xref: /freebsd/sys/dev/netmap/netmap_mem2.c (revision 9a41df2a0e6408e9b329bbd8b9e37c2b44461a1b)
1 /*
2  * Copyright (C) 2012 Matteo Landi, Luigi Rizzo. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *   1. Redistributions of source code must retain the above copyright
8  *      notice, this list of conditions and the following disclaimer.
9  *   2. Redistributions in binary form must reproduce the above copyright
10  *      notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 /*
27  * $FreeBSD$
28  * $Id: netmap_mem2.c 11445 2012-07-30 10:49:07Z luigi $
29  *
30  * New memory allocator for netmap
31  */
32 
33 /*
34  * The new version allocates three regions:
35  *	nm_if_pool      for the struct netmap_if
36  *	nm_ring_pool    for the struct netmap_ring
37  *	nm_buf_pool    for the packet buffers.
38  *
39  * All regions need to be page-sized as we export them to
40  * userspace through mmap. Only the latter need to be dma-able,
41  * but for convenience use the same type of allocator for all.
42  *
43  * Once mapped, the three regions are exported to userspace
44  * as a contiguous block, starting from nm_if_pool. Each
45  * cluster (and pool) is an integral number of pages.
46  *   [ . . . ][ . . . . . .][ . . . . . . . . . .]
47  *    nm_if     nm_ring            nm_buf
48  *
49  * The userspace areas contain offsets of the objects in userspace.
50  * When (at init time) we write these offsets, we find out the index
51  * of the object, and from there locate the offset from the beginning
52  * of the region.
53  *
54  * Allocator for a pool of memory objects of the same size.
55  * The pool is split into smaller clusters, whose size is a
56  * multiple of the page size. The cluster size is chosen
57  * to minimize the waste for a given max cluster size
58  * (we do it by brute force, as we have relatively few object
59  * per cluster).
60  *
61  * To be polite with the cache, objects are aligned to
62  * the cache line, or 64 bytes. Sizes are rounded to multiple of 64.
63  * For each object we have
64  * one entry in the bitmap to signal the state. Allocation scans
65  * the bitmap, but since this is done only on attach, we are not
66  * too worried about performance
67  */
68 
69 /*
70  *	MEMORY SIZES:
71  *
72  * (all the parameters below will become tunables)
73  *
74  * struct netmap_if is variable size but small.
75  * Assuming each NIC has 8+2 rings, (4+1 tx, 4+1 rx) the netmap_if
76  * uses 120 bytes on a 64-bit machine.
77  * We allocate NETMAP_IF_MAX_SIZE  (1024) which should work even for
78  * cards with 48 ring pairs.
79  * The total number of 'struct netmap_if' could be slightly larger
80  * that the total number of rings on all interfaces on the system.
81  */
82 #define NETMAP_IF_MAX_SIZE      1024
83 #define NETMAP_IF_MAX_NUM       512
84 
85 /*
86  * netmap rings are up to 2..4k descriptors, 8 bytes each,
87  * plus some glue at the beginning (32 bytes).
88  * We set the default ring size to 9 pages (36K) and enable
89  * a few hundreds of them.
90  */
91 #define NETMAP_RING_MAX_SIZE    (9*PAGE_SIZE)
92 #define NETMAP_RING_MAX_NUM     200	/* approx 8MB */
93 
94 /*
95  * Buffers: the more the better. Buffer size is NETMAP_BUF_SIZE,
96  * 2k or slightly less, aligned to 64 bytes.
97  * A large 10G interface can have 2k*18 = 36k buffers per interface,
98  * or about 72MB of memory. Up to us to use more.
