xref: /freebsd/sys/dev/netmap/netmap_mem2.c (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Matteo Landi
5  * Copyright (C) 2012-2016 Luigi Rizzo
6  * Copyright (C) 2012-2016 Giuseppe Lettieri
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *   1. Redistributions of source code must retain the above copyright
13  *      notice, this list of conditions and the following disclaimer.
14  *   2. Redistributions in binary form must reproduce the above copyright
15  *      notice, this list of conditions and the following disclaimer in the
16  *      documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifdef linux
32 #include "bsd_glue.h"
33 #endif /* linux */
34 
35 #ifdef __APPLE__
36 #include "osx_glue.h"
37 #endif /* __APPLE__ */
38 
39 #ifdef __FreeBSD__
40 #include <sys/cdefs.h> /* prerequisite */
41 __FBSDID("$FreeBSD$");
42 
43 #include <sys/types.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>		/* MALLOC_DEFINE */
46 #include <sys/proc.h>
47 #include <vm/vm.h>	/* vtophys */
48 #include <vm/pmap.h>	/* vtophys */
49 #include <sys/socket.h> /* sockaddrs */
50 #include <sys/selinfo.h>
51 #include <sys/sysctl.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/vnet.h>
55 #include <machine/bus.h>	/* bus_dmamap_* */
56 
57 /* M_NETMAP only used in here */
58 MALLOC_DECLARE(M_NETMAP);
59 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
60 
61 #endif /* __FreeBSD__ */
62 
63 #ifdef _WIN32
64 #include <win_glue.h>
65 #endif
66 
67 #include <net/netmap.h>
68 #include <dev/netmap/netmap_kern.h>
69 #include <net/netmap_virt.h>
70 #include "netmap_mem2.h"
71 
72 #ifdef _WIN32_USE_SMALL_GENERIC_DEVICES_MEMORY
73 #define NETMAP_BUF_MAX_NUM  8*4096      /* if too big takes too much time to allocate */
74 #else
75 #define NETMAP_BUF_MAX_NUM 20*4096*2	/* large machine */
76 #endif
77 
78 #define NETMAP_POOL_MAX_NAMSZ	32
79 
80 
81 enum {
82 	NETMAP_IF_POOL   = 0,
83 	NETMAP_RING_POOL,
84 	NETMAP_BUF_POOL,
85 	NETMAP_POOLS_NR
86 };
87 
88 
89 struct netmap_obj_params {
90 	u_int size;
91 	u_int num;
92 
93 	u_int last_size;
94 	u_int last_num;
95 };
96 
97 struct netmap_obj_pool {
98 	char name[NETMAP_POOL_MAX_NAMSZ];	/* name of the allocator */
99 
100 	/* ---------------------------------------------------*/
101 	/* these are only meaningful if the pool is finalized */
102 	/* (see 'finalized' field in netmap_mem_d)            */
103 	size_t memtotal;	/* actual total memory space */
104 
105 	struct lut_entry *lut;  /* virt,phys addresses, objtotal entries */
106 	uint32_t *bitmap;       /* one bit per buffer, 1 means free */
107 	uint32_t *invalid_bitmap;/* one bit per buffer, 1 means invalid */
108 	uint32_t bitmap_slots;	/* number of uint32 entries in bitmap */
109 
110 	u_int objtotal;         /* actual total number of objects. */
111 	u_int numclusters;	/* actual number of clusters */
112 	u_int objfree;          /* number of free objects. */
113 
114 	int	alloc_done;	/* we have allocated the memory */
115 	/* ---------------------------------------------------*/
116 
117 	/* limits */
118 	u_int objminsize;	/* minimum object size */
119 	u_int objmaxsize;	/* maximum object size */
120 	u_int nummin;		/* minimum number of objects */
121 	u_int nummax;		/* maximum number of objects */
122 
123 	/* these are changed only by config */
124 	u_int _objtotal;	/* total number of objects */
125 	u_int _objsize;		/* object size */
126 	u_int _clustsize;       /* cluster size */
127 	u_int _clustentries;    /* objects per cluster */
128 	u_int _numclusters;	/* number of clusters */
129 
130 	/* requested values */
131 	u_int r_objtotal;
132 	u_int r_objsize;
133 };
134 
135 #define NMA_LOCK_T		NM_MTX_T
136 #define NMA_LOCK_INIT(n)	NM_MTX_INIT((n)->nm_mtx)
137 #define NMA_LOCK_DESTROY(n)	NM_MTX_DESTROY((n)->nm_mtx)
138 #define NMA_LOCK(n)		NM_MTX_LOCK((n)->nm_mtx)
139 #define NMA_SPINLOCK(n)         NM_MTX_SPINLOCK((n)->nm_mtx)
140 #define NMA_UNLOCK(n)		NM_MTX_UNLOCK((n)->nm_mtx)
141 
142 struct netmap_mem_ops {
143 	int (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*);
144 	int  (*nmd_get_info)(struct netmap_mem_d *, uint64_t *size,
145 			u_int *memflags, uint16_t *id);
146 
147 	vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t);
148 	int (*nmd_config)(struct netmap_mem_d *);
149 	int (*nmd_finalize)(struct netmap_mem_d *);
150 	void (*nmd_deref)(struct netmap_mem_d *);
151 	ssize_t  (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr);
152 	void (*nmd_delete)(struct netmap_mem_d *);
153 
154 	struct netmap_if * (*nmd_if_new)(struct netmap_adapter *,
155 					 struct netmap_priv_d *);
156 	void (*nmd_if_delete)(struct netmap_adapter *, struct netmap_if *);
157 	int  (*nmd_rings_create)(struct netmap_adapter *);
158 	void (*nmd_rings_delete)(struct netmap_adapter *);
159 };
160 
161 struct netmap_mem_d {
162 	NMA_LOCK_T nm_mtx;  /* protect the allocator */
163 	size_t nm_totalsize; /* shorthand */
164 
165 	u_int flags;
166 #define NETMAP_MEM_FINALIZED	0x1	/* preallocation done */
167 #define NETMAP_MEM_HIDDEN	0x8	/* beeing prepared */
168 	int lasterr;		/* last error for curr config */
169 	int active;		/* active users */
170 	int refcount;
171 	/* the three allocators */
172 	struct netmap_obj_pool pools[NETMAP_POOLS_NR];
173 
174 	nm_memid_t nm_id;	/* allocator identifier */
175 	int nm_grp;	/* iommu groupd id */
176 
177 	/* list of all existing allocators, sorted by nm_id */
178 	struct netmap_mem_d *prev, *next;
179 
180 	struct netmap_mem_ops *ops;
181 
182 	struct netmap_obj_params params[NETMAP_POOLS_NR];
183 
184 #define NM_MEM_NAMESZ	16
185 	char name[NM_MEM_NAMESZ];
186 };
187 
188 int
189 netmap_mem_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
190 {
191 	int rv;
192 
193 	NMA_LOCK(nmd);
194 	rv = nmd->ops->nmd_get_lut(nmd, lut);
195 	NMA_UNLOCK(nmd);
196 
197 	return rv;
198 }
199 
200 int
201 netmap_mem_get_info(struct netmap_mem_d *nmd, uint64_t *size,
202 		u_int *memflags, nm_memid_t *memid)
203 {
204 	int rv;
205 
206 	NMA_LOCK(nmd);
207 	rv = nmd->ops->nmd_get_info(nmd, size, memflags, memid);
208 	NMA_UNLOCK(nmd);
209 
210 	return rv;
211 }
212 
213 vm_paddr_t
214 netmap_mem_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
215 {
216 	vm_paddr_t pa;
217 
218 #if defined(__FreeBSD__)
219 	/* This function is called by netmap_dev_pager_fault(), which holds a
220 	 * non-sleepable lock since FreeBSD 12. Since we cannot sleep, we
221 	 * spin on the trylock. */
222 	NMA_SPINLOCK(nmd);
223 #else
224 	NMA_LOCK(nmd);
225 #endif
226 	pa = nmd->ops->nmd_ofstophys(nmd, off);
227 	NMA_UNLOCK(nmd);
228 
229 	return pa;
230 }
231 
232 static int
233 netmap_mem_config(struct netmap_mem_d *nmd)
234 {
235 	if (nmd->active) {
236 		/* already in use. Not fatal, but we
237 		 * cannot change the configuration
238 		 */
239 		return 0;
240 	}
241 
242 	return nmd->ops->nmd_config(nmd);
243 }
244 
245 ssize_t
246 netmap_mem_if_offset(struct netmap_mem_d *nmd, const void *off)
247 {
248 	ssize_t rv;
249 
250 	NMA_LOCK(nmd);
251 	rv = nmd->ops->nmd_if_offset(nmd, off);
252 	NMA_UNLOCK(nmd);
253 
254 	return rv;
255 }
256 
257 static void
258 netmap_mem_delete(struct netmap_mem_d *nmd)
259 {
260 	nmd->ops->nmd_delete(nmd);
261 }
262 
263 struct netmap_if *
264 netmap_mem_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
265 {
266 	struct netmap_if *nifp;
267 	struct netmap_mem_d *nmd = na->nm_mem;
268 
269 	NMA_LOCK(nmd);
270 	nifp = nmd->ops->nmd_if_new(na, priv);
271 	NMA_UNLOCK(nmd);
272 
273 	return nifp;
274 }
275 
276 void
277 netmap_mem_if_delete(struct netmap_adapter *na, struct netmap_if *nif)
278 {
279 	struct netmap_mem_d *nmd = na->nm_mem;
280 
281 	NMA_LOCK(nmd);
282 	nmd->ops->nmd_if_delete(na, nif);
283 	NMA_UNLOCK(nmd);
284 }
285 
286 int
287 netmap_mem_rings_create(struct netmap_adapter *na)
288 {
289 	int rv;
290 	struct netmap_mem_d *nmd = na->nm_mem;
291 
292 	NMA_LOCK(nmd);
293 	rv = nmd->ops->nmd_rings_create(na);
294 	NMA_UNLOCK(nmd);
295 
296 	return rv;
297 }
298 
299 void
300 netmap_mem_rings_delete(struct netmap_adapter *na)
301 {
302 	struct netmap_mem_d *nmd = na->nm_mem;
303 
304 	NMA_LOCK(nmd);
305 	nmd->ops->nmd_rings_delete(na);
306 	NMA_UNLOCK(nmd);
307 }
308 
309 static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *);
310 static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *);
311 static int nm_mem_assign_group(struct netmap_mem_d *, struct device *);
312 static void nm_mem_release_id(struct netmap_mem_d *);
313 
314 nm_memid_t
315 netmap_mem_get_id(struct netmap_mem_d *nmd)
316 {
317 	return nmd->nm_id;
318 }
319 
320 #ifdef NM_DEBUG_MEM_PUTGET
321 #define NM_DBG_REFC(nmd, func, line)	\
322 	nm_prinf("%d mem[%d] -> %d", line, (nmd)->nm_id, (nmd)->refcount);
323 #else
324 #define NM_DBG_REFC(nmd, func, line)
325 #endif
326 
327 /* circular list of all existing allocators */
328 static struct netmap_mem_d *netmap_last_mem_d = &nm_mem;
329 NM_MTX_T nm_mem_list_lock;
330 
331 struct netmap_mem_d *
332 __netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line)
333 {
334 	NM_MTX_LOCK(nm_mem_list_lock);
335 	nmd->refcount++;
336 	NM_DBG_REFC(nmd, func, line);
337 	NM_MTX_UNLOCK(nm_mem_list_lock);
338 	return nmd;
339 }
340 
341 void
342 __netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line)
343 {
344 	int last;
345 	NM_MTX_LOCK(nm_mem_list_lock);
346 	last = (--nmd->refcount == 0);
347 	if (last)
348 		nm_mem_release_id(nmd);
349 	NM_DBG_REFC(nmd, func, line);
350 	NM_MTX_UNLOCK(nm_mem_list_lock);
351 	if (last)
352 		netmap_mem_delete(nmd);
353 }
354 
355 int
356 netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
357 {
358 	int lasterr = 0;
359 	if (nm_mem_assign_group(nmd, na->pdev) < 0) {
360 		return ENOMEM;
361 	}
362 
363 	NMA_LOCK(nmd);
364 
365 	if (netmap_mem_config(nmd))
366 		goto out;
367 
368 	nmd->active++;
369 
370 	nmd->lasterr = nmd->ops->nmd_finalize(nmd);
371 
372 	if (!nmd->lasterr && na->pdev) {
373 		nmd->lasterr = netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na);
374 	}
375 
376 out:
377 	lasterr = nmd->lasterr;
378 	NMA_UNLOCK(nmd);
379 
380 	if (lasterr)
381 		netmap_mem_deref(nmd, na);
382 
383 	return lasterr;
384 }
385 
386 static int
387 nm_isset(uint32_t *bitmap, u_int i)
388 {
389 	return bitmap[ (i>>5) ] & ( 1U << (i & 31U) );
390 }
391 
392 
393 static int
394 netmap_init_obj_allocator_bitmap(struct netmap_obj_pool *p)
395 {
396 	u_int n, j;
397 
398 	if (p->bitmap == NULL) {
399 		/* Allocate the bitmap */
400 		n = (p->objtotal + 31) / 32;
401 		p->bitmap = nm_os_malloc(sizeof(p->bitmap[0]) * n);
402 		if (p->bitmap == NULL) {
403 			nm_prerr("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
404 			    p->name);
405 			return ENOMEM;
406 		}
407 		p->bitmap_slots = n;
408 	} else {
409 		memset(p->bitmap, 0, p->bitmap_slots * sizeof(p->bitmap[0]));
410 	}
411 
412 	p->objfree = 0;
413 	/*
414 	 * Set all the bits in the bitmap that have
415 	 * corresponding buffers to 1 to indicate they are
416 	 * free.
