xref: /freebsd/sys/dev/netmap/netmap_kern.h (revision ec273ebf3b6aed5fba8c56b6ece5ad8693a48ea7)
1 /*
2  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved.
3  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *   1. Redistributions of source code must retain the above copyright
9  *      notice, this list of conditions and the following disclaimer.
10  *   2. Redistributions in binary form must reproduce the above copyright
11  *      notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * $FreeBSD$
29  *
30  * The header contains the definitions of constants and function
31  * prototypes used only in kernelspace.
32  */
33 
34 #ifndef _NET_NETMAP_KERN_H_
35 #define _NET_NETMAP_KERN_H_
36 
37 #define WITH_VALE	// comment out to disable VALE support
38 #define WITH_PIPES
39 #define WITH_MONITOR
40 #define WITH_GENERIC
41 
42 #if defined(__FreeBSD__)
43 
44 #define likely(x)	__builtin_expect((long)!!(x), 1L)
45 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
46 
47 #define	NM_LOCK_T	struct mtx
48 
49 /* netmap global lock */
50 #define	NMG_LOCK_T	struct sx
51 #define NMG_LOCK_INIT()	sx_init(&netmap_global_lock, \
52 				"netmap global lock")
53 #define NMG_LOCK_DESTROY()	sx_destroy(&netmap_global_lock)
54 #define NMG_LOCK()	sx_xlock(&netmap_global_lock)
55 #define NMG_UNLOCK()	sx_xunlock(&netmap_global_lock)
56 #define NMG_LOCK_ASSERT()	sx_assert(&netmap_global_lock, SA_XLOCKED)
57 
58 #define	NM_SELINFO_T	struct nm_selinfo
59 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
60 #define	MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
61 #define	NM_SEND_UP(ifp, m)	((NA(ifp))->if_input)(ifp, m)
62 
63 #define NM_ATOMIC_T	volatile int	// XXX ?
64 /* atomic operations */
65 #include <machine/atomic.h>
66 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
67 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
68 
69 #if __FreeBSD_version >= 1100030
70 #define	WNA(_ifp)	(_ifp)->if_netmap
71 #else /* older FreeBSD */
72 #define	WNA(_ifp)	(_ifp)->if_pspare[0]
73 #endif /* older FreeBSD */
74 
75 #if __FreeBSD_version >= 1100005
76 struct netmap_adapter *netmap_getna(if_t ifp);
77 #endif
78 
79 #if __FreeBSD_version >= 1100027
80 #define GET_MBUF_REFCNT(m)      ((m)->m_ext.ext_cnt ? *((m)->m_ext.ext_cnt) : -1)
81 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ext_cnt) = x
82 #define PNT_MBUF_REFCNT(m)      ((m)->m_ext.ext_cnt)
83 #else
84 #define GET_MBUF_REFCNT(m)      ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
85 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
86 #define PNT_MBUF_REFCNT(m)      ((m)->m_ext.ref_cnt)
87 #endif
88 
89 MALLOC_DECLARE(M_NETMAP);
90 
91 struct nm_selinfo {
92 	struct selinfo si;
93 	struct mtx m;
94 };
95 
96 void freebsd_selwakeup(struct nm_selinfo *si, int pri);
97 
98 // XXX linux struct, not used in FreeBSD
99 struct net_device_ops {
100 };
101 struct ethtool_ops {
102 };
103 struct hrtimer {
104 };
105 
106 #elif defined (linux)
107 
108 #define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
109 #define	NM_SELINFO_T	wait_queue_head_t
110 #define	MBUF_LEN(m)	((m)->len)
111 #define	MBUF_IFP(m)	((m)->dev)
112 #define	NM_SEND_UP(ifp, m)  \
113                         do { \
114                             m->priority = NM_MAGIC_PRIORITY_RX; \
115                             netif_rx(m); \
116                         } while (0)
117 
118 #define NM_ATOMIC_T	volatile long unsigned int
119 
120 #define NM_MTX_T		struct mutex
121 #define NM_MTX_INIT(m, s)	do { (void)s; mutex_init(&(m)); } while (0)
122 #define NM_MTX_DESTROY(m)	do { (void)m; } while (0)
123 #define NM_MTX_LOCK(m)		mutex_lock(&(m))
124 #define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
125 #define NM_MTX_LOCK_ASSERT(m)	mutex_is_locked(&(m))
126 
127 #define	NMG_LOCK_T		NM_MTX_T
128 #define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock, \
129 					"netmap_global_lock")
130 #define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
131 #define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
132 #define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
133 #define	NMG_LOCK_ASSERT()	NM_MTX_LOCK_ASSERT(netmap_global_lock)
134 
135 #ifndef DEV_NETMAP
136 #define DEV_NETMAP
137 #endif /* DEV_NETMAP */
138 
139 #elif defined (__APPLE__)
140 
141 #warning apple support is incomplete.
142 #define likely(x)	__builtin_expect(!!(x), 1)
143 #define unlikely(x)	__builtin_expect(!!(x), 0)
144 #define	NM_LOCK_T	IOLock *
145 #define	NM_SELINFO_T	struct selinfo
146 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
147 #define	NM_SEND_UP(ifp, m)	((ifp)->if_input)(ifp, m)
148 
149 #else
150 
151 #error unsupported platform
152 
153 #endif /* end - platform-specific code */
154 
155 #define ND(format, ...)
156 #define D(format, ...)						\
157 	do {							\
158 		struct timeval __xxts;				\
159 		microtime(&__xxts);				\
160 		printf("%03d.%06d [%4d] %-25s " format "\n",	\
161 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
162 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
163 	} while (0)
164 
165 /* rate limited, lps indicates how many per second */
166 #define RD(lps, format, ...)					\
167 	do {							\
168 		static int t0, __cnt;				\
169 		if (t0 != time_second) {			\
170 			t0 = time_second;			\
171 			__cnt = 0;				\
172 		}						\
173 		if (__cnt++ < lps)				\
174 			D(format, ##__VA_ARGS__);		\
175 	} while (0)
176 
177 struct netmap_adapter;
178 struct nm_bdg_fwd;
179 struct nm_bridge;
180 struct netmap_priv_d;
181 
182 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
183 
184 #include "netmap_mbq.h"
185 
186 extern NMG_LOCK_T	netmap_global_lock;
187 
188 /*
189  * private, kernel view of a ring. Keeps track of the status of
190  * a ring across system calls.
191  *
192  *	nr_hwcur	index of the next buffer to refill.
193  *			It corresponds to ring->head
194  *			at the time the system call returns.
195  *
196  *	nr_hwtail	index of the first buffer owned by the kernel.
197  *			On RX, hwcur->hwtail are receive buffers
198  *			not yet released. hwcur is advanced following
199  *			ring->head, hwtail is advanced on incoming packets,
200  *			and a wakeup is generated when hwtail passes ring->cur
201  *			    On TX, hwcur->rcur have been filled by the sender
202  *			but not sent yet to the NIC; rcur->hwtail are available
203  *			for new transmissions, and hwtail->hwcur-1 are pending
204  *			transmissions not yet acknowledged.
205  *
206  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
207  * This is so that, on a reset, buffers owned by userspace are not
208  * modified by the kernel. In particular:
209  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
210  * 	the next empty buffer as known by the hardware (next_to_check or so).
211  * TX rings: hwcur + hwofs coincides with next_to_send
212  *
213  * For received packets, slot->flags is set to nkr_slot_flags
214  * so we can provide a proper initial value (e.g. set NS_FORWARD
215  * when operating in 'transparent' mode).
