1573 	return nmd->lasterr;
1574 }
1575 
1576 static int
1577 netmap_mem2_finalize(struct netmap_mem_d *nmd)
1578 {
1579 	int err;
1580 
1581 	/* update configuration if changed */
1582 	if (netmap_mem2_config(nmd))
1583 		goto out1;
1584 
1585 	nmd->active++;
1586 
1587 	if (nmd->flags & NETMAP_MEM_FINALIZED) {
1588 		/* may happen if config is not changed */
1589 		ND("nothing to do");
1590 		goto out;
1591 	}
1592 
1593 	if (netmap_mem_finalize_all(nmd))
1594 		goto out;
1595 
1596 	nmd->lasterr = 0;
1597 
1598 out:
1599 	if (nmd->lasterr)
1600 		nmd->active--;
1601 out1:
1602 	err = nmd->lasterr;
1603 
1604 	return err;
1605 
1606 }
1607 
1608 static void
1609 netmap_mem2_delete(struct netmap_mem_d *nmd)
1610 {
1611 	int i;
1612 
1613 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1614 	    netmap_destroy_obj_allocator(&nmd->pools[i]);
1615 	}
1616 
1617 	NMA_LOCK_DESTROY(nmd);
1618 	if (nmd != &nm_mem)
1619 		nm_os_free(nmd);
1620 }
1621 
1622 int
1623 netmap_mem_init(void)
1624 {
1625 	NM_MTX_INIT(nm_mem_list_lock);
1626 	NMA_LOCK_INIT(&nm_mem);
1627 	netmap_mem_get(&nm_mem);
1628 	return (0);
1629 }
1630 
1631 void
1632 netmap_mem_fini(void)
1633 {
1634 	netmap_mem_put(&nm_mem);
1635 }
1636 
1637 static void
1638 netmap_free_rings(struct netmap_adapter *na)
1639 {
1640 	enum txrx t;
1641 
1642 	for_rx_tx(t) {
1643 		u_int i;
1644 		for (i = 0; i < nma_get_nrings(na, t) + 1; i++) {
1645 			struct netmap_kring *kring = &NMR(na, t)[i];
1646 			struct netmap_ring *ring = kring->ring;
1647 
1648 			if (ring == NULL || kring->users > 0 || (kring->nr_kflags & NKR_NEEDRING)) {
1649 				ND("skipping ring %s (ring %p, users %d)",
1650 						kring->name, ring, kring->users);
1651 				continue;
1652 			}
1653 			if (i != nma_get_nrings(na, t) || na->na_flags & NAF_HOST_RINGS)
1654 				netmap_free_bufs(na->nm_mem, ring->slot, kring->nkr_num_slots);
1655 			netmap_ring_free(na->nm_mem, ring);
1656 			kring->ring = NULL;
1657 		}
1658 	}
1659 }
1660 
1661 /* call with NMA_LOCK held *
1662  *
1663  * Allocate netmap rings and buffers for this card
1664  * The rings are contiguous, but have variable size.
1665  * The kring array must follow the layout described
1666  * in netmap_krings_create().