417 	 */
418 	for (j = 0; j < p->objtotal; j++) {
419 		if (p->invalid_bitmap && nm_isset(p->invalid_bitmap, j)) {
420 			if (netmap_debug & NM_DEBUG_MEM)
421 				nm_prinf("skipping %s %d", p->name, j);
422 			continue;
423 		}
424 		p->bitmap[ (j>>5) ] |=  ( 1U << (j & 31U) );
425 		p->objfree++;
426 	}
427 
428 	if (netmap_verbose)
429 		nm_prinf("%s free %u", p->name, p->objfree);
430 	if (p->objfree == 0) {
431 		if (netmap_verbose)
432 			nm_prerr("%s: no objects available", p->name);
433 		return ENOMEM;
434 	}
435 
436 	return 0;
437 }
438 
439 static int
440 netmap_mem_init_bitmaps(struct netmap_mem_d *nmd)
441 {
442 	int i, error = 0;
443 
444 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
445 		struct netmap_obj_pool *p = &nmd->pools[i];
446 
447 		error = netmap_init_obj_allocator_bitmap(p);
448 		if (error)
449 			return error;
450 	}
451 
452 	/*
453 	 * buffers 0 and 1 are reserved
454 	 */
455 	if (nmd->pools[NETMAP_BUF_POOL].objfree < 2) {
456 		nm_prerr("%s: not enough buffers", nmd->pools[NETMAP_BUF_POOL].name);
457 		return ENOMEM;
458 	}
459 
460 	nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
461 	if (nmd->pools[NETMAP_BUF_POOL].bitmap) {
462 		/* XXX This check is a workaround that prevents a
463 		 * NULL pointer crash which currently happens only
464 		 * with ptnetmap guests.
465 		 * Removed shared-info --> is the bug still there? */
466 		nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3U;
467 	}
468 	return 0;
469 }
470 
471 int
472 netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
473 {
474 	int last_user = 0;
475 	NMA_LOCK(nmd);
476 	if (na->active_fds <= 0)
477 		netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na);
478 	if (nmd->active == 1) {
479 		last_user = 1;
480 		/*
481 		 * Reset the allocator when it falls out of use so that any
482 		 * pool resources leaked by unclean application exits are
483 		 * reclaimed.
484 		 */
485 		netmap_mem_init_bitmaps(nmd);
486 	}
487 	nmd->ops->nmd_deref(nmd);
488 
489 	nmd->active--;
490 	if (last_user) {
491 		nmd->nm_grp = -1;
492 		nmd->lasterr = 0;
493 	}
494 
495 	NMA_UNLOCK(nmd);
496 	return last_user;
497 }
498 
499 
500 /* accessor functions */
501 static int
502 netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
503 {
504 	lut->lut = nmd->pools[NETMAP_BUF_POOL].lut;
505 #ifdef __FreeBSD__
506 	lut->plut = lut->lut;
507 #endif
508 	lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
509 	lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
510 
511 	return 0;
512 }
513 
514 static struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = {
515 	[NETMAP_IF_POOL] = {
516 		.size = 1024,
517 		.num  = 2,
518 	},
519 	[NETMAP_RING_POOL] = {
520 		.size = 5*PAGE_SIZE,
521 		.num  = 4,
522 	},
523 	[NETMAP_BUF_POOL] = {
524 		.size = 2048,
525 		.num  = 4098,
526 	},
527 };
528 
529 
530 /*
531  * nm_mem is the memory allocator used for all physical interfaces
532  * running in netmap mode.
533  * Virtual (VALE) ports will have each its own allocator.
534  */
535 extern struct netmap_mem_ops netmap_mem_global_ops; /* forward */
536 struct netmap_mem_d nm_mem = {	/* Our memory allocator. */
537 	.pools = {
538 		[NETMAP_IF_POOL] = {
539 			.name 	= "netmap_if",
540 			.objminsize = sizeof(struct netmap_if),
541 			.objmaxsize = 4096,
542 			.nummin     = 10,	/* don't be stingy */
543 			.nummax	    = 10000,	/* XXX very large */
544 		},
545 		[NETMAP_RING_POOL] = {
546 			.name 	= "netmap_ring",
547 			.objminsize = sizeof(struct netmap_ring),
548 			.objmaxsize = 32*PAGE_SIZE,
549 			.nummin     = 2,
550 			.nummax	    = 1024,
551 		},
552 		[NETMAP_BUF_POOL] = {
553 			.name	= "netmap_buf",
554 			.objminsize = 64,
555 			.objmaxsize = 65536,
556 			.nummin     = 4,
557 			.nummax	    = 1000000, /* one million! */
558 		},
559 	},
560 
561 	.params = {
562 		[NETMAP_IF_POOL] = {
563 			.size = 1024,
564 			.num  = 100,
565 		},
566 		[NETMAP_RING_POOL] = {
567 			.size = 9*PAGE_SIZE,
568 			.num  = 200,
569 		},
570 		[NETMAP_BUF_POOL] = {
571 			.size = 2048,
572 			.num  = NETMAP_BUF_MAX_NUM,
573 		},
574 	},
575 
576 	.nm_id = 1,
577 	.nm_grp = -1,
578 
579 	.prev = &nm_mem,
580 	.next = &nm_mem,
581 
582 	.ops = &netmap_mem_global_ops,
583 
584 	.name = "1"
585 };
586 
587 
588 /* blueprint for the private memory allocators */
589 /* XXX clang is not happy about using name as a print format */
590 static const struct netmap_mem_d nm_blueprint = {
591 	.pools = {
592 		[NETMAP_IF_POOL] = {
593 			.name 	= "%s_if",
594 			.objminsize = sizeof(struct netmap_if),
595 			.objmaxsize = 4096,
596 			.nummin     = 1,
597 			.nummax	    = 100,
598 		},
599 		[NETMAP_RING_POOL] = {
600 			.name 	= "%s_ring",
601 			.objminsize = sizeof(struct netmap_ring),
602 			.objmaxsize = 32*PAGE_SIZE,
603 			.nummin     = 2,
604 			.nummax	    = 1024,
605 		},
606 		[NETMAP_BUF_POOL] = {
607 			.name	= "%s_buf",
608 			.objminsize = 64,
609 			.objmaxsize = 65536,
610 			.nummin     = 4,
611 			.nummax	    = 1000000, /* one million! */
612 		},
613 	},
614 
615 	.nm_grp = -1,
616 
617 	.flags = NETMAP_MEM_PRIVATE,
618 
619 	.ops = &netmap_mem_global_ops,
620 };
621 
622 /* memory allocator related sysctls */
623 
624 #define STRINGIFY(x) #x
625 
626 
627 #define DECLARE_SYSCTLS(id, name) \
628 	SYSBEGIN(mem2_ ## name); \
629 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
630 	    CTLFLAG_RW, &nm_mem.params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
631 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
632 	    CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
633 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
634 	    CTLFLAG_RW, &nm_mem.params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
635 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
636 	    CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \
637 	SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \
638 	    CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \
639 	    "Default size of private netmap " STRINGIFY(name) "s"); \
640 	SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \
641 	    CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \
642 	    "Default number of private netmap " STRINGIFY(name) "s");	\
643 	SYSEND
644 
645 SYSCTL_DECL(_dev_netmap);
646 DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
647 DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
648 DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
649 
650 /* call with nm_mem_list_lock held */
651 static int
652 nm_mem_assign_id_locked(struct netmap_mem_d *nmd)
653 {
654 	nm_memid_t id;
655 	struct netmap_mem_d *scan = netmap_last_mem_d;
656 	int error = ENOMEM;
657 
658 	do {
659 		/* we rely on unsigned wrap around */
660 		id = scan->nm_id + 1;
661 		if (id == 0) /* reserve 0 as error value */
662 			id = 1;
663 		scan = scan->next;
664 		if (id != scan->nm_id) {
665 			nmd->nm_id = id;
666 			nmd->prev = scan->prev;
667 			nmd->next = scan;
668 			scan->prev->next = nmd;
669 			scan->prev = nmd;
670 			netmap_last_mem_d = nmd;
671 			nmd->refcount = 1;
672 			NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
673 			error = 0;
674 			break;
675 		}
676 	} while (scan != netmap_last_mem_d);
677 
678 	return error;
679 }
680 
681 /* call with nm_mem_list_lock *not* held */
682 static int
683 nm_mem_assign_id(struct netmap_mem_d *nmd)
684 {
685 	int ret;
686 
687 	NM_MTX_LOCK(nm_mem_list_lock);
688 	ret = nm_mem_assign_id_locked(nmd);
689 	NM_MTX_UNLOCK(nm_mem_list_lock);
690 
691 	return ret;
692 }
693 
694 /* call with nm_mem_list_lock held */
695 static void
696 nm_mem_release_id(struct netmap_mem_d *nmd)
697 {
698 	nmd->prev->next = nmd->next;
699 	nmd->next->prev = nmd->prev;
700 
701 	if (netmap_last_mem_d == nmd)
702 		netmap_last_mem_d = nmd->prev;
703 
704 	nmd->prev = nmd->next = NULL;
705 }
706 
707 struct netmap_mem_d *
708 netmap_mem_find(nm_memid_t id)
709 {
710 	struct netmap_mem_d *nmd;
711 
712 	NM_MTX_LOCK(nm_mem_list_lock);
713 	nmd = netmap_last_mem_d;
714 	do {
715 		if (!(nmd->flags & NETMAP_MEM_HIDDEN) && nmd->nm_id == id) {
716 			nmd->refcount++;
717 			NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
718 			NM_MTX_UNLOCK(nm_mem_list_lock);
719 			return nmd;
720 		}
721 		nmd = nmd->next;
722 	} while (nmd != netmap_last_mem_d);
723 	NM_MTX_UNLOCK(nm_mem_list_lock);
724 	return NULL;
725 }
726 
727 static int
728 nm_mem_assign_group(struct netmap_mem_d *nmd, struct device *dev)
729 {
730 	int err = 0, id;
731 	id = nm_iommu_group_id(dev);
732 	if (netmap_debug & NM_DEBUG_MEM)
733 		nm_prinf("iommu_group %d", id);
734 
735 	NMA_LOCK(nmd);
736 
737 	if (nmd->nm_grp < 0)
738 		nmd->nm_grp = id;
739 
740 	if (nmd->nm_grp != id) {
741 		if (netmap_verbose)
742 			nm_prerr("iommu group mismatch: %u vs %u",
743 					nmd->nm_grp, id);
744 		nmd->lasterr = err = ENOMEM;
745 	}
746 
747 	NMA_UNLOCK(nmd);
748 	return err;
749 }
750 
751 static struct lut_entry *
752 nm_alloc_lut(u_int nobj)
753 {
754 	size_t n = sizeof(struct lut_entry) * nobj;
755 	struct lut_entry *lut;
756 #ifdef linux
757 	lut = vmalloc(n);
758 #else
759 	lut = nm_os_malloc(n);
760 #endif
761 	return lut;
762 }
763 
764 static void
765 nm_free_lut(struct lut_entry *lut, u_int objtotal)
766 {
767 	bzero(lut, sizeof(struct lut_entry) * objtotal);
768 #ifdef linux
769 	vfree(lut);
770 #else
771 	nm_os_free(lut);
772 #endif
773 }
774 
775 #if defined(linux) || defined(_WIN32)
776 static struct plut_entry *
777 nm_alloc_plut(u_int nobj)
778 {
779 	size_t n = sizeof(struct plut_entry) * nobj;
780 	struct plut_entry *lut;
781 	lut = vmalloc(n);
782 	return lut;
783 }
784 
785 static void
786 nm_free_plut(struct plut_entry * lut)
787 {
788 	vfree(lut);
789 }
790 #endif /* linux or _WIN32 */
791 
792 
793 /*
794  * First, find the allocator that contains the requested offset,
795  * then locate the cluster through a lookup table.