216  *
217  * The following fields are used to implement lock-free copy of packets
218  * from input to output ports in VALE switch:
219  *	nkr_hwlease	buffer after the last one being copied.
220  *			A writer in nm_bdg_flush reserves N buffers
221  *			from nr_hwlease, advances it, then does the
222  *			copy outside the lock.
223  *			In RX rings (used for VALE ports),
224  *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
225  *			In TX rings (used for NIC or host stack ports)
226  *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
227  *	nkr_leases	array of nkr_num_slots where writers can report
228  *			completion of their block. NR_NOSLOT (~0) indicates
229  *			that the writer has not finished yet
230  *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
231  *
232  * The kring is manipulated by txsync/rxsync and generic netmap function.
233  *
234  * Concurrent rxsync or txsync on the same ring are prevented through
235  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
236  * for NIC rings, and for TX rings attached to the host stack.
237  *
238  * RX rings attached to the host stack use an mbq (rx_queue) on both
239  * rxsync_from_host() and netmap_transmit(). The mbq is protected
240  * by its internal lock.
241  *
242  * RX rings attached to the VALE switch are accessed by both senders
243  * and receiver. They are protected through the q_lock on the RX ring.
244  */
245 struct netmap_kring {
246 	struct netmap_ring	*ring;
247 
248 	uint32_t	nr_hwcur;
249 	uint32_t	nr_hwtail;
250 
251 	/*
252 	 * Copies of values in user rings, so we do not need to look
253 	 * at the ring (which could be modified). These are set in the
254 	 * *sync_prologue()/finalize() routines.
255 	 */
256 	uint32_t	rhead;
257 	uint32_t	rcur;
258 	uint32_t	rtail;
259 
260 	uint32_t	nr_kflags;	/* private driver flags */
261 #define NKR_PENDINTR	0x1		// Pending interrupt.
262 	uint32_t	nkr_num_slots;
263 
264 	/*
265 	 * On a NIC reset, the NIC ring indexes may be reset but the
266 	 * indexes in the netmap rings remain the same. nkr_hwofs
267 	 * keeps track of the offset between the two.
268 	 */
269 	int32_t		nkr_hwofs;
270 
271 	uint16_t	nkr_slot_flags;	/* initial value for flags */
272 
273 	/* last_reclaim is opaque marker to help reduce the frequency
274 	 * of operations such as reclaiming tx buffers. A possible use
275 	 * is set it to ticks and do the reclaim only once per tick.
276 	 */
277 	uint64_t	last_reclaim;
278 
279 
280 	NM_SELINFO_T	si;		/* poll/select wait queue */
281 	NM_LOCK_T	q_lock;		/* protects kring and ring. */
282 	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
283 
284 	struct netmap_adapter *na;
285 
286 	/* The following fields are for VALE switch support */
287 	struct nm_bdg_fwd *nkr_ft;
288 	uint32_t	*nkr_leases;
289 #define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
290 	uint32_t	nkr_hwlease;
291 	uint32_t	nkr_lease_idx;
292 
293 	/* while nkr_stopped is set, no new [tr]xsync operations can
294 	 * be started on this kring.
295 	 * This is used by netmap_disable_all_rings()
296 	 * to find a synchronization point where critical data
297 	 * structures pointed to by the kring can be added or removed
298 	 */
299 	volatile int nkr_stopped;
300 
301 	/* Support for adapters without native netmap support.
302 	 * On tx rings we preallocate an array of tx buffers
303 	 * (same size as the netmap ring), on rx rings we
304 	 * store incoming mbufs in a queue that is drained by
305 	 * a rxsync.
306 	 */
307 	struct mbuf **tx_pool;
308 	// u_int nr_ntc;		/* Emulation of a next-to-clean RX ring pointer. */
309 	struct mbq rx_queue;            /* intercepted rx mbufs. */
310 
311 	uint32_t	ring_id;	/* debugging */
312 	char name[64];			/* diagnostic */
313 
314 	/* [tx]sync callback for this kring.
315 	 * The default nm_kring_create callback (netmap_krings_create)
316 	 * sets the nm_sync callback of each hardware tx(rx) kring to
317 	 * the corresponding nm_txsync(nm_rxsync) taken from the
318 	 * netmap_adapter; moreover, it sets the sync callback
319 	 * of the host tx(rx) ring to netmap_txsync_to_host
320 	 * (netmap_rxsync_from_host).
321 	 *
322 	 * Overrides: the above configuration is not changed by
323 	 * any of the nm_krings_create callbacks.
324 	 */
325 	int (*nm_sync)(struct netmap_kring *kring, int flags);
326 
327 #ifdef WITH_PIPES
328 	struct netmap_kring *pipe;	/* if this is a pipe ring,
329 					 * pointer to the other end
330 					 */
331 	struct netmap_ring *save_ring;	/* pointer to hidden rings
332        					 * (see netmap_pipe.c for details)
333 					 */
334 #endif /* WITH_PIPES */
335 
336 #ifdef WITH_MONITOR
337 	/* pointer to the adapter that is monitoring this kring (if any)
338 	 */
339 	struct netmap_monitor_adapter *monitor;
340 	/*
341 	 * Monitors work by intercepting the txsync and/or rxsync of the
342 	 * monitored krings. This is implemented by replacing
343 	 * the nm_sync pointer above and saving the previous
344 	 * one in save_sync below.
345 	 */
346 	int (*save_sync)(struct netmap_kring *kring, int flags);
347 #endif
348 } __attribute__((__aligned__(64)));
349 
350 
351 /* return the next index, with wraparound */
352 static inline uint32_t
353 nm_next(uint32_t i, uint32_t lim)
354 {
355 	return unlikely (i == lim) ? 0 : i + 1;
356 }
357 
358 
359 /* return the previous index, with wraparound */
360 static inline uint32_t
361 nm_prev(uint32_t i, uint32_t lim)
362 {
363 	return unlikely (i == 0) ? lim : i - 1;
364 }
365 
366 
367 /*
368  *
369  * Here is the layout for the Rx and Tx rings.
370 
371        RxRING                            TxRING
372 
373       +-----------------+            +-----------------+
374       |                 |            |                 |
375       |XXX free slot XXX|            |XXX free slot XXX|
376       +-----------------+            +-----------------+
377 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
378       |                 |            | yet             |
379       +-----------------+            |                 |
380  cur->| available to    |            |                 |
381       | user, not read  |            +-----------------+
382       | yet             |       cur->| (being          |
383       |                 |            |  prepared)      |
384       |                 |            |                 |
385       +-----------------+            +     ------      +
386 tail->|                 |<-hwtail    |                 |<-hwlease
387       | (being          | ...        |                 | ...
388       |  prepared)      | ...        |                 | ...
389       +-----------------+ ...        |                 | ...
390       |                 |<-hwlease   +-----------------+
391       |                 |      tail->|                 |<-hwtail
392       |                 |            |                 |
393       |                 |            |                 |
394       |                 |            |                 |
395       +-----------------+            +-----------------+
396 
397  * The cur/tail (user view) and hwcur/hwtail (kernel view)
398  * are used in the normal operation of the card.
399  *
400  * When a ring is the output of a switch port (Rx ring for
401  * a VALE port, Tx ring for the host stack or NIC), slots
402  * are reserved in blocks through 'hwlease' which points
403  * to the next unused slot.
404  * On an Rx ring, hwlease is always after hwtail,
405  * and completions cause hwtail to advance.
