1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo 5 * Copyright (C) 2013-2016 Universita` di Pisa 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * $FreeBSD$ 32 * 33 * The header contains the definitions of constants and function 34 * prototypes used only in kernelspace. 35 */ 36 37 #ifndef _NET_NETMAP_KERN_H_ 38 #define _NET_NETMAP_KERN_H_ 39 40 #if defined(linux) 41 42 #if defined(CONFIG_NETMAP_EXTMEM) 43 #define WITH_EXTMEM 44 #endif 45 #if defined(CONFIG_NETMAP_VALE) 46 #define WITH_VALE 47 #endif 48 #if defined(CONFIG_NETMAP_PIPE) 49 #define WITH_PIPES 50 #endif 51 #if defined(CONFIG_NETMAP_MONITOR) 52 #define WITH_MONITOR 53 #endif 54 #if defined(CONFIG_NETMAP_GENERIC) 55 #define WITH_GENERIC 56 #endif 57 #if defined(CONFIG_NETMAP_PTNETMAP) 58 #define WITH_PTNETMAP 59 #endif 60 #if defined(CONFIG_NETMAP_SINK) 61 #define WITH_SINK 62 #endif 63 #if defined(CONFIG_NETMAP_NULL) 64 #define WITH_NMNULL 65 #endif 66 67 #elif defined (_WIN32) 68 #define WITH_VALE // comment out to disable VALE support 69 #define WITH_PIPES 70 #define WITH_MONITOR 71 #define WITH_GENERIC 72 #define WITH_NMNULL 73 74 #else /* neither linux nor windows */ 75 #define WITH_VALE // comment out to disable VALE support 76 #define WITH_PIPES 77 #define WITH_MONITOR 78 #define WITH_GENERIC 79 #define WITH_PTNETMAP /* ptnetmap guest support */ 80 #define WITH_EXTMEM 81 #define WITH_NMNULL 82 #endif 83 84 #if defined(__FreeBSD__) 85 #include <sys/selinfo.h> 86 87 #define likely(x) __builtin_expect((long)!!(x), 1L) 88 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 89 #define __user 90 91 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 92 93 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 94 #define NM_MTX_INIT(m) sx_init(&(m), #m) 95 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 96 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 97 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; 98 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 99 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 100 101 #define NM_SELINFO_T struct nm_selinfo 102 #define NM_SELRECORD_T struct thread 103 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 104 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 105 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) 106 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 107 108 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ 109 /* atomic operations */ 110 #include <machine/atomic.h> 111 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 112 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 113 114 #if __FreeBSD_version >= 1100030 115 #define WNA(_ifp) (_ifp)->if_netmap 116 #else /* older FreeBSD */ 117 #define WNA(_ifp) (_ifp)->if_pspare[0] 118 #endif /* older FreeBSD */ 119 120 #if __FreeBSD_version >= 1100005 121 struct netmap_adapter *netmap_getna(if_t ifp); 122 #endif 123 124 #if __FreeBSD_version >= 1100027 125 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) 126 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x 127 #else 128 #define MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1) 129 #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x 130 #endif 131 132 #define MBUF_QUEUED(m) 1 133 134 struct nm_selinfo { 135 struct selinfo si; 136 struct taskqueue *ntfytq; 137 struct task ntfytask; 138 struct mtx m; 139 char mtxname[32]; 140 }; 141 142 143 struct hrtimer { 144 /* Not used in FreeBSD. */ 145 }; 146 147 #define NM_BNS_GET(b) 148 #define NM_BNS_PUT(b) 149 150 #elif defined (linux) 151 152 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 153 #define NM_SELINFO_T wait_queue_head_t 154 #define MBUF_LEN(m) ((m)->len) 155 #define MBUF_TRANSMIT(na, ifp, m) \ 156 ({ \ 157 /* Avoid infinite recursion with generic. */ \ 158 m->priority = NM_MAGIC_PRIORITY_TX; \ 159 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 160 0; \ 161 }) 162 163 /* See explanation in nm_os_generic_xmit_frame. */ 164 #define GEN_TX_MBUF_IFP(m) ((struct ifnet *)skb_shinfo(m)->destructor_arg) 165 166 #define NM_ATOMIC_T volatile long unsigned int 167 168 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 169 #define NM_MTX_INIT(m) mutex_init(&(m)) 170 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 171 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 172 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 173 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 174 175 #ifndef DEV_NETMAP 176 #define DEV_NETMAP 177 #endif /* DEV_NETMAP */ 178 179 #elif defined (__APPLE__) 180 181 #warning apple support is incomplete. 182 #define likely(x) __builtin_expect(!!(x), 1) 183 #define unlikely(x) __builtin_expect(!!(x), 0) 184 #define NM_LOCK_T IOLock * 185 #define NM_SELINFO_T struct selinfo 186 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 187 188 #elif defined (_WIN32) 189 #include "../../../WINDOWS/win_glue.h" 190 191 #define NM_SELRECORD_T IO_STACK_LOCATION 192 #define NM_SELINFO_T win_SELINFO // see win_glue.h 193 #define NM_LOCK_T win_spinlock_t // see win_glue.h 194 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ 195 196 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); 197 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 198 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) 199 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) 200 #define NM_MTX_ASSERT(m) assert(&m.Count>0) 201 202 //These linknames are for the NDIS driver 203 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" 204 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" 205 206 //Definition of internal driver-to-driver ioctl codes 207 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) 208 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) 209 210 typedef struct hrtimer{ 211 KTIMER timer; 212 BOOLEAN active; 213 KDPC deferred_proc; 214 }; 215 216 /* MSVC does not have likely/unlikely support */ 217 #ifdef _MSC_VER 218 #define likely(x) (x) 219 #define unlikely(x) (x) 220 #else 221 #define likely(x) __builtin_expect((long)!!(x), 1L) 222 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 223 #endif //_MSC_VER 224 225 #else 226 227 #error unsupported platform 228 229 #endif /* end - platform-specific code */ 230 231 #ifndef _WIN32 /* support for emulated sysctl */ 232 #define SYSBEGIN(x) 233 #define SYSEND 234 #endif /* _WIN32 */ 235 236 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) 237 238 #define NMG_LOCK_T NM_MTX_T 239 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 240 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 241 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 242 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 243 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 244 245 #if defined(__FreeBSD__) 246 #define nm_prerr_int printf 247 #define nm_prinf_int printf 248 #elif defined (_WIN32) 249 #define nm_prerr_int DbgPrint 250 #define nm_prinf_int DbgPrint 251 #elif defined(linux) 252 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) 253 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) 254 #endif 255 256 #define nm_prinf(format, ...) \ 257 do { \ 258 struct timeval __xxts; \ 259 microtime(&__xxts); \ 260 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ 261 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 262 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 263 } while (0) 264 265 #define nm_prerr(format, ...) \ 266 do { \ 267 struct timeval __xxts; \ 268 microtime(&__xxts); \ 269 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ 270 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 271 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 272 } while (0) 273 274 /* Disabled printf (used to be nm_prdis). */ 275 #define nm_prdis(format, ...) 276 277 /* Rate limited, lps indicates how many per second. */ 278 #define nm_prlim(lps, format, ...) \ 279 do { \ 280 static int t0, __cnt; \ 281 if (t0 != time_second) { \ 282 t0 = time_second; \ 283 __cnt = 0; \ 284 } \ 285 if (__cnt++ < lps) \ 286 nm_prinf(format, ##__VA_ARGS__); \ 287 } while (0) 288 289 struct netmap_adapter; 290 struct nm_bdg_fwd; 291 struct nm_bridge; 292 struct netmap_priv_d; 293 struct nm_bdg_args; 294 295 /* os-specific NM_SELINFO_T initialzation/destruction functions */ 296 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); 297 void nm_os_selinfo_uninit(NM_SELINFO_T *); 298 299 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 300 301 void nm_os_selwakeup(NM_SELINFO_T *si); 302 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); 303 304 int nm_os_ifnet_init(void); 305 void nm_os_ifnet_fini(void); 306 void nm_os_ifnet_lock(void); 307 void nm_os_ifnet_unlock(void); 308 309 unsigned nm_os_ifnet_mtu(struct ifnet *ifp); 310 311 void nm_os_get_module(void); 312 void nm_os_put_module(void); 313 314 void netmap_make_zombie(struct ifnet *); 315 void netmap_undo_zombie(struct ifnet *); 316 317 /* os independent alloc/realloc/free */ 318 void *nm_os_malloc(size_t); 319 void *nm_os_vmalloc(size_t); 320 void *nm_os_realloc(void *, size_t new_size, size_t old_size); 321 void nm_os_free(void *); 322 void nm_os_vfree(void *); 323 324 /* os specific attach/detach enter/exit-netmap-mode routines */ 325 void nm_os_onattach(struct ifnet *); 326 void nm_os_ondetach(struct ifnet *); 327 void nm_os_onenter(struct ifnet *); 328 void nm_os_onexit(struct ifnet *); 329 330 /* passes a packet up to the host stack. 331 * If the packet is sent (or dropped) immediately it returns NULL, 332 * otherwise it links the packet to prev and returns m. 333 * In this case, a final call with m=NULL and prev != NULL will send up 334 * the entire chain to the host stack. 