1667  */
1668 static int
1669 netmap_mem2_rings_create(struct netmap_adapter *na)
1670 {
1671 	enum txrx t;
1672 
1673 	NMA_LOCK(na->nm_mem);
1674 
1675 	for_rx_tx(t) {
1676 		u_int i;
1677 
1678 		for (i = 0; i <= nma_get_nrings(na, t); i++) {
1679 			struct netmap_kring *kring = &NMR(na, t)[i];
1680 			struct netmap_ring *ring = kring->ring;
1681 			u_int len, ndesc;
1682 
1683 			if (ring || (!kring->users && !(kring->nr_kflags & NKR_NEEDRING))) {
1684 				/* uneeded, or already created by somebody else */
1685 				ND("skipping ring %s", kring->name);
1686 				continue;
1687 			}
1688 			ndesc = kring->nkr_num_slots;
1689 			len = sizeof(struct netmap_ring) +
1690 				  ndesc * sizeof(struct netmap_slot);
1691 			ring = netmap_ring_malloc(na->nm_mem, len);
1692 			if (ring == NULL) {
1693 				D("Cannot allocate %s_ring", nm_txrx2str(t));
1694 				goto cleanup;
1695 			}
1696 			ND("txring at %p", ring);
1697 			kring->ring = ring;
1698 			*(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
1699 			*(int64_t *)(uintptr_t)&ring->buf_ofs =
1700 			    (na->nm_mem->pools[NETMAP_IF_POOL].memtotal +
1701 				na->nm_mem->pools[NETMAP_RING_POOL].memtotal) -
1702 				netmap_ring_offset(na->nm_mem, ring);
1703 
1704 			/* copy values from kring */
1705 			ring->head = kring->rhead;
1706 			ring->cur = kring->rcur;
1707 			ring->tail = kring->rtail;
1708 			*(uint16_t *)(uintptr_t)&ring->nr_buf_size =
1709 				netmap_mem_bufsize(na->nm_mem);
1710 			ND("%s h %d c %d t %d", kring->name,
1711 				ring->head, ring->cur, ring->tail);
1712 			ND("initializing slots for %s_ring", nm_txrx2str(txrx));
1713 			if (i != nma_get_nrings(na, t) || (na->na_flags & NAF_HOST_RINGS)) {
1714 				/* this is a real ring */
1715 				if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) {
1716 					D("Cannot allocate buffers for %s_ring", nm_txrx2str(t));
1717 					goto cleanup;
1718 				}
1719 			} else {
1720 				/* this is a fake ring, set all indices to 0 */
1721 				netmap_mem_set_ring(na->nm_mem, ring->slot, ndesc, 0);
1722 			}
1723 		        /* ring info */
1724 		        *(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id;
1725 		        *(uint16_t *)(uintptr_t)&ring->dir = kring->tx;
1726 		}
1727 	}
1728 
1729 	NMA_UNLOCK(na->nm_mem);
1730 
1731 	return 0;
1732 
1733 cleanup:
1734 	netmap_free_rings(na);
1735 
1736 	NMA_UNLOCK(na->nm_mem);
1737 
1738 	return ENOMEM;
1739 }
1740 
1741 static void
1742 netmap_mem2_rings_delete(struct netmap_adapter *na)
1743 {
1744 	/* last instance, release bufs and rings */
1745 	NMA_LOCK(na->nm_mem);
1746 
1747 	netmap_free_rings(na);
1748 
1749 	NMA_UNLOCK(na->nm_mem);
1750 }
1751 
1752 
1753 /* call with NMA_LOCK held */
1754 /*
1755  * Allocate the per-fd structure netmap_if.
1756  *
1757  * We assume that the configuration stored in na
1758  * (number of tx/rx rings and descs) does not change while
1759  * the interface is in netmap mode.
1760  */
1761 static struct netmap_if *
1762 netmap_mem2_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
1763 {
1764 	struct netmap_if *nifp;
1765 	ssize_t base; /* handy for relative offsets between rings and nifp */
1766 	u_int i, len, n[NR_TXRX], ntot;
1767 	enum txrx t;
1768 
1769 	ntot = 0;
1770 	for_rx_tx(t) {
1771 		/* account for the (eventually fake) host rings */
1772 		n[t] = nma_get_nrings(na, t) + 1;
1773 		ntot += n[t];
1774 	}
1775 	/*
1776 	 * the descriptor is followed inline by an array of offsets
1777 	 * to the tx and rx rings in the shared memory region.