406  * On a Tx ring, hwlease is always between cur and hwtail,
407  * and completions cause cur to advance.
408  *
409  * nm_kr_space() returns the maximum number of slots that
410  * can be assigned.
411  * nm_kr_lease() reserves the required number of buffers,
412  *    advances nkr_hwlease and also returns an entry in
413  *    a circular array where completions should be reported.
414  */
415 
416 
417 
418 enum txrx { NR_RX = 0, NR_TX = 1 };
419 
420 struct netmap_vp_adapter; // forward
421 
422 /*
423  * The "struct netmap_adapter" extends the "struct adapter"
424  * (or equivalent) device descriptor.
425  * It contains all base fields needed to support netmap operation.
426  * There are in fact different types of netmap adapters
427  * (native, generic, VALE switch...) so a netmap_adapter is
428  * just the first field in the derived type.
429  */
430 struct netmap_adapter {
431 	/*
432 	 * On linux we do not have a good way to tell if an interface
433 	 * is netmap-capable. So we always use the following trick:
434 	 * NA(ifp) points here, and the first entry (which hopefully
435 	 * always exists and is at least 32 bits) contains a magic
436 	 * value which we can use to detect that the interface is good.
437 	 */
438 	uint32_t magic;
439 	uint32_t na_flags;	/* enabled, and other flags */
440 #define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
441 				 * useful during initialization
442 				 */
443 #define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
444 #define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
445 				 * forwarding packets coming from this
446 				 * interface
447 				 */
448 #define NAF_MEM_OWNER	8	/* the adapter is responsible for the
449 				 * deallocation of the memory allocator
450 				 */
451 #define NAF_NATIVE_ON   16      /* the adapter is native and the attached
452 				 * interface is in netmap mode.
453 				 * Virtual ports (vale, pipe, monitor...)
454 				 * should never use this flag.
455 				 */
456 #define	NAF_NETMAP_ON	32	/* netmap is active (either native or
457 				 * emulated). Where possible (e.g. FreeBSD)
458 				 * IFCAP_NETMAP also mirrors this flag.
459 				 */
460 #define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
461 #define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
462 #define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
463 				  * cannot be registered from userspace
464 				  */
465 	int active_fds; /* number of user-space descriptors using this
466 			 interface, which is equal to the number of
467 			 struct netmap_if objs in the mapped region. */
468 
469 	u_int num_rx_rings; /* number of adapter receive rings */
470 	u_int num_tx_rings; /* number of adapter transmit rings */
471 
472 	u_int num_tx_desc; /* number of descriptor in each queue */
473 	u_int num_rx_desc;
474 
475 	/* tx_rings and rx_rings are private but allocated
476 	 * as a contiguous chunk of memory. Each array has
477 	 * N+1 entries, for the adapter queues and for the host queue.
478 	 */
479 	struct netmap_kring *tx_rings; /* array of TX rings. */
480 	struct netmap_kring *rx_rings; /* array of RX rings. */
481 
482 	void *tailroom;		       /* space below the rings array */
483 				       /* (used for leases) */
484 
485 
486 	NM_SELINFO_T tx_si, rx_si;	/* global wait queues */
487 
488 	/* count users of the global wait queues */
489 	int tx_si_users, rx_si_users;
490 
491 	void *pdev; /* used to store pci device */
492 
493 	/* copy of if_qflush and if_transmit pointers, to intercept
494 	 * packets from the network stack when netmap is active.
495 	 */
496 	int     (*if_transmit)(struct ifnet *, struct mbuf *);
497 
498 	/* copy of if_input for netmap_send_up() */
499 	void     (*if_input)(struct ifnet *, struct mbuf *);
500 
501 	/* references to the ifnet and device routines, used by
502 	 * the generic netmap functions.
503 	 */
504 	struct ifnet *ifp; /* adapter is ifp->if_softc */
505 
506 	/*---- callbacks for this netmap adapter -----*/
507 	/*
508 	 * nm_dtor() is the cleanup routine called when destroying
509 	 *	the adapter.
510 	 *	Called with NMG_LOCK held.
511 	 *
512 	 * nm_register() is called on NIOCREGIF and close() to enter
513 	 *	or exit netmap mode on the NIC
514 	 *	Called with NNG_LOCK held.
515 	 *
516 	 * nm_txsync() pushes packets to the underlying hw/switch
517 	 *
518 	 * nm_rxsync() collects packets from the underlying hw/switch
519 	 *
520 	 * nm_config() returns configuration information from the OS
521 	 *	Called with NMG_LOCK held.
522 	 *
523 	 * nm_krings_create() create and init the tx_rings and
524 	 * 	rx_rings arrays of kring structures. In particular,
525 	 * 	set the nm_sync callbacks for each ring.
526 	 * 	There is no need to also allocate the corresponding
527 	 * 	netmap_rings, since netmap_mem_rings_create() will always
528 	 * 	be called to provide the missing ones.
529 	 *	Called with NNG_LOCK held.
530 	 *
531 	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
532 	 * 	arrays
533 	 *	Called with NMG_LOCK held.
534 	 *
535 	 * nm_notify() is used to act after data have become available
536 	 * 	(or the stopped state of the ring has changed)
537 	 *	For hw devices this is typically a selwakeup(),
538 	 *	but for NIC/host ports attached to a switch (or vice-versa)
539 	 *	we also need to invoke the 'txsync' code downstream.
540 	 */
541 	void (*nm_dtor)(struct netmap_adapter *);
542 
543 	int (*nm_register)(struct netmap_adapter *, int onoff);
544 
545 	int (*nm_txsync)(struct netmap_kring *kring, int flags);
546 	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
547 #define NAF_FORCE_READ    1
548 #define NAF_FORCE_RECLAIM 2
549 	/* return configuration information */
550 	int (*nm_config)(struct netmap_adapter *,
551 		u_int *txr, u_int *txd, u_int *rxr, u_int *rxd);
552 	int (*nm_krings_create)(struct netmap_adapter *);
553 	void (*nm_krings_delete)(struct netmap_adapter *);
554 	int (*nm_notify)(struct netmap_adapter *,
555 		u_int ring, enum txrx, int flags);
556 #define NAF_DISABLE_NOTIFY 8	/* notify that the stopped state of the
557 				 * ring has changed (kring->nkr_stopped)
558 				 */
559 
560 #ifdef WITH_VALE
561 	/*
562 	 * nm_bdg_attach() initializes the na_vp field to point
563 	 *      to an adapter that can be attached to a VALE switch. If the
564 	 *      current adapter is already a VALE port, na_vp is simply a cast;
565 	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
566 	 *      If applicable, this callback also initializes na_hostvp,
567 	 *      that can be used to connect the adapter host rings to the
568 	 *      switch.
569 	 *      Called with NMG_LOCK held.
570 	 *
571 	 * nm_bdg_ctl() is called on the actual attach/detach to/from
572 	 *      to/from the switch, to perform adapter-specific
573 	 *      initializations
574 	 *      Called with NMG_LOCK held.
575 	 */
576 	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *);
577 	int (*nm_bdg_ctl)(struct netmap_adapter *, struct nmreq *, int);
578 
579 	/* adapter used to attach this adapter to a VALE switch (if any) */
580 	struct netmap_vp_adapter *na_vp;
581 	/* adapter used to attach the host rings of this adapter
582 	 * to a VALE switch (if any) */
583 	struct netmap_vp_adapter *na_hostvp;
584 #endif
585 
586 	/* standard refcount to control the lifetime of the adapter
587 	 * (it should be equal to the lifetime of the corresponding ifp)
588 	 */
589 	int na_refcount;
590 
591 	/* memory allocator (opaque)
592 	 * We also cache a pointer to the lut_entry for translating
593 	 * buffer addresses, and the total number of buffers.