335 */ 336 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev); 337 338 int nm_os_mbuf_has_seg_offld(struct mbuf *m); 339 int nm_os_mbuf_has_csum_offld(struct mbuf *m); 340 341 #include "netmap_mbq.h" 342 343 extern NMG_LOCK_T netmap_global_lock; 344 345 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 346 347 static __inline const char* 348 nm_txrx2str(enum txrx t) 349 { 350 return (t== NR_RX ? "RX" : "TX"); 351 } 352 353 static __inline enum txrx 354 nm_txrx_swap(enum txrx t) 355 { 356 return (t== NR_RX ? NR_TX : NR_RX); 357 } 358 359 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 360 361 #ifdef WITH_MONITOR 362 struct netmap_zmon_list { 363 struct netmap_kring *next; 364 struct netmap_kring *prev; 365 }; 366 #endif /* WITH_MONITOR */ 367 368 /* 369 * private, kernel view of a ring. Keeps track of the status of 370 * a ring across system calls. 371 * 372 * nr_hwcur index of the next buffer to refill. 373 * It corresponds to ring->head 374 * at the time the system call returns. 375 * 376 * nr_hwtail index of the first buffer owned by the kernel. 377 * On RX, hwcur->hwtail are receive buffers 378 * not yet released. hwcur is advanced following 379 * ring->head, hwtail is advanced on incoming packets, 380 * and a wakeup is generated when hwtail passes ring->cur 381 * On TX, hwcur->rcur have been filled by the sender 382 * but not sent yet to the NIC; rcur->hwtail are available 383 * for new transmissions, and hwtail->hwcur-1 are pending 384 * transmissions not yet acknowledged. 385 * 386 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 387 * This is so that, on a reset, buffers owned by userspace are not 388 * modified by the kernel. In particular: 389 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 390 * the next empty buffer as known by the hardware (next_to_check or so). 391 * TX rings: hwcur + hwofs coincides with next_to_send 392 * 393 * The following fields are used to implement lock-free copy of packets 394 * from input to output ports in VALE switch: 395 * nkr_hwlease buffer after the last one being copied. 396 * A writer in nm_bdg_flush reserves N buffers 397 * from nr_hwlease, advances it, then does the 398 * copy outside the lock. 399 * In RX rings (used for VALE ports), 400 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 401 * In TX rings (used for NIC or host stack ports) 402 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 403 * nkr_leases array of nkr_num_slots where writers can report 404 * completion of their block. NR_NOSLOT (~0) indicates 405 * that the writer has not finished yet 406 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 407 * 408 * The kring is manipulated by txsync/rxsync and generic netmap function. 409 * 410 * Concurrent rxsync or txsync on the same ring are prevented through 411 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 412 * for NIC rings, and for TX rings attached to the host stack. 413 * 414 * RX rings attached to the host stack use an mbq (rx_queue) on both 415 * rxsync_from_host() and netmap_transmit(). The mbq is protected 416 * by its internal lock. 417 * 418 * RX rings attached to the VALE switch are accessed by both senders 419 * and receiver. They are protected through the q_lock on the RX ring. 420 */ 421 struct netmap_kring { 422 struct netmap_ring *ring; 423 424 uint32_t nr_hwcur; /* should be nr_hwhead */ 425 uint32_t nr_hwtail; 426 427 /* 428 * Copies of values in user rings, so we do not need to look 429 * at the ring (which could be modified). These are set in the 430 * *sync_prologue()/finalize() routines. 431 */ 432 uint32_t rhead; 433 uint32_t rcur; 434 uint32_t rtail; 435 436 uint32_t nr_kflags; /* private driver flags */ 437 #define NKR_PENDINTR 0x1 // Pending interrupt. 438 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 439 #define NKR_FORWARD 0x4 /* (host ring only) there are 440 packets to forward 441 */ 442 #define NKR_NEEDRING 0x8 /* ring needed even if users==0 443 * (used internally by pipes and 444 * by ptnetmap host ports) 445 */ 446 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ 447 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ 448 449 uint32_t nr_mode; 450 uint32_t nr_pending_mode; 451 #define NKR_NETMAP_OFF 0x0 452 #define NKR_NETMAP_ON 0x1 453 454 uint32_t nkr_num_slots; 455 456 /* 457 * On a NIC reset, the NIC ring indexes may be reset but the 458 * indexes in the netmap rings remain the same. nkr_hwofs 459 * keeps track of the offset between the two. 460 */ 461 int32_t nkr_hwofs; 462 463 /* last_reclaim is opaque marker to help reduce the frequency 464 * of operations such as reclaiming tx buffers. A possible use 465 * is set it to ticks and do the reclaim only once per tick. 466 */ 467 uint64_t last_reclaim; 468 469 470 NM_SELINFO_T si; /* poll/select wait queue */ 471 NM_LOCK_T q_lock; /* protects kring and ring. */ 472 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 473 474 /* the adapter the owns this kring */ 475 struct netmap_adapter *na; 476 477 /* the adapter that wants to be notified when this kring has 478 * new slots avaialable. This is usually the same as the above, 479 * but wrappers may let it point to themselves 480 */ 481 struct netmap_adapter *notify_na; 482 483 /* The following fields are for VALE switch support */ 484 struct nm_bdg_fwd *nkr_ft; 485 uint32_t *nkr_leases; 486 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 487 uint32_t nkr_hwlease; 488 uint32_t nkr_lease_idx; 489 490 /* while nkr_stopped is set, no new [tr]xsync operations can 491 * be started on this kring. 492 * This is used by netmap_disable_all_rings() 493 * to find a synchronization point where critical data 494 * structures pointed to by the kring can be added or removed 495 */ 496 volatile int nkr_stopped; 497 498 /* Support for adapters without native netmap support. 499 * On tx rings we preallocate an array of tx buffers 500 * (same size as the netmap ring), on rx rings we 501 * store incoming mbufs in a queue that is drained by 502 * a rxsync. 503 */ 504 struct mbuf **tx_pool; 505 struct mbuf *tx_event; /* TX event used as a notification */ 506 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ 507 struct mbq rx_queue; /* intercepted rx mbufs. */ 508 509 uint32_t users; /* existing bindings for this ring */ 510 511 uint32_t ring_id; /* kring identifier */ 512 enum txrx tx; /* kind of ring (tx or rx) */ 513 char name[64]; /* diagnostic */ 514 515 /* [tx]sync callback for this kring. 516 * The default nm_kring_create callback (netmap_krings_create) 517 * sets the nm_sync callback of each hardware tx(rx) kring to 518 * the corresponding nm_txsync(nm_rxsync) taken from the 519 * netmap_adapter; moreover, it sets the sync callback 520 * of the host tx(rx) ring to netmap_txsync_to_host 521 * (netmap_rxsync_from_host). 522 * 523 * Overrides: the above configuration is not changed by 524 * any of the nm_krings_create callbacks. 525 */ 526 int (*nm_sync)(struct netmap_kring *kring, int flags); 527 int (*nm_notify)(struct netmap_kring *kring, int flags); 528 529 #ifdef WITH_PIPES 530 struct netmap_kring *pipe; /* if this is a pipe ring, 531 * pointer to the other end 532 */ 533 uint32_t pipe_tail; /* hwtail updated by the other end */ 534 #endif /* WITH_PIPES */ 535 536 int (*save_notify)(struct netmap_kring *kring, int flags); 537 538 #ifdef WITH_MONITOR 539 /* array of krings that are monitoring this kring */ 540 struct netmap_kring **monitors; 541 uint32_t max_monitors; /* current size of the monitors array */ 542 uint32_t n_monitors; /* next unused entry in the monitor array */ 543 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ 544 uint32_t mon_tail; /* last seen slot on rx */ 545 546 /* circular list of zero-copy monitors */ 547 struct netmap_zmon_list zmon_list[NR_TXRX]; 548 549 /* 550 * Monitors work by intercepting the sync and notify callbacks of the 551 * monitored krings. This is implemented by replacing the pointers 552 * above and saving the previous ones in mon_* pointers below 553 */ 554 int (*mon_sync)(struct netmap_kring *kring, int flags); 555 int (*mon_notify)(struct netmap_kring *kring, int flags); 556 557 #endif 558 } 559 #ifdef _WIN32 560 __declspec(align(64)); 561 #else 562 __attribute__((__aligned__(64))); 563 #endif 564 565 /* return 1 iff the kring needs to be turned on */ 566 static inline int 567 nm_kring_pending_on(struct netmap_kring *kring) 568 { 569 return kring->nr_pending_mode == NKR_NETMAP_ON && 570 kring->nr_mode == NKR_NETMAP_OFF; 571 } 572 573 /* return 1 iff the kring needs to be turned off */ 574 static inline int 575 nm_kring_pending_off(struct netmap_kring *kring) 576 { 577 return kring->nr_pending_mode == NKR_NETMAP_OFF && 578 kring->nr_mode == NKR_NETMAP_ON; 579 } 580 581 /* return the next index, with wraparound */ 582 static inline uint32_t 583 nm_next(uint32_t i, uint32_t lim) 584 { 585 return unlikely (i == lim) ? 0 : i + 1; 586 } 587 588 589 /* return the previous index, with wraparound */ 590 static inline uint32_t 591 nm_prev(uint32_t i, uint32_t lim) 592 { 593 return unlikely (i == 0) ? lim : i - 1; 594 } 595 596 597 /* 598 * 599 * Here is the layout for the Rx and Tx rings. 600 601 RxRING TxRING 602 603 +-----------------+ +-----------------+ 604 | | | | 605 | free | | free | 606 +-----------------+ +-----------------+ 607 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 608 | | | yet | 609 +-----------------+ | | 610 cur->| available to | | | 611 | user, not read | +-----------------+ 612 | yet | cur->| (being | 613 | | | prepared) | 614 | | | | 615 +-----------------+ + ------ + 616 tail->| |<-hwtail | |<-hwlease 617 | (being | ... | | ... 618 | prepared) | ... | | ... 619 +-----------------+ ... | | ... 620 | |<-hwlease +-----------------+ 621 | | tail->| |<-hwtail 622 | | | | 623 | | | | 624 | | | | 625 +-----------------+ +-----------------+ 626 627 * The cur/tail (user view) and hwcur/hwtail (kernel view) 628 * are used in the normal operation of the card. 629 * 630 * When a ring is the output of a switch port (Rx ring for 631 * a VALE port, Tx ring for the host stack or NIC), slots 632 * are reserved in blocks through 'hwlease' which points 633 * to the next unused slot. 634 * On an Rx ring, hwlease is always after hwtail, 635 * and completions cause hwtail to advance. 