xref: /freebsd/sys/dev/netmap/netmap_mem2.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*
2  * Copyright (C) 2012 Matteo Landi, Luigi Rizzo. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *   1. Redistributions of source code must retain the above copyright
8  *      notice, this list of conditions and the following disclaimer.
9  *   2. Redistributions in binary form must reproduce the above copyright
10  *      notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 /*
27  * $FreeBSD$
28  * $Id: netmap_mem2.c 10830 2012-03-22 18:06:01Z luigi $
29  *
30  * New memory allocator for netmap
31  */
32 
33 /*
34  * The new version allocates three regions:
35  *	nm_if_pool      for the struct netmap_if
36  *	nm_ring_pool    for the struct netmap_ring
37  *	nm_buf_pool    for the packet buffers.
38  *
39  * All regions need to be page-sized as we export them to
40  * userspace through mmap. Only the latter need to be dma-able,
41  * but for convenience use the same type of allocator for all.
42  *
43  * Once mapped, the three regions are exported to userspace
44  * as a contiguous block, starting from nm_if_pool. Each
45  * cluster (and pool) is an integral number of pages.
46  *   [ . . . ][ . . . . . .][ . . . . . . . . . .]
47  *    nm_if     nm_ring            nm_buf
48  *
49  * The userspace areas contain offsets of the objects in userspace.
50  * When (at init time) we write these offsets, we find out the index
51  * of the object, and from there locate the offset from the beginning
52  * of the region.
53  *
54  * Allocator for a pool of memory objects of the same size.
55  * The pool is split into smaller clusters, whose size is a
56  * multiple of the page size. The cluster size is chosen
57  * to minimize the waste for a given max cluster size
58  * (we do it by brute force, as we have relatively few object
59  * per cluster).
60  *
61  * To be polite with the cache, objects are aligned to
62  * the cache line, or 64 bytes. Sizes are rounded to multiple of 64.
63  * For each object we have
64  * one entry in the bitmap to signal the state. Allocation scans
65  * the bitmap, but since this is done only on attach, we are not
66  * too worried about performance
67  */
68 
69 /*
70  *	MEMORY SIZES:
71  *
72  * (all the parameters below will become tunables)
73  *
74  * struct netmap_if is variable size but small.
75  * Assuming each NIC has 8+2 rings, (4+1 tx, 4+1 rx) the netmap_if
76  * uses 120 bytes on a 64-bit machine.
77  * We allocate NETMAP_IF_MAX_SIZE  (1024) which should work even for
78  * cards with 48 ring pairs.
79  * The total number of 'struct netmap_if' could be slightly larger
80  * that the total number of rings on all interfaces on the system.
81  */
82 #define NETMAP_IF_MAX_SIZE      1024
83 #define NETMAP_IF_MAX_NUM       512
84 
85 /*
86  * netmap rings are up to 2..4k descriptors, 8 bytes each,
87  * plus some glue at the beginning (32 bytes).
88  * We set the default ring size to 9 pages (36K) and enable
89  * a few hundreds of them.
90  */
91 #define NETMAP_RING_MAX_SIZE    (9*PAGE_SIZE)
92 #define NETMAP_RING_MAX_NUM     200	/* approx 8MB */
93 
94 /*
95  * Buffers: the more the better. Buffer size is NETMAP_BUF_SIZE,
96  * 2k or slightly less, aligned to 64 bytes.
97  * A large 10G interface can have 2k*18 = 36k buffers per interface,
98  * or about 72MB of memory. Up to us to use more.