796  */
797 static vm_paddr_t
798 netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
799 {
800 	int i;
801 	vm_ooffset_t o = offset;
802 	vm_paddr_t pa;
803 	struct netmap_obj_pool *p;
804 
805 	p = nmd->pools;
806 
807 	for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
808 		if (offset >= p[i].memtotal)
809 			continue;
810 		// now lookup the cluster's address
811 #ifndef _WIN32
812 		pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) +
813 			offset % p[i]._objsize;
814 #else
815 		pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr);
816 		pa.QuadPart += offset % p[i]._objsize;
817 #endif
818 		return pa;
819 	}
820 	/* this is only in case of errors */
821 	nm_prerr("invalid ofs 0x%x out of 0x%zx 0x%zx 0x%zx", (u_int)o,
822 		p[NETMAP_IF_POOL].memtotal,
823 		p[NETMAP_IF_POOL].memtotal
824 			+ p[NETMAP_RING_POOL].memtotal,
825 		p[NETMAP_IF_POOL].memtotal
826 			+ p[NETMAP_RING_POOL].memtotal
827 			+ p[NETMAP_BUF_POOL].memtotal);
828 #ifndef _WIN32
829 	return 0; /* bad address */
830 #else
831 	vm_paddr_t res;
832 	res.QuadPart = 0;
833 	return res;
834 #endif
835 }
836 
837 #ifdef _WIN32
838 
839 /*
840  * win32_build_virtual_memory_for_userspace
841  *
842  * This function get all the object making part of the pools and maps
843  * a contiguous virtual memory space for the userspace
844  * It works this way
845  * 1 - allocate a Memory Descriptor List wide as the sum
846  *		of the memory needed for the pools
847  * 2 - cycle all the objects in every pool and for every object do
848  *
849  *		2a - cycle all the objects in every pool, get the list
850  *				of the physical address descriptors
851  *		2b - calculate the offset in the array of pages desciptor in the
852  *				main MDL
853  *		2c - copy the descriptors of the object in the main MDL
854  *
855  * 3 - return the resulting MDL that needs to be mapped in userland
856  *
857  * In this way we will have an MDL that describes all the memory for the
858  * objects in a single object
859 */
860 
861 PMDL
862 win32_build_user_vm_map(struct netmap_mem_d* nmd)
863 {
864 	u_int memflags, ofs = 0;
865 	PMDL mainMdl, tempMdl;
866 	uint64_t memsize;
867 	int i, j;
868 
869 	if (netmap_mem_get_info(nmd, &memsize, &memflags, NULL)) {
870 		nm_prerr("memory not finalised yet");
871 		return NULL;
872 	}
873 
874 	mainMdl = IoAllocateMdl(NULL, memsize, FALSE, FALSE, NULL);
875 	if (mainMdl == NULL) {
876 		nm_prerr("failed to allocate mdl");
877 		return NULL;
878 	}
879 
880 	NMA_LOCK(nmd);
881 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
882 		struct netmap_obj_pool *p = &nmd->pools[i];
883 		int clsz = p->_clustsize;
884 		int clobjs = p->_clustentries; /* objects per cluster */
885 		int mdl_len = sizeof(PFN_NUMBER) * BYTES_TO_PAGES(clsz);
886 		PPFN_NUMBER pSrc, pDst;
887 
888 		/* each pool has a different cluster size so we need to reallocate */
889 		tempMdl = IoAllocateMdl(p->lut[0].vaddr, clsz, FALSE, FALSE, NULL);
890 		if (tempMdl == NULL) {
891 			NMA_UNLOCK(nmd);
892 			nm_prerr("fail to allocate tempMdl");
893 			IoFreeMdl(mainMdl);
894 			return NULL;
895 		}
896 		pSrc = MmGetMdlPfnArray(tempMdl);
897 		/* create one entry per cluster, the lut[] has one entry per object */
898 		for (j = 0; j < p->numclusters; j++, ofs += clsz) {
899 			pDst = &MmGetMdlPfnArray(mainMdl)[BYTES_TO_PAGES(ofs)];
900 			MmInitializeMdl(tempMdl, p->lut[j*clobjs].vaddr, clsz);
901 			MmBuildMdlForNonPagedPool(tempMdl); /* compute physical page addresses */
902 			RtlCopyMemory(pDst, pSrc, mdl_len); /* copy the page descriptors */
903 			mainMdl->MdlFlags = tempMdl->MdlFlags; /* XXX what is in here ? */
904 		}
905 		IoFreeMdl(tempMdl);
906 	}
907 	NMA_UNLOCK(nmd);
908 	return mainMdl;
909 }
910 
911 #endif /* _WIN32 */
912 
913 /*
914  * helper function for OS-specific mmap routines (currently only windows).
915  * Given an nmd and a pool index, returns the cluster size and number of clusters.
916  * Returns 0 if memory is finalised and the pool is valid, otherwise 1.
917  * It should be called under NMA_LOCK(nmd) otherwise the underlying info can change.
918  */
919 
920 int
921 netmap_mem2_get_pool_info(struct netmap_mem_d* nmd, u_int pool, u_int *clustsize, u_int *numclusters)
922 {
923 	if (!nmd || !clustsize || !numclusters || pool >= NETMAP_POOLS_NR)
924 		return 1; /* invalid arguments */
925 	// NMA_LOCK_ASSERT(nmd);
926 	if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
927 		*clustsize = *numclusters = 0;
928 		return 1; /* not ready yet */
929 	}
930 	*clustsize = nmd->pools[pool]._clustsize;
931 	*numclusters = nmd->pools[pool].numclusters;
932 	return 0; /* success */
933 }
934 
935 static int
936 netmap_mem2_get_info(struct netmap_mem_d* nmd, uint64_t* size,
937 			u_int *memflags, nm_memid_t *id)
938 {
939 	int error = 0;
940 	error = netmap_mem_config(nmd);
941 	if (error)
942 		goto out;
943 	if (size) {
944 		if (nmd->flags & NETMAP_MEM_FINALIZED) {
945 			*size = nmd->nm_totalsize;
946 		} else {
947 			int i;
948 			*size = 0;
949 			for (i = 0; i < NETMAP_POOLS_NR; i++) {
950 				struct netmap_obj_pool *p = nmd->pools + i;
951 				*size += ((size_t)p->_numclusters * (size_t)p->_clustsize);
952 			}
953 		}
954 	}
955 	if (memflags)
956 		*memflags = nmd->flags;
957 	if (id)
958 		*id = nmd->nm_id;
959 out:
960 	return error;
961 }
962 
963 /*
964  * we store objects by kernel address, need to find the offset
965  * within the pool to export the value to userspace.
966  * Algorithm: scan until we find the cluster, then add the
967  * actual offset in the cluster
968  */
969 static ssize_t
970 netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
971 {
972 	int i, k = p->_clustentries, n = p->objtotal;
973 	ssize_t ofs = 0;
974 
975 	for (i = 0; i < n; i += k, ofs += p->_clustsize) {
976 		const char *base = p->lut[i].vaddr;
977 		ssize_t relofs = (const char *) vaddr - base;
978 
979 		if (relofs < 0 || relofs >= p->_clustsize)
980 			continue;
981 
982 		ofs = ofs + relofs;
983 		nm_prdis("%s: return offset %d (cluster %d) for pointer %p",
984 		    p->name, ofs, i, vaddr);
985 		return ofs;
986 	}
987 	nm_prerr("address %p is not contained inside any cluster (%s)",
988 	    vaddr, p->name);
989 	return 0; /* An error occurred */
990 }
991 
992 /* Helper functions which convert virtual addresses to offsets */
993 #define netmap_if_offset(n, v)					\
994 	netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
995 
996 #define netmap_ring_offset(n, v)				\
997     ((n)->pools[NETMAP_IF_POOL].memtotal + 			\
998 	netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
999 
1000 static ssize_t
1001 netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr)
1002 {
1003 	return netmap_if_offset(nmd, addr);
1004 }
1005 
1006 /*
1007  * report the index, and use start position as a hint,
1008  * otherwise buffer allocation becomes terribly expensive.
1009  */
1010 static void *
1011 netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
1012 {
1013 	uint32_t i = 0;			/* index in the bitmap */
1014 	uint32_t mask, j = 0;		/* slot counter */
1015 	void *vaddr = NULL;
1016 
1017 	if (len > p->_objsize) {
1018 		nm_prerr("%s request size %d too large", p->name, len);
1019 		return NULL;
1020 	}
1021 
1022 	if (p->objfree == 0) {
1023 		nm_prerr("no more %s objects", p->name);
1024 		return NULL;
1025 	}
1026 	if (start)
1027 		i = *start;
1028 
1029 	/* termination is guaranteed by p->free, but better check bounds on i */
1030 	while (vaddr == NULL && i < p->bitmap_slots)  {
1031 		uint32_t cur = p->bitmap[i];
1032 		if (cur == 0) { /* bitmask is fully used */
1033 			i++;
1034 			continue;
1035 		}
1036 		/* locate a slot */
1037 		for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
1038 			;
1039 
1040 		p->bitmap[i] &= ~mask; /* mark object as in use */
1041 		p->objfree--;
1042 
1043 		vaddr = p->lut[i * 32 + j].vaddr;
1044 		if (index)
1045 			*index = i * 32 + j;
1046 	}
1047 	nm_prdis("%s allocator: allocated object @ [%d][%d]: vaddr %p",p->name, i, j, vaddr);
1048 
1049 	if (start)
1050 		*start = i;
1051 	return vaddr;
1052 }
1053 
1054 
1055 /*
1056  * free by index, not by address.
1057  * XXX should we also cleanup the content ?
1058  */
1059 static int
1060 netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
1061 {
1062 	uint32_t *ptr, mask;
1063 
1064 	if (j >= p->objtotal) {
1065 		nm_prerr("invalid index %u, max %u", j, p->objtotal);
1066 		return 1;
1067 	}
1068 	ptr = &p->bitmap[j / 32];
1069 	mask = (1 << (j % 32));
1070 	if (*ptr & mask) {
1071 		nm_prerr("ouch, double free on buffer %d", j);
1072 		return 1;
1073 	} else {
1074 		*ptr |= mask;
1075 		p->objfree++;
1076 		return 0;
1077 	}
1078 }
1079 
1080 /*
1081  * free by address. This is slow but is only used for a few
1082  * objects (rings, nifp)
1083  */
1084 static void
1085 netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
1086 {
1087 	u_int i, j, n = p->numclusters;
1088 
1089 	for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
1090 		void *base = p->lut[i * p->_clustentries].vaddr;
1091 		ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
1092 
1093 		/* Given address, is out of the scope of the current cluster.*/
1094 		if (base == NULL || vaddr < base || relofs >= p->_clustsize)
1095 			continue;
1096 
1097 		j = j + relofs / p->_objsize;
1098 		/* KASSERT(j != 0, ("Cannot free object 0")); */
1099 		netmap_obj_free(p, j);
1100 		return;
1101 	}
1102 	nm_prerr("address %p is not contained inside any cluster (%s)",
1103 	    vaddr, p->name);
1104 }
1105 
1106 unsigned
1107 netmap_mem_bufsize(struct netmap_mem_d *nmd)
1108 {
1109 	return nmd->pools[NETMAP_BUF_POOL]._objsize;
1110 }
1111 
1112 #define netmap_if_malloc(n, len)	netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
1113 #define netmap_if_free(n, v)		netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
1114 #define netmap_ring_malloc(n, len)	netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
1115 #define netmap_ring_free(n, v)		netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
1116 #define netmap_buf_malloc(n, _pos, _index)			\
1117 	netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index)
1118 
1119 
1120 #if 0 /* currently unused */
1121 /* Return the index associated to the given packet buffer */
1122 #define netmap_buf_index(n, v)						\
1123     (netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
1124 #endif
1125 
1126 /*
1127  * allocate extra buffers in a linked list.
1128  * returns the actual number.