99  */
100 #ifndef CONSERVATIVE
101 #define NETMAP_BUF_MAX_NUM      100000  /* 200MB */
102 #else /* CONSERVATIVE */
103 #define NETMAP_BUF_MAX_NUM      20000   /* 40MB */
104 #endif
105 
106 
107 struct netmap_obj_pool {
108 	char name[16];		/* name of the allocator */
109 	u_int objtotal;         /* actual total number of objects. */
110 	u_int objfree;          /* number of free objects. */
111 	u_int clustentries;	/* actual objects per cluster */
112 
113 	/* the total memory space is _numclusters*_clustsize */
114 	u_int _numclusters;	/* how many clusters */
115 	u_int _clustsize;        /* cluster size */
116 	u_int _objsize;		/* actual object size */
117 
118 	u_int _memtotal;	/* _numclusters*_clustsize */
119 	struct lut_entry *lut;  /* virt,phys addresses, objtotal entries */
120 	uint32_t *bitmap;       /* one bit per buffer, 1 means free */
121 };
122 
123 struct netmap_mem_d {
124 	NM_LOCK_T nm_mtx; /* protect the allocator ? */
125 	u_int nm_totalsize; /* shorthand */
126 
127 	/* pointers to the three allocators */
128 	struct netmap_obj_pool *nm_if_pool;
129 	struct netmap_obj_pool *nm_ring_pool;
130 	struct netmap_obj_pool *nm_buf_pool;
131 };
132 
133 struct lut_entry *netmap_buffer_lut;	/* exported */
134 
135 
136 /*
137  * Convert a userspace offset to a phisical address.
138  * XXX re-do in a simpler way.
139  *
140  * The idea here is to hide userspace applications the fact that pre-allocated
141  * memory is not contiguous, but fragmented across different clusters and
142  * smaller memory allocators. Consequently, first of all we need to find which
143  * allocator is owning provided offset, then we need to find out the physical
144  * address associated to target page (this is done using the look-up table.
145  */
146 static inline vm_paddr_t
147 netmap_ofstophys(vm_offset_t offset)
148 {
149 	const struct netmap_obj_pool *p[] = {
150 		nm_mem->nm_if_pool,
151 		nm_mem->nm_ring_pool,
152 		nm_mem->nm_buf_pool };
153 	int i;
154 	vm_offset_t o = offset;
155 
156 
157 	for (i = 0; i < 3; offset -= p[i]->_memtotal, i++) {
158 		if (offset >= p[i]->_memtotal)
159 			continue;
160 		// XXX now scan the clusters
161 		return p[i]->lut[offset / p[i]->_objsize].paddr +
162 			offset % p[i]->_objsize;
163 	}
164 	D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
165 		p[0]->_memtotal, p[0]->_memtotal + p[1]->_memtotal,
166 		p[0]->_memtotal + p[1]->_memtotal + p[2]->_memtotal);
167 	return 0;	// XXX bad address
168 }
169 
170 /*
171  * we store objects by kernel address, need to find the offset
172  * within the pool to export the value to userspace.
173  * Algorithm: scan until we find the cluster, then add the
174  * actual offset in the cluster
175  */
176 static ssize_t
177 netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
178 {
179 	int i, k = p->clustentries, n = p->objtotal;
180 	ssize_t ofs = 0;
181 
182 	for (i = 0; i < n; i += k, ofs += p->_clustsize) {
183 		const char *base = p->lut[i].vaddr;
184 		ssize_t relofs = (const char *) vaddr - base;
185 
186 		if (relofs < 0 || relofs > p->_clustsize)
187 			continue;
188 
189 		ofs = ofs + relofs;
190 		ND("%s: return offset %d (cluster %d) for pointer %p",
191 		    p->name, ofs, i, vaddr);
192 		return ofs;
193 	}
194 	D("address %p is not contained inside any cluster (%s)",
195 	    vaddr, p->name);
196 	return 0; /* An error occurred */
197 }
198 
199 /* Helper functions which convert virtual addresses to offsets */
200 #define netmap_if_offset(v)					\
201 	netmap_obj_offset(nm_mem->nm_if_pool, (v))
202 
203 #define netmap_ring_offset(v)					\
204     (nm_mem->nm_if_pool->_memtotal + 				\
205 	netmap_obj_offset(nm_mem->nm_ring_pool, (v)))
206 
207 #define netmap_buf_offset(v)					\
208     (nm_mem->nm_if_pool->_memtotal +				\
209 	nm_mem->nm_ring_pool->_memtotal +			\
210 	netmap_obj_offset(nm_mem->nm_buf_pool, (v)))
