xref: /freebsd/sys/dev/netmap/netmap_mem2.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*
2  * Copyright (C) 2012 Matteo Landi, Luigi Rizzo, Giuseppe Lettieri. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *   1. Redistributions of source code must retain the above copyright
8  *      notice, this list of conditions and the following disclaimer.
9  *   2. Redistributions in binary form must reproduce the above copyright
10  *      notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 /*
27  * $FreeBSD$
28  * $Id: netmap_mem2.c 11881 2012-10-18 23:24:15Z luigi $
29  *
30  * (New) memory allocator for netmap
31  */
32 
33 /*
34  * This allocator creates three memory regions:
35  *	nm_if_pool	for the struct netmap_if
36  *	nm_ring_pool	for the struct netmap_ring
37  *	nm_buf_pool	for the packet buffers.
38  *
39  * All regions need to be multiple of a page size as we export them to
40  * userspace through mmap. Only the latter needs to be dma-able,
41  * but for convenience use the same type of allocator for all.
42  *
43  * Once mapped, the three regions are exported to userspace
44  * as a contiguous block, starting from nm_if_pool. Each
45  * cluster (and pool) is an integral number of pages.
46  *   [ . . . ][ . . . . . .][ . . . . . . . . . .]
47  *    nm_if     nm_ring            nm_buf
48  *
49  * The userspace areas contain offsets of the objects in userspace.
50  * When (at init time) we write these offsets, we find out the index
51  * of the object, and from there locate the offset from the beginning
52  * of the region.
53  *
54  * The invididual allocators manage a pool of memory for objects of
55  * the same size.
56  * The pool is split into smaller clusters, whose size is a
57  * multiple of the page size. The cluster size is chosen
58  * to minimize the waste for a given max cluster size
59  * (we do it by brute force, as we have relatively few object
60  * per cluster).
61  *
62  * Objects are aligned to the cache line (64 bytes) rounding up object
63  * sizes when needed. A bitmap contains the state of each object.
64  * Allocation scans the bitmap; this is done only on attach, so we are not
65  * too worried about performance
66  *
67  * For each allocator we can define (thorugh sysctl) the size and
68  * number of each object. Memory is allocated at the first use of a
69  * netmap file descriptor, and can be freed when all such descriptors
70  * have been released (including unmapping the memory).
71  * If memory is scarce, the system tries to get as much as possible
72  * and the sysctl values reflect the actual allocation.
73  * Together with desired values, the sysctl export also absolute
74  * min and maximum values that cannot be overridden.
75  *
76  * struct netmap_if:
77  *	variable size, max 16 bytes per ring pair plus some fixed amount.
78  *	1024 bytes should be large enough in practice.
79  *
80  *	In the worst case we have one netmap_if per ring in the system.
81  *
82  * struct netmap_ring
83  *	variable too, 8 byte per slot plus some fixed amount.
84  *	Rings can be large (e.g. 4k slots, or >32Kbytes).
85  *	We default to 36 KB (9 pages), and a few hundred rings.
86  *
87  * struct netmap_buffer
88  *	The more the better, both because fast interfaces tend to have
89  *	many slots, and because we may want to use buffers to store
90  *	packets in userspace avoiding copies.