1129  */
1130 uint32_t
1131 netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n)
1132 {
1133 	struct netmap_mem_d *nmd = na->nm_mem;
1134 	uint32_t i, pos = 0; /* opaque, scan position in the bitmap */
1135 
1136 	NMA_LOCK(nmd);
1137 
1138 	*head = 0;	/* default, 'null' index ie empty list */
1139 	for (i = 0 ; i < n; i++) {
1140 		uint32_t cur = *head;	/* save current head */
1141 		uint32_t *p = netmap_buf_malloc(nmd, &pos, head);
1142 		if (p == NULL) {
1143 			nm_prerr("no more buffers after %d of %d", i, n);
1144 			*head = cur; /* restore */
1145 			break;
1146 		}
1147 		nm_prdis(5, "allocate buffer %d -> %d", *head, cur);
1148 		*p = cur; /* link to previous head */
1149 	}
1150 
1151 	NMA_UNLOCK(nmd);
1152 
1153 	return i;
1154 }
1155 
1156 static void
1157 netmap_extra_free(struct netmap_adapter *na, uint32_t head)
1158 {
1159 	struct lut_entry *lut = na->na_lut.lut;
1160 	struct netmap_mem_d *nmd = na->nm_mem;
1161 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1162 	uint32_t i, cur, *buf;
1163 
1164 	nm_prdis("freeing the extra list");
1165 	for (i = 0; head >=2 && head < p->objtotal; i++) {
1166 		cur = head;
1167 		buf = lut[head].vaddr;
1168 		head = *buf;
1169 		*buf = 0;
1170 		if (netmap_obj_free(p, cur))
1171 			break;
1172 	}
1173 	if (head != 0)
1174 		nm_prerr("breaking with head %d", head);
1175 	if (netmap_debug & NM_DEBUG_MEM)
1176 		nm_prinf("freed %d buffers", i);
1177 }
1178 
1179 
1180 /* Return nonzero on error */
1181 static int
1182 netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
1183 {
1184 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1185 	u_int i = 0;	/* slot counter */
1186 	uint32_t pos = 0;	/* slot in p->bitmap */
1187 	uint32_t index = 0;	/* buffer index */
1188 
1189 	for (i = 0; i < n; i++) {
1190 		void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
1191 		if (vaddr == NULL) {
1192 			nm_prerr("no more buffers after %d of %d", i, n);
1193 			goto cleanup;
1194 		}
1195 		slot[i].buf_idx = index;
1196 		slot[i].len = p->_objsize;
1197 		slot[i].flags = 0;
1198 		slot[i].ptr = 0;
1199 	}
1200 
1201 	nm_prdis("%s: allocated %d buffers, %d available, first at %d", p->name, n, p->objfree, pos);
1202 	return (0);
1203 
1204 cleanup:
1205 	while (i > 0) {
1206 		i--;
1207 		netmap_obj_free(p, slot[i].buf_idx);
1208 	}
1209 	bzero(slot, n * sizeof(slot[0]));
1210 	return (ENOMEM);
1211 }
1212 
1213 static void
1214 netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index)
1215 {
1216 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1217 	u_int i;
1218 
1219 	for (i = 0; i < n; i++) {
1220 		slot[i].buf_idx = index;
1221 		slot[i].len = p->_objsize;
1222 		slot[i].flags = 0;
1223 	}
1224 }
1225 
1226 
1227 static void
1228 netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
1229 {
1230 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1231 
1232 	if (i < 2 || i >= p->objtotal) {
1233 		nm_prerr("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
1234 		return;
1235 	}
1236 	netmap_obj_free(p, i);
1237 }
1238 
1239 
1240 static void
1241 netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
1242 {
1243 	u_int i;
1244 
1245 	for (i = 0; i < n; i++) {
1246 		if (slot[i].buf_idx > 1)
1247 			netmap_free_buf(nmd, slot[i].buf_idx);
1248 	}
1249 	nm_prdis("%s: released some buffers, available: %u",
1250 			p->name, p->objfree);
1251 }
1252 
1253 static void
1254 netmap_reset_obj_allocator(struct netmap_obj_pool *p)
1255 {
1256 
1257 	if (p == NULL)
1258 		return;
1259 	if (p->bitmap)
1260 		nm_os_free(p->bitmap);
1261 	p->bitmap = NULL;
1262 	if (p->invalid_bitmap)
1263 		nm_os_free(p->invalid_bitmap);
1264 	p->invalid_bitmap = NULL;
1265 	if (!p->alloc_done) {
1266 		/* allocation was done by somebody else.
1267 		 * Let them clean up after themselves.
1268 		 */
1269 		return;
1270 	}
1271 	if (p->lut) {
1272 		u_int i;
1273 
1274 		/*
1275 		 * Free each cluster allocated in
1276 		 * netmap_finalize_obj_allocator().  The cluster start
1277 		 * addresses are stored at multiples of p->_clusterentries
1278 		 * in the lut.
1279 		 */
1280 		for (i = 0; i < p->objtotal; i += p->_clustentries) {
1281 			contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
1282 		}
1283 		nm_free_lut(p->lut, p->objtotal);
1284 	}
1285 	p->lut = NULL;
1286 	p->objtotal = 0;
1287 	p->memtotal = 0;
1288 	p->numclusters = 0;
1289 	p->objfree = 0;
1290 	p->alloc_done = 0;
1291 }
1292 
1293 /*
1294  * Free all resources related to an allocator.
1295  */
1296 static void
1297 netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
1298 {
1299 	if (p == NULL)
1300 		return;
1301 	netmap_reset_obj_allocator(p);
1302 }
1303 
1304 /*
1305  * We receive a request for objtotal objects, of size objsize each.
1306  * Internally we may round up both numbers, as we allocate objects
1307  * in small clusters multiple of the page size.
1308  * We need to keep track of objtotal and clustentries,
1309  * as they are needed when freeing memory.
1310  *
1311  * XXX note -- userspace needs the buffers to be contiguous,
1312  *	so we cannot afford gaps at the end of a cluster.
1313  */
1314 
1315 
1316 /* call with NMA_LOCK held */
1317 static int
1318 netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
1319 {
1320 	int i;
1321 	u_int clustsize;	/* the cluster size, multiple of page size */
1322 	u_int clustentries;	/* how many objects per entry */
1323 
1324 	/* we store the current request, so we can
1325 	 * detect configuration changes later */
1326 	p->r_objtotal = objtotal;
1327 	p->r_objsize = objsize;
1328 
1329 #define MAX_CLUSTSIZE	(1<<22)		// 4 MB
1330 #define LINE_ROUND	NM_CACHE_ALIGN	// 64
1331 	if (objsize >= MAX_CLUSTSIZE) {
1332 		/* we could do it but there is no point */
1333 		nm_prerr("unsupported allocation for %d bytes", objsize);
1334 		return EINVAL;
1335 	}
1336 	/* make sure objsize is a multiple of LINE_ROUND */
1337 	i = (objsize & (LINE_ROUND - 1));
1338 	if (i) {
1339 		nm_prinf("aligning object by %d bytes", LINE_ROUND - i);
1340 		objsize += LINE_ROUND - i;
1341 	}
1342 	if (objsize < p->objminsize || objsize > p->objmaxsize) {
1343 		nm_prerr("requested objsize %d out of range [%d, %d]",
1344 			objsize, p->objminsize, p->objmaxsize);
1345 		return EINVAL;
1346 	}
1347 	if (objtotal < p->nummin || objtotal > p->nummax) {
1348 		nm_prerr("requested objtotal %d out of range [%d, %d]",
1349 			objtotal, p->nummin, p->nummax);
1350 		return EINVAL;
1351 	}
1352 	/*
1353 	 * Compute number of objects using a brute-force approach:
1354 	 * given a max cluster size,
1355 	 * we try to fill it with objects keeping track of the
1356 	 * wasted space to the next page boundary.
1357 	 */
1358 	for (clustentries = 0, i = 1;; i++) {
1359 		u_int delta, used = i * objsize;
1360 		if (used > MAX_CLUSTSIZE)
1361 			break;
1362 		delta = used % PAGE_SIZE;
1363 		if (delta == 0) { // exact solution
1364 			clustentries = i;
1365 			break;
1366 		}
1367 	}
1368 	/* exact solution not found */
1369 	if (clustentries == 0) {
1370 		nm_prerr("unsupported allocation for %d bytes", objsize);
1371 		return EINVAL;
1372 	}
1373 	/* compute clustsize */
1374 	clustsize = clustentries * objsize;
1375 	if (netmap_debug & NM_DEBUG_MEM)
1376 		nm_prinf("objsize %d clustsize %d objects %d",
1377 			objsize, clustsize, clustentries);
1378 
1379 	/*
1380 	 * The number of clusters is n = ceil(objtotal/clustentries)
1381 	 * objtotal' = n * clustentries
1382 	 */
1383 	p->_clustentries = clustentries;
1384 	p->_clustsize = clustsize;
1385 	p->_numclusters = (objtotal + clustentries - 1) / clustentries;
1386 
1387 	/* actual values (may be larger than requested) */
1388 	p->_objsize = objsize;
1389 	p->_objtotal = p->_numclusters * clustentries;
1390 
1391 	return 0;
1392 }
1393 
1394 /* call with NMA_LOCK held */
1395 static int
1396 netmap_finalize_obj_allocator(struct netmap_obj_pool *p)
1397 {
1398 	int i; /* must be signed */
1399 	size_t n;
1400 
1401 	if (p->lut) {
1402 		/* if the lut is already there we assume that also all the
1403 		 * clusters have already been allocated, possibily by somebody
1404 		 * else (e.g., extmem). In the latter case, the alloc_done flag
1405 		 * will remain at zero, so that we will not attempt to
1406 		 * deallocate the clusters by ourselves in
1407 		 * netmap_reset_obj_allocator.
1408 		 */
1409 		return 0;
1410 	}
1411 
1412 	/* optimistically assume we have enough memory */
1413 	p->numclusters = p->_numclusters;
1414 	p->objtotal = p->_objtotal;
1415 	p->alloc_done = 1;
1416 
1417 	p->lut = nm_alloc_lut(p->objtotal);
1418 	if (p->lut == NULL) {
1419 		nm_prerr("Unable to create lookup table for '%s'", p->name);
1420 		goto clean;
1421 	}
1422 
1423 	/*
1424 	 * Allocate clusters, init pointers
1425 	 */
1426 
1427 	n = p->_clustsize;
1428 	for (i = 0; i < (int)p->objtotal;) {
1429 		int lim = i + p->_clustentries;
1430 		char *clust;
1431 
1432 		/*
1433 		 * XXX Note, we only need contigmalloc() for buffers attached
1434 		 * to native interfaces. In all other cases (nifp, netmap rings
1435 		 * and even buffers for VALE ports or emulated interfaces) we
1436 		 * can live with standard malloc, because the hardware will not
1437 		 * access the pages directly.
1438 		 */
1439 		clust = contigmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO,
1440 		    (size_t)0, -1UL, PAGE_SIZE, 0);
1441 		if (clust == NULL) {
1442 			/*
1443 			 * If we get here, there is a severe memory shortage,
1444 			 * so halve the allocated memory to reclaim some.
1445 			 */
1446 			nm_prerr("Unable to create cluster at %d for '%s' allocator",
1447 			    i, p->name);
1448 			if (i < 2) /* nothing to halve */
1449 				goto out;
1450 			lim = i / 2;
1451 			for (i--; i >= lim; i--) {
1452 				if (i % p->_clustentries == 0 && p->lut[i].vaddr)
1453 					contigfree(p->lut[i].vaddr,
1454 						n, M_NETMAP);
1455 				p->lut[i].vaddr = NULL;
1456 			}
1457 		out:
1458 			p->objtotal = i;
1459 			/* we may have stopped in the middle of a cluster */
1460 			p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
1461 			break;
1462 		}
1463 		/*
1464 		 * Set lut state for all buffers in the current cluster.
1465 		 *
1466 		 * [i, lim) is the set of buffer indexes that cover the
1467 		 * current cluster.
1468 		 *
1469 		 * 'clust' is really the address of the current buffer in
1470 		 * the current cluster as we index through it with a stride
1471 		 * of p->_objsize.