211 
212 
213 static void *
214 netmap_obj_malloc(struct netmap_obj_pool *p, int len)
215 {
216 	uint32_t i = 0;			/* index in the bitmap */
217 	uint32_t mask, j;		/* slot counter */
218 	void *vaddr = NULL;
219 
220 	if (len > p->_objsize) {
221 		D("%s request size %d too large", p->name, len);
222 		// XXX cannot reduce the size
223 		return NULL;
224 	}
225 
226 	if (p->objfree == 0) {
227 		D("%s allocator: run out of memory", p->name);
228 		return NULL;
229 	}
230 
231 	/* termination is guaranteed by p->free */
232 	while (vaddr == NULL) {
233 		uint32_t cur = p->bitmap[i];
234 		if (cur == 0) { /* bitmask is fully used */
235 			i++;
236 			continue;
237 		}
238 		/* locate a slot */
239 		for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
240 			;
241 
242 		p->bitmap[i] &= ~mask; /* mark object as in use */
243 		p->objfree--;
244 
245 		vaddr = p->lut[i * 32 + j].vaddr;
246 	}
247 	ND("%s allocator: allocated object @ [%d][%d]: vaddr %p", i, j, vaddr);
248 
249 	return vaddr;
250 }
251 
252 
253 /*
254  * free by index, not by address
255  */
256 static void
257 netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
258 {
259 	if (j >= p->objtotal) {
260 		D("invalid index %u, max %u", j, p->objtotal);
261 		return;
262 	}
263 	p->bitmap[j / 32] |= (1 << (j % 32));
264 	p->objfree++;
265 	return;
266 }
267 
268 static void
269 netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
270 {
271 	int i, j, n = p->_memtotal / p->_clustsize;
272 
273 	for (i = 0, j = 0; i < n; i++, j += p->clustentries) {
274 		void *base = p->lut[i * p->clustentries].vaddr;
275 		ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
276 
277 		/* Given address, is out of the scope of the current cluster.*/
278 		if (vaddr < base || relofs > p->_clustsize)
279 			continue;
280 
281 		j = j + relofs / p->_objsize;
282 		KASSERT(j != 0, ("Cannot free object 0"));
283 		netmap_obj_free(p, j);
284 		return;
285 	}
286 	ND("address %p is not contained inside any cluster (%s)",
287 	    vaddr, p->name);
288 }
289 
290 #define netmap_if_malloc(len)	netmap_obj_malloc(nm_mem->nm_if_pool, len)
291 #define netmap_if_free(v)	netmap_obj_free_va(nm_mem->nm_if_pool, (v))
292 #define netmap_ring_malloc(len)	netmap_obj_malloc(nm_mem->nm_ring_pool, len)
293 #define netmap_buf_malloc()			\
294 	netmap_obj_malloc(nm_mem->nm_buf_pool, NETMAP_BUF_SIZE)
295 
296 
297 /* Return the index associated to the given packet buffer */
298 #define netmap_buf_index(v)						\
299     (netmap_obj_offset(nm_mem->nm_buf_pool, (v)) / nm_mem->nm_buf_pool->_objsize)
300 
301 
302 static void
303 netmap_new_bufs(struct netmap_if *nifp,
304                 struct netmap_slot *slot, u_int n)
305 {
306 	struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
307 	uint32_t i = 0;	/* slot counter */
308 
309 	(void)nifp;	/* UNUSED */
310 	for (i = 0; i < n; i++) {
311 		void *vaddr = netmap_buf_malloc();
312 		if (vaddr == NULL) {
313 			D("unable to locate empty packet buffer");
314 			goto cleanup;
315 		}
316 
317 		slot[i].buf_idx = netmap_buf_index(vaddr);
318 		KASSERT(slot[i].buf_idx != 0,
319 		    ("Assigning buf_idx=0 to just created slot"));
320 		slot[i].len = p->_objsize;
321 		slot[i].flags = NS_BUF_CHANGED; // XXX GAETANO hack
322 	}
323 
324 	ND("allocated %d buffers, %d available", n, p->objfree);
325 	return;
326 
327 cleanup:
328 	while (i > 0) {
329 		i--;
330 		netmap_obj_free(nm_mem->nm_buf_pool, slot[i].buf_idx);
331 	}
332 }
333 
334 
335 static void
336 netmap_free_buf(struct netmap_if *nifp, uint32_t i)
337 {
338 	struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
339 	if (i < 2 || i >= p->objtotal) {
340 		D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
341 		return;
342 	}
343 	netmap_obj_free(nm_mem->nm_buf_pool, i);
344 }
345 
346 
347 /*
348  * Free all resources related to an allocator.