594 	 */
595  	struct netmap_mem_d *nm_mem;
596 	struct lut_entry *na_lut;
597 	uint32_t na_lut_objtotal;	/* max buffer index */
598 	uint32_t na_lut_objsize;	/* buffer size */
599 
600 	/* additional information attached to this adapter
601 	 * by other netmap subsystems. Currently used by
602 	 * bwrap and LINUX/v1000.
603 	 */
604 	void *na_private;
605 
606 #ifdef WITH_PIPES
607 	/* array of pipes that have this adapter as a parent */
608 	struct netmap_pipe_adapter **na_pipes;
609 	int na_next_pipe;	/* next free slot in the array */
610 	int na_max_pipes;	/* size of the array */
611 #endif /* WITH_PIPES */
612 
613 	char name[64];
614 };
615 
616 
617 /*
618  * If the NIC is owned by the kernel
619  * (i.e., bridge), neither another bridge nor user can use it;
620  * if the NIC is owned by a user, only users can share it.
621  * Evaluation must be done under NMG_LOCK().
622  */
623 #define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
624 #define NETMAP_OWNED_BY_ANY(na) \
625 	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
626 
627 
628 /*
629  * derived netmap adapters for various types of ports
630  */
631 struct netmap_vp_adapter {	/* VALE software port */
632 	struct netmap_adapter up;
633 
634 	/*
635 	 * Bridge support:
636 	 *
637 	 * bdg_port is the port number used in the bridge;
638 	 * na_bdg points to the bridge this NA is attached to.
639 	 */
640 	int bdg_port;
641 	struct nm_bridge *na_bdg;
642 	int retry;
643 
644 	/* Offset of ethernet header for each packet. */
645 	u_int virt_hdr_len;
646 	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
647 	u_int mfs;
648 };
649 
650 
651 struct netmap_hw_adapter {	/* physical device */
652 	struct netmap_adapter up;
653 
654 	struct net_device_ops nm_ndo;	// XXX linux only
655 	struct ethtool_ops    nm_eto;	// XXX linux only
656 	const struct ethtool_ops*   save_ethtool;
657 
658 	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
659 };
660 
661 #ifdef WITH_GENERIC
662 /* Mitigation support. */
663 struct nm_generic_mit {
664 	struct hrtimer mit_timer;
665 	int mit_pending;
666 	int mit_ring_idx;  /* index of the ring being mitigated */
667 	struct netmap_adapter *mit_na;  /* backpointer */
668 };
669 
670 struct netmap_generic_adapter {	/* emulated device */
671 	struct netmap_hw_adapter up;
672 
673 	/* Pointer to a previously used netmap adapter. */
674 	struct netmap_adapter *prev;
675 
676 	/* generic netmap adapters support:
677 	 * a net_device_ops struct overrides ndo_select_queue(),
678 	 * save_if_input saves the if_input hook (FreeBSD),
679 	 * mit implements rx interrupt mitigation,
680 	 */
681 	struct net_device_ops generic_ndo;
682 	void (*save_if_input)(struct ifnet *, struct mbuf *);
683 
684 	struct nm_generic_mit *mit;
685 #ifdef linux
686         netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
687 #endif
688 };
689 #endif  /* WITH_GENERIC */
690 
691 static __inline int
692 netmap_real_tx_rings(struct netmap_adapter *na)
693 {
694 	return na->num_tx_rings + !!(na->na_flags & NAF_HOST_RINGS);
695 }
696 
697 static __inline int
698 netmap_real_rx_rings(struct netmap_adapter *na)
699 {
700 	return na->num_rx_rings + !!(na->na_flags & NAF_HOST_RINGS);
701 }
702 
703 #ifdef WITH_VALE
704 
705 /*
706  * Bridge wrapper for non VALE ports attached to a VALE switch.
707  *
708  * The real device must already have its own netmap adapter (hwna).
709  * The bridge wrapper and the hwna adapter share the same set of
710  * netmap rings and buffers, but they have two separate sets of
711  * krings descriptors, with tx/rx meanings swapped:
712  *
713  *                                  netmap
714  *           bwrap     krings       rings      krings      hwna
715  *         +------+   +------+     +-----+    +------+   +------+
716  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
717  *         |      |   +------+ \ / +-----+    +------+   |      |
718  *         |      |             X                        |      |
719  *         |      |            / \                       |      |
720  *         |      |   +------+/   \+-----+    +------+   |      |
721  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
722  *         |      |   +------+     +-----+    +------+   |      |
723  *         +------+                                      +------+
724  *
725  * - packets coming from the bridge go to the brwap rx rings,
726  *   which are also the hwna tx rings.  The bwrap notify callback
727  *   will then complete the hwna tx (see netmap_bwrap_notify).
728  *
729  * - packets coming from the outside go to the hwna rx rings,
730  *   which are also the bwrap tx rings.  The (overwritten) hwna
731  *   notify method will then complete the bridge tx
732  *   (see netmap_bwrap_intr_notify).
733  *
734  *   The bridge wrapper may optionally connect the hwna 'host' rings
735  *   to the bridge. This is done by using a second port in the
736  *   bridge and connecting it to the 'host' netmap_vp_adapter
737  *   contained in the netmap_bwrap_adapter. The brwap host adapter
738  *   cross-links the hwna host rings in the same way as shown above.
739  *
740  * - packets coming from the bridge and directed to the host stack
741  *   are handled by the bwrap host notify callback
742  *   (see netmap_bwrap_host_notify)
743  *
744  * - packets coming from the host stack are still handled by the
745  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
746  *   but are diverted to the host adapter depending on the ring number.
747  *
748  */
749 struct netmap_bwrap_adapter {
750 	struct netmap_vp_adapter up;
751 	struct netmap_vp_adapter host;  /* for host rings */
752 	struct netmap_adapter *hwna;	/* the underlying device */
753 
754 	/* backup of the hwna notify callback */
755 	int (*save_notify)(struct netmap_adapter *,
756 			u_int ring, enum txrx, int flags);
757 	/* backup of the hwna memory allocator */
758 	struct netmap_mem_d *save_nmd;
759 
760 	/*
761 	 * When we attach a physical interface to the bridge, we
762 	 * allow the controlling process to terminate, so we need
763 	 * a place to store the n_detmap_priv_d data structure.
764 	 * This is only done when physical interfaces
765 	 * are attached to a bridge.
766 	 */
767 	struct netmap_priv_d *na_kpriv;
768 };
769 int netmap_bwrap_attach(const char *name, struct netmap_adapter *);
770 
771 
772 #endif /* WITH_VALE */
773 
774 #ifdef WITH_PIPES
775 
776 #define NM_MAXPIPES 	64	/* max number of pipes per adapter */
777 
778 struct netmap_pipe_adapter {
779 	struct netmap_adapter up;
780 
781 	u_int id; 	/* pipe identifier */
782 	int role;	/* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */
783 
784 	struct netmap_adapter *parent; /* adapter that owns the memory */
785 	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
786 	int peer_ref;		/* 1 iff we are holding a ref to the peer */
787 
788 	u_int parent_slot; /* index in the parent pipe array */
789 };
790 
791 #endif /* WITH_PIPES */
792 
793 
794 /* return slots reserved to rx clients; used in drivers */
795 static inline uint32_t
796 nm_kr_rxspace(struct netmap_kring *k)
797 {
798 	int space = k->nr_hwtail - k->nr_hwcur;
799 	if (space < 0)
800 		space += k->nkr_num_slots;
801 	ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
802 
803 	return space;
804 }
805 
806 
807 /* True if no space in the tx ring. only valid after txsync_prologue */
808 static inline int
809 nm_kr_txempty(struct netmap_kring *kring)
810 {
811 	return kring->rcur == kring->nr_hwtail;
812 }
813 
814 
815 /*
816  * protect against multiple threads using the same ring.