99  */
100 #ifndef CONSERVATIVE
101 #define NETMAP_BUF_MAX_NUM      100000  /* 200MB */
102 #else /* CONSERVATIVE */
103 #define NETMAP_BUF_MAX_NUM      20000   /* 40MB */
104 #endif
105 
106 
107 struct netmap_obj_pool {
108 	char name[16];		/* name of the allocator */
109 	u_int objtotal;         /* actual total number of objects. */
110 	u_int objfree;          /* number of free objects. */
111 	u_int clustentries;	/* actual objects per cluster */
112 
113 	/* the total memory space is _numclusters*_clustsize */
114 	u_int _numclusters;	/* how many clusters */
115 	u_int _clustsize;        /* cluster size */
116 	u_int _objsize;		/* actual object size */
117 
118 	u_int _memtotal;	/* _numclusters*_clustsize */
119 	struct lut_entry *lut;  /* virt,phys addresses, objtotal entries */
120 	uint32_t *bitmap;       /* one bit per buffer, 1 means free */
121 };
122 
123 struct netmap_mem_d {
124 	NM_LOCK_T nm_mtx; /* protect the allocator ? */
125 	u_int nm_totalsize; /* shorthand */
126 
127 	/* pointers to the three allocators */
128 	struct netmap_obj_pool *nm_if_pool;
129 	struct netmap_obj_pool *nm_ring_pool;
130 	struct netmap_obj_pool *nm_buf_pool;
131 };
132 
133 struct lut_entry *netmap_buffer_lut;	/* exported */
134 
135 
136 /*
137  * Convert a userspace offset to a phisical address.
138  * XXX re-do in a simpler way.
139  *
140  * The idea here is to hide userspace applications the fact that pre-allocated
141  * memory is not contiguous, but fragmented across different clusters and
142  * smaller memory allocators. Consequently, first of all we need to find which
143  * allocator is owning provided offset, then we need to find out the physical
144  * address associated to target page (this is done using the look-up table.
145  */
146 static inline vm_paddr_t
147 netmap_ofstophys(vm_offset_t offset)
148 {
149 	const struct netmap_obj_pool *p[] = {
150 		nm_mem->nm_if_pool,
151 		nm_mem->nm_ring_pool,
152 		nm_mem->nm_buf_pool };
153 	int i;
154 	vm_offset_t o = offset;
155 
156 
157 	for (i = 0; i < 3; offset -= p[i]->_memtotal, i++) {
158 		if (offset >= p[i]->_memtotal)
159 			continue;
160 		// XXX now scan the clusters
161 		return p[i]->lut[offset / p[i]->_objsize].paddr +
162 			offset % p[i]->_objsize;
163 	}
164 	D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
165 		p[0]->_memtotal, p[0]->_memtotal + p[1]->_memtotal,
166 		p[0]->_memtotal + p[1]->_memtotal + p[2]->_memtotal);
167 	return 0;	// XXX bad address
168 }
169 
170 /*
171  * we store objects by kernel address, need to find the offset
172  * within the pool to export the value to userspace.
173  * Algorithm: scan until we find the cluster, then add the
174  * actual offset in the cluster
175  */
176 static ssize_t
177 netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
178 {
179 	int i, k = p->clustentries, n = p->objtotal;
180 	ssize_t ofs = 0;
181 
182 	for (i = 0; i < n; i += k, ofs += p->_clustsize) {
183 		const char *base = p->lut[i].vaddr;
184 		ssize_t relofs = (const char *) vaddr - base;
185 
186 		if (relofs < 0 || relofs > p->_clustsize)
187 			continue;
188 
189 		ofs = ofs + relofs;
190 		ND("%s: return offset %d (cluster %d) for pointer %p",
191 		    p->name, ofs, i, vaddr);
192 		return ofs;
193 	}
194 	D("address %p is not contained inside any cluster (%s)",
195 	    vaddr, p->name);
196 	return 0; /* An error occurred */
197 }
198 
199 /* Helper functions which convert virtual addresses to offsets */
200 #define netmap_if_offset(v)					\
201 	netmap_obj_offset(nm_mem->nm_if_pool, (v))
202 
203 #define netmap_ring_offset(v)					\
204     (nm_mem->nm_if_pool->_memtotal + 				\
205 	netmap_obj_offset(nm_mem->nm_ring_pool, (v)))
206 
207 #define netmap_buf_offset(v)					\
208     (nm_mem->nm_if_pool->_memtotal +				\
209 	nm_mem->nm_ring_pool->_memtotal +			\
210 	netmap_obj_offset(nm_mem->nm_buf_pool, (v)))