349  */
350 static void
351 netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
352 {
353 	if (p == NULL)
354 		return;
355 	if (p->bitmap)
356 		free(p->bitmap, M_NETMAP);
357 	if (p->lut) {
358 		int i;
359 		for (i = 0; i < p->objtotal; i += p->clustentries) {
360 			if (p->lut[i].vaddr)
361 				contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
362 		}
363 		bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
364 		free(p->lut, M_NETMAP);
365 	}
366 	bzero(p, sizeof(*p));
367 	free(p, M_NETMAP);
368 }
369 
370 /*
371  * We receive a request for objtotal objects, of size objsize each.
372  * Internally we may round up both numbers, as we allocate objects
373  * in small clusters multiple of the page size.
374  * In the allocator we don't need to store the objsize,
375  * but we do need to keep track of objtotal' and clustentries,
376  * as they are needed when freeing memory.
377  *
378  * XXX note -- userspace needs the buffers to be contiguous,
379  *	so we cannot afford gaps at the end of a cluster.
380  */
381 static struct netmap_obj_pool *
382 netmap_new_obj_allocator(const char *name, u_int objtotal, u_int objsize)
383 {
384 	struct netmap_obj_pool *p;
385 	int i, n;
386 	u_int clustsize;	/* the cluster size, multiple of page size */
387 	u_int clustentries;	/* how many objects per entry */
388 
389 #define MAX_CLUSTSIZE	(1<<17)
390 #define LINE_ROUND	64
391 	if (objsize >= MAX_CLUSTSIZE) {
392 		/* we could do it but there is no point */
393 		D("unsupported allocation for %d bytes", objsize);
394 		return NULL;
395 	}
396 	/* make sure objsize is a multiple of LINE_ROUND */
397 	i = (objsize & (LINE_ROUND - 1));
398 	if (i) {
399 		D("XXX aligning object by %d bytes", LINE_ROUND - i);
400 		objsize += LINE_ROUND - i;
401 	}
402 	/*
403 	 * Compute number of objects using a brute-force approach:
404 	 * given a max cluster size,
405 	 * we try to fill it with objects keeping track of the
406 	 * wasted space to the next page boundary.
407 	 */
408 	for (clustentries = 0, i = 1;; i++) {
409 		u_int delta, used = i * objsize;
410 		if (used > MAX_CLUSTSIZE)
411 			break;
412 		delta = used % PAGE_SIZE;
413 		if (delta == 0) { // exact solution
414 			clustentries = i;
415 			break;
416 		}
417 		if (delta > ( (clustentries*objsize) % PAGE_SIZE) )
418 			clustentries = i;
419 	}
420 	// D("XXX --- ouch, delta %d (bad for buffers)", delta);
421 	/* compute clustsize and round to the next page */
422 	clustsize = clustentries * objsize;
423 	i =  (clustsize & (PAGE_SIZE - 1));
424 	if (i)
425 		clustsize += PAGE_SIZE - i;
426 	D("objsize %d clustsize %d objects %d",
427 		objsize, clustsize, clustentries);
428 
429 	p = malloc(sizeof(struct netmap_obj_pool), M_NETMAP,
430 	    M_WAITOK | M_ZERO);
431 	if (p == NULL) {
432 		D("Unable to create '%s' allocator", name);
433 		return NULL;
434 	}
435 	/*
436 	 * Allocate and initialize the lookup table.