1472 		 */
1473 		for (; i < lim; i++, clust += p->_objsize) {
1474 			p->lut[i].vaddr = clust;
1475 #if !defined(linux) && !defined(_WIN32)
1476 			p->lut[i].paddr = vtophys(clust);
1477 #endif
1478 		}
1479 	}
1480 	p->memtotal = (size_t)p->numclusters * (size_t)p->_clustsize;
1481 	if (netmap_verbose)
1482 		nm_prinf("Pre-allocated %d clusters (%d/%zuKB) for '%s'",
1483 		    p->numclusters, p->_clustsize >> 10,
1484 		    p->memtotal >> 10, p->name);
1485 
1486 	return 0;
1487 
1488 clean:
1489 	netmap_reset_obj_allocator(p);
1490 	return ENOMEM;
1491 }
1492 
1493 /* call with lock held */
1494 static int
1495 netmap_mem_params_changed(struct netmap_obj_params* p)
1496 {
1497 	int i, rv = 0;
1498 
1499 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1500 		if (p[i].last_size != p[i].size || p[i].last_num != p[i].num) {
1501 			p[i].last_size = p[i].size;
1502 			p[i].last_num = p[i].num;
1503 			rv = 1;
1504 		}
1505 	}
1506 	return rv;
1507 }
1508 
1509 static void
1510 netmap_mem_reset_all(struct netmap_mem_d *nmd)
1511 {
1512 	int i;
1513 
1514 	if (netmap_debug & NM_DEBUG_MEM)
1515 		nm_prinf("resetting %p", nmd);
1516 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1517 		netmap_reset_obj_allocator(&nmd->pools[i]);
1518 	}
1519 	nmd->flags  &= ~NETMAP_MEM_FINALIZED;
1520 }
1521 
1522 static int
1523 netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na)
1524 {
1525 	int i, lim = p->objtotal;
1526 	struct netmap_lut *lut;
1527 
1528 	if (na == NULL || na->pdev == NULL)
1529 		return 0;
1530 
1531 	lut = &na->na_lut;
1532 #if defined(__FreeBSD__)
1533 	/* On FreeBSD mapping and unmapping is performed by the txsync
1534 	 * and rxsync routine, packet by packet. */
1535 	(void)i;
1536 	(void)lim;
1537 	(void)lut;
1538 #elif defined(_WIN32)
1539 	(void)i;
1540 	(void)lim;
1541 	(void)lut;
1542 	nm_prerr("unsupported on Windows");
1543 #else /* linux */
1544 	nm_prdis("unmapping and freeing plut for %s", na->name);
1545 	if (lut->plut == NULL)
1546 		return 0;
1547 	for (i = 0; i < lim; i += p->_clustentries) {
1548 		if (lut->plut[i].paddr)
1549 			netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr, p->_clustsize);
1550 	}
1551 	nm_free_plut(lut->plut);
1552 	lut->plut = NULL;
1553 #endif /* linux */
1554 
1555 	return 0;
1556 }
1557 
1558 static int
1559 netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na)
1560 {
1561 	int error = 0;
1562 	int i, lim = p->objtotal;
1563 	struct netmap_lut *lut = &na->na_lut;
1564 
1565 	if (na->pdev == NULL)
1566 		return 0;
1567 
1568 #if defined(__FreeBSD__)
1569 	/* On FreeBSD mapping and unmapping is performed by the txsync
1570 	 * and rxsync routine, packet by packet. */
1571 	(void)i;
1572 	(void)lim;
1573 	(void)lut;
1574 #elif defined(_WIN32)
1575 	(void)i;
1576 	(void)lim;
1577 	(void)lut;
1578 	nm_prerr("unsupported on Windows");
1579 #else /* linux */
1580 
1581 	if (lut->plut != NULL) {
1582 		nm_prdis("plut already allocated for %s", na->name);
1583 		return 0;
1584 	}
1585 
1586 	nm_prdis("allocating physical lut for %s", na->name);
1587 	lut->plut = nm_alloc_plut(lim);
1588 	if (lut->plut == NULL) {
1589 		nm_prerr("Failed to allocate physical lut for %s", na->name);
1590 		return ENOMEM;
1591 	}
1592 
1593 	for (i = 0; i < lim; i += p->_clustentries) {
1594 		lut->plut[i].paddr = 0;
1595 	}
1596 
1597 	for (i = 0; i < lim; i += p->_clustentries) {
1598 		int j;
1599 
1600 		if (p->lut[i].vaddr == NULL)
1601 			continue;
1602 
1603 		error = netmap_load_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr,
1604 				p->lut[i].vaddr, p->_clustsize);
1605 		if (error) {
1606 			nm_prerr("Failed to map cluster #%d from the %s pool", i, p->name);
1607 			break;
1608 		}
1609 
1610 		for (j = 1; j < p->_clustentries; j++) {
1611 			lut->plut[i + j].paddr = lut->plut[i + j - 1].paddr + p->_objsize;
1612 		}
1613 	}
1614 
1615 	if (error)
1616 		netmap_mem_unmap(p, na);
1617 
1618 #endif /* linux */
1619 
1620 	return error;
1621 }
1622 
1623 static int
1624 netmap_mem_finalize_all(struct netmap_mem_d *nmd)
1625 {
1626 	int i;
1627 	if (nmd->flags & NETMAP_MEM_FINALIZED)
1628 		return 0;
1629 	nmd->lasterr = 0;
1630 	nmd->nm_totalsize = 0;
1631 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1632 		nmd->lasterr = netmap_finalize_obj_allocator(&nmd->pools[i]);
1633 		if (nmd->lasterr)
1634 			goto error;
1635 		nmd->nm_totalsize += nmd->pools[i].memtotal;
1636 	}
1637 	nmd->lasterr = netmap_mem_init_bitmaps(nmd);
1638 	if (nmd->lasterr)
1639 		goto error;
1640 
1641 	nmd->flags |= NETMAP_MEM_FINALIZED;
1642 
1643 	if (netmap_verbose)
1644 		nm_prinf("interfaces %zd KB, rings %zd KB, buffers %zd MB",
1645 		    nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
1646 		    nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
1647 		    nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
1648 
1649 	if (netmap_verbose)
1650 		nm_prinf("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
1651 
1652 
1653 	return 0;
1654 error:
1655 	netmap_mem_reset_all(nmd);
1656 	return nmd->lasterr;
1657 }
1658 
1659 /*
1660  * allocator for private memory
1661  */
1662 static void *
1663 _netmap_mem_private_new(size_t size, struct netmap_obj_params *p,
1664 		struct netmap_mem_ops *ops, int *perr)
1665 {
1666 	struct netmap_mem_d *d = NULL;
1667 	int i, err = 0;
1668 
1669 	d = nm_os_malloc(size);
1670 	if (d == NULL) {
1671 		err = ENOMEM;
1672 		goto error;
1673 	}
1674 
1675 	*d = nm_blueprint;
1676 	d->ops = ops;
1677 
1678 	err = nm_mem_assign_id(d);
1679 	if (err)
1680 		goto error_free;
1681 	snprintf(d->name, NM_MEM_NAMESZ, "%d", d->nm_id);
1682 
1683 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1684 		snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
1685 				nm_blueprint.pools[i].name,
1686 				d->name);
1687 		d->params[i].num = p[i].num;
1688 		d->params[i].size = p[i].size;
1689 	}
1690 
1691 	NMA_LOCK_INIT(d);
1692 
1693 	err = netmap_mem_config(d);
1694 	if (err)
1695 		goto error_rel_id;
1696 
1697 	d->flags &= ~NETMAP_MEM_FINALIZED;
1698 
1699 	return d;
1700 
1701 error_rel_id:
1702 	NMA_LOCK_DESTROY(d);
1703 	nm_mem_release_id(d);
1704 error_free:
1705 	nm_os_free(d);
1706 error:
1707 	if (perr)
1708 		*perr = err;
1709 	return NULL;
1710 }
1711 
1712 struct netmap_mem_d *
1713 netmap_mem_private_new(u_int txr, u_int txd, u_int rxr, u_int rxd,
1714 		u_int extra_bufs, u_int npipes, int *perr)
1715 {
1716 	struct netmap_mem_d *d = NULL;
1717 	struct netmap_obj_params p[NETMAP_POOLS_NR];
1718 	int i;
1719 	u_int v, maxd;
1720 	/* account for the fake host rings */
1721 	txr++;
1722 	rxr++;
1723 
1724 	/* copy the min values */
1725 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1726 		p[i] = netmap_min_priv_params[i];
1727 	}
1728 
1729 	/* possibly increase them to fit user request */
1730 	v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr);
1731 	if (p[NETMAP_IF_POOL].size < v)
1732 		p[NETMAP_IF_POOL].size = v;
1733 	v = 2 + 4 * npipes;
1734 	if (p[NETMAP_IF_POOL].num < v)
1735 		p[NETMAP_IF_POOL].num = v;
1736 	maxd = (txd > rxd) ? txd : rxd;
1737 	v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd;
1738 	if (p[NETMAP_RING_POOL].size < v)
1739 		p[NETMAP_RING_POOL].size = v;
1740 	/* each pipe endpoint needs two tx rings (1 normal + 1 host, fake)
1741 	 * and two rx rings (again, 1 normal and 1 fake host)
1742 	 */
1743 	v = txr + rxr + 8 * npipes;
1744 	if (p[NETMAP_RING_POOL].num < v)
1745 		p[NETMAP_RING_POOL].num = v;
1746 	/* for each pipe we only need the buffers for the 4 "real" rings.
1747 	 * On the other end, the pipe ring dimension may be different from
1748 	 * the parent port ring dimension. As a compromise, we allocate twice the
1749 	 * space actually needed if the pipe rings were the same size as the parent rings
1750 	 */
1751 	v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs;
1752 		/* the +2 is for the tx and rx fake buffers (indices 0 and 1) */
1753 	if (p[NETMAP_BUF_POOL].num < v)
1754 		p[NETMAP_BUF_POOL].num = v;
1755 
1756 	if (netmap_verbose)
1757 		nm_prinf("req if %d*%d ring %d*%d buf %d*%d",
1758 			p[NETMAP_IF_POOL].num,
1759 			p[NETMAP_IF_POOL].size,
1760 			p[NETMAP_RING_POOL].num,
1761 			p[NETMAP_RING_POOL].size,
1762 			p[NETMAP_BUF_POOL].num,
1763 			p[NETMAP_BUF_POOL].size);
1764 
1765 	d = _netmap_mem_private_new(sizeof(*d), p, &netmap_mem_global_ops, perr);
1766 
1767 	return d;
1768 }
1769 
1770 
1771 /* call with lock held */
1772 static int
1773 netmap_mem2_config(struct netmap_mem_d *nmd)
1774 {
1775 	int i;
1776 
1777 	if (!netmap_mem_params_changed(nmd->params))
1778 		goto out;
1779 
1780 	nm_prdis("reconfiguring");
1781 
1782 	if (nmd->flags & NETMAP_MEM_FINALIZED) {
1783 		/* reset previous allocation */
1784 		for (i = 0; i < NETMAP_POOLS_NR; i++) {
1785 			netmap_reset_obj_allocator(&nmd->pools[i]);
1786 		}
1787 		nmd->flags &= ~NETMAP_MEM_FINALIZED;
1788 	}
1789 
1790 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1791 		nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
1792 				nmd->params[i].num, nmd->params[i].size);
1793 		if (nmd->lasterr)
1794 			goto out;
1795 	}
1796 
1797 out:
1798 
1799 	return nmd->lasterr;
1800 }
1801 
1802 static int
1803 netmap_mem2_finalize(struct netmap_mem_d *nmd)
1804 {
1805 	if (nmd->flags & NETMAP_MEM_FINALIZED)
1806 		goto out;
1807 
1808 	if (netmap_mem_finalize_all(nmd))
1809 		goto out;
1810 
1811 	nmd->lasterr = 0;
1812 
1813 out:
1814 	return nmd->lasterr;
1815 }
1816 
1817 static void
1818 netmap_mem2_delete(struct netmap_mem_d *nmd)
1819 {
1820 	int i;
1821 
1822 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1823 	    netmap_destroy_obj_allocator(&nmd->pools[i]);
1824 	}
1825 
1826 	NMA_LOCK_DESTROY(nmd);
1827 	if (nmd != &nm_mem)
1828 		nm_os_free(nmd);
1829 }
1830 
1831 #ifdef WITH_EXTMEM
1832 /* doubly linekd list of all existing external allocators */
1833 static struct netmap_mem_ext *netmap_mem_ext_list = NULL;
1834 NM_MTX_T nm_mem_ext_list_lock;
1835 #endif /* WITH_EXTMEM */
1836 
1837 int
1838 netmap_mem_init(void)
1839 {
1840 	NM_MTX_INIT(nm_mem_list_lock);
1841 	NMA_LOCK_INIT(&nm_mem);
1842 	netmap_mem_get(&nm_mem);
1843 #ifdef WITH_EXTMEM
1844 	NM_MTX_INIT(nm_mem_ext_list_lock);
1845 #endif /* WITH_EXTMEM */
1846 	return (0);
1847 }
1848 
1849 void
1850 netmap_mem_fini(void)
1851 {
1852 	netmap_mem_put(&nm_mem);
1853 }
1854 
1855 static void
1856 netmap_free_rings(struct netmap_adapter *na)
1857 {
1858 	enum txrx t;
1859 
1860 	for_rx_tx(t) {
1861 		u_int i;
1862 		for (i = 0; i < netmap_all_rings(na, t); i++) {
1863 			struct netmap_kring *kring = NMR(na, t)[i];
1864 			struct netmap_ring *ring = kring->ring;
1865 
1866 			if (ring == NULL || kring->users > 0 || (kring->nr_kflags & NKR_NEEDRING)) {
1867 				if (netmap_debug & NM_DEBUG_MEM)
1868 					nm_prinf("NOT deleting ring %s (ring %p, users %d neekring %d)",
1869 						kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
1870 				continue;
1871 			}
1872 			if (netmap_debug & NM_DEBUG_MEM)
1873 				nm_prinf("deleting ring %s", kring->name);
1874 			if (!(kring->nr_kflags & NKR_FAKERING)) {
1875 				nm_prdis("freeing bufs for %s", kring->name);
1876 				netmap_free_bufs(na->nm_mem, ring->slot, kring->nkr_num_slots);
1877 			} else {
1878 				nm_prdis("NOT freeing bufs for %s", kring->name);
1879 			}
1880 			netmap_ring_free(na->nm_mem, ring);
1881 			kring->ring = NULL;
1882 		}
1883 	}
1884 }
1885 
1886 /* call with NMA_LOCK held *
1887  *
1888  * Allocate netmap rings and buffers for this card
1889  * The rings are contiguous, but have variable size.