817  * also check that the ring has not been stopped.
818  * We only care for 0 or !=0 as a return code.
819  */
820 #define NM_KR_BUSY	1
821 #define NM_KR_STOPPED	2
822 
823 
824 static __inline void nm_kr_put(struct netmap_kring *kr)
825 {
826 	NM_ATOMIC_CLEAR(&kr->nr_busy);
827 }
828 
829 
830 static __inline int nm_kr_tryget(struct netmap_kring *kr)
831 {
832 	/* check a first time without taking the lock
833 	 * to avoid starvation for nm_kr_get()
834 	 */
835 	if (unlikely(kr->nkr_stopped)) {
836 		ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
837 		return NM_KR_STOPPED;
838 	}
839 	if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)))
840 		return NM_KR_BUSY;
841 	/* check a second time with lock held */
842 	if (unlikely(kr->nkr_stopped)) {
843 		ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
844 		nm_kr_put(kr);
845 		return NM_KR_STOPPED;
846 	}
847 	return 0;
848 }
849 
850 
851 /*
852  * The following functions are used by individual drivers to
853  * support netmap operation.
854  *
855  * netmap_attach() initializes a struct netmap_adapter, allocating the
856  * 	struct netmap_ring's and the struct selinfo.
857  *
858  * netmap_detach() frees the memory allocated by netmap_attach().
859  *
860  * netmap_transmit() replaces the if_transmit routine of the interface,
861  *	and is used to intercept packets coming from the stack.
862  *
863  * netmap_load_map/netmap_reload_map are helper routines to set/reset
864  *	the dmamap for a packet buffer
865  *
866  * netmap_reset() is a helper routine to be called in the hw driver
867  *	when reinitializing a ring. It should not be called by
868  *	virtual ports (vale, pipes, monitor)
869  */
870 int netmap_attach(struct netmap_adapter *);
871 void netmap_detach(struct ifnet *);
872 int netmap_transmit(struct ifnet *, struct mbuf *);
873 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
874 	enum txrx tx, u_int n, u_int new_cur);
875 int netmap_ring_reinit(struct netmap_kring *);
876 
877 /* default functions to handle rx/tx interrupts */
878 int netmap_rx_irq(struct ifnet *, u_int, u_int *);
879 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
880 void netmap_common_irq(struct ifnet *, u_int, u_int *work_done);
881 
882 
883 #ifdef WITH_VALE
884 /* functions used by external modules to interface with VALE */
885 #define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
886 #define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
887 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
888 #define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
889 const char *netmap_bdg_name(struct netmap_vp_adapter *);
890 #else /* !WITH_VALE */
891 #define netmap_vp_to_ifp(_vp)	NULL
892 #define netmap_ifp_to_vp(_ifp)	NULL
893 #define netmap_ifp_to_host_vp(_ifp) NULL
894 #define netmap_bdg_idx(_vp)	-1
895 #define netmap_bdg_name(_vp)	NULL
896 #endif /* WITH_VALE */
897 
898 static inline int
899 nm_native_on(struct netmap_adapter *na)
900 {
901 	return na && na->na_flags & NAF_NATIVE_ON;
902 }
903 
904 static inline int
905 nm_netmap_on(struct netmap_adapter *na)
906 {
907 	return na && na->na_flags & NAF_NETMAP_ON;
908 }
909 
910 /* set/clear native flags and if_transmit/netdev_ops */
911 static inline void
912 nm_set_native_flags(struct netmap_adapter *na)
913 {
914 	struct ifnet *ifp = na->ifp;
915 
916 	na->na_flags |= (NAF_NATIVE_ON | NAF_NETMAP_ON);
917 #ifdef IFCAP_NETMAP /* or FreeBSD ? */
918 	ifp->if_capenable |= IFCAP_NETMAP;
919 #endif
920 #ifdef __FreeBSD__
921 	na->if_transmit = ifp->if_transmit;
922 	ifp->if_transmit = netmap_transmit;
923 #else
924 	na->if_transmit = (void *)ifp->netdev_ops;
925 	ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo;
926 	((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops;
927 	ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto;
928 #endif
929 }
930 
931 
932 static inline void
933 nm_clear_native_flags(struct netmap_adapter *na)
934 {
935 	struct ifnet *ifp = na->ifp;
936 
937 #ifdef __FreeBSD__
938 	ifp->if_transmit = na->if_transmit;
939 #else
940 	ifp->netdev_ops = (void *)na->if_transmit;
941 	ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool;
942 #endif
943 	na->na_flags &= ~(NAF_NATIVE_ON | NAF_NETMAP_ON);
944 #ifdef IFCAP_NETMAP /* or FreeBSD ? */
945 	ifp->if_capenable &= ~IFCAP_NETMAP;
946 #endif
947 }
948 
949 
950 /*
951  * validates parameters in the ring/kring, returns a value for head
952  * If any error, returns ring_size to force a reinit.
953  */
954 uint32_t nm_txsync_prologue(struct netmap_kring *);
955 
956 
957 /*
958  * validates parameters in the ring/kring, returns a value for head,
959  * and the 'reserved' value in the argument.
960  * If any error, returns ring_size lim to force a reinit.
961  */
962 uint32_t nm_rxsync_prologue(struct netmap_kring *);
963 
964 
965 /*
966  * update kring and ring at the end of txsync.
967  */
968 static inline void
969 nm_txsync_finalize(struct netmap_kring *kring)
970 {
971 	/* update ring tail to what the kernel knows */
972 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
973 
974 	/* note, head/rhead/hwcur might be behind cur/rcur
975 	 * if no carrier
976 	 */
977 	ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
978 		kring->name, kring->nr_hwcur, kring->nr_hwtail,
979 		kring->rhead, kring->rcur, kring->rtail);
980 }
981 
982 
983 /*
984  * update kring and ring at the end of rxsync
985  */
986 static inline void
987 nm_rxsync_finalize(struct netmap_kring *kring)
988 {
989 	/* tell userspace that there might be new packets */
990 	//struct netmap_ring *ring = kring->ring;
991 	ND("head %d cur %d tail %d -> %d", ring->head, ring->cur, ring->tail,
992 		kring->nr_hwtail);
993 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
994 	/* make a copy of the state for next round */
995 	kring->rhead = kring->ring->head;
996 	kring->rcur = kring->ring->cur;
997 }
998 
999 
1000 /* check/fix address and len in tx rings */
1001 #if 1 /* debug version */
1002 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1003 	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1004 		RD(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1005 			kring->ring_id, nm_i, slot->buf_idx, len);	\
1006 		if (_l > NETMAP_BUF_SIZE(_na))				\
1007 			_l = NETMAP_BUF_SIZE(_na);			\
1008 	} } while (0)
1009 #else /* no debug version */
1010 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1011 		if (_l > NETMAP_BUF_SIZE(_na))				\
1012 			_l = NETMAP_BUF_SIZE(_na);			\
1013 	} while (0)
1014 #endif
1015 
1016 
1017 /*---------------------------------------------------------------*/
1018 /*
1019  * Support routines used by netmap subsystems
1020  * (native drivers, VALE, generic, pipes, monitors, ...)