1778 	 */
1779 
1780 	NMA_LOCK(na->nm_mem);
1781 
1782 	len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t));
1783 	nifp = netmap_if_malloc(na->nm_mem, len);
1784 	if (nifp == NULL) {
1785 		NMA_UNLOCK(na->nm_mem);
1786 		return NULL;
1787 	}
1788 
1789 	/* initialize base fields -- override const */
1790 	*(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
1791 	*(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
1792 	strncpy(nifp->ni_name, na->name, (size_t)IFNAMSIZ);
1793 
1794 	/*
1795 	 * fill the slots for the rx and tx rings. They contain the offset
1796 	 * between the ring and nifp, so the information is usable in
1797 	 * userspace to reach the ring from the nifp.
1798 	 */
1799 	base = netmap_if_offset(na->nm_mem, nifp);
1800 	for (i = 0; i < n[NR_TX]; i++) {
1801 		/* XXX instead of ofs == 0 maybe use the offset of an error
1802 		 * ring, like we do for buffers? */
1803 		ssize_t ofs = 0;
1804 
1805 		if (na->tx_rings[i].ring != NULL && i >= priv->np_qfirst[NR_TX]
1806 				&& i < priv->np_qlast[NR_TX]) {
1807 			ofs = netmap_ring_offset(na->nm_mem,
1808 						 na->tx_rings[i].ring) - base;
1809 		}
1810 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = ofs;
1811 	}
1812 	for (i = 0; i < n[NR_RX]; i++) {
1813 		/* XXX instead of ofs == 0 maybe use the offset of an error
1814 		 * ring, like we do for buffers? */
1815 		ssize_t ofs = 0;
1816 
1817 		if (na->rx_rings[i].ring != NULL && i >= priv->np_qfirst[NR_RX]
1818 				&& i < priv->np_qlast[NR_RX]) {
1819 			ofs = netmap_ring_offset(na->nm_mem,
1820 						 na->rx_rings[i].ring) - base;
1821 		}
1822 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = ofs;
1823 	}
1824 
1825 	NMA_UNLOCK(na->nm_mem);
1826 
1827 	return (nifp);
1828 }
1829 
1830 static void
1831 netmap_mem2_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
1832 {
1833 	if (nifp == NULL)
1834 		/* nothing to do */
1835 		return;
1836 	NMA_LOCK(na->nm_mem);
1837 	if (nifp->ni_bufs_head)
1838 		netmap_extra_free(na, nifp->ni_bufs_head);
1839 	netmap_if_free(na->nm_mem, nifp);
1840 
1841 	NMA_UNLOCK(na->nm_mem);
1842 }
1843 
1844 static void
1845 netmap_mem2_deref(struct netmap_mem_d *nmd)
1846 {
1847 
1848 	nmd->active--;
1849 	if (!nmd->active)
1850 		nmd->nm_grp = -1;
1851 	if (netmap_verbose)
1852 		D("active = %d", nmd->active);
1853 
1854 }
1855 
1856 struct netmap_mem_ops netmap_mem_global_ops = {
1857 	.nmd_get_lut = netmap_mem2_get_lut,
1858 	.nmd_get_info = netmap_mem2_get_info,
1859 	.nmd_ofstophys = netmap_mem2_ofstophys,
1860 	.nmd_config = netmap_mem2_config,
1861 	.nmd_finalize = netmap_mem2_finalize,
1862 	.nmd_deref = netmap_mem2_deref,
1863 	.nmd_delete = netmap_mem2_delete,
1864 	.nmd_if_offset = netmap_mem2_if_offset,
1865 	.nmd_if_new = netmap_mem2_if_new,
1866 	.nmd_if_delete = netmap_mem2_if_delete,
1867 	.nmd_rings_create = netmap_mem2_rings_create,
1868 	.nmd_rings_delete = netmap_mem2_rings_delete
1869 };
1870 
1871 int
1872 netmap_mem_pools_info_get(struct nmreq *nmr, struct netmap_mem_d *nmd)
1873 {
1874 	uintptr_t *pp = (uintptr_t *)&nmr->nr_arg1;