1890  * The kring array must follow the layout described
1891  * in netmap_krings_create().
1892  */
1893 static int
1894 netmap_mem2_rings_create(struct netmap_adapter *na)
1895 {
1896 	enum txrx t;
1897 
1898 	for_rx_tx(t) {
1899 		u_int i;
1900 
1901 		for (i = 0; i < netmap_all_rings(na, t); i++) {
1902 			struct netmap_kring *kring = NMR(na, t)[i];
1903 			struct netmap_ring *ring = kring->ring;
1904 			u_int len, ndesc;
1905 
1906 			if (ring || (!kring->users && !(kring->nr_kflags & NKR_NEEDRING))) {
1907 				/* uneeded, or already created by somebody else */
1908 				if (netmap_debug & NM_DEBUG_MEM)
1909 					nm_prinf("NOT creating ring %s (ring %p, users %d neekring %d)",
1910 						kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
1911 				continue;
1912 			}
1913 			if (netmap_debug & NM_DEBUG_MEM)
1914 				nm_prinf("creating %s", kring->name);
1915 			ndesc = kring->nkr_num_slots;
1916 			len = sizeof(struct netmap_ring) +
1917 				  ndesc * sizeof(struct netmap_slot);
1918 			ring = netmap_ring_malloc(na->nm_mem, len);
1919 			if (ring == NULL) {
1920 				nm_prerr("Cannot allocate %s_ring", nm_txrx2str(t));
1921 				goto cleanup;
1922 			}
1923 			nm_prdis("txring at %p", ring);
1924 			kring->ring = ring;
1925 			*(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
1926 			*(int64_t *)(uintptr_t)&ring->buf_ofs =
1927 			    (na->nm_mem->pools[NETMAP_IF_POOL].memtotal +
1928 				na->nm_mem->pools[NETMAP_RING_POOL].memtotal) -
1929 				netmap_ring_offset(na->nm_mem, ring);
1930 
1931 			/* copy values from kring */
1932 			ring->head = kring->rhead;
1933 			ring->cur = kring->rcur;
1934 			ring->tail = kring->rtail;
1935 			*(uint32_t *)(uintptr_t)&ring->nr_buf_size =
1936 				netmap_mem_bufsize(na->nm_mem);
1937 			nm_prdis("%s h %d c %d t %d", kring->name,
1938 				ring->head, ring->cur, ring->tail);
1939 			nm_prdis("initializing slots for %s_ring", nm_txrx2str(t));
1940 			if (!(kring->nr_kflags & NKR_FAKERING)) {
1941 				/* this is a real ring */
1942 				if (netmap_debug & NM_DEBUG_MEM)
1943 					nm_prinf("allocating buffers for %s", kring->name);
1944 				if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) {
1945 					nm_prerr("Cannot allocate buffers for %s_ring", nm_txrx2str(t));
1946 					goto cleanup;
1947 				}
1948 			} else {
1949 				/* this is a fake ring, set all indices to 0 */
1950 				if (netmap_debug & NM_DEBUG_MEM)
1951 					nm_prinf("NOT allocating buffers for %s", kring->name);
1952 				netmap_mem_set_ring(na->nm_mem, ring->slot, ndesc, 0);
1953 			}
1954 		        /* ring info */
1955 		        *(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id;
1956 		        *(uint16_t *)(uintptr_t)&ring->dir = kring->tx;
1957 		}
1958 	}
1959 
1960 	return 0;
1961 
1962 cleanup:
1963 	/* we cannot actually cleanup here, since we don't own kring->users
1964 	 * and kring->nr_klags & NKR_NEEDRING. The caller must decrement
1965 	 * the first or zero-out the second, then call netmap_free_rings()
1966 	 * to do the cleanup
1967 	 */
1968 
1969 	return ENOMEM;
1970 }
1971 
1972 static void
1973 netmap_mem2_rings_delete(struct netmap_adapter *na)
1974 {
1975 	/* last instance, release bufs and rings */
1976 	netmap_free_rings(na);
1977 }
1978 
1979 
1980 /* call with NMA_LOCK held */
1981 /*
1982  * Allocate the per-fd structure netmap_if.
1983  *
1984  * We assume that the configuration stored in na
1985  * (number of tx/rx rings and descs) does not change while
1986  * the interface is in netmap mode.
1987  */
1988 static struct netmap_if *
1989 netmap_mem2_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
1990 {
1991 	struct netmap_if *nifp;
1992 	ssize_t base; /* handy for relative offsets between rings and nifp */
1993 	u_int i, len, n[NR_TXRX], ntot;
1994 	enum txrx t;
1995 
1996 	ntot = 0;
1997 	for_rx_tx(t) {
1998 		/* account for the (eventually fake) host rings */
1999 		n[t] = netmap_all_rings(na, t);
2000 		ntot += n[t];
2001 	}
2002 	/*
2003 	 * the descriptor is followed inline by an array of offsets
2004 	 * to the tx and rx rings in the shared memory region.
2005 	 */
2006 
2007 	len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t));
2008 	nifp = netmap_if_malloc(na->nm_mem, len);
2009 	if (nifp == NULL) {
2010 		NMA_UNLOCK(na->nm_mem);
2011 		return NULL;
2012 	}
2013 
2014 	/* initialize base fields -- override const */
2015 	*(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
2016 	*(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
2017 	*(u_int *)(uintptr_t)&nifp->ni_host_tx_rings =
2018 		(na->num_host_tx_rings ? na->num_host_tx_rings : 1);
2019 	*(u_int *)(uintptr_t)&nifp->ni_host_rx_rings =
2020 		(na->num_host_rx_rings ? na->num_host_rx_rings : 1);
2021 	strlcpy(nifp->ni_name, na->name, sizeof(nifp->ni_name));
2022 
2023 	/*
2024 	 * fill the slots for the rx and tx rings. They contain the offset
2025 	 * between the ring and nifp, so the information is usable in
2026 	 * userspace to reach the ring from the nifp.
2027 	 */
2028 	base = netmap_if_offset(na->nm_mem, nifp);
2029 	for (i = 0; i < n[NR_TX]; i++) {
2030 		/* XXX instead of ofs == 0 maybe use the offset of an error
2031 		 * ring, like we do for buffers? */
2032 		ssize_t ofs = 0;
2033 
2034 		if (na->tx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_TX]
2035 				&& i < priv->np_qlast[NR_TX]) {
2036 			ofs = netmap_ring_offset(na->nm_mem,
2037 						 na->tx_rings[i]->ring) - base;
2038 		}
2039 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = ofs;
2040 	}
2041 	for (i = 0; i < n[NR_RX]; i++) {
2042 		/* XXX instead of ofs == 0 maybe use the offset of an error
2043 		 * ring, like we do for buffers? */
2044 		ssize_t ofs = 0;
2045 
2046 		if (na->rx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_RX]
2047 				&& i < priv->np_qlast[NR_RX]) {
2048 			ofs = netmap_ring_offset(na->nm_mem,
2049 						 na->rx_rings[i]->ring) - base;
2050 		}
2051 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = ofs;
2052 	}
2053 
2054 	return (nifp);
2055 }
2056 
2057 static void
2058 netmap_mem2_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
2059 {
2060 	if (nifp == NULL)
2061 		/* nothing to do */
2062 		return;
2063 	if (nifp->ni_bufs_head)
2064 		netmap_extra_free(na, nifp->ni_bufs_head);
2065 	netmap_if_free(na->nm_mem, nifp);
2066 }
2067 
2068 static void
2069 netmap_mem2_deref(struct netmap_mem_d *nmd)
2070 {
2071 
2072 	if (netmap_debug & NM_DEBUG_MEM)
2073 		nm_prinf("active = %d", nmd->active);
2074 
2075 }
2076 
2077 struct netmap_mem_ops netmap_mem_global_ops = {
2078 	.nmd_get_lut = netmap_mem2_get_lut,
2079 	.nmd_get_info = netmap_mem2_get_info,
2080 	.nmd_ofstophys = netmap_mem2_ofstophys,
2081 	.nmd_config = netmap_mem2_config,
2082 	.nmd_finalize = netmap_mem2_finalize,
2083 	.nmd_deref = netmap_mem2_deref,
2084 	.nmd_delete = netmap_mem2_delete,
2085 	.nmd_if_offset = netmap_mem2_if_offset,
2086 	.nmd_if_new = netmap_mem2_if_new,
2087 	.nmd_if_delete = netmap_mem2_if_delete,
2088 	.nmd_rings_create = netmap_mem2_rings_create,
2089 	.nmd_rings_delete = netmap_mem2_rings_delete
2090 };
2091 
2092 int
2093 netmap_mem_pools_info_get(struct nmreq_pools_info *req,
2094 				struct netmap_mem_d *nmd)
2095 {
2096 	int ret;
2097 
2098 	ret = netmap_mem_get_info(nmd, &req->nr_memsize, NULL,
2099 					&req->nr_mem_id);
2100 	if (ret) {
2101 		return ret;
2102 	}
2103 
2104 	NMA_LOCK(nmd);
2105 	req->nr_if_pool_offset = 0;
2106 	req->nr_if_pool_objtotal = nmd->pools[NETMAP_IF_POOL].objtotal;
2107 	req->nr_if_pool_objsize = nmd->pools[NETMAP_IF_POOL]._objsize;
2108 
2109 	req->nr_ring_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal;
2110 	req->nr_ring_pool_objtotal = nmd->pools[NETMAP_RING_POOL].objtotal;
2111 	req->nr_ring_pool_objsize = nmd->pools[NETMAP_RING_POOL]._objsize;
2112 
2113 	req->nr_buf_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal +
2114 			     nmd->pools[NETMAP_RING_POOL].memtotal;
2115 	req->nr_buf_pool_objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
2116 	req->nr_buf_pool_objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
2117 	NMA_UNLOCK(nmd);
2118 
2119 	return 0;
2120 }
2121 
2122 #ifdef WITH_EXTMEM
2123 struct netmap_mem_ext {
2124 	struct netmap_mem_d up;
2125 
2126 	struct nm_os_extmem *os;
2127 	struct netmap_mem_ext *next, *prev;
2128 };
2129 
2130 /* call with nm_mem_list_lock held */
2131 static void
2132 netmap_mem_ext_register(struct netmap_mem_ext *e)
2133 {
2134 	NM_MTX_LOCK(nm_mem_ext_list_lock);
2135 	if (netmap_mem_ext_list)
2136 		netmap_mem_ext_list->prev = e;
2137 	e->next = netmap_mem_ext_list;
2138 	netmap_mem_ext_list = e;
2139 	e->prev = NULL;
2140 	NM_MTX_UNLOCK(nm_mem_ext_list_lock);
2141 }
2142 
2143 /* call with nm_mem_list_lock held */
2144 static void
2145 netmap_mem_ext_unregister(struct netmap_mem_ext *e)
2146 {
2147 	if (e->prev)
2148 		e->prev->next = e->next;
2149 	else
2150 		netmap_mem_ext_list = e->next;
2151 	if (e->next)
2152 		e->next->prev = e->prev;
2153 	e->prev = e->next = NULL;
2154 }
2155 
2156 static struct netmap_mem_ext *
2157 netmap_mem_ext_search(struct nm_os_extmem *os)
2158 {
2159 	struct netmap_mem_ext *e;
2160 
2161 	NM_MTX_LOCK(nm_mem_ext_list_lock);
2162 	for (e = netmap_mem_ext_list; e; e = e->next) {
2163 		if (nm_os_extmem_isequal(e->os, os)) {
2164 			netmap_mem_get(&e->up);
2165 			break;
2166 		}
2167 	}
2168 	NM_MTX_UNLOCK(nm_mem_ext_list_lock);
2169 	return e;
2170 }
2171 
2172 
2173 static void
2174 netmap_mem_ext_delete(struct netmap_mem_d *d)
2175 {
2176 	int i;
2177 	struct netmap_mem_ext *e =
2178 		(struct netmap_mem_ext *)d;
2179 
2180 	netmap_mem_ext_unregister(e);
2181 
2182 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
2183 		struct netmap_obj_pool *p = &d->pools[i];
2184 
2185 		if (p->lut) {
2186 			nm_free_lut(p->lut, p->objtotal);
2187 			p->lut = NULL;
2188 		}
2189 	}
2190 	if (e->os)
2191 		nm_os_extmem_delete(e->os);
2192 	netmap_mem2_delete(d);
2193 }
2194 
2195 static int
2196 netmap_mem_ext_config(struct netmap_mem_d *nmd)
2197 {
2198 	return 0;
2199 }
2200 
2201 struct netmap_mem_ops netmap_mem_ext_ops = {
2202 	.nmd_get_lut = netmap_mem2_get_lut,
2203 	.nmd_get_info = netmap_mem2_get_info,
2204 	.nmd_ofstophys = netmap_mem2_ofstophys,
2205 	.nmd_config = netmap_mem_ext_config,
2206 	.nmd_finalize = netmap_mem2_finalize,
2207 	.nmd_deref = netmap_mem2_deref,
2208 	.nmd_delete = netmap_mem_ext_delete,
2209 	.nmd_if_offset = netmap_mem2_if_offset,
2210 	.nmd_if_new = netmap_mem2_if_new,
2211 	.nmd_if_delete = netmap_mem2_if_delete,
2212 	.nmd_rings_create = netmap_mem2_rings_create,
2213 	.nmd_rings_delete = netmap_mem2_rings_delete
2214 };
2215 
2216 struct netmap_mem_d *
2217 netmap_mem_ext_create(uint64_t usrptr, struct nmreq_pools_info *pi, int *perror)
2218 {
2219 	int error = 0;