636 * On a Tx ring, hwlease is always between cur and hwtail, 637 * and completions cause cur to advance. 638 * 639 * nm_kr_space() returns the maximum number of slots that 640 * can be assigned. 641 * nm_kr_lease() reserves the required number of buffers, 642 * advances nkr_hwlease and also returns an entry in 643 * a circular array where completions should be reported. 644 */ 645 646 struct lut_entry; 647 #ifdef __FreeBSD__ 648 #define plut_entry lut_entry 649 #endif 650 651 struct netmap_lut { 652 struct lut_entry *lut; 653 struct plut_entry *plut; 654 uint32_t objtotal; /* max buffer index */ 655 uint32_t objsize; /* buffer size */ 656 }; 657 658 struct netmap_vp_adapter; // forward 659 struct nm_bridge; 660 661 /* Struct to be filled by nm_config callbacks. */ 662 struct nm_config_info { 663 unsigned num_tx_rings; 664 unsigned num_rx_rings; 665 unsigned num_tx_descs; 666 unsigned num_rx_descs; 667 unsigned rx_buf_maxsize; 668 }; 669 670 /* 671 * default type for the magic field. 672 * May be overriden in glue code. 673 */ 674 #ifndef NM_OS_MAGIC 675 #define NM_OS_MAGIC uint32_t 676 #endif /* !NM_OS_MAGIC */ 677 678 /* 679 * The "struct netmap_adapter" extends the "struct adapter" 680 * (or equivalent) device descriptor. 681 * It contains all base fields needed to support netmap operation. 682 * There are in fact different types of netmap adapters 683 * (native, generic, VALE switch...) so a netmap_adapter is 684 * just the first field in the derived type. 685 */ 686 struct netmap_adapter { 687 /* 688 * On linux we do not have a good way to tell if an interface 689 * is netmap-capable. So we always use the following trick: 690 * NA(ifp) points here, and the first entry (which hopefully 691 * always exists and is at least 32 bits) contains a magic 692 * value which we can use to detect that the interface is good. 693 */ 694 NM_OS_MAGIC magic; 695 uint32_t na_flags; /* enabled, and other flags */ 696 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 697 * useful during initialization 698 */ 699 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 700 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 701 * forwarding packets coming from this 702 * interface 703 */ 704 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 705 * that cannot be changed 706 */ 707 #define NAF_NATIVE 16 /* the adapter is native. 708 * Virtual ports (non persistent vale ports, 709 * pipes, monitors...) should never use 710 * this flag. 711 */ 712 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 713 * emulated). Where possible (e.g. FreeBSD) 714 * IFCAP_NETMAP also mirrors this flag. 715 */ 716 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 717 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 718 /* free */ 719 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ 720 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ 721 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 722 * cannot be registered from userspace 723 */ 724 int active_fds; /* number of user-space descriptors using this 725 interface, which is equal to the number of 726 struct netmap_if objs in the mapped region. */ 727 728 u_int num_rx_rings; /* number of adapter receive rings */ 729 u_int num_tx_rings; /* number of adapter transmit rings */ 730 u_int num_host_rx_rings; /* number of host receive rings */ 731 u_int num_host_tx_rings; /* number of host transmit rings */ 732 733 u_int num_tx_desc; /* number of descriptor in each queue */ 734 u_int num_rx_desc; 735 736 /* tx_rings and rx_rings are private but allocated as a 737 * contiguous chunk of memory. Each array has N+K entries, 738 * N for the hardware rings and K for the host rings. 739 */ 740 struct netmap_kring **tx_rings; /* array of TX rings. */ 741 struct netmap_kring **rx_rings; /* array of RX rings. */ 742 743 void *tailroom; /* space below the rings array */ 744 /* (used for leases) */ 745 746 747 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 748 749 /* count users of the global wait queues */ 750 int si_users[NR_TXRX]; 751 752 void *pdev; /* used to store pci device */ 753 754 /* copy of if_qflush and if_transmit pointers, to intercept 755 * packets from the network stack when netmap is active. 756 */ 757 int (*if_transmit)(struct ifnet *, struct mbuf *); 758 759 /* copy of if_input for netmap_send_up() */ 760 void (*if_input)(struct ifnet *, struct mbuf *); 761 762 /* Back reference to the parent ifnet struct. Used for 763 * hardware ports (emulated netmap included). */ 764 struct ifnet *ifp; /* adapter is ifp->if_softc */ 765 766 /*---- callbacks for this netmap adapter -----*/ 767 /* 768 * nm_dtor() is the cleanup routine called when destroying 769 * the adapter. 770 * Called with NMG_LOCK held. 771 * 772 * nm_register() is called on NIOCREGIF and close() to enter 773 * or exit netmap mode on the NIC 774 * Called with NNG_LOCK held. 775 * 776 * nm_txsync() pushes packets to the underlying hw/switch 777 * 778 * nm_rxsync() collects packets from the underlying hw/switch 779 * 780 * nm_config() returns configuration information from the OS 781 * Called with NMG_LOCK held. 782 * 783 * nm_krings_create() create and init the tx_rings and 784 * rx_rings arrays of kring structures. In particular, 785 * set the nm_sync callbacks for each ring. 786 * There is no need to also allocate the corresponding 787 * netmap_rings, since netmap_mem_rings_create() will always 788 * be called to provide the missing ones. 789 * Called with NNG_LOCK held. 790 * 791 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 792 * arrays 793 * Called with NMG_LOCK held. 794 * 795 * nm_notify() is used to act after data have become available 796 * (or the stopped state of the ring has changed) 797 * For hw devices this is typically a selwakeup(), 798 * but for NIC/host ports attached to a switch (or vice-versa) 799 * we also need to invoke the 'txsync' code downstream. 800 * This callback pointer is actually used only to initialize 801 * kring->nm_notify. 802 * Return values are the same as for netmap_rx_irq(). 803 */ 804 void (*nm_dtor)(struct netmap_adapter *); 805 806 int (*nm_register)(struct netmap_adapter *, int onoff); 807 void (*nm_intr)(struct netmap_adapter *, int onoff); 808 809 int (*nm_txsync)(struct netmap_kring *kring, int flags); 810 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 811 int (*nm_notify)(struct netmap_kring *kring, int flags); 812 #define NAF_FORCE_READ 1 813 #define NAF_FORCE_RECLAIM 2 814 #define NAF_CAN_FORWARD_DOWN 4 815 /* return configuration information */ 816 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); 817 int (*nm_krings_create)(struct netmap_adapter *); 818 void (*nm_krings_delete)(struct netmap_adapter *); 819 /* 820 * nm_bdg_attach() initializes the na_vp field to point 821 * to an adapter that can be attached to a VALE switch. If the 822 * current adapter is already a VALE port, na_vp is simply a cast; 823 * otherwise, na_vp points to a netmap_bwrap_adapter. 824 * If applicable, this callback also initializes na_hostvp, 825 * that can be used to connect the adapter host rings to the 826 * switch. 827 * Called with NMG_LOCK held. 828 * 829 * nm_bdg_ctl() is called on the actual attach/detach to/from 830 * to/from the switch, to perform adapter-specific 831 * initializations 832 * Called with NMG_LOCK held. 833 */ 834 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, 835 struct nm_bridge *); 836 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); 837 838 /* adapter used to attach this adapter to a VALE switch (if any) */ 839 struct netmap_vp_adapter *na_vp; 840 /* adapter used to attach the host rings of this adapter 841 * to a VALE switch (if any) */ 842 struct netmap_vp_adapter *na_hostvp; 843 844 /* standard refcount to control the lifetime of the adapter 845 * (it should be equal to the lifetime of the corresponding ifp) 846 */ 847 int na_refcount; 848 849 /* memory allocator (opaque) 850 * We also cache a pointer to the lut_entry for translating 851 * buffer addresses, the total number of buffers and the buffer size. 852 */ 853 struct netmap_mem_d *nm_mem; 854 struct netmap_mem_d *nm_mem_prev; 855 struct netmap_lut na_lut; 856 857 /* additional information attached to this adapter 858 * by other netmap subsystems. Currently used by 859 * bwrap, LINUX/v1000 and ptnetmap 860 */ 861 void *na_private; 862 863 /* array of pipes that have this adapter as a parent */ 864 struct netmap_pipe_adapter **na_pipes; 865 int na_next_pipe; /* next free slot in the array */ 866 int na_max_pipes; /* size of the array */ 867 868 /* Offset of ethernet header for each packet. */ 869 u_int virt_hdr_len; 870 871 /* Max number of bytes that the NIC can store in the buffer 872 * referenced by each RX descriptor. This translates to the maximum 873 * bytes that a single netmap slot can reference. Larger packets 874 * require NS_MOREFRAG support. */ 875 unsigned rx_buf_maxsize; 876 877 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ 878 879 #ifdef WITH_MONITOR 880 unsigned long monitor_id; /* debugging */ 881 #endif 882 }; 883 884 static __inline u_int 885 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 886 { 887 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 888 } 889 890 static __inline void 891 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 892 { 893 if (t == NR_TX) 894 na->num_tx_desc = v; 895 else 896 na->num_rx_desc = v; 897 } 898 899 static __inline u_int 900 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 901 { 902 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 903 } 904 905 static __inline u_int 906 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) 907 { 908 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); 909 } 910 911 static __inline void 912 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 913 { 914 if (t == NR_TX) 915 na->num_tx_rings = v; 916 else 917 na->num_rx_rings = v; 918 } 919 920 static __inline void 921 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 922 { 923 if (t == NR_TX) 924 na->num_host_tx_rings = v; 925 else 926 na->num_host_rx_rings = v; 927 } 928 929 static __inline struct netmap_kring** 930 NMR(struct netmap_adapter *na, enum txrx t) 931 { 932 return (t == NR_TX ? na->tx_rings : na->rx_rings); 933 } 934 935 int nma_intr_enable(struct netmap_adapter *na, int onoff); 936 937 /* 938 * If the NIC is owned by the kernel 939 * (i.e., bridge), neither another bridge nor user can use it; 940 * if the NIC is owned by a user, only users can share it. 941 * Evaluation must be done under NMG_LOCK(). 