1021  */
1022 
1023 
1024 /* common routine for all functions that create a netmap adapter. It performs
1025  * two main tasks:
1026  * - if the na points to an ifp, mark the ifp as netmap capable
1027  *   using na as its native adapter;
1028  * - provide defaults for the setup callbacks and the memory allocator
1029  */
1030 int netmap_attach_common(struct netmap_adapter *);
1031 /* common actions to be performed on netmap adapter destruction */
1032 void netmap_detach_common(struct netmap_adapter *);
1033 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1034  * coming from a struct nmreq
1035  */
1036 int netmap_interp_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags);
1037 /* update the ring parameters (number and size of tx and rx rings).
1038  * It calls the nm_config callback, if available.
1039  */
1040 int netmap_update_config(struct netmap_adapter *na);
1041 /* create and initialize the common fields of the krings array.
1042  * using the information that must be already available in the na.
1043  * tailroom can be used to request the allocation of additional
1044  * tailroom bytes after the krings array. This is used by
1045  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1046  * leasing-related data structures
1047  */
1048 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1049 /* deletes the kring array of the adapter. The array must have
1050  * been created using netmap_krings_create
1051  */
1052 void netmap_krings_delete(struct netmap_adapter *na);
1053 
1054 /* set the stopped/enabled status of ring
1055  * When stopping, they also wait for all current activity on the ring to
1056  * terminate. The status change is then notified using the na nm_notify
1057  * callback.
1058  */
1059 void netmap_set_txring(struct netmap_adapter *, u_int ring_id, int stopped);
1060 void netmap_set_rxring(struct netmap_adapter *, u_int ring_id, int stopped);
1061 /* set the stopped/enabled status of all rings of the adapter. */
1062 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1063 /* convenience wrappers for netmap_set_all_rings, used in drivers */
1064 void netmap_disable_all_rings(struct ifnet *);
1065 void netmap_enable_all_rings(struct ifnet *);
1066 
1067 int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait);
1068 
1069 struct netmap_if *
1070 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1071 	uint16_t ringid, uint32_t flags, int *err);
1072 
1073 
1074 
1075 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1076 int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1077 int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na);
1078 
1079 
1080 #ifdef WITH_VALE
1081 /*
1082  * The following bridge-related functions are used by other
1083  * kernel modules.
1084  *
1085  * VALE only supports unicast or broadcast. The lookup
1086  * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports,
1087  * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown.
1088  * XXX in practice "unknown" might be handled same as broadcast.
1089  */
1090 typedef u_int (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr,
1091 		const struct netmap_vp_adapter *);
1092 typedef int (*bdg_config_fn_t)(struct nm_ifreq *);
1093 typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *);
1094 struct netmap_bdg_ops {
1095 	bdg_lookup_fn_t lookup;
1096 	bdg_config_fn_t config;
1097 	bdg_dtor_fn_t	dtor;
1098 };
1099 
1100 u_int netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1101 		const struct netmap_vp_adapter *);
1102 
1103 #define	NM_BDG_MAXPORTS		254	/* up to 254 */
1104 #define	NM_BDG_BROADCAST	NM_BDG_MAXPORTS
1105 #define	NM_BDG_NOPORT		(NM_BDG_MAXPORTS+1)
1106 
1107 #define	NM_NAME			"vale"	/* prefix for bridge port name */
1108 
1109 /* these are redefined in case of no VALE support */
1110 int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1111 void netmap_init_bridges(void);
1112 int netmap_bdg_ctl(struct nmreq *nmr, struct netmap_bdg_ops *bdg_ops);
1113 int netmap_bdg_config(struct nmreq *nmr);
1114 
1115 #else /* !WITH_VALE */
1116 #define	netmap_get_bdg_na(_1, _2, _3)	0
1117 #define netmap_init_bridges(_1)
1118 #define	netmap_bdg_ctl(_1, _2)	EINVAL
1119 #endif /* !WITH_VALE */
1120 
1121 #ifdef WITH_PIPES
1122 /* max number of pipes per device */
1123 #define NM_MAXPIPES	64	/* XXX how many? */
1124 /* in case of no error, returns the actual number of pipes in nmr->nr_arg1 */
1125 int netmap_pipe_alloc(struct netmap_adapter *, struct nmreq *nmr);
1126 void netmap_pipe_dealloc(struct netmap_adapter *);
1127 int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1128 #else /* !WITH_PIPES */
1129 #define NM_MAXPIPES	0
1130 #define netmap_pipe_alloc(_1, _2) 	EOPNOTSUPP
1131 #define netmap_pipe_dealloc(_1)
1132 #define netmap_get_pipe_na(_1, _2, _3)	0
1133 #endif
1134 
1135 #ifdef WITH_MONITOR
1136 int netmap_get_monitor_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1137 #else
1138 #define netmap_get_monitor_na(_1, _2, _3) 0
1139 #endif
1140 
1141 /* Various prototypes */
1142 int netmap_poll(struct cdev *dev, int events, struct thread *td);
1143 int netmap_init(void);
1144 void netmap_fini(void);
1145 int netmap_get_memory(struct netmap_priv_d* p);
1146 void netmap_dtor(void *data);
1147 int netmap_dtor_locked(struct netmap_priv_d *priv);
1148 
1149 int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td);
1150 
1151 /* netmap_adapter creation/destruction */
1152 
1153 // #define NM_DEBUG_PUTGET 1
1154 
1155 #ifdef NM_DEBUG_PUTGET
1156 
1157 #define NM_DBG(f) __##f
1158 
1159 void __netmap_adapter_get(struct netmap_adapter *na);
1160 
1161 #define netmap_adapter_get(na) 				\
1162 	do {						\
1163 		struct netmap_adapter *__na = na;	\
1164 		D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1165 		__netmap_adapter_get(__na);		\
1166 	} while (0)
1167 
1168 int __netmap_adapter_put(struct netmap_adapter *na);
1169 
1170 #define netmap_adapter_put(na)				\
1171 	({						\
1172 		struct netmap_adapter *__na = na;	\
1173 		D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1174 		__netmap_adapter_put(__na);		\
1175 	})
1176 
1177 #else /* !NM_DEBUG_PUTGET */
1178 
1179 #define NM_DBG(f) f
1180 void netmap_adapter_get(struct netmap_adapter *na);
1181 int netmap_adapter_put(struct netmap_adapter *na);
1182 
1183 #endif /* !NM_DEBUG_PUTGET */
1184 
1185 
1186 /*
1187  * module variables
1188  */
1189 #define NETMAP_BUF_BASE(na)	((na)->na_lut[0].vaddr)
1190 #define NETMAP_BUF_SIZE(na)	((na)->na_lut_objsize)
1191 extern int netmap_mitigate;	// XXX not really used
1192 extern int netmap_no_pendintr;
1193 extern int netmap_verbose;	// XXX debugging
1194 enum {                                  /* verbose flags */
1195 	NM_VERB_ON = 1,                 /* generic verbose */
1196 	NM_VERB_HOST = 0x2,             /* verbose host stack */
1197 	NM_VERB_RXSYNC = 0x10,          /* verbose on rxsync/txsync */
1198 	NM_VERB_TXSYNC = 0x20,
1199 	NM_VERB_RXINTR = 0x100,         /* verbose on rx/tx intr (driver) */
1200 	NM_VERB_TXINTR = 0x200,
1201 	NM_VERB_NIC_RXSYNC = 0x1000,    /* verbose on rx/tx intr (driver) */
1202 	NM_VERB_NIC_TXSYNC = 0x2000,
1203 };
1204 
1205 extern int netmap_txsync_retry;
1206 extern int netmap_generic_mit;
1207 extern int netmap_generic_ringsize;
1208 extern int netmap_generic_rings;
1209 
1210 /*
1211  * NA returns a pointer to the struct netmap adapter from the ifp,
1212  * WNA is used to write it.