2220 	int i, j;
2221 	struct netmap_mem_ext *nme;
2222 	char *clust;
2223 	size_t off;
2224 	struct nm_os_extmem *os = NULL;
2225 	int nr_pages;
2226 
2227 	// XXX sanity checks
2228 	if (pi->nr_if_pool_objtotal == 0)
2229 		pi->nr_if_pool_objtotal = netmap_min_priv_params[NETMAP_IF_POOL].num;
2230 	if (pi->nr_if_pool_objsize == 0)
2231 		pi->nr_if_pool_objsize = netmap_min_priv_params[NETMAP_IF_POOL].size;
2232 	if (pi->nr_ring_pool_objtotal == 0)
2233 		pi->nr_ring_pool_objtotal = netmap_min_priv_params[NETMAP_RING_POOL].num;
2234 	if (pi->nr_ring_pool_objsize == 0)
2235 		pi->nr_ring_pool_objsize = netmap_min_priv_params[NETMAP_RING_POOL].size;
2236 	if (pi->nr_buf_pool_objtotal == 0)
2237 		pi->nr_buf_pool_objtotal = netmap_min_priv_params[NETMAP_BUF_POOL].num;
2238 	if (pi->nr_buf_pool_objsize == 0)
2239 		pi->nr_buf_pool_objsize = netmap_min_priv_params[NETMAP_BUF_POOL].size;
2240 	if (netmap_verbose & NM_DEBUG_MEM)
2241 		nm_prinf("if %d %d ring %d %d buf %d %d",
2242 			pi->nr_if_pool_objtotal, pi->nr_if_pool_objsize,
2243 			pi->nr_ring_pool_objtotal, pi->nr_ring_pool_objsize,
2244 			pi->nr_buf_pool_objtotal, pi->nr_buf_pool_objsize);
2245 
2246 	os = nm_os_extmem_create(usrptr, pi, &error);
2247 	if (os == NULL) {
2248 		nm_prerr("os extmem creation failed");
2249 		goto out;
2250 	}
2251 
2252 	nme = netmap_mem_ext_search(os);
2253 	if (nme) {
2254 		nm_os_extmem_delete(os);
2255 		return &nme->up;
2256 	}
2257 	if (netmap_verbose & NM_DEBUG_MEM)
2258 		nm_prinf("not found, creating new");
2259 
2260 	nme = _netmap_mem_private_new(sizeof(*nme),
2261 			(struct netmap_obj_params[]){
2262 				{ pi->nr_if_pool_objsize, pi->nr_if_pool_objtotal },
2263 				{ pi->nr_ring_pool_objsize, pi->nr_ring_pool_objtotal },
2264 				{ pi->nr_buf_pool_objsize, pi->nr_buf_pool_objtotal }},
2265 			&netmap_mem_ext_ops,
2266 			&error);
2267 	if (nme == NULL)
2268 		goto out_unmap;
2269 
2270 	nr_pages = nm_os_extmem_nr_pages(os);
2271 
2272 	/* from now on pages will be released by nme destructor;
2273 	 * we let res = 0 to prevent release in out_unmap below
2274 	 */
2275 	nme->os = os;
2276 	os = NULL; /* pass ownership */
2277 
2278 	clust = nm_os_extmem_nextpage(nme->os);
2279 	off = 0;
2280 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
2281 		struct netmap_obj_pool *p = &nme->up.pools[i];
2282 		struct netmap_obj_params *o = &nme->up.params[i];
2283 
2284 		p->_objsize = o->size;
2285 		p->_clustsize = o->size;
2286 		p->_clustentries = 1;
2287 
2288 		p->lut = nm_alloc_lut(o->num);
2289 		if (p->lut == NULL) {
2290 			error = ENOMEM;
2291 			goto out_delete;
2292 		}
2293 
2294 		p->bitmap_slots = (o->num + sizeof(uint32_t) - 1) / sizeof(uint32_t);
2295 		p->invalid_bitmap = nm_os_malloc(sizeof(uint32_t) * p->bitmap_slots);
2296 		if (p->invalid_bitmap == NULL) {
2297 			error = ENOMEM;
2298 			goto out_delete;
2299 		}
2300 
2301 		if (nr_pages == 0) {
2302 			p->objtotal = 0;
2303 			p->memtotal = 0;
2304 			p->objfree = 0;
2305 			continue;
2306 		}
2307 
2308 		for (j = 0; j < o->num && nr_pages > 0; j++) {
2309 			size_t noff;
2310 
2311 			p->lut[j].vaddr = clust + off;
2312 #if !defined(linux) && !defined(_WIN32)
2313 			p->lut[j].paddr = vtophys(p->lut[j].vaddr);
2314 #endif
2315 			nm_prdis("%s %d at %p", p->name, j, p->lut[j].vaddr);
2316 			noff = off + p->_objsize;
2317 			if (noff < PAGE_SIZE) {
2318 				off = noff;
2319 				continue;
2320 			}
2321 			nm_prdis("too big, recomputing offset...");
2322 			while (noff >= PAGE_SIZE) {
2323 				char *old_clust = clust;
2324 				noff -= PAGE_SIZE;
2325 				clust = nm_os_extmem_nextpage(nme->os);
2326 				nr_pages--;
2327 				nm_prdis("noff %zu page %p nr_pages %d", noff,
2328 						page_to_virt(*pages), nr_pages);
2329 				if (noff > 0 && !nm_isset(p->invalid_bitmap, j) &&
2330 					(nr_pages == 0 ||
2331 					 old_clust + PAGE_SIZE != clust))
2332 				{
2333 					/* out of space or non contiguous,
2334 					 * drop this object
2335 					 * */
2336 					p->invalid_bitmap[ (j>>5) ] |= 1U << (j & 31U);
2337 					nm_prdis("non contiguous at off %zu, drop", noff);
2338 				}
2339 				if (nr_pages == 0)
2340 					break;
2341 			}
2342 			off = noff;
2343 		}
2344 		p->objtotal = j;
2345 		p->numclusters = p->objtotal;
2346 		p->memtotal = j * (size_t)p->_objsize;
2347 		nm_prdis("%d memtotal %zu", j, p->memtotal);
2348 	}
2349 
2350 	netmap_mem_ext_register(nme);
2351 
2352 	return &nme->up;
2353 
2354 out_delete:
2355 	netmap_mem_put(&nme->up);
2356 out_unmap:
2357 	if (os)
2358 		nm_os_extmem_delete(os);
2359 out:
2360 	if (perror)
2361 		*perror = error;
2362 	return NULL;
2363 
2364 }
2365 #endif /* WITH_EXTMEM */
2366 
2367 
2368 #ifdef WITH_PTNETMAP
2369 struct mem_pt_if {
2370 	struct mem_pt_if *next;
2371 	struct ifnet *ifp;
2372 	unsigned int nifp_offset;
2373 };
2374 
2375 /* Netmap allocator for ptnetmap guests. */
2376 struct netmap_mem_ptg {
2377 	struct netmap_mem_d up;
2378 
2379 	vm_paddr_t nm_paddr;            /* physical address in the guest */
2380 	void *nm_addr;                  /* virtual address in the guest */
2381 	struct netmap_lut buf_lut;      /* lookup table for BUF pool in the guest */
2382 	nm_memid_t host_mem_id;         /* allocator identifier in the host */
2383 	struct ptnetmap_memdev *ptn_dev;/* ptnetmap memdev */
2384 	struct mem_pt_if *pt_ifs;	/* list of interfaces in passthrough */
2385 };
2386 
2387 /* Link a passthrough interface to a passthrough netmap allocator. */
2388 static int
2389 netmap_mem_pt_guest_ifp_add(struct netmap_mem_d *nmd, struct ifnet *ifp,
2390 			    unsigned int nifp_offset)
2391 {
2392 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2393 	struct mem_pt_if *ptif = nm_os_malloc(sizeof(*ptif));
2394 
2395 	if (!ptif) {
2396 		return ENOMEM;
2397 	}
2398 
2399 	NMA_LOCK(nmd);
2400 
2401 	ptif->ifp = ifp;
2402 	ptif->nifp_offset = nifp_offset;
2403 
2404 	if (ptnmd->pt_ifs) {
2405 		ptif->next = ptnmd->pt_ifs;
2406 	}
2407 	ptnmd->pt_ifs = ptif;
2408 
2409 	NMA_UNLOCK(nmd);
2410 
2411 	nm_prinf("ifp=%s,nifp_offset=%u",
2412 		ptif->ifp->if_xname, ptif->nifp_offset);
2413 
2414 	return 0;
2415 }
2416 
2417 /* Called with NMA_LOCK(nmd) held. */
2418 static struct mem_pt_if *
2419 netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d *nmd, struct ifnet *ifp)
2420 {
2421 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2422 	struct mem_pt_if *curr;
2423 
2424 	for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
2425 		if (curr->ifp == ifp) {
2426 			return curr;
2427 		}
2428 	}
2429 
2430 	return NULL;
2431 }
2432 
2433 /* Unlink a passthrough interface from a passthrough netmap allocator. */
2434 int
2435 netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *nmd, struct ifnet *ifp)
2436 {
2437 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2438 	struct mem_pt_if *prev = NULL;
2439 	struct mem_pt_if *curr;
2440 	int ret = -1;
2441 
2442 	NMA_LOCK(nmd);
2443 
2444 	for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
2445 		if (curr->ifp == ifp) {
2446 			if (prev) {
2447 				prev->next = curr->next;
2448 			} else {
2449 				ptnmd->pt_ifs = curr->next;
2450 			}
2451 			nm_prinf("removed (ifp=%s,nifp_offset=%u)",
2452 			  curr->ifp->if_xname, curr->nifp_offset);
2453 			nm_os_free(curr);
2454 			ret = 0;
2455 			break;
2456 		}
2457 		prev = curr;
2458 	}
2459 
2460 	NMA_UNLOCK(nmd);
2461 
2462 	return ret;
2463 }
2464 
2465 static int
2466 netmap_mem_pt_guest_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
2467 {
2468 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2469 
2470 	if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
2471 		return EINVAL;
2472 	}
2473 
2474 	*lut = ptnmd->buf_lut;
2475 	return 0;
2476 }
2477 
2478 static int
2479 netmap_mem_pt_guest_get_info(struct netmap_mem_d *nmd, uint64_t *size,
2480 			     u_int *memflags, uint16_t *id)
2481 {
2482 	int error = 0;
2483 
2484 	error = nmd->ops->nmd_config(nmd);
2485 	if (error)
2486 		goto out;
2487 
2488 	if (size)
2489 		*size = nmd->nm_totalsize;
2490 	if (memflags)
2491 		*memflags = nmd->flags;
2492 	if (id)
2493 		*id = nmd->nm_id;
2494 
2495 out:
2496 
2497 	return error;
2498 }
2499 
2500 static vm_paddr_t
2501 netmap_mem_pt_guest_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
2502 {
2503 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2504 	vm_paddr_t paddr;
2505 	/* if the offset is valid, just return csb->base_addr + off */
2506 	paddr = (vm_paddr_t)(ptnmd->nm_paddr + off);
2507 	nm_prdis("off %lx padr %lx", off, (unsigned long)paddr);
2508 	return paddr;
2509 }
2510 
2511 static int
2512 netmap_mem_pt_guest_config(struct netmap_mem_d *nmd)
2513 {
2514 	/* nothing to do, we are configured on creation
2515 	 * and configuration never changes thereafter
2516 	 */
2517 	return 0;
2518 }
2519 
2520 static int
2521 netmap_mem_pt_guest_finalize(struct netmap_mem_d *nmd)
2522 {
2523 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2524 	uint64_t mem_size;
2525 	uint32_t bufsize;
2526 	uint32_t nbuffers;
2527 	uint32_t poolofs;
2528 	vm_paddr_t paddr;
2529 	char *vaddr;
2530 	int i;
2531 	int error = 0;
2532 
2533 	if (nmd->flags & NETMAP_MEM_FINALIZED)
2534 		goto out;
2535 
2536 	if (ptnmd->ptn_dev == NULL) {
2537 		nm_prerr("ptnetmap memdev not attached");
2538 		error = ENOMEM;
2539 		goto out;
2540 	}
2541 	/* Map memory through ptnetmap-memdev BAR. */
2542 	error = nm_os_pt_memdev_iomap(ptnmd->ptn_dev, &ptnmd->nm_paddr,
2543 				      &ptnmd->nm_addr, &mem_size);
2544 	if (error)
2545 		goto out;
2546 
2547 	/* Initialize the lut using the information contained in the
2548 	 * ptnetmap memory device. */
2549 	bufsize = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2550 					 PTNET_MDEV_IO_BUF_POOL_OBJSZ);
2551 	nbuffers = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2552 					 PTNET_MDEV_IO_BUF_POOL_OBJNUM);
2553 
2554 	/* allocate the lut */
2555 	if (ptnmd->buf_lut.lut == NULL) {
2556 		nm_prinf("allocating lut");
2557 		ptnmd->buf_lut.lut = nm_alloc_lut(nbuffers);
2558 		if (ptnmd->buf_lut.lut == NULL) {
2559 			nm_prerr("lut allocation failed");
2560 			return ENOMEM;
2561 		}
2562 	}
2563 
2564 	/* we have physically contiguous memory mapped through PCI BAR */
2565 	poolofs = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2566 					 PTNET_MDEV_IO_BUF_POOL_OFS);
2567 	vaddr = (char *)(ptnmd->nm_addr) + poolofs;
2568 	paddr = ptnmd->nm_paddr + poolofs;
2569 
2570 	for (i = 0; i < nbuffers; i++) {
2571 		ptnmd->buf_lut.lut[i].vaddr = vaddr;
2572 		vaddr += bufsize;
2573 		paddr += bufsize;
2574 	}
2575 
2576 	ptnmd->buf_lut.objtotal = nbuffers;
2577 	ptnmd->buf_lut.objsize = bufsize;
2578 	nmd->nm_totalsize = mem_size;
2579 
2580 	/* Initialize these fields as are needed by
2581 	 * netmap_mem_bufsize().