211 
212 
213 static void *
214 netmap_obj_malloc(struct netmap_obj_pool *p, int len)
215 {
216 	uint32_t i = 0;			/* index in the bitmap */
217 	uint32_t mask, j;		/* slot counter */
218 	void *vaddr = NULL;
219 
220 	if (len > p->_objsize) {
221 		D("%s request size %d too large", p->name, len);
222 		// XXX cannot reduce the size
223 		return NULL;
224 	}
225 
226 	if (p->objfree == 0) {
227 		D("%s allocator: run out of memory", p->name);
228 		return NULL;
229 	}
230 
231 	/* termination is guaranteed by p->free */
232 	while (vaddr == NULL) {
233 		uint32_t cur = p->bitmap[i];
234 		if (cur == 0) { /* bitmask is fully used */
235 			i++;
236 			continue;
237 		}
238 		/* locate a slot */
239 		for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
240 			;
241 
242 		p->bitmap[i] &= ~mask; /* mark object as in use */
243 		p->objfree--;
244 
245 		vaddr = p->lut[i * 32 + j].vaddr;
246 	}
247 	ND("%s allocator: allocated object @ [%d][%d]: vaddr %p", i, j, vaddr);
248 
249 	return vaddr;
250 }
251 
252 
253 /*
254  * free by index, not by address
255  */
256 static void
257 netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
258 {
259 	if (j >= p->objtotal) {
260 		D("invalid index %u, max %u", j, p->objtotal);
261 		return;
262 	}
263 	p->bitmap[j / 32] |= (1 << (j % 32));
264 	p->objfree++;
265 	return;
266 }
267 
268 static void
269 netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
270 {
271 	int i, j, n = p->_memtotal / p->_clustsize;
272 
273 	for (i = 0, j = 0; i < n; i++, j += p->clustentries) {
274 		void *base = p->lut[i * p->clustentries].vaddr;
275 		ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
276 
277 		/* Given address, is out of the scope of the current cluster.*/
278 		if (vaddr < base || relofs > p->_clustsize)
279 			continue;
280 
281 		j = j + relofs / p->_objsize;
282 		KASSERT(j != 0, ("Cannot free object 0"));
283 		netmap_obj_free(p, j);
284 		return;
285 	}
286 	ND("address %p is not contained inside any cluster (%s)",
287 	    vaddr, p->name);
288 }
289 
290 #define netmap_if_malloc(len)	netmap_obj_malloc(nm_mem->nm_if_pool, len)
291 #define netmap_if_free(v)	netmap_obj_free_va(nm_mem->nm_if_pool, (v))
292 #define netmap_ring_malloc(len)	netmap_obj_malloc(nm_mem->nm_ring_pool, len)
293 #define netmap_buf_malloc()			\
294 	netmap_obj_malloc(nm_mem->nm_buf_pool, NETMAP_BUF_SIZE)
295 
296 
297 /* Return the index associated to the given packet buffer */
298 #define netmap_buf_index(v)						\
299     (netmap_obj_offset(nm_mem->nm_buf_pool, (v)) / nm_mem->nm_buf_pool->_objsize)
300 
301 
302 static void
303 netmap_new_bufs(struct netmap_if *nifp __unused,
304                 struct netmap_slot *slot, u_int n)
305 {
306 	struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
307 	uint32_t i = 0;	/* slot counter */
308 
309 	for (i = 0; i < n; i++) {
310 		void *vaddr = netmap_buf_malloc();
311 		if (vaddr == NULL) {
312 			D("unable to locate empty packet buffer");
313 			goto cleanup;
314 		}
315 
316 		slot[i].buf_idx = netmap_buf_index(vaddr);
317 		KASSERT(slot[i].buf_idx != 0,
318 		    ("Assigning buf_idx=0 to just created slot"));
319 		slot[i].len = p->_objsize;
320 		slot[i].flags = NS_BUF_CHANGED; // XXX GAETANO hack
321 	}
322 
323 	ND("allocated %d buffers, %d available", n, p->objfree);
324 	return;
325 
326 cleanup:
327 	for (i--; i >= 0; i--) {
328 		netmap_obj_free(nm_mem->nm_buf_pool, slot[i].buf_idx);
329 	}
330 }
331 
332 
333 static void
334 netmap_free_buf(struct netmap_if *nifp, uint32_t i)
335 {
336 	struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
337 	if (i < 2 || i >= p->objtotal) {
338 		D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
339 		return;
340 	}
341 	netmap_obj_free(nm_mem->nm_buf_pool, i);
342 }
343 
344 
345 /*
346  * Free all resources related to an allocator.