91  *	Must contain a full frame (eg 1518, or more for vlans, jumbo
92  *	frames etc.) plus be nicely aligned, plus some NICs restrict
93  *	the size to multiple of 1K or so. Default to 2K
94  */
95 
96 #ifndef CONSERVATIVE
97 #define NETMAP_BUF_MAX_NUM	20*4096*2	/* large machine */
98 #else /* CONSERVATIVE */
99 #define NETMAP_BUF_MAX_NUM      20000   /* 40MB */
100 #endif
101 
102 #ifdef linux
103 #define NMA_LOCK_T		struct semaphore
104 #define NMA_LOCK_INIT()		sema_init(&nm_mem.nm_mtx, 1)
105 #define NMA_LOCK_DESTROY()
106 #define NMA_LOCK()		down(&nm_mem.nm_mtx)
107 #define NMA_UNLOCK()		up(&nm_mem.nm_mtx)
108 #else /* !linux */
109 #define NMA_LOCK_T		struct mtx
110 #define NMA_LOCK_INIT()		mtx_init(&nm_mem.nm_mtx, "netmap memory allocator lock", NULL, MTX_DEF)
111 #define NMA_LOCK_DESTROY()	mtx_destroy(&nm_mem.nm_mtx)
112 #define NMA_LOCK()		mtx_lock(&nm_mem.nm_mtx)
113 #define NMA_UNLOCK()		mtx_unlock(&nm_mem.nm_mtx)
114 #endif /* linux */
115 
116 enum {
117 	NETMAP_IF_POOL   = 0,
118 	NETMAP_RING_POOL,
119 	NETMAP_BUF_POOL,
120 	NETMAP_POOLS_NR
121 };
122 
123 
124 struct netmap_obj_params {
125 	u_int size;
126 	u_int num;
127 };
128 
129 
130 struct netmap_obj_params netmap_params[NETMAP_POOLS_NR] = {
131 	[NETMAP_IF_POOL] = {
132 		.size = 1024,
133 		.num  = 100,
134 	},
135 	[NETMAP_RING_POOL] = {
136 		.size = 9*PAGE_SIZE,
137 		.num  = 200,
138 	},
139 	[NETMAP_BUF_POOL] = {
140 		.size = 2048,
141 		.num  = NETMAP_BUF_MAX_NUM,
142 	},
143 };
144 
145 
146 struct netmap_obj_pool {
147 	char name[16];		/* name of the allocator */
148 	u_int objtotal;         /* actual total number of objects. */
149 	u_int objfree;          /* number of free objects. */
150 	u_int clustentries;	/* actual objects per cluster */
151 
152 	/* limits */
153 	u_int objminsize;	/* minimum object size */
154 	u_int objmaxsize;	/* maximum object size */
155 	u_int nummin;		/* minimum number of objects */
156 	u_int nummax;		/* maximum number of objects */
157 
158 	/* the total memory space is _numclusters*_clustsize */
159 	u_int _numclusters;	/* how many clusters */
160 	u_int _clustsize;        /* cluster size */
161 	u_int _objsize;		/* actual object size */
162 
163 	u_int _memtotal;	/* _numclusters*_clustsize */
164 	struct lut_entry *lut;  /* virt,phys addresses, objtotal entries */
165 	uint32_t *bitmap;       /* one bit per buffer, 1 means free */
166 	uint32_t bitmap_slots;	/* number of uint32 entries in bitmap */
167 };
168 
169 
170 struct netmap_mem_d {
171 	NMA_LOCK_T nm_mtx;  /* protect the allocator */
172 	u_int nm_totalsize; /* shorthand */
173 
174 	int finalized;		/* !=0 iff preallocation done */
175 	int lasterr;		/* last error for curr config */
176 	int refcount;		/* existing priv structures */
177 	/* the three allocators */
178 	struct netmap_obj_pool pools[NETMAP_POOLS_NR];
179 };
180 
181 
182 static struct netmap_mem_d nm_mem = {	/* Our memory allocator. */
183 	.pools = {
184 		[NETMAP_IF_POOL] = {
185 			.name 	= "netmap_if",
186 			.objminsize = sizeof(struct netmap_if),
187 			.objmaxsize = 4096,
188 			.nummin     = 10,	/* don't be stingy */
189 			.nummax	    = 10000,	/* XXX very large */
190 		},
191 		[NETMAP_RING_POOL] = {
192 			.name 	= "netmap_ring",
193 			.objminsize = sizeof(struct netmap_ring),
194 			.objmaxsize = 32*PAGE_SIZE,
195 			.nummin     = 2,
196 			.nummax	    = 1024,
197 		},
198 		[NETMAP_BUF_POOL] = {
199 			.name	= "netmap_buf",
200 			.objminsize = 64,
201 			.objmaxsize = 65536,
202 			.nummin     = 4,
203 			.nummax	    = 1000000, /* one million! */
204 		},
205 	},
206 };
207 
208 struct lut_entry *netmap_buffer_lut;	/* exported */
209 
210 /* memory allocator related sysctls */
211 
212 #define STRINGIFY(x) #x
213 
214 #define DECLARE_SYSCTLS(id, name) \
215 	/* TUNABLE_INT("hw.netmap." STRINGIFY(name) "_size", &netmap_params[id].size); */ \
216 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
217 	    CTLFLAG_RW, &netmap_params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
218         SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
219             CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
220 	/* TUNABLE_INT("hw.netmap." STRINGIFY(name) "_num", &netmap_params[id].num); */ \
221         SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
222             CTLFLAG_RW, &netmap_params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
223         SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
224             CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s")
225 
226 DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
227 DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
228 DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
229 
230 /*
231  * Convert a userspace offset to a phisical address.
232  * XXX re-do in a simpler way.