942 */ 943 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 944 #define NETMAP_OWNED_BY_ANY(na) \ 945 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 946 947 /* 948 * derived netmap adapters for various types of ports 949 */ 950 struct netmap_vp_adapter { /* VALE software port */ 951 struct netmap_adapter up; 952 953 /* 954 * Bridge support: 955 * 956 * bdg_port is the port number used in the bridge; 957 * na_bdg points to the bridge this NA is attached to. 958 */ 959 int bdg_port; 960 struct nm_bridge *na_bdg; 961 int retry; 962 int autodelete; /* remove the ifp on last reference */ 963 964 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 965 u_int mfs; 966 /* Last source MAC on this port */ 967 uint64_t last_smac; 968 }; 969 970 971 struct netmap_hw_adapter { /* physical device */ 972 struct netmap_adapter up; 973 974 #ifdef linux 975 struct net_device_ops nm_ndo; 976 struct ethtool_ops nm_eto; 977 #endif 978 const struct ethtool_ops* save_ethtool; 979 980 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 981 }; 982 983 #ifdef WITH_GENERIC 984 /* Mitigation support. */ 985 struct nm_generic_mit { 986 struct hrtimer mit_timer; 987 int mit_pending; 988 int mit_ring_idx; /* index of the ring being mitigated */ 989 struct netmap_adapter *mit_na; /* backpointer */ 990 }; 991 992 struct netmap_generic_adapter { /* emulated device */ 993 struct netmap_hw_adapter up; 994 995 /* Pointer to a previously used netmap adapter. */ 996 struct netmap_adapter *prev; 997 998 /* Emulated netmap adapters support: 999 * - save_if_input saves the if_input hook (FreeBSD); 1000 * - mit implements rx interrupt mitigation; 1001 */ 1002 void (*save_if_input)(struct ifnet *, struct mbuf *); 1003 1004 struct nm_generic_mit *mit; 1005 #ifdef linux 1006 netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); 1007 #endif 1008 /* Is the adapter able to use multiple RX slots to scatter 1009 * each packet pushed up by the driver? */ 1010 int rxsg; 1011 1012 /* Is the transmission path controlled by a netmap-aware 1013 * device queue (i.e. qdisc on linux)? */ 1014 int txqdisc; 1015 }; 1016 #endif /* WITH_GENERIC */ 1017 1018 static __inline u_int 1019 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 1020 { 1021 return nma_get_nrings(na, t) + 1022 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); 1023 } 1024 1025 /* account for fake rings */ 1026 static __inline u_int 1027 netmap_all_rings(struct netmap_adapter *na, enum txrx t) 1028 { 1029 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); 1030 } 1031 1032 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, 1033 struct nm_bridge *); 1034 struct nm_bdg_polling_state; 1035 /* 1036 * Bridge wrapper for non VALE ports attached to a VALE switch. 1037 * 1038 * The real device must already have its own netmap adapter (hwna). 1039 * The bridge wrapper and the hwna adapter share the same set of 1040 * netmap rings and buffers, but they have two separate sets of 1041 * krings descriptors, with tx/rx meanings swapped: 1042 * 1043 * netmap 1044 * bwrap krings rings krings hwna 1045 * +------+ +------+ +-----+ +------+ +------+ 1046 * |tx_rings->| |\ /| |----| |<-tx_rings| 1047 * | | +------+ \ / +-----+ +------+ | | 1048 * | | X | | 1049 * | | / \ | | 1050 * | | +------+/ \+-----+ +------+ | | 1051 * |rx_rings->| | | |----| |<-rx_rings| 1052 * | | +------+ +-----+ +------+ | | 1053 * +------+ +------+ 1054 * 1055 * - packets coming from the bridge go to the brwap rx rings, 1056 * which are also the hwna tx rings. The bwrap notify callback 1057 * will then complete the hwna tx (see netmap_bwrap_notify). 1058 * 1059 * - packets coming from the outside go to the hwna rx rings, 1060 * which are also the bwrap tx rings. The (overwritten) hwna 1061 * notify method will then complete the bridge tx 1062 * (see netmap_bwrap_intr_notify). 1063 * 1064 * The bridge wrapper may optionally connect the hwna 'host' rings 1065 * to the bridge. This is done by using a second port in the 1066 * bridge and connecting it to the 'host' netmap_vp_adapter 1067 * contained in the netmap_bwrap_adapter. The brwap host adapter 1068 * cross-links the hwna host rings in the same way as shown above. 1069 * 1070 * - packets coming from the bridge and directed to the host stack 1071 * are handled by the bwrap host notify callback 1072 * (see netmap_bwrap_host_notify) 1073 * 1074 * - packets coming from the host stack are still handled by the 1075 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 1076 * but are diverted to the host adapter depending on the ring number. 1077 * 1078 */ 1079 struct netmap_bwrap_adapter { 1080 struct netmap_vp_adapter up; 1081 struct netmap_vp_adapter host; /* for host rings */ 1082 struct netmap_adapter *hwna; /* the underlying device */ 1083 1084 /* 1085 * When we attach a physical interface to the bridge, we 1086 * allow the controlling process to terminate, so we need 1087 * a place to store the n_detmap_priv_d data structure. 1088 * This is only done when physical interfaces 1089 * are attached to a bridge. 1090 */ 1091 struct netmap_priv_d *na_kpriv; 1092 struct nm_bdg_polling_state *na_polling_state; 1093 /* we overwrite the hwna->na_vp pointer, so we save 1094 * here its original value, to be restored at detach 1095 */ 1096 struct netmap_vp_adapter *saved_na_vp; 1097 }; 1098 int nm_bdg_polling(struct nmreq_header *hdr); 1099 1100 #ifdef WITH_VALE 1101 int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token); 1102 int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token); 1103 int netmap_vale_list(struct nmreq_header *hdr); 1104 int netmap_vi_create(struct nmreq_header *hdr, int); 1105 int nm_vi_create(struct nmreq_header *); 1106 int nm_vi_destroy(const char *name); 1107 #else /* !WITH_VALE */ 1108 #define netmap_vi_create(hdr, a) (EOPNOTSUPP) 1109 #endif /* WITH_VALE */ 1110 1111 #ifdef WITH_PIPES 1112 1113 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 1114 1115 struct netmap_pipe_adapter { 1116 /* pipe identifier is up.name */ 1117 struct netmap_adapter up; 1118 1119 #define NM_PIPE_ROLE_MASTER 0x1 1120 #define NM_PIPE_ROLE_SLAVE 0x2 1121 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ 1122 1123 struct netmap_adapter *parent; /* adapter that owns the memory */ 1124 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 1125 int peer_ref; /* 1 iff we are holding a ref to the peer */ 1126 struct ifnet *parent_ifp; /* maybe null */ 1127 1128 u_int parent_slot; /* index in the parent pipe array */ 1129 }; 1130 1131 #endif /* WITH_PIPES */ 1132 1133 #ifdef WITH_NMNULL 1134 struct netmap_null_adapter { 1135 struct netmap_adapter up; 1136 }; 1137 #endif /* WITH_NMNULL */ 1138 1139 1140 /* return slots reserved to rx clients; used in drivers */ 1141 static inline uint32_t 1142 nm_kr_rxspace(struct netmap_kring *k) 1143 { 1144 int space = k->nr_hwtail - k->nr_hwcur; 1145 if (space < 0) 1146 space += k->nkr_num_slots; 1147 nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 1148 1149 return space; 1150 } 1151 1152 /* return slots reserved to tx clients */ 1153 #define nm_kr_txspace(_k) nm_kr_rxspace(_k) 1154 1155 1156 /* True if no space in the tx ring, only valid after txsync_prologue */ 1157 static inline int 1158 nm_kr_txempty(struct netmap_kring *kring) 1159 { 1160 return kring->rhead == kring->nr_hwtail; 1161 } 1162 1163 /* True if no more completed slots in the rx ring, only valid after 1164 * rxsync_prologue */ 1165 #define nm_kr_rxempty(_k) nm_kr_txempty(_k) 1166 1167 /* True if the application needs to wait for more space on the ring 1168 * (more received packets or more free tx slots). 1169 * Only valid after *xsync_prologue. */ 1170 static inline int 1171 nm_kr_wouldblock(struct netmap_kring *kring) 1172 { 1173 return kring->rcur == kring->nr_hwtail; 1174 } 1175 1176 /* 1177 * protect against multiple threads using the same ring. 1178 * also check that the ring has not been stopped or locked 1179 */ 1180 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ 1181 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ 1182 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ 1183 1184 1185 /* release the previously acquired right to use the *sync() methods of the ring */ 1186 static __inline void nm_kr_put(struct netmap_kring *kr) 1187 { 1188 NM_ATOMIC_CLEAR(&kr->nr_busy); 1189 } 1190 1191 1192 /* true if the ifp that backed the adapter has disappeared (e.g., the 1193 * driver has been unloaded) 1194 */ 1195 static inline int nm_iszombie(struct netmap_adapter *na); 1196 1197 /* try to obtain exclusive right to issue the *sync() operations on the ring. 1198 * The right is obtained and must be later relinquished via nm_kr_put() if and 1199 * only if nm_kr_tryget() returns 0. 1200 * If can_sleep is 1 there are only two other possible outcomes: 1201 * - the function returns NM_KR_BUSY 1202 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr 1203 * (if non-null) 1204 * In both cases the caller will typically skip the ring, possibly collecting 1205 * errors along the way. 1206 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. 