347  */
348 static void
349 netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
350 {
351 	if (p == NULL)
352 		return;
353 	if (p->bitmap)
354 		free(p->bitmap, M_NETMAP);
355 	if (p->lut) {
356 		int i;
357 		for (i = 0; i < p->objtotal; i += p->clustentries) {
358 			if (p->lut[i].vaddr)
359 				contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
360 		}
361 		bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
362 		free(p->lut, M_NETMAP);
363 	}
364 	bzero(p, sizeof(*p));
365 	free(p, M_NETMAP);
366 }
367 
368 /*
369  * We receive a request for objtotal objects, of size objsize each.
370  * Internally we may round up both numbers, as we allocate objects
371  * in small clusters multiple of the page size.
372  * In the allocator we don't need to store the objsize,
373  * but we do need to keep track of objtotal' and clustentries,
374  * as they are needed when freeing memory.
375  *
376  * XXX note -- userspace needs the buffers to be contiguous,
377  *	so we cannot afford gaps at the end of a cluster.
378  */
379 static struct netmap_obj_pool *
380 netmap_new_obj_allocator(const char *name, u_int objtotal, u_int objsize)
381 {
382 	struct netmap_obj_pool *p;
383 	int i, n;
384 	u_int clustsize;	/* the cluster size, multiple of page size */
385 	u_int clustentries;	/* how many objects per entry */
386 
387 #define MAX_CLUSTSIZE	(1<<17)
388 #define LINE_ROUND	64
389 	if (objsize >= MAX_CLUSTSIZE) {
390 		/* we could do it but there is no point */
391 		D("unsupported allocation for %d bytes", objsize);
392 		return NULL;
393 	}
394 	/* make sure objsize is a multiple of LINE_ROUND */
395 	i = (objsize & (LINE_ROUND - 1));
396 	if (i) {
397 		D("XXX aligning object by %d bytes", LINE_ROUND - i);
398 		objsize += LINE_ROUND - i;
399 	}
400 	/*
401 	 * Compute number of objects using a brute-force approach:
402 	 * given a max cluster size,
403 	 * we try to fill it with objects keeping track of the
404 	 * wasted space to the next page boundary.
405 	 */
406 	for (clustentries = 0, i = 1;; i++) {
407 		u_int delta, used = i * objsize;
408 		if (used > MAX_CLUSTSIZE)
409 			break;
410 		delta = used % PAGE_SIZE;
411 		if (delta == 0) { // exact solution
412 			clustentries = i;
413 			break;
414 		}
415 		if (delta > ( (clustentries*objsize) % PAGE_SIZE) )
416 			clustentries = i;
417 	}
418 	// D("XXX --- ouch, delta %d (bad for buffers)", delta);
419 	/* compute clustsize and round to the next page */
420 	clustsize = clustentries * objsize;
421 	i =  (clustsize & (PAGE_SIZE - 1));
422 	if (i)
423 		clustsize += PAGE_SIZE - i;
424 	D("objsize %d clustsize %d objects %d",
425 		objsize, clustsize, clustentries);
426 
427 	p = malloc(sizeof(struct netmap_obj_pool), M_NETMAP,
428 	    M_WAITOK | M_ZERO);
429 	if (p == NULL) {
430 		D("Unable to create '%s' allocator", name);
431 		return NULL;
432 	}
433 	/*
434 	 * Allocate and initialize the lookup table.