233  *
234  * The idea here is to hide userspace applications the fact that pre-allocated
235  * memory is not contiguous, but fragmented across different clusters and
236  * smaller memory allocators. Consequently, first of all we need to find which
237  * allocator is owning provided offset, then we need to find out the physical
238  * address associated to target page (this is done using the look-up table.
239  */
240 static inline vm_paddr_t
241 netmap_ofstophys(vm_offset_t offset)
242 {
243 	int i;
244 	vm_offset_t o = offset;
245 	struct netmap_obj_pool *p = nm_mem.pools;
246 
247 	for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i]._memtotal, i++) {
248 		if (offset >= p[i]._memtotal)
249 			continue;
250 		// XXX now scan the clusters
251 		return p[i].lut[offset / p[i]._objsize].paddr +
252 			offset % p[i]._objsize;
253 	}
254 	/* this is only in case of errors */
255 	D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
256 		p[NETMAP_IF_POOL]._memtotal,
257 		p[NETMAP_IF_POOL]._memtotal
258 			+ p[NETMAP_RING_POOL]._memtotal,
259 		p[NETMAP_IF_POOL]._memtotal
260 			+ p[NETMAP_RING_POOL]._memtotal
261 			+ p[NETMAP_BUF_POOL]._memtotal);
262 	return 0;	// XXX bad address
263 }
264 
265 /*
266  * we store objects by kernel address, need to find the offset
267  * within the pool to export the value to userspace.
268  * Algorithm: scan until we find the cluster, then add the
269  * actual offset in the cluster
270  */
271 static ssize_t
272 netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
273 {
274 	int i, k = p->clustentries, n = p->objtotal;
275 	ssize_t ofs = 0;
276 
277 	for (i = 0; i < n; i += k, ofs += p->_clustsize) {
278 		const char *base = p->lut[i].vaddr;
279 		ssize_t relofs = (const char *) vaddr - base;
280 
281 		if (relofs < 0 || relofs > p->_clustsize)
282 			continue;
283 
284 		ofs = ofs + relofs;
285 		ND("%s: return offset %d (cluster %d) for pointer %p",
286 		    p->name, ofs, i, vaddr);
287 		return ofs;
288 	}
289 	D("address %p is not contained inside any cluster (%s)",
290 	    vaddr, p->name);
291 	return 0; /* An error occurred */
292 }
293 
294 /* Helper functions which convert virtual addresses to offsets */
295 #define netmap_if_offset(v)					\
296 	netmap_obj_offset(&nm_mem.pools[NETMAP_IF_POOL], (v))
297 
298 #define netmap_ring_offset(v)					\
299     (nm_mem.pools[NETMAP_IF_POOL]._memtotal + 				\
300 	netmap_obj_offset(&nm_mem.pools[NETMAP_RING_POOL], (v)))
301 
302 #define netmap_buf_offset(v)					\
303     (nm_mem.pools[NETMAP_IF_POOL]._memtotal +				\
304 	nm_mem.pools[NETMAP_RING_POOL]._memtotal +			\
305 	netmap_obj_offset(&nm_mem.pools[NETMAP_BUF_POOL], (v)))
306 
307 
308 /*
309  * report the index, and use start position as a hint,
310  * otherwise buffer allocation becomes terribly expensive.