1207 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr 1208 * untouched: ideally, the caller should try again at a later time. 1209 */ 1210 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) 1211 { 1212 int busy = 1, stopped; 1213 /* check a first time without taking the lock 1214 * to avoid starvation for nm_kr_get() 1215 */ 1216 retry: 1217 stopped = kr->nkr_stopped; 1218 if (unlikely(stopped)) { 1219 goto stop; 1220 } 1221 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); 1222 /* we should not return NM_KR_BUSY if the ring was 1223 * actually stopped, so check another time after 1224 * the barrier provided by the atomic operation 1225 */ 1226 stopped = kr->nkr_stopped; 1227 if (unlikely(stopped)) { 1228 goto stop; 1229 } 1230 1231 if (unlikely(nm_iszombie(kr->na))) { 1232 stopped = NM_KR_STOPPED; 1233 goto stop; 1234 } 1235 1236 return unlikely(busy) ? NM_KR_BUSY : 0; 1237 1238 stop: 1239 if (!busy) 1240 nm_kr_put(kr); 1241 if (stopped == NM_KR_STOPPED) { 1242 /* if POLLERR is defined we want to use it to simplify netmap_poll(). 1243 * Otherwise, any non-zero value will do. 1244 */ 1245 #ifdef POLLERR 1246 #define NM_POLLERR POLLERR 1247 #else 1248 #define NM_POLLERR 1 1249 #endif /* POLLERR */ 1250 if (perr) 1251 *perr |= NM_POLLERR; 1252 #undef NM_POLLERR 1253 } else if (can_sleep) { 1254 tsleep(kr, 0, "NM_KR_TRYGET", 4); 1255 goto retry; 1256 } 1257 return stopped; 1258 } 1259 1260 /* put the ring in the 'stopped' state and wait for the current user (if any) to 1261 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED 1262 */ 1263 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) 1264 { 1265 kr->nkr_stopped = stopped; 1266 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 1267 tsleep(kr, 0, "NM_KR_GET", 4); 1268 } 1269 1270 /* restart a ring after a stop */ 1271 static __inline void nm_kr_start(struct netmap_kring *kr) 1272 { 1273 kr->nkr_stopped = 0; 1274 nm_kr_put(kr); 1275 } 1276 1277 1278 /* 1279 * The following functions are used by individual drivers to 1280 * support netmap operation. 1281 * 1282 * netmap_attach() initializes a struct netmap_adapter, allocating the 1283 * struct netmap_ring's and the struct selinfo. 1284 * 1285 * netmap_detach() frees the memory allocated by netmap_attach(). 1286 * 1287 * netmap_transmit() replaces the if_transmit routine of the interface, 1288 * and is used to intercept packets coming from the stack. 1289 * 1290 * netmap_load_map/netmap_reload_map are helper routines to set/reset 1291 * the dmamap for a packet buffer 1292 * 1293 * netmap_reset() is a helper routine to be called in the hw driver 1294 * when reinitializing a ring. It should not be called by 1295 * virtual ports (vale, pipes, monitor) 1296 */ 1297 int netmap_attach(struct netmap_adapter *); 1298 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); 1299 void netmap_detach(struct ifnet *); 1300 int netmap_transmit(struct ifnet *, struct mbuf *); 1301 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 1302 enum txrx tx, u_int n, u_int new_cur); 1303 int netmap_ring_reinit(struct netmap_kring *); 1304 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); 1305 1306 /* Return codes for netmap_*x_irq. */ 1307 enum { 1308 /* Driver should do normal interrupt processing, e.g. because 1309 * the interface is not in netmap mode. */ 1310 NM_IRQ_PASS = 0, 1311 /* Port is in netmap mode, and the interrupt work has been 1312 * completed. The driver does not have to notify netmap 1313 * again before the next interrupt. */ 1314 NM_IRQ_COMPLETED = -1, 1315 /* Port is in netmap mode, but the interrupt work has not been 1316 * completed. The driver has to make sure netmap will be 1317 * notified again soon, even if no more interrupts come (e.g. 1318 * on Linux the driver should not call napi_complete()). */ 1319 NM_IRQ_RESCHED = -2, 1320 }; 1321 1322 /* default functions to handle rx/tx interrupts */ 1323 int netmap_rx_irq(struct ifnet *, u_int, u_int *); 1324 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 1325 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); 1326 1327 1328 #ifdef WITH_VALE 1329 /* functions used by external modules to interface with VALE */ 1330 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 1331 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 1332 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 1333 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 1334 const char *netmap_bdg_name(struct netmap_vp_adapter *); 1335 #else /* !WITH_VALE */ 1336 #define netmap_vp_to_ifp(_vp) NULL 1337 #define netmap_ifp_to_vp(_ifp) NULL 1338 #define netmap_ifp_to_host_vp(_ifp) NULL 1339 #define netmap_bdg_idx(_vp) -1 1340 #endif /* WITH_VALE */ 1341 1342 static inline int 1343 nm_netmap_on(struct netmap_adapter *na) 1344 { 1345 return na && na->na_flags & NAF_NETMAP_ON; 1346 } 1347 1348 static inline int 1349 nm_native_on(struct netmap_adapter *na) 1350 { 1351 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 1352 } 1353 1354 static inline int 1355 nm_iszombie(struct netmap_adapter *na) 1356 { 1357 return na == NULL || (na->na_flags & NAF_ZOMBIE); 1358 } 1359 1360 static inline void 1361 nm_update_hostrings_mode(struct netmap_adapter *na) 1362 { 1363 /* Process nr_mode and nr_pending_mode for host rings. */ 1364 na->tx_rings[na->num_tx_rings]->nr_mode = 1365 na->tx_rings[na->num_tx_rings]->nr_pending_mode; 1366 na->rx_rings[na->num_rx_rings]->nr_mode = 1367 na->rx_rings[na->num_rx_rings]->nr_pending_mode; 1368 } 1369 1370 void nm_set_native_flags(struct netmap_adapter *); 1371 void nm_clear_native_flags(struct netmap_adapter *); 1372 1373 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff); 1374 1375 /* 1376 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap 1377 * kthreads. 1378 * We need netmap_ring* parameter, because in ptnetmap it is decoupled 1379 * from host kring. 1380 * The user-space ring pointers (head/cur/tail) are shared through 1381 * CSB between host and guest. 1382 */ 1383 1384 /* 1385 * validates parameters in the ring/kring, returns a value for head 1386 * If any error, returns ring_size to force a reinit. 1387 */ 1388 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); 1389 1390 1391 /* 1392 * validates parameters in the ring/kring, returns a value for head 1393 * If any error, returns ring_size lim to force a reinit. 1394 */ 1395 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); 1396 1397 1398 /* check/fix address and len in tx rings */ 1399 #if 1 /* debug version */ 1400 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1401 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1402 nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1403 kring->ring_id, nm_i, slot->buf_idx, len); \ 1404 if (_l > NETMAP_BUF_SIZE(_na)) \ 1405 _l = NETMAP_BUF_SIZE(_na); \ 1406 } } while (0) 1407 #else /* no debug version */ 1408 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1409 if (_l > NETMAP_BUF_SIZE(_na)) \ 1410 _l = NETMAP_BUF_SIZE(_na); \ 1411 } while (0) 1412 #endif 1413 1414 1415 /*---------------------------------------------------------------*/ 1416 /* 1417 * Support routines used by netmap subsystems 1418 * (native drivers, VALE, generic, pipes, monitors, ...) 1419 */ 1420 1421 1422 /* common routine for all functions that create a netmap adapter. It performs 1423 * two main tasks: 1424 * - if the na points to an ifp, mark the ifp as netmap capable 1425 * using na as its native adapter; 1426 * - provide defaults for the setup callbacks and the memory allocator 1427 */ 1428 int netmap_attach_common(struct netmap_adapter *); 1429 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1430 * coming from a struct nmreq_register 1431 */ 1432 int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1433 uint16_t nr_ringid, uint64_t nr_flags); 1434 /* update the ring parameters (number and size of tx and rx rings). 1435 * It calls the nm_config callback, if available. 1436 */ 1437 int netmap_update_config(struct netmap_adapter *na); 1438 /* create and initialize the common fields of the krings array. 1439 * using the information that must be already available in the na. 1440 * tailroom can be used to request the allocation of additional 1441 * tailroom bytes after the krings array. This is used by 1442 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1443 * leasing-related data structures 1444 */ 1445 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1446 /* deletes the kring array of the adapter. The array must have 1447 * been created using netmap_krings_create 1448 */ 1449 void netmap_krings_delete(struct netmap_adapter *na); 1450 1451 int netmap_hw_krings_create(struct netmap_adapter *na); 1452 void netmap_hw_krings_delete(struct netmap_adapter *na); 1453 1454 /* set the stopped/enabled status of ring 1455 * When stopping, they also wait for all current activity on the ring to 1456 * terminate. The status change is then notified using the na nm_notify 1457 * callback. 