435 	 *
436 	 * The number of clusters is n = ceil(objtotal/clustentries)
437 	 * objtotal' = n * clustentries
438 	 */
439 	strncpy(p->name, name, sizeof(p->name));
440 	p->clustentries = clustentries;
441 	p->_clustsize = clustsize;
442 	n = (objtotal + clustentries - 1) / clustentries;
443 	p->_numclusters = n;
444 	p->objtotal = n * clustentries;
445 	p->objfree = p->objtotal - 2; /* obj 0 and 1 are reserved */
446 	p->_objsize = objsize;
447 	p->_memtotal = p->_numclusters * p->_clustsize;
448 
449 	p->lut = malloc(sizeof(struct lut_entry) * p->objtotal,
450 	    M_NETMAP, M_WAITOK | M_ZERO);
451 	if (p->lut == NULL) {
452 		D("Unable to create lookup table for '%s' allocator", name);
453 		goto clean;
454 	}
455 
456 	/* Allocate the bitmap */
457 	n = (p->objtotal + 31) / 32;
458 	p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_WAITOK | M_ZERO);
459 	if (p->bitmap == NULL) {
460 		D("Unable to create bitmap (%d entries) for allocator '%s'", n,
461 		    name);
462 		goto clean;
463 	}
464 
465 	/*
466 	 * Allocate clusters, init pointers and bitmap
467 	 */
468 	for (i = 0; i < p->objtotal;) {
469 		int lim = i + clustentries;
470 		char *clust;
471 
472 		clust = contigmalloc(clustsize, M_NETMAP, M_WAITOK | M_ZERO,
473 		    0, -1UL, PAGE_SIZE, 0);
474 		if (clust == NULL) {
475 			/*
476 			 * If we get here, there is a severe memory shortage,
477 			 * so halve the allocated memory to reclaim some.
478 			 */
479 			D("Unable to create cluster at %d for '%s' allocator",
480 			    i, name);
481 			lim = i / 2;
482 			for (; i >= lim; i--) {
483 				p->bitmap[ (i>>5) ] &=  ~( 1 << (i & 31) );
484 				if (i % clustentries == 0 && p->lut[i].vaddr)
485 					contigfree(p->lut[i].vaddr,
486 						p->_clustsize, M_NETMAP);
487 			}
488 			p->objtotal = i;
489 			p->objfree = p->objtotal - 2;
490 			p->_numclusters = i / clustentries;
491 			p->_memtotal = p->_numclusters * p->_clustsize;
492 			break;
493 		}
494 		for (; i < lim; i++, clust += objsize) {
495 			p->bitmap[ (i>>5) ] |=  ( 1 << (i & 31) );
496 			p->lut[i].vaddr = clust;
497 			p->lut[i].paddr = vtophys(clust);
498 		}
499 	}
500 	p->bitmap[0] = ~3; /* objs 0 and 1 is always busy */
501 	D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
502 	    p->_numclusters, p->_clustsize >> 10,
503 	    p->_memtotal >> 10, name);
504 
505 	return p;
506 
507 clean:
508 	netmap_destroy_obj_allocator(p);
509 	return NULL;
510 }
511 
512 static int
513 netmap_memory_init(void)
514 {
515 	struct netmap_obj_pool *p;
516 
517 	nm_mem = malloc(sizeof(struct netmap_mem_d), M_NETMAP,
518 			      M_WAITOK | M_ZERO);
519 	if (nm_mem == NULL)
520 		goto clean;
521 
522 	p = netmap_new_obj_allocator("netmap_if",
523 	    NETMAP_IF_MAX_NUM, NETMAP_IF_MAX_SIZE);
524 	if (p == NULL)
525 		goto clean;
526 	nm_mem->nm_if_pool = p;
527 