437 	 *
438 	 * The number of clusters is n = ceil(objtotal/clustentries)
439 	 * objtotal' = n * clustentries
440 	 */
441 	strncpy(p->name, name, sizeof(p->name));
442 	p->clustentries = clustentries;
443 	p->_clustsize = clustsize;
444 	n = (objtotal + clustentries - 1) / clustentries;
445 	p->_numclusters = n;
446 	p->objtotal = n * clustentries;
447 	p->objfree = p->objtotal - 2; /* obj 0 and 1 are reserved */
448 	p->_objsize = objsize;
449 	p->_memtotal = p->_numclusters * p->_clustsize;
450 
451 	p->lut = malloc(sizeof(struct lut_entry) * p->objtotal,
452 	    M_NETMAP, M_WAITOK | M_ZERO);
453 	if (p->lut == NULL) {
454 		D("Unable to create lookup table for '%s' allocator", name);
455 		goto clean;
456 	}
457 
458 	/* Allocate the bitmap */
459 	n = (p->objtotal + 31) / 32;
460 	p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_WAITOK | M_ZERO);
461 	if (p->bitmap == NULL) {
462 		D("Unable to create bitmap (%d entries) for allocator '%s'", n,
463 		    name);
464 		goto clean;
465 	}
466 
467 	/*
468 	 * Allocate clusters, init pointers and bitmap
469 	 */
470 	for (i = 0; i < p->objtotal;) {
471 		int lim = i + clustentries;
472 		char *clust;
473 
474 		clust = contigmalloc(clustsize, M_NETMAP, M_WAITOK | M_ZERO,
475 		    0, -1UL, PAGE_SIZE, 0);
476 		if (clust == NULL) {
477 			/*
478 			 * If we get here, there is a severe memory shortage,
479 			 * so halve the allocated memory to reclaim some.
480 			 */
481 			D("Unable to create cluster at %d for '%s' allocator",
482 			    i, name);
483 			lim = i / 2;
484 			for (; i >= lim; i--) {
485 				p->bitmap[ (i>>5) ] &=  ~( 1 << (i & 31) );
486 				if (i % clustentries == 0 && p->lut[i].vaddr)
487 					contigfree(p->lut[i].vaddr,
488 						p->_clustsize, M_NETMAP);
489 			}
490 			p->objtotal = i;
491 			p->objfree = p->objtotal - 2;
492 			p->_numclusters = i / clustentries;
493 			p->_memtotal = p->_numclusters * p->_clustsize;
494 			break;
495 		}
496 		for (; i < lim; i++, clust += objsize) {
497 			p->bitmap[ (i>>5) ] |=  ( 1 << (i & 31) );
498 			p->lut[i].vaddr = clust;
499 			p->lut[i].paddr = vtophys(clust);
500 		}
501 	}
502 	p->bitmap[0] = ~3; /* objs 0 and 1 is always busy */
503 	D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
504 	    p->_numclusters, p->_clustsize >> 10,
505 	    p->_memtotal >> 10, name);
506 
507 	return p;
508 
509 clean:
510 	netmap_destroy_obj_allocator(p);
511 	return NULL;
512 }
513 
514 static int
515 netmap_memory_init(void)
516 {
517 	struct netmap_obj_pool *p;
518 
519 	nm_mem = malloc(sizeof(struct netmap_mem_d), M_NETMAP,
520 			      M_WAITOK | M_ZERO);
521 	if (nm_mem == NULL)
522 		goto clean;
523 
524 	p = netmap_new_obj_allocator("netmap_if",
525 	    NETMAP_IF_MAX_NUM, NETMAP_IF_MAX_SIZE);
526 	if (p == NULL)
527 		goto clean;
528 	nm_mem->nm_if_pool = p;
529 