1875 	struct netmap_pools_info *upi = (struct netmap_pools_info *)(*pp);
1876 	struct netmap_pools_info pi;
1877 	unsigned int memsize;
1878 	uint16_t memid;
1879 	int ret;
1880 
1881 	ret = netmap_mem_get_info(nmd, &memsize, NULL, &memid);
1882 	if (ret) {
1883 		return ret;
1884 	}
1885 
1886 	pi.memsize = memsize;
1887 	pi.memid = memid;
1888 	NMA_LOCK(nmd);
1889 	pi.if_pool_offset = 0;
1890 	pi.if_pool_objtotal = nmd->pools[NETMAP_IF_POOL].objtotal;
1891 	pi.if_pool_objsize = nmd->pools[NETMAP_IF_POOL]._objsize;
1892 
1893 	pi.ring_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal;
1894 	pi.ring_pool_objtotal = nmd->pools[NETMAP_RING_POOL].objtotal;
1895 	pi.ring_pool_objsize = nmd->pools[NETMAP_RING_POOL]._objsize;
1896 
1897 	pi.buf_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal +
1898 			     nmd->pools[NETMAP_RING_POOL].memtotal;
1899 	pi.buf_pool_objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
1900 	pi.buf_pool_objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
1901 	NMA_UNLOCK(nmd);
1902 
1903 	ret = copyout(&pi, upi, sizeof(pi));
1904 	if (ret) {
1905 		return ret;
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 #ifdef WITH_PTNETMAP_GUEST
1912 struct mem_pt_if {
1913 	struct mem_pt_if *next;
1914 	struct ifnet *ifp;
1915 	unsigned int nifp_offset;
1916 };
1917 
1918 /* Netmap allocator for ptnetmap guests. */
1919 struct netmap_mem_ptg {
1920 	struct netmap_mem_d up;
1921 
1922 	vm_paddr_t nm_paddr;            /* physical address in the guest */
1923 	void *nm_addr;                  /* virtual address in the guest */
1924 	struct netmap_lut buf_lut;      /* lookup table for BUF pool in the guest */
1925 	nm_memid_t host_mem_id;         /* allocator identifier in the host */
1926 	struct ptnetmap_memdev *ptn_dev;/* ptnetmap memdev */
1927 	struct mem_pt_if *pt_ifs;	/* list of interfaces in passthrough */
1928 };
1929 
1930 /* Link a passthrough interface to a passthrough netmap allocator. */
1931 static int
1932 netmap_mem_pt_guest_ifp_add(struct netmap_mem_d *nmd, struct ifnet *ifp,
1933 			    unsigned int nifp_offset)
1934 {
1935 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
1936 	struct mem_pt_if *ptif = nm_os_malloc(sizeof(*ptif));
1937 
1938 	if (!ptif) {
1939 		return ENOMEM;
1940 	}
1941 
1942 	NMA_LOCK(nmd);
1943 
1944 	ptif->ifp = ifp;
1945 	ptif->nifp_offset = nifp_offset;
1946 
1947 	if (ptnmd->pt_ifs) {
1948 		ptif->next = ptnmd->pt_ifs;
1949 	}
1950 	ptnmd->pt_ifs = ptif;
1951 
1952 	NMA_UNLOCK(nmd);
1953 
1954 	D("added (ifp=%p,nifp_offset=%u)", ptif->ifp, ptif->nifp_offset);
1955 
1956 	return 0;
1957 }
1958 
1959 /* Called with NMA_LOCK(nmd) held. */
1960 static struct mem_pt_if *
1961 netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d *nmd, struct ifnet *ifp)
1962 {
1963 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
1964 	struct mem_pt_if *curr;
1965 
1966 	for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
1967 		if (curr->ifp == ifp) {
1968 			return curr;
1969 		}
1970 	}
1971 
1972 	return NULL;
1973 }