1213  */
1214 #define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1215 
1216 /*
1217  * Macros to determine if an interface is netmap capable or netmap enabled.
1218  * See the magic field in struct netmap_adapter.
1219  */
1220 #ifdef __FreeBSD__
1221 /*
1222  * on FreeBSD just use if_capabilities and if_capenable.
1223  */
1224 #define NETMAP_CAPABLE(ifp)	(NA(ifp) &&		\
1225 	(ifp)->if_capabilities & IFCAP_NETMAP )
1226 
1227 #define	NETMAP_SET_CAPABLE(ifp)				\
1228 	(ifp)->if_capabilities |= IFCAP_NETMAP
1229 
1230 #else	/* linux */
1231 
1232 /*
1233  * on linux:
1234  * we check if NA(ifp) is set and its first element has a related
1235  * magic value. The capenable is within the struct netmap_adapter.
1236  */
1237 #define	NETMAP_MAGIC	0x52697a7a
1238 
1239 #define NETMAP_CAPABLE(ifp)	(NA(ifp) &&		\
1240 	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1241 
1242 #define	NETMAP_SET_CAPABLE(ifp)				\
1243 	NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC
1244 
1245 #endif	/* linux */
1246 
1247 #ifdef __FreeBSD__
1248 
1249 /* Assigns the device IOMMU domain to an allocator.
1250  * Returns -ENOMEM in case the domain is different */
1251 #define nm_iommu_group_id(dev) (0)
1252 
1253 /* Callback invoked by the dma machinery after a successful dmamap_load */
1254 static void netmap_dmamap_cb(__unused void *arg,
1255     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1256 {
1257 }
1258 
1259 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1260  * XXX can we do it without a callback ?
1261  */
1262 static inline void
1263 netmap_load_map(struct netmap_adapter *na,
1264 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1265 {
1266 	if (map)
1267 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1268 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1269 }
1270 
1271 static inline void
1272 netmap_unload_map(struct netmap_adapter *na,
1273         bus_dma_tag_t tag, bus_dmamap_t map)
1274 {
1275 	if (map)
1276 		bus_dmamap_unload(tag, map);
1277 }
1278 
1279 /* update the map when a buffer changes. */
1280 static inline void
1281 netmap_reload_map(struct netmap_adapter *na,
1282 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1283 {
1284 	if (map) {
1285 		bus_dmamap_unload(tag, map);
1286 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1287 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1288 	}
1289 }
1290 
1291 #else /* linux */
1292 
1293 int nm_iommu_group_id(bus_dma_tag_t dev);
1294 extern size_t     netmap_mem_get_bufsize(struct netmap_mem_d *);
1295 #include <linux/dma-mapping.h>
1296 
1297 static inline void
1298 netmap_load_map(struct netmap_adapter *na,
1299 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1300 {
1301 	if (map) {
1302 		*map = dma_map_single(na->pdev, buf, netmap_mem_get_bufsize(na->nm_mem),
1303 				DMA_BIDIRECTIONAL);
1304 	}
1305 }
1306 
1307 static inline void
1308 netmap_unload_map(struct netmap_adapter *na,
1309 	bus_dma_tag_t tag, bus_dmamap_t map)
1310 {
1311 	u_int sz = netmap_mem_get_bufsize(na->nm_mem);
1312 
1313 	if (*map) {
1314 		dma_unmap_single(na->pdev, *map, sz,
1315 				DMA_BIDIRECTIONAL);
1316 	}
1317 }
1318 
1319 static inline void
1320 netmap_reload_map(struct netmap_adapter *na,
1321 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1322 {
1323 	u_int sz = netmap_mem_get_bufsize(na->nm_mem);
1324 
1325 	if (*map) {
1326 		dma_unmap_single(na->pdev, *map, sz,
1327 				DMA_BIDIRECTIONAL);
1328 	}
1329 
1330 	*map = dma_map_single(na->pdev, buf, sz,
1331 				DMA_BIDIRECTIONAL);
1332 }
1333 
1334 /*
1335  * XXX How do we redefine these functions:
1336  *
1337  * on linux we need
1338  *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1339  *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction
1340  * The len can be implicit (on netmap it is NETMAP_BUF_SIZE)
1341  * unfortunately the direction is not, so we need to change
1342  * something to have a cross API
1343  */
1344 
1345 #if 0
1346 	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1347 	/* set time_stamp *before* dma to help avoid a possible race */
1348 	buffer_info->time_stamp = jiffies;
1349 	buffer_info->mapped_as_page = false;
1350 	buffer_info->length = len;
1351 	//buffer_info->next_to_watch = l;
1352 	/* reload dma map */
1353 	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1354 			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1355 	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1356 			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1357 
1358 	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1359 		D("dma mapping error");
1360 		/* goto dma_error; See e1000_put_txbuf() */
1361 		/* XXX reset */
1362 	}
1363 	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1364 
1365 #endif
1366 
1367 /*
1368  * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction.
1369  */
1370 #define bus_dmamap_sync(_a, _b, _c)
1371 
1372 #endif /* linux */
1373 
1374 
1375 /*
1376  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1377  */
1378 static inline int
1379 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1380 {
1381 	int n = kr->nkr_num_slots;
1382 	idx += kr->nkr_hwofs;
1383 	if (idx < 0)
1384 		return idx + n;
1385 	else if (idx < n)
1386 		return idx;
1387 	else
1388 		return idx - n;
1389 }
1390 
1391 
1392 static inline int
1393 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1394 {
1395 	int n = kr->nkr_num_slots;
1396 	idx -= kr->nkr_hwofs;
1397 	if (idx < 0)
1398 		return idx + n;
1399 	else if (idx < n)
1400 		return idx;
1401 	else
1402 		return idx - n;
1403 }
1404 
1405 
1406 /* Entries of the look-up table. */
1407 struct lut_entry {
1408 	void *vaddr;		/* virtual address. */
1409 	vm_paddr_t paddr;	/* physical address. */
1410 };
1411 
1412 struct netmap_obj_pool;
1413 
1414 /*
1415  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1416  * PNMB also fills the physical address
1417  */
1418 static inline void *
1419 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1420 {
1421 	struct lut_entry *lut = na->na_lut;
1422 	uint32_t i = slot->buf_idx;
1423 	return (unlikely(i >= na->na_lut_objtotal)) ?
1424 		lut[0].vaddr : lut[i].vaddr;
1425 }
1426 
1427 static inline void *
1428 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1429 {
1430 	uint32_t i = slot->buf_idx;
1431 	struct lut_entry *lut = na->na_lut;
1432 	void *ret = (i >= na->na_lut_objtotal) ? lut[0].vaddr : lut[i].vaddr;
1433 
1434 	*pp = (i >= na->na_lut_objtotal) ? lut[0].paddr : lut[i].paddr;
1435 	return ret;
1436 }
1437 
1438 /* Generic version of NMB, which uses device-specific memory. */
1439 
1440 
1441 
1442 void netmap_txsync_to_host(struct netmap_adapter *na);
1443 
1444 
1445 /*
1446  * Structure associated to each thread which registered an interface.