528 	p = netmap_new_obj_allocator("netmap_ring",
529 	    NETMAP_RING_MAX_NUM, NETMAP_RING_MAX_SIZE);
530 	if (p == NULL)
531 		goto clean;
532 	nm_mem->nm_ring_pool = p;
533 
534 	p = netmap_new_obj_allocator("netmap_buf",
535 	    NETMAP_BUF_MAX_NUM, NETMAP_BUF_SIZE);
536 	if (p == NULL)
537 		goto clean;
538 	netmap_total_buffers = p->objtotal;
539 	netmap_buffer_lut = p->lut;
540 	nm_mem->nm_buf_pool = p;
541 	netmap_buffer_base = p->lut[0].vaddr;
542 
543 	mtx_init(&nm_mem->nm_mtx, "netmap memory allocator lock", NULL,
544 		 MTX_DEF);
545 	nm_mem->nm_totalsize =
546 	    nm_mem->nm_if_pool->_memtotal +
547 	    nm_mem->nm_ring_pool->_memtotal +
548 	    nm_mem->nm_buf_pool->_memtotal;
549 
550 	D("Have %d KB for interfaces, %d KB for rings and %d MB for buffers",
551 	    nm_mem->nm_if_pool->_memtotal >> 10,
552 	    nm_mem->nm_ring_pool->_memtotal >> 10,
553 	    nm_mem->nm_buf_pool->_memtotal >> 20);
554 	return 0;
555 
556 clean:
557 	if (nm_mem) {
558 		netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
559 		netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
560 		free(nm_mem, M_NETMAP);
561 	}
562 	return ENOMEM;
563 }
564 
565 
566 static void
567 netmap_memory_fini(void)
568 {
569 	if (!nm_mem)
570 		return;
571 	netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
572 	netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
573 	netmap_destroy_obj_allocator(nm_mem->nm_buf_pool);
574 	mtx_destroy(&nm_mem->nm_mtx);
575 	free(nm_mem, M_NETMAP);
576 }
577 
578 
579 
580 static void *
581 netmap_if_new(const char *ifname, struct netmap_adapter *na)
582 {
583 	struct netmap_if *nifp;
584 	struct netmap_ring *ring;
585 	ssize_t base; /* handy for relative offsets between rings and nifp */
586 	u_int i, len, ndesc;
587 	u_int ntx = na->num_tx_rings + 1; /* shorthand, include stack ring */
588 	u_int nrx = na->num_rx_rings + 1; /* shorthand, include stack ring */
589 	struct netmap_kring *kring;
590 
591 	NMA_LOCK();
592 	/*
593 	 * the descriptor is followed inline by an array of offsets
594 	 * to the tx and rx rings in the shared memory region.
595 	 */
596 	len = sizeof(struct netmap_if) + (nrx + ntx) * sizeof(ssize_t);
597 	nifp = netmap_if_malloc(len);
598 	if (nifp == NULL) {
599 		NMA_UNLOCK();
600 		return NULL;
601 	}
602 
603 	/* initialize base fields -- override const */
604 	*(int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
605 	*(int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
606 	strncpy(nifp->ni_name, ifname, IFNAMSIZ);
607 
608 	(na->refcount)++;	/* XXX atomic ? we are under lock */
609 	if (na->refcount > 1) { /* already setup, we are done */
610 		NMA_UNLOCK();
611 		goto final;
612 	}
613 
614 	/*
615 	 * First instance, allocate netmap rings and buffers for this card
616 	 * The rings are contiguous, but have variable size.