311  */
312 static void *
313 netmap_obj_malloc(struct netmap_obj_pool *p, int len, uint32_t *start, uint32_t *index)
314 {
315 	uint32_t i = 0;			/* index in the bitmap */
316 	uint32_t mask, j;		/* slot counter */
317 	void *vaddr = NULL;
318 
319 	if (len > p->_objsize) {
320 		D("%s request size %d too large", p->name, len);
321 		// XXX cannot reduce the size
322 		return NULL;
323 	}
324 
325 	if (p->objfree == 0) {
326 		D("%s allocator: run out of memory", p->name);
327 		return NULL;
328 	}
329 	if (start)
330 		i = *start;
331 
332 	/* termination is guaranteed by p->free, but better check bounds on i */
333 	while (vaddr == NULL && i < p->bitmap_slots)  {
334 		uint32_t cur = p->bitmap[i];
335 		if (cur == 0) { /* bitmask is fully used */
336 			i++;
337 			continue;
338 		}
339 		/* locate a slot */
340 		for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
341 			;
342 
343 		p->bitmap[i] &= ~mask; /* mark object as in use */
344 		p->objfree--;
345 
346 		vaddr = p->lut[i * 32 + j].vaddr;
347 		if (index)
348 			*index = i * 32 + j;
349 	}
350 	ND("%s allocator: allocated object @ [%d][%d]: vaddr %p", i, j, vaddr);
351 
352 	if (start)
353 		*start = i;
354 	return vaddr;
355 }
356 
357 
358 /*
359  * free by index, not by address
360  */
361 static void
362 netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
363 {
364 	if (j >= p->objtotal) {
365 		D("invalid index %u, max %u", j, p->objtotal);
366 		return;
367 	}
368 	p->bitmap[j / 32] |= (1 << (j % 32));
369 	p->objfree++;
370 	return;
371 }
372 
373 static void
374 netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
375 {
376 	int i, j, n = p->_memtotal / p->_clustsize;
377 
378 	for (i = 0, j = 0; i < n; i++, j += p->clustentries) {
379 		void *base = p->lut[i * p->clustentries].vaddr;
380 		ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
381 
382 		/* Given address, is out of the scope of the current cluster.*/
383 		if (vaddr < base || relofs > p->_clustsize)
384 			continue;
385 
386 		j = j + relofs / p->_objsize;
387 		KASSERT(j != 0, ("Cannot free object 0"));
388 		netmap_obj_free(p, j);
389 		return;
390 	}
391 	ND("address %p is not contained inside any cluster (%s)",
392 	    vaddr, p->name);
393 }
394 
395 #define netmap_if_malloc(len)	netmap_obj_malloc(&nm_mem.pools[NETMAP_IF_POOL], len, NULL, NULL)
396 #define netmap_if_free(v)	netmap_obj_free_va(&nm_mem.pools[NETMAP_IF_POOL], (v))
397 #define netmap_ring_malloc(len)	netmap_obj_malloc(&nm_mem.pools[NETMAP_RING_POOL], len, NULL, NULL)
398 #define netmap_ring_free(v)	netmap_obj_free_va(&nm_mem.pools[NETMAP_RING_POOL], (v))
399 #define netmap_buf_malloc(_pos, _index)			\
400 	netmap_obj_malloc(&nm_mem.pools[NETMAP_BUF_POOL], NETMAP_BUF_SIZE, _pos, _index)
401 
402 
403 /* Return the index associated to the given packet buffer */
404 #define netmap_buf_index(v)						\
405     (netmap_obj_offset(&nm_mem.pools[NETMAP_BUF_POOL], (v)) / nm_mem.pools[NETMAP_BUF_POOL]._objsize)
406 
407 
408 /* Return nonzero on error */
409 static int
410 netmap_new_bufs(struct netmap_if *nifp,
411                 struct netmap_slot *slot, u_int n)
412 {
413 	struct netmap_obj_pool *p = &nm_mem.pools[NETMAP_BUF_POOL];
414 	int i = 0;	/* slot counter */
415 	uint32_t pos = 0;	/* slot in p->bitmap */
416 	uint32_t index = 0;	/* buffer index */
417 
418 	(void)nifp;	/* UNUSED */
419 	for (i = 0; i < n; i++) {
420 		void *vaddr = netmap_buf_malloc(&pos, &index);
421 		if (vaddr == NULL) {
422 			D("unable to locate empty packet buffer");
423 			goto cleanup;
424 		}
425 		slot[i].buf_idx = index;
426 		slot[i].len = p->_objsize;
427 		/* XXX setting flags=NS_BUF_CHANGED forces a pointer reload
428 		 * in the NIC ring. This is a hack that hides missing
429 		 * initializations in the drivers, and should go away.
430 		 */
431 		slot[i].flags = NS_BUF_CHANGED;
432 	}
433 
434 	ND("allocated %d buffers, %d available, first at %d", n, p->objfree, pos);
435 	return (0);
436 
437 cleanup:
438 	while (i > 0) {
439 		i--;
440 		netmap_obj_free(p, slot[i].buf_idx);
441 	}
442 	bzero(slot, n * sizeof(slot[0]));
443 	return (ENOMEM);
444 }
445 
446 
447 static void
448 netmap_free_buf(struct netmap_if *nifp, uint32_t i)
449 {
450 	struct netmap_obj_pool *p = &nm_mem.pools[NETMAP_BUF_POOL];
451 
452 	if (i < 2 || i >= p->objtotal) {
453 		D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
454 		return;
455 	}
456 	netmap_obj_free(p, i);
457 }
458 
459 static void
460 netmap_reset_obj_allocator(struct netmap_obj_pool *p)
461 {
462 	if (p == NULL)
463 		return;
464 	if (p->bitmap)
465 		free(p->bitmap, M_NETMAP);
466 	p->bitmap = NULL;
467 	if (p->lut) {
468 		int i;
469 		for (i = 0; i < p->objtotal; i += p->clustentries) {
470 			if (p->lut[i].vaddr)
471 				contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
472 		}
473 		bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
474 #ifdef linux
475 		vfree(p->lut);
476 #else
477 		free(p->lut, M_NETMAP);
478 #endif
479 	}
480 	p->lut = NULL;
481 }
482 
483 /*
484  * Free all resources related to an allocator.