1447  *
1448  * The first 4 fields of this structure are written by NIOCREGIF and
1449  * read by poll() and NIOC?XSYNC.
1450  *
1451  * There is low contention among writers (a correct user program
1452  * should have none) and among writers and readers, so we use a
1453  * single global lock to protect the structure initialization;
1454  * since initialization involves the allocation of memory,
1455  * we reuse the memory allocator lock.
1456  *
1457  * Read access to the structure is lock free. Readers must check that
1458  * np_nifp is not NULL before using the other fields.
1459  * If np_nifp is NULL initialization has not been performed,
1460  * so they should return an error to userspace.
1461  *
1462  * The ref_done field is used to regulate access to the refcount in the
1463  * memory allocator. The refcount must be incremented at most once for
1464  * each open("/dev/netmap"). The increment is performed by the first
1465  * function that calls netmap_get_memory() (currently called by
1466  * mmap(), NIOCGINFO and NIOCREGIF).
1467  * If the refcount is incremented, it is then decremented when the
1468  * private structure is destroyed.
1469  */
1470 struct netmap_priv_d {
1471 	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
1472 
1473 	struct netmap_adapter	*np_na;
1474 	uint32_t	np_flags;	/* from the ioctl */
1475 	u_int		np_txqfirst, np_txqlast; /* range of tx rings to scan */
1476 	u_int		np_rxqfirst, np_rxqlast; /* range of rx rings to scan */
1477 	uint16_t	np_txpoll;	/* XXX and also np_rxpoll ? */
1478 
1479 	struct netmap_mem_d     *np_mref;	/* use with NMG_LOCK held */
1480 	/* np_refcount is only used on FreeBSD */
1481 	int		np_refcount;	/* use with NMG_LOCK held */
1482 
1483 	/* pointers to the selinfo to be used for selrecord.
1484 	 * Either the local or the global one depending on the
1485 	 * number of rings.
1486 	 */
1487 	NM_SELINFO_T *np_rxsi, *np_txsi;
1488 	struct thread	*np_td;		/* kqueue, just debugging */
1489 };
1490 
1491 #ifdef WITH_MONITOR
1492 
1493 struct netmap_monitor_adapter {
1494 	struct netmap_adapter up;
1495 
1496 	struct netmap_priv_d priv;
1497 	uint32_t flags;
1498 };
1499 
1500 #endif /* WITH_MONITOR */
1501 
1502 
1503 #ifdef WITH_GENERIC
1504 /*
1505  * generic netmap emulation for devices that do not have
1506  * native netmap support.
1507  */
1508 int generic_netmap_attach(struct ifnet *ifp);
1509 
1510 int netmap_catch_rx(struct netmap_adapter *na, int intercept);
1511 void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
1512 void netmap_catch_tx(struct netmap_generic_adapter *na, int enable);
1513 int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr);
1514 int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
1515 void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
1516 
1517 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
1518 #ifdef RATE_GENERIC
1519 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
1520 #else
1521 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
1522 #endif
1523 
1524 /*
1525  * netmap_mitigation API. This is used by the generic adapter
1526  * to reduce the number of interrupt requests/selwakeup
1527  * to clients on incoming packets.
1528  */
1529 void netmap_mitigation_init(struct nm_generic_mit *mit, int idx,
1530                                 struct netmap_adapter *na);
1531 void netmap_mitigation_start(struct nm_generic_mit *mit);
1532 void netmap_mitigation_restart(struct nm_generic_mit *mit);
1533 int netmap_mitigation_active(struct nm_generic_mit *mit);
1534 void netmap_mitigation_cleanup(struct nm_generic_mit *mit);
1535 #endif /* WITH_GENERIC */
1536 
1537 
1538 
1539 /* Shared declarations for the VALE switch. */
1540 
1541 /*
1542  * Each transmit queue accumulates a batch of packets into
1543  * a structure before forwarding. Packets to the same
1544  * destination are put in a list using ft_next as a link field.
1545  * ft_frags and ft_next are valid only on the first fragment.
1546  */
1547 struct nm_bdg_fwd {	/* forwarding entry for a bridge */
1548 	void *ft_buf;		/* netmap or indirect buffer */
1549 	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
1550 	uint8_t _ft_port;	/* dst port (unused) */
1551 	uint16_t ft_flags;	/* flags, e.g. indirect */
1552 	uint16_t ft_len;	/* src fragment len */
1553 	uint16_t ft_next;	/* next packet to same destination */
1554 };
1555 
1556 /* struct 'virtio_net_hdr' from linux. */
1557 struct nm_vnet_hdr {
1558 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
1559 #define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
1560     uint8_t flags;
1561 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
1562 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
1563 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
1564 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
1565 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
1566     uint8_t gso_type;
1567     uint16_t hdr_len;
1568     uint16_t gso_size;
1569     uint16_t csum_start;
1570     uint16_t csum_offset;
1571 };
1572 
1573 #define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
1574 
1575 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
1576 
1577 struct nm_iphdr {
1578 	uint8_t		version_ihl;
1579 	uint8_t		tos;
1580 	uint16_t	tot_len;
1581 	uint16_t	id;
1582 	uint16_t	frag_off;
1583 	uint8_t		ttl;
1584 	uint8_t		protocol;
1585 	uint16_t	check;
1586 	uint32_t	saddr;
1587 	uint32_t	daddr;
1588 	/*The options start here. */
1589 };
1590 
1591 struct nm_tcphdr {
1592 	uint16_t	source;
1593 	uint16_t	dest;
1594 	uint32_t	seq;
1595 	uint32_t	ack_seq;
1596 	uint8_t		doff;  /* Data offset + Reserved */
1597 	uint8_t		flags;
1598 	uint16_t	window;
1599 	uint16_t	check;
1600 	uint16_t	urg_ptr;
1601 };
1602 
1603 struct nm_udphdr {
1604 	uint16_t	source;
1605 	uint16_t	dest;
1606 	uint16_t	len;
1607 	uint16_t	check;
1608 };
1609 
1610 struct nm_ipv6hdr {
1611 	uint8_t		priority_version;
1612 	uint8_t		flow_lbl[3];
1613 
1614 	uint16_t	payload_len;
1615 	uint8_t		nexthdr;
1616 	uint8_t		hop_limit;
1617 
1618 	uint8_t		saddr[16];
1619 	uint8_t		daddr[16];
1620 };
1621 
1622 /* Type used to store a checksum (in host byte order) that hasn't been
1623  * folded yet.
1624  */
1625 #define rawsum_t uint32_t
1626 
1627 rawsum_t nm_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
1628 uint16_t nm_csum_ipv4(struct nm_iphdr *iph);
1629 void nm_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
1630 		      size_t datalen, uint16_t *check);
1631 void nm_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
1632 		      size_t datalen, uint16_t *check);
1633 uint16_t nm_csum_fold(rawsum_t cur_sum);
1634 
1635 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
1636 			   struct netmap_vp_adapter *dst_na,
1637 			   struct nm_bdg_fwd *ft_p, struct netmap_ring *ring,
1638 			   u_int *j, u_int lim, u_int *howmany);
1639 
1640 /* persistent virtual port routines */
1641 int nm_vi_persist(const char *, struct ifnet **);
1642 void nm_vi_detach(struct ifnet *);
1643 void nm_vi_init_index(void);
1644 
1645 #endif /* _NET_NETMAP_KERN_H_ */
1646