1458 */ 1459 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1460 /* set the stopped/enabled status of all rings of the adapter. */ 1461 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1462 /* convenience wrappers for netmap_set_all_rings */ 1463 void netmap_disable_all_rings(struct ifnet *); 1464 void netmap_enable_all_rings(struct ifnet *); 1465 1466 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); 1467 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1468 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags); 1469 void netmap_do_unregif(struct netmap_priv_d *priv); 1470 1471 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1472 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1473 struct ifnet **ifp, struct netmap_mem_d *nmd, int create); 1474 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp); 1475 int netmap_get_hw_na(struct ifnet *ifp, 1476 struct netmap_mem_d *nmd, struct netmap_adapter **na); 1477 1478 #ifdef WITH_VALE 1479 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1480 struct netmap_vp_adapter *, void *private_data); 1481 1482 /* these are redefined in case of no VALE support */ 1483 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1484 struct netmap_mem_d *nmd, int create); 1485 void *netmap_vale_create(const char *bdg_name, int *return_status); 1486 int netmap_vale_destroy(const char *bdg_name, void *auth_token); 1487 1488 #else /* !WITH_VALE */ 1489 #define netmap_bdg_learning(_1, _2, _3, _4) 0 1490 #define netmap_get_vale_na(_1, _2, _3, _4) 0 1491 #define netmap_bdg_create(_1, _2) NULL 1492 #define netmap_bdg_destroy(_1, _2) 0 1493 #endif /* !WITH_VALE */ 1494 1495 #ifdef WITH_PIPES 1496 /* max number of pipes per device */ 1497 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ 1498 void netmap_pipe_dealloc(struct netmap_adapter *); 1499 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1500 struct netmap_mem_d *nmd, int create); 1501 #else /* !WITH_PIPES */ 1502 #define NM_MAXPIPES 0 1503 #define netmap_pipe_alloc(_1, _2) 0 1504 #define netmap_pipe_dealloc(_1) 1505 #define netmap_get_pipe_na(hdr, _2, _3, _4) \ 1506 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) 1507 #endif 1508 1509 #ifdef WITH_MONITOR 1510 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1511 struct netmap_mem_d *nmd, int create); 1512 void netmap_monitor_stop(struct netmap_adapter *na); 1513 #else 1514 #define netmap_get_monitor_na(hdr, _2, _3, _4) \ 1515 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1516 #endif 1517 1518 #ifdef WITH_NMNULL 1519 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1520 struct netmap_mem_d *nmd, int create); 1521 #else /* !WITH_NMNULL */ 1522 #define netmap_get_null_na(hdr, _2, _3, _4) \ 1523 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1524 #endif /* WITH_NMNULL */ 1525 1526 #ifdef CONFIG_NET_NS 1527 struct net *netmap_bns_get(void); 1528 void netmap_bns_put(struct net *); 1529 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1530 #else 1531 extern struct nm_bridge *nm_bridges; 1532 #define netmap_bns_get() 1533 #define netmap_bns_put(_1) 1534 #define netmap_bns_getbridges(b, n) \ 1535 do { *b = nm_bridges; *n = NM_BRIDGES; } while (0) 1536 #endif 1537 1538 /* Various prototypes */ 1539 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); 1540 int netmap_init(void); 1541 void netmap_fini(void); 1542 int netmap_get_memory(struct netmap_priv_d* p); 1543 void netmap_dtor(void *data); 1544 1545 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1546 struct thread *, int nr_body_is_user); 1547 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1548 struct thread *td); 1549 size_t nmreq_size_by_type(uint16_t nr_reqtype); 1550 1551 /* netmap_adapter creation/destruction */ 1552 1553 // #define NM_DEBUG_PUTGET 1 1554 1555 #ifdef NM_DEBUG_PUTGET 1556 1557 #define NM_DBG(f) __##f 1558 1559 void __netmap_adapter_get(struct netmap_adapter *na); 1560 1561 #define netmap_adapter_get(na) \ 1562 do { \ 1563 struct netmap_adapter *__na = na; \ 1564 nm_prinf("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1565 __netmap_adapter_get(__na); \ 1566 } while (0) 1567 1568 int __netmap_adapter_put(struct netmap_adapter *na); 1569 1570 #define netmap_adapter_put(na) \ 1571 ({ \ 1572 struct netmap_adapter *__na = na; \ 1573 nm_prinf("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1574 __netmap_adapter_put(__na); \ 1575 }) 1576 1577 #else /* !NM_DEBUG_PUTGET */ 1578 1579 #define NM_DBG(f) f 1580 void netmap_adapter_get(struct netmap_adapter *na); 1581 int netmap_adapter_put(struct netmap_adapter *na); 1582 1583 #endif /* !NM_DEBUG_PUTGET */ 1584 1585 1586 /* 1587 * module variables 1588 */ 1589 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) 1590 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) 1591 extern int netmap_no_pendintr; 1592 extern int netmap_mitigate; 1593 extern int netmap_verbose; 1594 #ifdef CONFIG_NETMAP_DEBUG 1595 extern int netmap_debug; /* for debugging */ 1596 #else /* !CONFIG_NETMAP_DEBUG */ 1597 #define netmap_debug (0) 1598 #endif /* !CONFIG_NETMAP_DEBUG */ 1599 enum { /* debug flags */ 1600 NM_DEBUG_ON = 1, /* generic debug messsages */ 1601 NM_DEBUG_HOST = 0x2, /* debug host stack */ 1602 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ 1603 NM_DEBUG_TXSYNC = 0x20, 1604 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ 1605 NM_DEBUG_TXINTR = 0x200, 1606 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ 1607 NM_DEBUG_NIC_TXSYNC = 0x2000, 1608 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ 1609 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ 1610 NM_DEBUG_BDG = NM_DEBUG_VALE, 1611 }; 1612 1613 extern int netmap_txsync_retry; 1614 extern int netmap_flags; 1615 extern int netmap_generic_hwcsum; 1616 extern int netmap_generic_mit; 1617 extern int netmap_generic_ringsize; 1618 extern int netmap_generic_rings; 1619 #ifdef linux 1620 extern int netmap_generic_txqdisc; 1621 #endif 1622 1623 /* 1624 * NA returns a pointer to the struct netmap adapter from the ifp. 1625 * WNA is os-specific and must be defined in glue code. 1626 */ 1627 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 1628 1629 /* 1630 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA 1631 * based on the WNA field. 1632 * Glue code may override this by defining its own NM_ATTACH_NA 1633 */ 1634 #ifndef NM_ATTACH_NA 1635 /* 1636 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we 1637 * overload another pointer in the netdev. 1638 * 1639 * We check if NA(ifp) is set and its first element has a related 1640 * magic value. The capenable is within the struct netmap_adapter. 1641 */ 1642 #define NETMAP_MAGIC 0x52697a7a 1643 1644 #define NM_NA_VALID(ifp) (NA(ifp) && \ 1645 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1646 1647 #define NM_ATTACH_NA(ifp, na) do { \ 1648 WNA(ifp) = na; \ 1649 if (NA(ifp)) \ 1650 NA(ifp)->magic = \ 1651 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ 1652 } while(0) 1653 #define NM_RESTORE_NA(ifp, na) WNA(ifp) = na; 1654 1655 #define NM_DETACH_NA(ifp) do { WNA(ifp) = NULL; } while (0) 1656 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) 1657 #endif /* !NM_ATTACH_NA */ 1658 1659 1660 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) 1661 1662 #if defined(__FreeBSD__) 1663 1664 /* Assigns the device IOMMU domain to an allocator. 1665 * Returns -ENOMEM in case the domain is different */ 1666 #define nm_iommu_group_id(dev) (0) 1667 1668 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1669 static void netmap_dmamap_cb(__unused void *arg, 1670 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1671 { 1672 } 1673 1674 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1675 * XXX can we do it without a callback ? 1676 */ 1677 static inline int 1678 netmap_load_map(struct netmap_adapter *na, 1679 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1680 { 1681 if (map) 1682 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1683 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1684 return 0; 1685 } 1686 1687 static inline void 1688 netmap_unload_map(struct netmap_adapter *na, 1689 bus_dma_tag_t tag, bus_dmamap_t map) 1690 { 1691 if (map) 1692 bus_dmamap_unload(tag, map); 1693 } 1694 1695 #define netmap_sync_map(na, tag, map, sz, t) 1696 1697 /* update the map when a buffer changes. */ 1698 static inline void 1699 netmap_reload_map(struct netmap_adapter *na, 1700 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1701 { 1702 if (map) { 1703 bus_dmamap_unload(tag, map); 1704 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1705 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1706 } 1707 } 1708 1709 #elif defined(_WIN32) 1710 1711 #else /* linux */ 1712 1713 int nm_iommu_group_id(bus_dma_tag_t dev); 1714 #include <linux/dma-mapping.h> 1715 1716 /* 1717 * on linux we need 1718 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1719 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) 1720 */ 1721 #if 0 1722 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1723 /* set time_stamp *before* dma to help avoid a possible race */ 1724 buffer_info->time_stamp = jiffies; 1725 buffer_info->mapped_as_page = false; 1726 buffer_info->length = len; 1727 //buffer_info->next_to_watch = l; 1728 /* reload dma map */ 1729 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1730 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1731 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1732 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1733 1734 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1735 nm_prerr("dma mapping error"); 1736 /* goto dma_error; See e1000_put_txbuf() */ 1737 /* XXX reset */ 1738 } 1739 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1740 1741 #endif 1742 1743 static inline int 1744 netmap_load_map(struct netmap_adapter *na, 1745 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) 1746 { 1747 if (map) { 1748 *map = dma_map_single(na->pdev, buf, size, 1749 DMA_BIDIRECTIONAL); 1750 if (dma_mapping_error(na->pdev, *map)) { 1751 *map = 0; 1752 return ENOMEM; 1753 } 1754 } 1755 return 0; 1756 } 1757 1758 static inline void 1759 netmap_unload_map(struct netmap_adapter *na, 1760 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) 1761 { 1762 if (*map) { 1763 dma_unmap_single(na->pdev, *map, sz, 1764 DMA_BIDIRECTIONAL); 1765 } 1766 } 1767 1768 #ifdef NETMAP_LINUX_HAVE_DMASYNC 1769 static inline void 1770 netmap_sync_map_cpu(struct netmap_adapter *na, 1771 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1772 { 1773 if (*map) { 1774 dma_sync_single_for_cpu(na->pdev, *map, sz, 1775 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1776 } 1777 } 1778 1779 static inline void 1780 netmap_sync_map_dev(struct netmap_adapter *na, 1781 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1782 { 1783 if (*map) { 1784 dma_sync_single_for_device(na->pdev, *map, sz, 1785 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1786 } 1787 } 1788 1789 static inline void 1790 netmap_reload_map(struct netmap_adapter *na, 1791 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1792 { 1793 u_int sz = NETMAP_BUF_SIZE(na); 1794 1795 if (*map) { 1796 