485  */
486 static void
487 netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
488 {
489 	if (p == NULL)
490 		return;
491 	netmap_reset_obj_allocator(p);
492 }
493 
494 /*
495  * We receive a request for objtotal objects, of size objsize each.
496  * Internally we may round up both numbers, as we allocate objects
497  * in small clusters multiple of the page size.
498  * In the allocator we don't need to store the objsize,
499  * but we do need to keep track of objtotal' and clustentries,
500  * as they are needed when freeing memory.
501  *
502  * XXX note -- userspace needs the buffers to be contiguous,
503  *	so we cannot afford gaps at the end of a cluster.
504  */
505 
506 
507 /* call with NMA_LOCK held */
508 static int
509 netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
510 {
511 	int i, n;
512 	u_int clustsize;	/* the cluster size, multiple of page size */
513 	u_int clustentries;	/* how many objects per entry */
514 
515 #define MAX_CLUSTSIZE	(1<<17)
516 #define LINE_ROUND	64
517 	if (objsize >= MAX_CLUSTSIZE) {
518 		/* we could do it but there is no point */
519 		D("unsupported allocation for %d bytes", objsize);
520 		goto error;
521 	}
522 	/* make sure objsize is a multiple of LINE_ROUND */
523 	i = (objsize & (LINE_ROUND - 1));
524 	if (i) {
525 		D("XXX aligning object by %d bytes", LINE_ROUND - i);
526 		objsize += LINE_ROUND - i;
527 	}
528 	if (objsize < p->objminsize || objsize > p->objmaxsize) {
529 		D("requested objsize %d out of range [%d, %d]",
530 			objsize, p->objminsize, p->objmaxsize);
531 		goto error;
532 	}
533 	if (objtotal < p->nummin || objtotal > p->nummax) {
534 		D("requested objtotal %d out of range [%d, %d]",
535 			objtotal, p->nummin, p->nummax);
536 		goto error;
537 	}
538 	/*
539 	 * Compute number of objects using a brute-force approach:
540 	 * given a max cluster size,
541 	 * we try to fill it with objects keeping track of the
542 	 * wasted space to the next page boundary.
543 	 */
544 	for (clustentries = 0, i = 1;; i++) {
545 		u_int delta, used = i * objsize;
546 		if (used > MAX_CLUSTSIZE)
547 			break;
548 		delta = used % PAGE_SIZE;
549 		if (delta == 0) { // exact solution
550 			clustentries = i;
551 			break;
552 		}
553 		if (delta > ( (clustentries*objsize) % PAGE_SIZE) )
554 			clustentries = i;
555 	}
556 	// D("XXX --- ouch, delta %d (bad for buffers)", delta);
557 	/* compute clustsize and round to the next page */
558 	clustsize = clustentries * objsize;
559 	i =  (clustsize & (PAGE_SIZE - 1));
560 	if (i)
561 		clustsize += PAGE_SIZE - i;
562 	D("objsize %d clustsize %d objects %d",
563 		objsize, clustsize, clustentries);
564 
565 	/*
566 	 * The number of clusters is n = ceil(objtotal/clustentries)
567 	 * objtotal' = n * clustentries
568 	 */
569 	p->clustentries = clustentries;
570 	p->_clustsize = clustsize;
571 	n = (objtotal + clustentries - 1) / clustentries;
572 	p->_numclusters = n;
573 	p->objtotal = n * clustentries;
574 	p->objfree = p->objtotal - 2; /* obj 0 and 1 are reserved */
575 	p->_memtotal = p->_numclusters * p->_clustsize;
576 	p->_objsize = objsize;
577 
578 	return 0;
579 
580 error:
581 	p->_objsize = objsize;
582 	p->objtotal = objtotal;
583 
584 	return EINVAL;
585 }
586 
587 
588 /* call with NMA_LOCK held */
589 static int
590 netmap_finalize_obj_allocator(struct netmap_obj_pool *p)
591 {
592 	int i, n;
593 
594 	n = sizeof(struct lut_entry) * p->objtotal;
595 #ifdef linux
596 	p->lut = vmalloc(n);
597 #else