1974 
1975 /* Unlink a passthrough interface from a passthrough netmap allocator. */
1976 int
1977 netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *nmd, struct ifnet *ifp)
1978 {
1979 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
1980 	struct mem_pt_if *prev = NULL;
1981 	struct mem_pt_if *curr;
1982 	int ret = -1;
1983 
1984 	NMA_LOCK(nmd);
1985 
1986 	for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
1987 		if (curr->ifp == ifp) {
1988 			if (prev) {
1989 				prev->next = curr->next;
1990 			} else {
1991 				ptnmd->pt_ifs = curr->next;
1992 			}
1993 			D("removed (ifp=%p,nifp_offset=%u)",
1994 			  curr->ifp, curr->nifp_offset);
1995 			nm_os_free(curr);
1996 			ret = 0;
1997 			break;
1998 		}
1999 		prev = curr;
2000 	}
2001 
2002 	NMA_UNLOCK(nmd);
2003 
2004 	return ret;
2005 }
2006 
2007 static int
2008 netmap_mem_pt_guest_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
2009 {
2010 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2011 
2012 	if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
2013 		return EINVAL;
2014 	}
2015 
2016 	*lut = ptnmd->buf_lut;
2017 	return 0;
2018 }
2019 
2020 static int
2021 netmap_mem_pt_guest_get_info(struct netmap_mem_d *nmd, u_int *size,
2022 			     u_int *memflags, uint16_t *id)
2023 {
2024 	int error = 0;
2025 
2026 	NMA_LOCK(nmd);
2027 
2028 	error = nmd->ops->nmd_config(nmd);
2029 	if (error)
2030 		goto out;
2031 
2032 	if (size)
2033 		*size = nmd->nm_totalsize;
2034 	if (memflags)
2035 		*memflags = nmd->flags;
2036 	if (id)
2037 		*id = nmd->nm_id;
2038 
2039 out:
2040 	NMA_UNLOCK(nmd);
2041 
2042 	return error;
2043 }
2044 
2045 static vm_paddr_t
2046 netmap_mem_pt_guest_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
2047 {
2048 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2049 	vm_paddr_t paddr;
2050 	/* if the offset is valid, just return csb->base_addr + off */
2051 	paddr = (vm_paddr_t)(ptnmd->nm_paddr + off);
2052 	ND("off %lx padr %lx", off, (unsigned long)paddr);
2053 	return paddr;
2054 }
2055 
2056 static int
2057 netmap_mem_pt_guest_config(struct netmap_mem_d *nmd)
2058 {
2059 	/* nothing to do, we are configured on creation
2060 	 * and configuration never changes thereafter
2061 	 */
2062 	return 0;
2063 }
2064 
2065 static int
2066 netmap_mem_pt_guest_finalize(struct netmap_mem_d *nmd)
2067 {
2068 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2069 	uint64_t mem_size;
2070 	uint32_t bufsize;
2071 	uint32_t nbuffers;
2072 	uint32_t poolofs;
2073 	vm_paddr_t paddr;
2074 	char *vaddr;
2075 	int i;
2076 	int error = 0;
2077 
2078 	nmd->active++;
2079 
2080 	if (nmd->flags & NETMAP_MEM_FINALIZED)
2081 		goto out;
2082 
2083 	if (ptnmd->ptn_dev == NULL) {
2084 		D("ptnetmap memdev not attached");
2085 		error = ENOMEM;
2086 		goto err;
2087 	}
2088 	/* Map memory through ptnetmap-memdev BAR. */
2089 	error = nm_os_pt_memdev_iomap(ptnmd->ptn_dev, &ptnmd->nm_paddr,
2090 				      &ptnmd->nm_addr, &mem_size);
2091 	if (error)
2092 		goto err;
2093 
2094         /* Initialize the lut using the information contained in the