dma_unmap_single(na->pdev, *map, sz, 1797 DMA_BIDIRECTIONAL); 1798 } 1799 1800 *map = dma_map_single(na->pdev, buf, sz, 1801 DMA_BIDIRECTIONAL); 1802 } 1803 #else /* !NETMAP_LINUX_HAVE_DMASYNC */ 1804 #define netmap_sync_map_cpu(na, tag, map, sz, t) 1805 #define netmap_sync_map_dev(na, tag, map, sz, t) 1806 #endif /* NETMAP_LINUX_HAVE_DMASYNC */ 1807 1808 #endif /* linux */ 1809 1810 1811 /* 1812 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1813 */ 1814 static inline int 1815 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1816 { 1817 int n = kr->nkr_num_slots; 1818 1819 if (likely(kr->nkr_hwofs == 0)) { 1820 return idx; 1821 } 1822 1823 idx += kr->nkr_hwofs; 1824 if (idx < 0) 1825 return idx + n; 1826 else if (idx < n) 1827 return idx; 1828 else 1829 return idx - n; 1830 } 1831 1832 1833 static inline int 1834 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1835 { 1836 int n = kr->nkr_num_slots; 1837 1838 if (likely(kr->nkr_hwofs == 0)) { 1839 return idx; 1840 } 1841 1842 idx -= kr->nkr_hwofs; 1843 if (idx < 0) 1844 return idx + n; 1845 else if (idx < n) 1846 return idx; 1847 else 1848 return idx - n; 1849 } 1850 1851 1852 /* Entries of the look-up table. */ 1853 #ifdef __FreeBSD__ 1854 struct lut_entry { 1855 void *vaddr; /* virtual address. */ 1856 vm_paddr_t paddr; /* physical address. */ 1857 }; 1858 #else /* linux & _WIN32 */ 1859 /* dma-mapping in linux can assign a buffer a different address 1860 * depending on the device, so we need to have a separate 1861 * physical-address look-up table for each na. 1862 * We can still share the vaddrs, though, therefore we split 1863 * the lut_entry structure. 1864 */ 1865 struct lut_entry { 1866 void *vaddr; /* virtual address. */ 1867 }; 1868 1869 struct plut_entry { 1870 vm_paddr_t paddr; /* physical address. */ 1871 }; 1872 #endif /* linux & _WIN32 */ 1873 1874 struct netmap_obj_pool; 1875 1876 /* 1877 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1878 * PNMB also fills the physical address 1879 */ 1880 static inline void * 1881 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1882 { 1883 struct lut_entry *lut = na->na_lut.lut; 1884 uint32_t i = slot->buf_idx; 1885 return (unlikely(i >= na->na_lut.objtotal)) ? 1886 lut[0].vaddr : lut[i].vaddr; 1887 } 1888 1889 static inline void * 1890 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1891 { 1892 uint32_t i = slot->buf_idx; 1893 struct lut_entry *lut = na->na_lut.lut; 1894 struct plut_entry *plut = na->na_lut.plut; 1895 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1896 1897 #ifdef _WIN32 1898 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; 1899 #else 1900 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; 1901 #endif 1902 return ret; 1903 } 1904 1905 1906 /* 1907 * Structure associated to each netmap file descriptor. 1908 * It is created on open and left unbound (np_nifp == NULL). 1909 * A successful NIOCREGIF will set np_nifp and the first few fields; 1910 * this is protected by a global lock (NMG_LOCK) due to low contention. 1911 * 1912 * np_refs counts the number of references to the structure: one for the fd, 1913 * plus (on FreeBSD) one for each active mmap which we track ourselves 1914 * (linux automatically tracks them, but FreeBSD does not). 1915 * np_refs is protected by NMG_LOCK. 1916 * 1917 * Read access to the structure is lock free, because ni_nifp once set 1918 * can only go to 0 when nobody is using the entry anymore. Readers 1919 * must check that np_nifp != NULL before using the other fields. 1920 */ 1921 struct netmap_priv_d { 1922 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 1923 1924 struct netmap_adapter *np_na; 1925 struct ifnet *np_ifp; 1926 uint32_t np_flags; /* from the ioctl */ 1927 u_int np_qfirst[NR_TXRX], 1928 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 1929 uint16_t np_txpoll; 1930 uint16_t np_kloop_state; /* use with NMG_LOCK held */ 1931 #define NM_SYNC_KLOOP_RUNNING (1 << 0) 1932 #define NM_SYNC_KLOOP_STOPPING (1 << 1) 1933 int np_sync_flags; /* to be passed to nm_sync */ 1934 1935 int np_refs; /* use with NMG_LOCK held */ 1936 1937 /* pointers to the selinfo to be used for selrecord. 1938 * Either the local or the global one depending on the 1939 * number of rings. 1940 */ 1941 NM_SELINFO_T *np_si[NR_TXRX]; 1942 1943 /* In the optional CSB mode, the user must specify the start address 1944 * of two arrays of Communication Status Block (CSB) entries, for the 1945 * two directions (kernel read application write, and kernel write 1946 * application read). 1947 * The number of entries must agree with the number of rings bound to 1948 * the netmap file descriptor. The entries corresponding to the TX 1949 * rings are laid out before the ones corresponding to the RX rings. 1950 * 1951 * Array of CSB entries for application --> kernel communication 1952 * (N entries). */ 1953 struct nm_csb_atok *np_csb_atok_base; 1954 /* Array of CSB entries for kernel --> application communication 1955 * (N entries). */ 1956 struct nm_csb_ktoa *np_csb_ktoa_base; 1957 1958 #ifdef linux 1959 struct file *np_filp; /* used by sync kloop */ 1960 #endif /* linux */ 1961 }; 1962 1963 struct netmap_priv_d *netmap_priv_new(void); 1964 void netmap_priv_delete(struct netmap_priv_d *); 1965 1966 static inline int nm_kring_pending(struct netmap_priv_d *np) 1967 { 1968 struct netmap_adapter *na = np->np_na; 1969 enum txrx t; 1970 int i; 1971 1972 for_rx_tx(t) { 1973 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { 1974 struct netmap_kring *kring = NMR(na, t)[i]; 1975 if (kring->nr_mode != kring->nr_pending_mode) { 1976 return 1; 1977 } 1978 } 1979 } 1980 return 0; 1981 } 1982 1983 /* call with NMG_LOCK held */ 1984 static __inline int 1985 nm_si_user(struct netmap_priv_d *priv, enum txrx t) 1986 { 1987 return (priv->np_na != NULL && 1988 (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); 1989 } 1990 1991 #ifdef WITH_PIPES 1992 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); 1993 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); 1994 int netmap_pipe_krings_create_both(struct netmap_adapter *na, 1995 struct netmap_adapter *ona); 1996 void netmap_pipe_krings_delete_both(struct netmap_adapter *na, 1997 struct netmap_adapter *ona); 1998 int netmap_pipe_reg_both(struct netmap_adapter *na, 1999 struct netmap_adapter *ona); 2000 #endif /* WITH_PIPES */ 2001 2002 #ifdef WITH_MONITOR 2003 2004 struct netmap_monitor_adapter { 2005 struct netmap_adapter up; 2006 2007 struct netmap_priv_d priv; 2008 uint32_t flags; 2009 }; 2010 2011 #endif /* WITH_MONITOR */ 2012 2013 2014 #ifdef WITH_GENERIC 2015 /* 2016 * generic netmap emulation for devices that do not have 2017 * native netmap support. 2018 */ 2019 int generic_netmap_attach(struct ifnet *ifp); 2020 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; 2021 2022 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); 2023 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); 2024 2025 int na_is_generic(struct netmap_adapter *na); 2026 2027 /* 2028 * the generic transmit routine is passed a structure to optionally 2029 * build a queue of descriptors, in an OS-specific way. 2030 * The payload is at addr, if non-null, and the routine should send or queue 2031 * the packet, returning 0 if successful, 1 on failure. 2032 * 2033 * At the end, if head is non-null, there will be an additional call 2034 * to the function with addr = NULL; this should tell the OS-specific 2035 * routine to send the queue and free any resources. Failure is ignored. 2036 */ 2037 struct nm_os_gen_arg { 2038 struct ifnet *ifp; 2039 void *m; /* os-specific mbuf-like object */ 2040 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ 2041 void *addr; /* payload of current packet */ 2042 u_int len; /* packet length */ 2043 u_int ring_nr; /* packet length */ 2044 u_int qevent; /* in txqdisc mode, place an event on this mbuf */ 2045 }; 2046 2047 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); 2048 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); 2049 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); 2050 void nm_os_generic_set_features(struct netmap_generic_adapter *gna); 2051 2052 static inline struct ifnet* 2053 netmap_generic_getifp(struct netmap_generic_adapter *gna) 2054 { 2055 if (gna->prev) 2056 return gna->prev->ifp; 2057 2058 return gna->up.up.ifp; 2059 } 2060 2061 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); 2062 2063 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 2064 #ifdef RATE_GENERIC 2065 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 2066 #else 2067 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 2068 #endif 2069 2070 /* 2071 * netmap_mitigation API. This is used by the generic adapter 2072 * to reduce the number of interrupt requests/selwakeup 2073 * to clients on incoming packets. 2074 */ 2075 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, 2076 struct netmap_adapter *na); 2077 void nm_os_mitigation_start(struct nm_generic_mit *mit); 2078 void nm_os_mitigation_restart(struct nm_generic_mit *mit); 2079 int nm_os_mitigation_active(struct nm_generic_mit *mit); 2080 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); 2081 #else /* !WITH_GENERIC */ 2082 #define generic_netmap_attach(ifp) (EOPNOTSUPP) 2083 #define na_is_generic(na) (0) 2084 #endif /* WITH_GENERIC */ 2085 2086 /* Shared declarations for the VALE switch. */ 2087 2088 /* 2089 * Each transmit queue accumulates a batch of packets into 2090 * a structure before forwarding. Packets to the same 2091 * destination are put in a list using ft_next as a link field. 2092 * ft_frags and ft_next are valid only on the first fragment. 