598 	p->lut = malloc(n, M_NETMAP, M_NOWAIT | M_ZERO);
599 #endif
600 	if (p->lut == NULL) {
601 		D("Unable to create lookup table (%d bytes) for '%s'", n, p->name);
602 		goto clean;
603 	}
604 
605 	/* Allocate the bitmap */
606 	n = (p->objtotal + 31) / 32;
607 	p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_NOWAIT | M_ZERO);
608 	if (p->bitmap == NULL) {
609 		D("Unable to create bitmap (%d entries) for allocator '%s'", n,
610 		    p->name);
611 		goto clean;
612 	}
613 	p->bitmap_slots = n;
614 
615 	/*
616 	 * Allocate clusters, init pointers and bitmap
617 	 */
618 	for (i = 0; i < p->objtotal;) {
619 		int lim = i + p->clustentries;
620 		char *clust;
621 
622 		clust = contigmalloc(p->_clustsize, M_NETMAP, M_NOWAIT | M_ZERO,
623 		    0, -1UL, PAGE_SIZE, 0);
624 		if (clust == NULL) {
625 			/*
626 			 * If we get here, there is a severe memory shortage,
627 			 * so halve the allocated memory to reclaim some.
628 			 * XXX check boundaries
629 			 */
630 			D("Unable to create cluster at %d for '%s' allocator",
631 			    i, p->name);
632 			lim = i / 2;
633 			for (i--; i >= lim; i--) {
634 				p->bitmap[ (i>>5) ] &=  ~( 1 << (i & 31) );
635 				if (i % p->clustentries == 0 && p->lut[i].vaddr)
636 					contigfree(p->lut[i].vaddr,
637 						p->_clustsize, M_NETMAP);
638 			}
639 			p->objtotal = i;
640 			p->objfree = p->objtotal - 2;
641 			p->_numclusters = i / p->clustentries;
642 			p->_memtotal = p->_numclusters * p->_clustsize;
643 			break;
644 		}
645 		for (; i < lim; i++, clust += p->_objsize) {
646 			p->bitmap[ (i>>5) ] |=  ( 1 << (i & 31) );
647 			p->lut[i].vaddr = clust;
648 			p->lut[i].paddr = vtophys(clust);
649 		}
650 	}
651 	p->bitmap[0] = ~3; /* objs 0 and 1 is always busy */
652 	D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
653 	    p->_numclusters, p->_clustsize >> 10,
654 	    p->_memtotal >> 10, p->name);
655 
656 	return 0;
657 
658 clean:
659 	netmap_reset_obj_allocator(p);
660 	return ENOMEM;
661 }
662 
663 /* call with lock held */
664 static int
665 netmap_memory_config_changed(void)
666 {
667 	int i;
668 
669 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
670 		if (nm_mem.pools[i]._objsize != netmap_params[i].size ||
671 		    nm_mem.pools[i].objtotal != netmap_params[i].num)
672 		    return 1;
673 	}
674 	return 0;
675 }
676 
677 
678 /* call with lock held */
679 static int
680 netmap_memory_config(void)
681 {
682 	int i;
683 
684 
685 	if (!netmap_memory_config_changed())
686 		goto out;
687 
688 	D("reconfiguring");
689 
690 	if (nm_mem.finalized) {
691 		/* reset previous allocation */
692 		for (i = 0; i < NETMAP_POOLS_NR; i++) {
693 			netmap_reset_obj_allocator(&nm_mem.pools[i]);
694 		}
695 		nm_mem.finalized = 0;
696         }
697 
698 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
699 		nm_mem.lasterr = netmap_config_obj_allocator(&nm_mem.pools[i],
700 				netmap_params[i].num, netmap_params[i].size);
701 		if (nm_mem.lasterr)
702 			goto out;
703 	}
704 
705 	D("Have %d KB for interfaces, %d KB for rings and %d MB for buffers",
706 	    nm_mem.pools[NETMAP_IF_POOL]._memtotal >> 10,
707 	    nm_mem.pools[NETMAP_RING_POOL]._memtotal >> 10,
708 	    nm_mem.pools[NETMAP_BUF_POOL]._memtotal >> 20);
709 
710 out:
711 
712 	return nm_mem.lasterr;
713 }
714 
715 /* call with lock held */
716 static int
717 netmap_memory_finalize(void)
718 {
719 	int i;
720 	u_int totalsize = 0;
721 
722 	nm_mem.refcount++;
723 	if (nm_mem.refcount > 1) {