2095 	 * ptnetmap memory device. */
2096         bufsize = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2097 					 PTNET_MDEV_IO_BUF_POOL_OBJSZ);
2098         nbuffers = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2099 					 PTNET_MDEV_IO_BUF_POOL_OBJNUM);
2100 
2101 	/* allocate the lut */
2102 	if (ptnmd->buf_lut.lut == NULL) {
2103 		D("allocating lut");
2104 		ptnmd->buf_lut.lut = nm_alloc_lut(nbuffers);
2105 		if (ptnmd->buf_lut.lut == NULL) {
2106 			D("lut allocation failed");
2107 			return ENOMEM;
2108 		}
2109 	}
2110 
2111 	/* we have physically contiguous memory mapped through PCI BAR */
2112 	poolofs = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2113 					 PTNET_MDEV_IO_BUF_POOL_OFS);
2114 	vaddr = (char *)(ptnmd->nm_addr) + poolofs;
2115 	paddr = ptnmd->nm_paddr + poolofs;
2116 
2117 	for (i = 0; i < nbuffers; i++) {
2118 		ptnmd->buf_lut.lut[i].vaddr = vaddr;
2119 		ptnmd->buf_lut.lut[i].paddr = paddr;
2120 		vaddr += bufsize;
2121 		paddr += bufsize;
2122 	}
2123 
2124 	ptnmd->buf_lut.objtotal = nbuffers;
2125 	ptnmd->buf_lut.objsize = bufsize;
2126 	nmd->nm_totalsize = (unsigned int)mem_size;
2127 
2128 	nmd->flags |= NETMAP_MEM_FINALIZED;
2129 out:
2130 	return 0;
2131 err:
2132 	nmd->active--;
2133 	return error;
2134 }
2135 
2136 static void
2137 netmap_mem_pt_guest_deref(struct netmap_mem_d *nmd)
2138 {
2139 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2140 
2141 	nmd->active--;
2142 	if (nmd->active <= 0 &&
2143 		(nmd->flags & NETMAP_MEM_FINALIZED)) {
2144 	    nmd->flags  &= ~NETMAP_MEM_FINALIZED;
2145 	    /* unmap ptnetmap-memdev memory */
2146 	    if (ptnmd->ptn_dev) {
2147 		nm_os_pt_memdev_iounmap(ptnmd->ptn_dev);
2148 	    }
2149 	    ptnmd->nm_addr = NULL;
2150 	    ptnmd->nm_paddr = 0;
2151 	}
2152 }
2153 
2154 static ssize_t
2155 netmap_mem_pt_guest_if_offset(struct netmap_mem_d *nmd, const void *vaddr)
2156 {
2157 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2158 
2159 	return (const char *)(vaddr) - (char *)(ptnmd->nm_addr);
2160 }
2161 
2162 static void
2163 netmap_mem_pt_guest_delete(struct netmap_mem_d *nmd)
2164 {
2165 	if (nmd == NULL)
2166 		return;
2167 	if (netmap_verbose)
2168 		D("deleting %p", nmd);
2169 	if (nmd->active > 0)
2170 		D("bug: deleting mem allocator with active=%d!", nmd->active);
2171 	if (netmap_verbose)
2172 		D("done deleting %p", nmd);
2173 	NMA_LOCK_DESTROY(nmd);
2174 	nm_os_free(nmd);
2175 }
2176 
2177 static struct netmap_if *
2178 netmap_mem_pt_guest_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
2179 {
2180 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
2181 	struct mem_pt_if *ptif;
2182 	struct netmap_if *nifp = NULL;
2183 
2184 	NMA_LOCK(na->nm_mem);
2185 
2186 	ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
2187 	if (ptif == NULL) {
2188 		D("Error: interface %p is not in passthrough", na->ifp);
2189 		goto out;
2190 	}
2191 
2192 	nifp = (struct netmap_if *)((char *)(ptnmd->nm_addr) +
2193 				    ptif->nifp_offset);
2194 	NMA_UNLOCK(na->nm_mem);
2195 out:
2196 	return nifp;
2197 }
2198 
2199 static void
2200 netmap_mem_pt_guest_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
2201 {
2202 	struct mem_pt_if *ptif;
2203 
2204 	NMA_LOCK(na->nm_mem);
2205 	ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
2206 	if (ptif == NULL) {
2207 		D("Error: interface %p is not in passthrough", na->ifp);
2208 	}
2209 	NMA_UNLOCK(na->nm_mem);
2210 }
2211 
2212 static int
2213 netmap_mem_pt_guest_rings_create(struct netmap_adapter *na)
2214 {
2215 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
2216 	struct mem_pt_if *ptif;
2217 	struct netmap_if *nifp;
2218 	int i, error = -1;
2219 
2220 	NMA_LOCK(na->nm_mem);
2221 
2222 	ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
2223 	if (ptif == NULL) {
2224 		D("Error: interface %p is not in passthrough", na->ifp);
2225 		goto out;
2226 	}
2227 
2228 
2229 	/* point each kring to the corresponding backend ring */
2230 	nifp = (struct netmap_if *)((char *)ptnmd->nm_addr + ptif->nifp_offset);
2231 	for (i = 0; i <= na->num_tx_rings; i++) {
2232 		struct netmap_kring *kring = na->tx_rings + i;
2233 		if (kring->ring)
2234 			continue;
2235 		kring->ring = (struct netmap_ring *)
2236 			((char *)nifp + nifp->ring_ofs[i]);
2237 	}
2238 	for (i = 0; i <= na->num_rx_rings; i++) {
2239 		struct netmap_kring *kring = na->rx_rings + i;
2240 		if (kring->ring)
2241 			continue;
2242 		kring->ring = (struct netmap_ring *)
2243 			((char *)nifp +
2244 			 nifp->ring_ofs[i + na->num_tx_rings + 1]);
2245 	}
2246 
2247 	error = 0;
2248 out:
2249 	NMA_UNLOCK(na->nm_mem);
2250 
2251 	return error;
2252 }
2253 
2254 static void
2255 netmap_mem_pt_guest_rings_delete(struct netmap_adapter *na)
2256 {
2257 	/* TODO: remove?? */
2258 #if 0
2259 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
2260 	struct mem_pt_if *ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem,
2261 								na->ifp);
2262 #endif
2263 }
2264 
2265 static struct netmap_mem_ops netmap_mem_pt_guest_ops = {
2266 	.nmd_get_lut = netmap_mem_pt_guest_get_lut,
2267 	.nmd_get_info = netmap_mem_pt_guest_get_info,
2268 	.nmd_ofstophys = netmap_mem_pt_guest_ofstophys,
2269 	.nmd_config = netmap_mem_pt_guest_config,
2270 	.nmd_finalize = netmap_mem_pt_guest_finalize,
2271 	.nmd_deref = netmap_mem_pt_guest_deref,
2272 	.nmd_if_offset = netmap_mem_pt_guest_if_offset,
2273 	.nmd_delete = netmap_mem_pt_guest_delete,
2274 	.nmd_if_new = netmap_mem_pt_guest_if_new,
2275 	.nmd_if_delete = netmap_mem_pt_guest_if_delete,
2276 	.nmd_rings_create = netmap_mem_pt_guest_rings_create,
2277 	.nmd_rings_delete = netmap_mem_pt_guest_rings_delete
2278 };
2279 
2280 /* Called with nm_mem_list_lock held. */
2281 static struct netmap_mem_d *
2282 netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)
2283 {
2284 	struct netmap_mem_d *mem = NULL;
2285 	struct netmap_mem_d *scan = netmap_last_mem_d;
2286 
2287 	do {
2288 		/* find ptnetmap allocator through host ID */
2289 		if (scan->ops->nmd_deref == netmap_mem_pt_guest_deref &&
2290 			((struct netmap_mem_ptg *)(scan))->host_mem_id == mem_id) {