2093 */ 2094 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 2095 void *ft_buf; /* netmap or indirect buffer */ 2096 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 2097 uint16_t ft_offset; /* dst port (unused) */ 2098 uint16_t ft_flags; /* flags, e.g. indirect */ 2099 uint16_t ft_len; /* src fragment len */ 2100 uint16_t ft_next; /* next packet to same destination */ 2101 }; 2102 2103 /* struct 'virtio_net_hdr' from linux. */ 2104 struct nm_vnet_hdr { 2105 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 2106 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 2107 uint8_t flags; 2108 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 2109 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 2110 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 2111 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 2112 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 2113 uint8_t gso_type; 2114 uint16_t hdr_len; 2115 uint16_t gso_size; 2116 uint16_t csum_start; 2117 uint16_t csum_offset; 2118 }; 2119 2120 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 2121 2122 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 2123 2124 struct nm_iphdr { 2125 uint8_t version_ihl; 2126 uint8_t tos; 2127 uint16_t tot_len; 2128 uint16_t id; 2129 uint16_t frag_off; 2130 uint8_t ttl; 2131 uint8_t protocol; 2132 uint16_t check; 2133 uint32_t saddr; 2134 uint32_t daddr; 2135 /*The options start here. */ 2136 }; 2137 2138 struct nm_tcphdr { 2139 uint16_t source; 2140 uint16_t dest; 2141 uint32_t seq; 2142 uint32_t ack_seq; 2143 uint8_t doff; /* Data offset + Reserved */ 2144 uint8_t flags; 2145 uint16_t window; 2146 uint16_t check; 2147 uint16_t urg_ptr; 2148 }; 2149 2150 struct nm_udphdr { 2151 uint16_t source; 2152 uint16_t dest; 2153 uint16_t len; 2154 uint16_t check; 2155 }; 2156 2157 struct nm_ipv6hdr { 2158 uint8_t priority_version; 2159 uint8_t flow_lbl[3]; 2160 2161 uint16_t payload_len; 2162 uint8_t nexthdr; 2163 uint8_t hop_limit; 2164 2165 uint8_t saddr[16]; 2166 uint8_t daddr[16]; 2167 }; 2168 2169 /* Type used to store a checksum (in host byte order) that hasn't been 2170 * folded yet. 2171 */ 2172 #define rawsum_t uint32_t 2173 2174 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 2175 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); 2176 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 2177 size_t datalen, uint16_t *check); 2178 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 2179 size_t datalen, uint16_t *check); 2180 uint16_t nm_os_csum_fold(rawsum_t cur_sum); 2181 2182 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 2183 struct netmap_vp_adapter *dst_na, 2184 const struct nm_bdg_fwd *ft_p, 2185 struct netmap_ring *dst_ring, 2186 u_int *j, u_int lim, u_int *howmany); 2187 2188 /* persistent virtual port routines */ 2189 int nm_os_vi_persist(const char *, struct ifnet **); 2190 void nm_os_vi_detach(struct ifnet *); 2191 void nm_os_vi_init_index(void); 2192 2193 /* 2194 * kernel thread routines 2195 */ 2196 struct nm_kctx; /* OS-specific kernel context - opaque */ 2197 typedef void (*nm_kctx_worker_fn_t)(void *data); 2198 2199 /* kthread configuration */ 2200 struct nm_kctx_cfg { 2201 long type; /* kthread type/identifier */ 2202 nm_kctx_worker_fn_t worker_fn; /* worker function */ 2203 void *worker_private;/* worker parameter */ 2204 int attach_user; /* attach kthread to user process */ 2205 }; 2206 /* kthread configuration */ 2207 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, 2208 void *opaque); 2209 int nm_os_kctx_worker_start(struct nm_kctx *); 2210 void nm_os_kctx_worker_stop(struct nm_kctx *); 2211 void nm_os_kctx_destroy(struct nm_kctx *); 2212 void nm_os_kctx_worker_setaff(struct nm_kctx *, int); 2213 u_int nm_os_ncpus(void); 2214 2215 int netmap_sync_kloop(struct netmap_priv_d *priv, 2216 struct nmreq_header *hdr); 2217 int netmap_sync_kloop_stop(struct netmap_priv_d *priv); 2218 2219 #ifdef WITH_PTNETMAP 2220 /* ptnetmap guest routines */ 2221 2222 /* 2223 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver 2224 */ 2225 struct ptnetmap_memdev; 2226 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, 2227 uint64_t *); 2228 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); 2229 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); 2230 2231 /* 2232 * netmap adapter for guest ptnetmap ports 2233 */ 2234 struct netmap_pt_guest_adapter { 2235 /* The netmap adapter to be used by netmap applications. 2236 * This field must be the first, to allow upcast. */ 2237 struct netmap_hw_adapter hwup; 2238 2239 /* The netmap adapter to be used by the driver. */ 2240 struct netmap_hw_adapter dr; 2241 2242 /* Reference counter to track users of backend netmap port: the 2243 * network stack and netmap clients. 2244 * Used to decide when we need (de)allocate krings/rings and 2245 * start (stop) ptnetmap kthreads. */ 2246 int backend_users; 2247 2248 }; 2249 2250 int netmap_pt_guest_attach(struct netmap_adapter *na, 2251 unsigned int nifp_offset, 2252 unsigned int memid); 2253 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, 2254 struct nm_csb_ktoa *ktoa, 2255 struct netmap_kring *kring, int flags); 2256 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, 2257 struct nm_csb_ktoa *ktoa, 2258 struct netmap_kring *kring, int flags); 2259 int ptnet_nm_krings_create(struct netmap_adapter *na); 2260 void ptnet_nm_krings_delete(struct netmap_adapter *na); 2261 void ptnet_nm_dtor(struct netmap_adapter *na); 2262 2263 /* Helper function wrapping nm_sync_kloop_appl_read(). */ 2264 static inline void 2265 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) 2266 { 2267 struct netmap_ring *ring = kring->ring; 2268 2269 /* Update hwcur and hwtail as known by the host. */ 2270 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); 2271 2272 /* nm_sync_finalize */ 2273 ring->tail = kring->rtail = kring->nr_hwtail; 2274 } 2275 #endif /* WITH_PTNETMAP */ 2276 2277 #ifdef __FreeBSD__ 2278 /* 2279 * FreeBSD mbuf allocator/deallocator in emulation mode: 2280 */ 2281 #if __FreeBSD_version < 1100000 2282 2283 /* 2284 * For older versions of FreeBSD: 2285 * 2286 * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE 2287 * so that the destructor, if invoked, will not free the packet. 2288 * In principle we should set the destructor only on demand, 2289 * but since there might be a race we better do it on allocation. 2290 * As a consequence, we also need to set the destructor or we 2291 * would leak buffers. 2292 */ 2293 2294 /* mbuf destructor, also need to change the type to EXT_EXTREF, 2295 * add an M_NOFREE flag, and then clear the flag and 2296 * chain into uma_zfree(zone_pack, mf) 2297 * (or reinstall the buffer ?) 2298 */ 2299 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2300 (m)->m_ext.ext_free = (void *)fn; \ 2301 (m)->m_ext.ext_type = EXT_EXTREF; \ 2302 } while (0) 2303 2304 static int 2305 void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) 2306 { 2307 /* restore original mbuf */ 2308 m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1; 2309 m->m_ext.ext_arg1 = NULL; 2310 m->m_ext.ext_type = EXT_PACKET; 2311 m->m_ext.ext_free = NULL; 2312 if (MBUF_REFCNT(m) == 0) 2313 SET_MBUF_REFCNT(m, 1); 2314 uma_zfree(zone_pack, m); 2315 2316 return 0; 2317 } 2318 2319 static inline struct mbuf * 2320 nm_os_get_mbuf(struct ifnet *ifp, int len) 2321 { 2322 struct mbuf *m; 2323 2324 (void)ifp; 2325 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2326 if (m) { 2327 /* m_getcl() (mb_ctor_mbuf) has an assert that checks that 2328 * M_NOFREE flag is not specified as third argument, 2329 * so we have to set M_NOFREE after m_getcl(). */ 2330 m->m_flags |= M_NOFREE; 2331 m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save 2332 m->m_ext.ext_free = (void *)void_mbuf_dtor; 2333 m->m_ext.ext_type = EXT_EXTREF; 2334 nm_prdis(5, "create m %p refcnt %d", m, MBUF_REFCNT(m)); 2335 } 2336 return m; 2337 } 2338 2339 #else /* __FreeBSD_version >= 1100000 */ 2340 2341 /* 2342 * Newer versions of FreeBSD, using a straightforward scheme. 2343 * 2344 * We allocate mbufs with m_gethdr(), since the mbuf header is needed 2345 * by the driver. We also attach a customly-provided external storage, 2346 * which in this case is a netmap buffer. When calling m_extadd(), however 2347 * we pass a NULL address, since the real address (and length) will be 2348 * filled in by nm_os_generic_xmit_frame() right before calling 2349 * if_transmit(). 2350 * 2351 * The dtor function does nothing, however we need it since mb_free_ext() 2352 * has a KASSERT(), checking that the mbuf dtor function is not NULL. 2353 */ 2354 2355 #if __FreeBSD_version <= 1200050 2356 static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { } 2357 #else /* __FreeBSD_version >= 1200051 */ 2358 /* The arg1 and arg2 pointers argument were removed by r324446, which 2359 * in included since version 1200051. */ 2360 static void void_mbuf_dtor(struct mbuf *m) { } 2361 #endif /* __FreeBSD_version >= 1200051 */ 2362 2363 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2364 (m)->m_ext.ext_free = (fn != NULL) ? \ 2365 (void *)fn : (void *)void_mbuf_dtor; \ 2366 } while (0) 2367 2368 static inline struct mbuf * 2369 nm_os_get_mbuf(struct ifnet *ifp, int len) 2370 { 2371 struct mbuf *m; 2372 2373 (void)ifp; 2374 (void)len; 2375 2376 m = m_gethdr(M_NOWAIT, MT_DATA); 2377 if (m == NULL) { 2378 return m; 2379 } 2380 2381 m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor, 2382 NULL, NULL, 0, EXT_NET_DRV); 2383 2384 return m; 2385 } 2386 2387 #endif /* __FreeBSD_version >= 1100000 */ 2388 #endif /* __FreeBSD__ */ 2389 2390 struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t); 2391 int nmreq_checkduplicate(struct nmreq_option *); 2392 2393 int netmap_init_bridges(void); 2394 void netmap_uninit_bridges(void); 2395 2396 /* Functions to read and write CSB fields from the kernel. */ 2397 #if defined (linux) 2398 #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) 2399 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) 2400 #else /* ! linux */ 2401 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field)) 2402 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v)) 2403 #endif /* ! linux */ 2404 2405 #endif /* _NET_NETMAP_KERN_H_ */ 2406