724 		D("busy (refcount %d)", nm_mem.refcount);
725 		goto out;
726 	}
727 
728 	/* update configuration if changed */
729 	if (netmap_memory_config())
730 		goto out;
731 
732 	if (nm_mem.finalized) {
733 		/* may happen if config is not changed */
734 		ND("nothing to do");
735 		goto out;
736 	}
737 
738 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
739 		nm_mem.lasterr = netmap_finalize_obj_allocator(&nm_mem.pools[i]);
740 		if (nm_mem.lasterr)
741 			goto cleanup;
742 		totalsize += nm_mem.pools[i]._memtotal;
743 	}
744 	nm_mem.nm_totalsize = totalsize;
745 
746 	/* backward compatibility */
747 	netmap_buf_size = nm_mem.pools[NETMAP_BUF_POOL]._objsize;
748 	netmap_total_buffers = nm_mem.pools[NETMAP_BUF_POOL].objtotal;
749 
750 	netmap_buffer_lut = nm_mem.pools[NETMAP_BUF_POOL].lut;
751 	netmap_buffer_base = nm_mem.pools[NETMAP_BUF_POOL].lut[0].vaddr;
752 
753 	nm_mem.finalized = 1;
754 	nm_mem.lasterr = 0;
755 
756 	/* make sysctl values match actual values in the pools */
757 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
758 		netmap_params[i].size = nm_mem.pools[i]._objsize;
759 		netmap_params[i].num  = nm_mem.pools[i].objtotal;
760 	}
761 
762 out:
763 	if (nm_mem.lasterr)
764 		nm_mem.refcount--;
765 
766 	return nm_mem.lasterr;
767 
768 cleanup:
769 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
770 		netmap_reset_obj_allocator(&nm_mem.pools[i]);
771 	}
772 	nm_mem.refcount--;
773 
774 	return nm_mem.lasterr;
775 }
776 
777 static int
778 netmap_memory_init(void)
779 {
780 	NMA_LOCK_INIT();
781 	return (0);
782 }
783 
784 static void
785 netmap_memory_fini(void)
786 {
787 	int i;
788 
789 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
790 	    netmap_destroy_obj_allocator(&nm_mem.pools[i]);
791 	}
792 	NMA_LOCK_DESTROY();
793 }
794 
795 static void
796 netmap_free_rings(struct netmap_adapter *na)
797 {
798 	int i;
799 	for (i = 0; i < na->num_tx_rings + 1; i++) {
800 		netmap_ring_free(na->tx_rings[i].ring);
801 		na->tx_rings[i].ring = NULL;
802 	}
803 	for (i = 0; i < na->num_rx_rings + 1; i++) {
804 		netmap_ring_free(na->rx_rings[i].ring);
805 		na->rx_rings[i].ring = NULL;
806 	}
807 }
808 
809 
810 
811 /* call with NMA_LOCK held */
812 static void *
813 netmap_if_new(const char *ifname, struct netmap_adapter *na)
814 {
815 	struct netmap_if *nifp;
816 	struct netmap_ring *ring;
817 	ssize_t base; /* handy for relative offsets between rings and nifp */
818 	u_int i, len, ndesc;
819 	u_int ntx = na->num_tx_rings + 1; /* shorthand, include stack ring */
820 	u_int nrx = na->num_rx_rings + 1; /* shorthand, include stack ring */
821 	struct netmap_kring *kring;
822 
823 	/*
824 	 * the descriptor is followed inline by an array of offsets
825 	 * to the tx and rx rings in the shared memory region.
826 	 */
827 	len = sizeof(struct netmap_if) + (nrx + ntx) * sizeof(ssize_t);
828 	nifp = netmap_if_malloc(len);
829 	if (nifp == NULL) {
830 		return NULL;
831 	}
832 
833 	/* initialize base fields -- override const */
834 	*(int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
835 	*(int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
836 	strncpy(nifp->ni_name, ifname, IFNAMSIZ);
837 
838 	(na->refcount)++;	/* XXX atomic ? we are under lock */
839 	if (na->refcount > 1) { /* already setup, we are done */
840 		goto final;
841 	}
842 
843 	/*
844 	 * First instance, allocate netmap rings and buffers for this card
845 	 * The rings are contiguous, but have variable size.