2291 			mem = scan;
2292 			mem->refcount++;
2293 			NM_DBG_REFC(mem, __FUNCTION__, __LINE__);
2294 			break;
2295 		}
2296 		scan = scan->next;
2297 	} while (scan != netmap_last_mem_d);
2298 
2299 	return mem;
2300 }
2301 
2302 /* Called with nm_mem_list_lock held. */
2303 static struct netmap_mem_d *
2304 netmap_mem_pt_guest_create(nm_memid_t mem_id)
2305 {
2306 	struct netmap_mem_ptg *ptnmd;
2307 	int err = 0;
2308 
2309 	ptnmd = nm_os_malloc(sizeof(struct netmap_mem_ptg));
2310 	if (ptnmd == NULL) {
2311 		err = ENOMEM;
2312 		goto error;
2313 	}
2314 
2315 	ptnmd->up.ops = &netmap_mem_pt_guest_ops;
2316 	ptnmd->host_mem_id = mem_id;
2317 	ptnmd->pt_ifs = NULL;
2318 
2319         /* Assign new id in the guest (We have the lock) */
2320 	err = nm_mem_assign_id_locked(&ptnmd->up);
2321 	if (err)
2322 		goto error;
2323 
2324 	ptnmd->up.flags &= ~NETMAP_MEM_FINALIZED;
2325 	ptnmd->up.flags |= NETMAP_MEM_IO;
2326 
2327 	NMA_LOCK_INIT(&ptnmd->up);
2328 
2329 	snprintf(ptnmd->up.name, NM_MEM_NAMESZ, "%d", ptnmd->up.nm_id);
2330 
2331 
2332 	return &ptnmd->up;
2333 error:
2334 	netmap_mem_pt_guest_delete(&ptnmd->up);
2335 	return NULL;
2336 }
2337 
2338 /*
2339  * find host id in guest allocators and create guest allocator
2340  * if it is not there
2341  */
2342 static struct netmap_mem_d *
2343 netmap_mem_pt_guest_get(nm_memid_t mem_id)
2344 {
2345 	struct netmap_mem_d *nmd;
2346 
2347 	NM_MTX_LOCK(nm_mem_list_lock);
2348 	nmd = netmap_mem_pt_guest_find_memid(mem_id);
2349 	if (nmd == NULL) {
2350 		nmd = netmap_mem_pt_guest_create(mem_id);
2351 	}
2352 	NM_MTX_UNLOCK(nm_mem_list_lock);
2353 
2354 	return nmd;
2355 }
2356 
2357 /*
2358  * The guest allocator can be created by ptnetmap_memdev (during the device
2359  * attach) or by ptnetmap device (ptnet), during the netmap_attach.
2360  *
2361  * The order is not important (we have different order in LINUX and FreeBSD).
2362  * The first one, creates the device, and the second one simply attaches it.
2363  */
2364 
2365 /* Called when ptnetmap_memdev is attaching, to attach a new allocator in
2366  * the guest */
2367 struct netmap_mem_d *
2368 netmap_mem_pt_guest_attach(struct ptnetmap_memdev *ptn_dev, nm_memid_t mem_id)
2369 {
2370 	struct netmap_mem_d *nmd;
2371 	struct netmap_mem_ptg *ptnmd;
2372 
2373 	nmd = netmap_mem_pt_guest_get(mem_id);
2374 
2375 	/* assign this device to the guest allocator */
2376 	if (nmd) {
2377 		ptnmd = (struct netmap_mem_ptg *)nmd;
2378 		ptnmd->ptn_dev = ptn_dev;
2379 	}
2380 
2381 	return nmd;
2382 }
2383 
2384 /* Called when ptnet device is attaching */
2385 struct netmap_mem_d *
2386 netmap_mem_pt_guest_new(struct ifnet *ifp,
2387 			unsigned int nifp_offset,
2388 			unsigned int memid)
2389 {
2390 	struct netmap_mem_d *nmd;
2391 
2392 	if (ifp == NULL) {
2393 		return NULL;
2394 	}
2395 
2396 	nmd = netmap_mem_pt_guest_get((nm_memid_t)memid);
2397 
2398 	if (nmd) {
2399 		netmap_mem_pt_guest_ifp_add(nmd, ifp, nifp_offset);
2400 	}
2401 
2402 	return nmd;
2403 }
2404 
2405 #endif /* WITH_PTNETMAP_GUEST */
2406