617 	 */
618 	for (i = 0; i < ntx; i++) { /* Transmit rings */
619 		kring = &na->tx_rings[i];
620 		ndesc = na->num_tx_desc;
621 		bzero(kring, sizeof(*kring));
622 		len = sizeof(struct netmap_ring) +
623 			  ndesc * sizeof(struct netmap_slot);
624 		ring = netmap_ring_malloc(len);
625 		if (ring == NULL) {
626 			D("Cannot allocate tx_ring[%d] for %s", i, ifname);
627 			goto cleanup;
628 		}
629 		ND("txring[%d] at %p ofs %d", i, ring);
630 		kring->na = na;
631 		kring->ring = ring;
632 		*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
633 		*(ssize_t *)(uintptr_t)&ring->buf_ofs =
634 		    (nm_mem->nm_if_pool->_memtotal +
635 			nm_mem->nm_ring_pool->_memtotal) -
636 			netmap_ring_offset(ring);
637 
638 		/*
639 		 * IMPORTANT:
640 		 * Always keep one slot empty, so we can detect new
641 		 * transmissions comparing cur and nr_hwcur (they are
642 		 * the same only if there are no new transmissions).
643 		 */
644 		ring->avail = kring->nr_hwavail = ndesc - 1;
645 		ring->cur = kring->nr_hwcur = 0;
646 		*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
647 		ND("initializing slots for txring[%d]", i);
648 		netmap_new_bufs(nifp, ring->slot, ndesc);
649 	}
650 
651 	for (i = 0; i < nrx; i++) { /* Receive rings */
652 		kring = &na->rx_rings[i];
653 		ndesc = na->num_rx_desc;
654 		bzero(kring, sizeof(*kring));
655 		len = sizeof(struct netmap_ring) +
656 			  ndesc * sizeof(struct netmap_slot);
657 		ring = netmap_ring_malloc(len);
658 		if (ring == NULL) {
659 			D("Cannot allocate rx_ring[%d] for %s", i, ifname);
660 			goto cleanup;
661 		}
662 		ND("rxring[%d] at %p ofs %d", i, ring);
663 
664 		kring->na = na;
665 		kring->ring = ring;
666 		*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
667 		*(ssize_t *)(uintptr_t)&ring->buf_ofs =
668 		    (nm_mem->nm_if_pool->_memtotal +
669 		        nm_mem->nm_ring_pool->_memtotal) -
670 			netmap_ring_offset(ring);
671 
672 		ring->cur = kring->nr_hwcur = 0;
673 		ring->avail = kring->nr_hwavail = 0; /* empty */
674 		*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
675 		ND("initializing slots for rxring[%d]", i);
676 		netmap_new_bufs(nifp, ring->slot, ndesc);
677 	}
678 	NMA_UNLOCK();
679 #ifdef linux
680 	// XXX initialize the selrecord structs.
681 	for (i = 0; i < ntx; i++)
682 		init_waitqueue_head(&na->rx_rings[i].si);
683 	for (i = 0; i < nrx; i++)
684 		init_waitqueue_head(&na->tx_rings[i].si);
685 	init_waitqueue_head(&na->rx_si);
686 	init_waitqueue_head(&na->tx_si);
687 #endif
688 final:
689 	/*
690 	 * fill the slots for the rx and tx rings. They contain the offset
691 	 * between the ring and nifp, so the information is usable in
692 	 * userspace to reach the ring from the nifp.
693 	 */
694 	base = netmap_if_offset(nifp);
695 	for (i = 0; i < ntx; i++) {
696 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
697 			netmap_ring_offset(na->tx_rings[i].ring) - base;
698 	}
699 	for (i = 0; i < nrx; i++) {
700 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+ntx] =
701 			netmap_ring_offset(na->rx_rings[i].ring) - base;
702 	}
703 	return (nifp);
704 cleanup:
705 	// XXX missing
706 	NMA_UNLOCK();
707 	return NULL;
708 }
709 
710 static void
711 netmap_free_rings(struct netmap_adapter *na)
712 {
713 	int i;
714 	for (i = 0; i < na->num_tx_rings + 1; i++)
715 		netmap_obj_free_va(nm_mem->nm_ring_pool,
716 			na->tx_rings[i].ring);
717 	for (i = 0; i < na->num_rx_rings + 1; i++)
718 		netmap_obj_free_va(nm_mem->nm_ring_pool,
719 			na->rx_rings[i].ring);
720 }
721