846 	 */
847 	for (i = 0; i < ntx; i++) { /* Transmit rings */
848 		kring = &na->tx_rings[i];
849 		ndesc = na->num_tx_desc;
850 		bzero(kring, sizeof(*kring));
851 		len = sizeof(struct netmap_ring) +
852 			  ndesc * sizeof(struct netmap_slot);
853 		ring = netmap_ring_malloc(len);
854 		if (ring == NULL) {
855 			D("Cannot allocate tx_ring[%d] for %s", i, ifname);
856 			goto cleanup;
857 		}
858 		ND("txring[%d] at %p ofs %d", i, ring);
859 		kring->na = na;
860 		kring->ring = ring;
861 		*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
862 		*(ssize_t *)(uintptr_t)&ring->buf_ofs =
863 		    (nm_mem.pools[NETMAP_IF_POOL]._memtotal +
864 			nm_mem.pools[NETMAP_RING_POOL]._memtotal) -
865 			netmap_ring_offset(ring);
866 
867 		/*
868 		 * IMPORTANT:
869 		 * Always keep one slot empty, so we can detect new
870 		 * transmissions comparing cur and nr_hwcur (they are
871 		 * the same only if there are no new transmissions).
872 		 */
873 		ring->avail = kring->nr_hwavail = ndesc - 1;
874 		ring->cur = kring->nr_hwcur = 0;
875 		*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
876 		ND("initializing slots for txring[%d]", i);
877 		if (netmap_new_bufs(nifp, ring->slot, ndesc)) {
878 			D("Cannot allocate buffers for tx_ring[%d] for %s", i, ifname);
879 			goto cleanup;
880 		}
881 	}
882 
883 	for (i = 0; i < nrx; i++) { /* Receive rings */
884 		kring = &na->rx_rings[i];
885 		ndesc = na->num_rx_desc;
886 		bzero(kring, sizeof(*kring));
887 		len = sizeof(struct netmap_ring) +
888 			  ndesc * sizeof(struct netmap_slot);
889 		ring = netmap_ring_malloc(len);
890 		if (ring == NULL) {
891 			D("Cannot allocate rx_ring[%d] for %s", i, ifname);
892 			goto cleanup;
893 		}
894 		ND("rxring[%d] at %p ofs %d", i, ring);
895 
896 		kring->na = na;
897 		kring->ring = ring;
898 		*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
899 		*(ssize_t *)(uintptr_t)&ring->buf_ofs =
900 		    (nm_mem.pools[NETMAP_IF_POOL]._memtotal +
901 		        nm_mem.pools[NETMAP_RING_POOL]._memtotal) -
902 			netmap_ring_offset(ring);
903 
904 		ring->cur = kring->nr_hwcur = 0;
905 		ring->avail = kring->nr_hwavail = 0; /* empty */
906 		*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
907 		ND("initializing slots for rxring[%d]", i);
908 		if (netmap_new_bufs(nifp, ring->slot, ndesc)) {
909 			D("Cannot allocate buffers for rx_ring[%d] for %s", i, ifname);
910 			goto cleanup;
911 		}
912 	}
913 #ifdef linux
914 	// XXX initialize the selrecord structs.
915 	for (i = 0; i < ntx; i++)
916 		init_waitqueue_head(&na->tx_rings[i].si);
917 	for (i = 0; i < nrx; i++)
918 		init_waitqueue_head(&na->rx_rings[i].si);
919 	init_waitqueue_head(&na->tx_si);
920 	init_waitqueue_head(&na->rx_si);
921 #endif
922 final:
923 	/*
924 	 * fill the slots for the rx and tx rings. They contain the offset
925 	 * between the ring and nifp, so the information is usable in
926 	 * userspace to reach the ring from the nifp.
927 	 */
928 	base = netmap_if_offset(nifp);
929 	for (i = 0; i < ntx; i++) {
930 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
931 			netmap_ring_offset(na->tx_rings[i].ring) - base;
932 	}
933 	for (i = 0; i < nrx; i++) {
934 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+ntx] =
935 			netmap_ring_offset(na->rx_rings[i].ring) - base;
936 	}
937 	return (nifp);
938 cleanup:
939 	netmap_free_rings(na);
940 	netmap_if_free(nifp);
941 	(na->refcount)--;
942 	return NULL;
943 }
944 
945 /* call with NMA_LOCK held */
946 static void
947 netmap_memory_deref(void)
948 {
949 	nm_mem.refcount--;
950 	D("refcount = %d", nm_mem.refcount);
951 }
952