2582 	 * XXX please improve this, why do we need this
2583 	 * replication? maybe we nmd->pools[] should no be
2584 	 * there for the guest allocator? */
2585 	nmd->pools[NETMAP_BUF_POOL]._objsize = bufsize;
2586 	nmd->pools[NETMAP_BUF_POOL]._objtotal = nbuffers;
2587 
2588 	nmd->flags |= NETMAP_MEM_FINALIZED;
2589 out:
2590 	return error;
2591 }
2592 
2593 static void
2594 netmap_mem_pt_guest_deref(struct netmap_mem_d *nmd)
2595 {
2596 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2597 
2598 	if (nmd->active == 1 &&
2599 		(nmd->flags & NETMAP_MEM_FINALIZED)) {
2600 	    nmd->flags  &= ~NETMAP_MEM_FINALIZED;
2601 	    /* unmap ptnetmap-memdev memory */
2602 	    if (ptnmd->ptn_dev) {
2603 		nm_os_pt_memdev_iounmap(ptnmd->ptn_dev);
2604 	    }
2605 	    ptnmd->nm_addr = NULL;
2606 	    ptnmd->nm_paddr = 0;
2607 	}
2608 }
2609 
2610 static ssize_t
2611 netmap_mem_pt_guest_if_offset(struct netmap_mem_d *nmd, const void *vaddr)
2612 {
2613 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2614 
2615 	return (const char *)(vaddr) - (char *)(ptnmd->nm_addr);
2616 }
2617 
2618 static void
2619 netmap_mem_pt_guest_delete(struct netmap_mem_d *nmd)
2620 {
2621 	if (nmd == NULL)
2622 		return;
2623 	if (netmap_verbose)
2624 		nm_prinf("deleting %p", nmd);
2625 	if (nmd->active > 0)
2626 		nm_prerr("bug: deleting mem allocator with active=%d!", nmd->active);
2627 	if (netmap_verbose)
2628 		nm_prinf("done deleting %p", nmd);
2629 	NMA_LOCK_DESTROY(nmd);
2630 	nm_os_free(nmd);
2631 }
2632 
2633 static struct netmap_if *
2634 netmap_mem_pt_guest_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
2635 {
2636 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
2637 	struct mem_pt_if *ptif;
2638 	struct netmap_if *nifp = NULL;
2639 
2640 	ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
2641 	if (ptif == NULL) {
2642 		nm_prerr("interface %s is not in passthrough", na->name);
2643 		goto out;
2644 	}
2645 
2646 	nifp = (struct netmap_if *)((char *)(ptnmd->nm_addr) +
2647 				    ptif->nifp_offset);
2648 out:
2649 	return nifp;
2650 }
2651 
2652 static void
2653 netmap_mem_pt_guest_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
2654 {
2655 	struct mem_pt_if *ptif;
2656 
2657 	ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
2658 	if (ptif == NULL) {
2659 		nm_prerr("interface %s is not in passthrough", na->name);
2660 	}
2661 }
2662 
2663 static int
2664 netmap_mem_pt_guest_rings_create(struct netmap_adapter *na)
2665 {
2666 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
2667 	struct mem_pt_if *ptif;
2668 	struct netmap_if *nifp;
2669 	int i, error = -1;
2670 
2671 	ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
2672 	if (ptif == NULL) {
2673 		nm_prerr("interface %s is not in passthrough", na->name);
2674 		goto out;
2675 	}
2676 
2677 
2678 	/* point each kring to the corresponding backend ring */
2679 	nifp = (struct netmap_if *)((char *)ptnmd->nm_addr + ptif->nifp_offset);
2680 	for (i = 0; i < netmap_all_rings(na, NR_TX); i++) {
2681 		struct netmap_kring *kring = na->tx_rings[i];
2682 		if (kring->ring)
2683 			continue;
2684 		kring->ring = (struct netmap_ring *)
2685 			((char *)nifp + nifp->ring_ofs[i]);
2686 	}
2687 	for (i = 0; i < netmap_all_rings(na, NR_RX); i++) {
2688 		struct netmap_kring *kring = na->rx_rings[i];
2689 		if (kring->ring)
2690 			continue;
2691 		kring->ring = (struct netmap_ring *)
2692 			((char *)nifp +
2693 			 nifp->ring_ofs[netmap_all_rings(na, NR_TX) + i]);
2694 	}
2695 
2696 	error = 0;
2697 out:
2698 	return error;
2699 }
2700 
2701 static void
2702 netmap_mem_pt_guest_rings_delete(struct netmap_adapter *na)
2703 {
2704 #if 0
2705 	enum txrx t;
2706 
2707 	for_rx_tx(t) {
2708 		u_int i;
2709 		for (i = 0; i < nma_get_nrings(na, t) + 1; i++) {
2710 			struct netmap_kring *kring = &NMR(na, t)[i];
2711 
2712 			kring->ring = NULL;
2713 		}
2714 	}
2715 #endif
2716 }
2717 
2718 static struct netmap_mem_ops netmap_mem_pt_guest_ops = {
2719 	.nmd_get_lut = netmap_mem_pt_guest_get_lut,
2720 	.nmd_get_info = netmap_mem_pt_guest_get_info,
2721 	.nmd_ofstophys = netmap_mem_pt_guest_ofstophys,
2722 	.nmd_config = netmap_mem_pt_guest_config,
2723 	.nmd_finalize = netmap_mem_pt_guest_finalize,
2724 	.nmd_deref = netmap_mem_pt_guest_deref,
2725 	.nmd_if_offset = netmap_mem_pt_guest_if_offset,
2726 	.nmd_delete = netmap_mem_pt_guest_delete,
2727 	.nmd_if_new = netmap_mem_pt_guest_if_new,
2728 	.nmd_if_delete = netmap_mem_pt_guest_if_delete,
2729 	.nmd_rings_create = netmap_mem_pt_guest_rings_create,
2730 	.nmd_rings_delete = netmap_mem_pt_guest_rings_delete
2731 };
2732 
2733 /* Called with nm_mem_list_lock held. */
2734 static struct netmap_mem_d *
2735 netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)
2736 {
2737 	struct netmap_mem_d *mem = NULL;
2738 	struct netmap_mem_d *scan = netmap_last_mem_d;
2739 
2740 	do {
2741 		/* find ptnetmap allocator through host ID */
2742 		if (scan->ops->nmd_deref == netmap_mem_pt_guest_deref &&
2743 			((struct netmap_mem_ptg *)(scan))->host_mem_id == mem_id) {
2744 			mem = scan;
2745 			mem->refcount++;
2746 			NM_DBG_REFC(mem, __FUNCTION__, __LINE__);
2747 			break;
2748 		}
2749 		scan = scan->next;
2750 	} while (scan != netmap_last_mem_d);
2751 
2752 	return mem;
2753 }
2754 
2755 /* Called with nm_mem_list_lock held. */
2756 static struct netmap_mem_d *
2757 netmap_mem_pt_guest_create(nm_memid_t mem_id)
2758 {
2759 	struct netmap_mem_ptg *ptnmd;
2760 	int err = 0;
2761 
2762 	ptnmd = nm_os_malloc(sizeof(struct netmap_mem_ptg));
2763 	if (ptnmd == NULL) {
2764 		err = ENOMEM;
2765 		goto error;
2766 	}
2767 
2768 	ptnmd->up.ops = &netmap_mem_pt_guest_ops;
2769 	ptnmd->host_mem_id = mem_id;
2770 	ptnmd->pt_ifs = NULL;
2771 
2772 	/* Assign new id in the guest (We have the lock) */
2773 	err = nm_mem_assign_id_locked(&ptnmd->up);
2774 	if (err)
2775 		goto error;
2776 
2777 	ptnmd->up.flags &= ~NETMAP_MEM_FINALIZED;
2778 	ptnmd->up.flags |= NETMAP_MEM_IO;
2779 
2780 	NMA_LOCK_INIT(&ptnmd->up);
2781 
2782 	snprintf(ptnmd->up.name, NM_MEM_NAMESZ, "%d", ptnmd->up.nm_id);
2783 
2784 
2785 	return &ptnmd->up;
2786 error:
2787 	netmap_mem_pt_guest_delete(&ptnmd->up);
2788 	return NULL;
2789 }
2790 
2791 /*
2792  * find host id in guest allocators and create guest allocator
2793  * if it is not there
2794  */
2795 static struct netmap_mem_d *
2796 netmap_mem_pt_guest_get(nm_memid_t mem_id)
2797 {
2798 	struct netmap_mem_d *nmd;
2799 
2800 	NM_MTX_LOCK(nm_mem_list_lock);
2801 	nmd = netmap_mem_pt_guest_find_memid(mem_id);
2802 	if (nmd == NULL) {
2803 		nmd = netmap_mem_pt_guest_create(mem_id);
2804 	}
2805 	NM_MTX_UNLOCK(nm_mem_list_lock);
2806 
2807 	return nmd;
2808 }
2809 
2810 /*
2811  * The guest allocator can be created by ptnetmap_memdev (during the device
2812  * attach) or by ptnetmap device (ptnet), during the netmap_attach.
2813  *
2814  * The order is not important (we have different order in LINUX and FreeBSD).
2815  * The first one, creates the device, and the second one simply attaches it.
2816  */
2817 
2818 /* Called when ptnetmap_memdev is attaching, to attach a new allocator in
2819  * the guest */
2820 struct netmap_mem_d *
2821 netmap_mem_pt_guest_attach(struct ptnetmap_memdev *ptn_dev, nm_memid_t mem_id)
2822 {
2823 	struct netmap_mem_d *nmd;
2824 	struct netmap_mem_ptg *ptnmd;
2825 
2826 	nmd = netmap_mem_pt_guest_get(mem_id);
2827 
2828 	/* assign this device to the guest allocator */
2829 	if (nmd) {
2830 		ptnmd = (struct netmap_mem_ptg *)nmd;
2831 		ptnmd->ptn_dev = ptn_dev;
2832 	}
2833 
2834 	return nmd;
2835 }
2836 
2837 /* Called when ptnet device is attaching */
2838 struct netmap_mem_d *
2839 netmap_mem_pt_guest_new(struct ifnet *ifp,
2840 			unsigned int nifp_offset,
2841 			unsigned int memid)
2842 {
2843 	struct netmap_mem_d *nmd;
2844 
2845 	if (ifp == NULL) {
2846 		return NULL;
2847 	}
2848 
2849 	nmd = netmap_mem_pt_guest_get((nm_memid_t)memid);
2850 
2851 	if (nmd) {
2852 		netmap_mem_pt_guest_ifp_add(nmd, ifp, nifp_offset);
2853 	}
2854 
2855 	return nmd;
2856 }
2857 
2858 #endif /* WITH_PTNETMAP */
2859