530 	p = netmap_new_obj_allocator("netmap_ring",
531 	    NETMAP_RING_MAX_NUM, NETMAP_RING_MAX_SIZE);
532 	if (p == NULL)
533 		goto clean;
534 	nm_mem->nm_ring_pool = p;
535 
536 	p = netmap_new_obj_allocator("netmap_buf",
537 	    NETMAP_BUF_MAX_NUM, NETMAP_BUF_SIZE);
538 	if (p == NULL)
539 		goto clean;
540 	netmap_total_buffers = p->objtotal;
541 	netmap_buffer_lut = p->lut;
542 	nm_mem->nm_buf_pool = p;
543 	netmap_buffer_base = p->lut[0].vaddr;
544 
545 	mtx_init(&nm_mem->nm_mtx, "netmap memory allocator lock", NULL,
546 		 MTX_DEF);
547 	nm_mem->nm_totalsize =
548 	    nm_mem->nm_if_pool->_memtotal +
549 	    nm_mem->nm_ring_pool->_memtotal +
550 	    nm_mem->nm_buf_pool->_memtotal;
551 
552 	D("Have %d KB for interfaces, %d KB for rings and %d MB for buffers",
553 	    nm_mem->nm_if_pool->_memtotal >> 10,
554 	    nm_mem->nm_ring_pool->_memtotal >> 10,
555 	    nm_mem->nm_buf_pool->_memtotal >> 20);
556 	return 0;
557 
558 clean:
559 	if (nm_mem) {
560 		netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
561 		netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
562 		free(nm_mem, M_NETMAP);
563 	}
564 	return ENOMEM;
565 }
566 
567 
568 static void
569 netmap_memory_fini(void)
570 {
571 	if (!nm_mem)
572 		return;
573 	netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
574 	netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
575 	netmap_destroy_obj_allocator(nm_mem->nm_buf_pool);
576 	mtx_destroy(&nm_mem->nm_mtx);
577 	free(nm_mem, M_NETMAP);
578 }
579 
580 
581 
582 static void *
583 netmap_if_new(const char *ifname, struct netmap_adapter *na)
584 {
585 	struct netmap_if *nifp;
586 	struct netmap_ring *ring;
587 	ssize_t base; /* handy for relative offsets between rings and nifp */
588 	u_int i, len, ndesc;
589 	u_int ntx = na->num_tx_rings + 1; /* shorthand, include stack ring */
590 	u_int nrx = na->num_rx_rings + 1; /* shorthand, include stack ring */
591 	struct netmap_kring *kring;
592 
593 	NMA_LOCK();
594 	/*
595 	 * the descriptor is followed inline by an array of offsets
596 	 * to the tx and rx rings in the shared memory region.
597 	 */
598 	len = sizeof(struct netmap_if) + (nrx + ntx) * sizeof(ssize_t);
599 	nifp = netmap_if_malloc(len);
600 	if (nifp == NULL) {
601 		NMA_UNLOCK();
602 		return NULL;
603 	}
604 
605 	/* initialize base fields -- override const */
606 	*(int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
607 	*(int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
608 	strncpy(nifp->ni_name, ifname, IFNAMSIZ);
609 
610 	(na->refcount)++;	/* XXX atomic ? we are under lock */
611 	if (na->refcount > 1) { /* already setup, we are done */
612 		NMA_UNLOCK();
613 		goto final;
614 	}
615 
616 	/*
617 	 * First instance, allocate netmap rings and buffers for this card
618 	 * The rings are contiguous, but have variable size.
619 	 */
620 	for (i = 0; i < ntx; i++) { /* Transmit rings */
621 		kring = &na->tx_rings[i];
622 		ndesc = na->num_tx_desc;
623 		bzero(kring, sizeof(*kring));
624 		len = sizeof(struct netmap_ring) +
625 			  ndesc * sizeof(struct netmap_slot);
626 		ring = netmap_ring_malloc(len);
627 		if (ring == NULL) {
628 			D("Cannot allocate tx_ring[%d] for %s", i, ifname);
629 			goto cleanup;
630 		}
631 		ND("txring[%d] at %p ofs %d", i, ring);
632 		kring->na = na;
633 		kring->ring = ring;
634 		*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
635 		*(ssize_t *)(uintptr_t)&ring->buf_ofs =
636 		    (nm_mem->nm_if_pool->_memtotal +
637 			nm_mem->nm_ring_pool->_memtotal) -
638 			netmap_ring_offset(ring);
639 
640 		/*
641 		 * IMPORTANT:
642 		 * Always keep one slot empty, so we can detect new
643 		 * transmissions comparing cur and nr_hwcur (they are
644 		 * the same only if there are no new transmissions).
645 		 */
646 		ring->avail = kring->nr_hwavail = ndesc - 1;
647 		ring->cur = kring->nr_hwcur = 0;
648 		*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
649 		ND("initializing slots for txring[%d]", i);
650 		netmap_new_bufs(nifp, ring->slot, ndesc);
651 	}
652 
653 	for (i = 0; i < nrx; i++) { /* Receive rings */
654 		kring = &na->rx_rings[i];
655 		ndesc = na->num_rx_desc;
656 		bzero(kring, sizeof(*kring));
657 		len = sizeof(struct netmap_ring) +
658 			  ndesc * sizeof(struct netmap_slot);
659 		ring = netmap_ring_malloc(len);
660 		if (ring == NULL) {
661 			D("Cannot allocate rx_ring[%d] for %s", i, ifname);
662 			goto cleanup;
663 		}
664 		ND("rxring[%d] at %p ofs %d", i, ring);
665 
666 		kring->na = na;
667 		kring->ring = ring;
668 		*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
669 		*(ssize_t *)(uintptr_t)&ring->buf_ofs =
670 		    (nm_mem->nm_if_pool->_memtotal +
671 		        nm_mem->nm_ring_pool->_memtotal) -
672 			netmap_ring_offset(ring);
673 
674 		ring->cur = kring->nr_hwcur = 0;
675 		ring->avail = kring->nr_hwavail = 0; /* empty */
676 		*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
677 		ND("initializing slots for rxring[%d]", i);
678 		netmap_new_bufs(nifp, ring->slot, ndesc);
679 	}
680 	NMA_UNLOCK();
681 #ifdef linux
682 	// XXX initialize the selrecord structs.
683 	for (i = 0; i < ntx; i++)
684 		init_waitqueue_head(&na->tx_rings[i].si);
685 	for (i = 0; i < nrx; i++)
686 		init_waitqueue_head(&na->rx_rings[i].si);
687 	init_waitqueue_head(&na->tx_si);
688 	init_waitqueue_head(&na->rx_si);
689 #endif
690 final:
691 	/*
692 	 * fill the slots for the rx and tx rings. They contain the offset
693 	 * between the ring and nifp, so the information is usable in
694 	 * userspace to reach the ring from the nifp.
695 	 */
696 	base = netmap_if_offset(nifp);
697 	for (i = 0; i < ntx; i++) {
698 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
699 			netmap_ring_offset(na->tx_rings[i].ring) - base;
700 	}
701 	for (i = 0; i < nrx; i++) {
702 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+ntx] =
703 			netmap_ring_offset(na->rx_rings[i].ring) - base;
704 	}
705 	return (nifp);
706 cleanup:
707 	// XXX missing
708 	NMA_UNLOCK();
709 	return NULL;
710 }
711 
712 static void
713 netmap_free_rings(struct netmap_adapter *na)
714 {
715 	int i;
716 	for (i = 0; i < na->num_tx_rings + 1; i++)
717 		netmap_obj_free_va(nm_mem->nm_ring_pool,
718 			na->tx_rings[i].ring);
719 	for (i = 0; i < na->num_rx_rings + 1; i++)
720 		netmap_obj_free_va(nm_mem->nm_ring_pool,
721 			na->rx_rings[i].ring);
722 }
723