1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo 5 * Copyright (C) 2013-2016 Universita` di Pisa 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * $FreeBSD$ 32 * 33 * The header contains the definitions of constants and function 34 * prototypes used only in kernelspace. 35 */ 36 37 #ifndef _NET_NETMAP_KERN_H_ 38 #define _NET_NETMAP_KERN_H_ 39 40 #if defined(linux) 41 42 #if defined(CONFIG_NETMAP_EXTMEM) 43 #define WITH_EXTMEM 44 #endif 45 #if defined(CONFIG_NETMAP_VALE) 46 #define WITH_VALE 47 #endif 48 #if defined(CONFIG_NETMAP_PIPE) 49 #define WITH_PIPES 50 #endif 51 #if defined(CONFIG_NETMAP_MONITOR) 52 #define WITH_MONITOR 53 #endif 54 #if defined(CONFIG_NETMAP_GENERIC) 55 #define WITH_GENERIC 56 #endif 57 #if defined(CONFIG_NETMAP_PTNETMAP) 58 #define WITH_PTNETMAP 59 #endif 60 #if defined(CONFIG_NETMAP_SINK) 61 #define WITH_SINK 62 #endif 63 #if defined(CONFIG_NETMAP_NULL) 64 #define WITH_NMNULL 65 #endif 66 67 #elif defined (_WIN32) 68 #define WITH_VALE // comment out to disable VALE support 69 #define WITH_PIPES 70 #define WITH_MONITOR 71 #define WITH_GENERIC 72 #define WITH_NMNULL 73 74 #else /* neither linux nor windows */ 75 #define WITH_VALE // comment out to disable VALE support 76 #define WITH_PIPES 77 #define WITH_MONITOR 78 #define WITH_GENERIC 79 #define WITH_EXTMEM 80 #define WITH_NMNULL 81 #endif 82 83 #if defined(__FreeBSD__) 84 #include <sys/selinfo.h> 85 86 #define likely(x) __builtin_expect((long)!!(x), 1L) 87 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 88 #define __user 89 90 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 91 92 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 93 #define NM_MTX_INIT(m) sx_init(&(m), #m) 94 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 95 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 96 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; 97 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 98 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 99 100 #define NM_SELINFO_T struct nm_selinfo 101 #define NM_SELRECORD_T struct thread 102 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 103 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 104 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) 105 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 106 107 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ 108 /* atomic operations */ 109 #include <machine/atomic.h> 110 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 111 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 112 113 #if __FreeBSD_version >= 1100030 114 #define WNA(_ifp) (_ifp)->if_netmap 115 #else /* older FreeBSD */ 116 #define WNA(_ifp) (_ifp)->if_pspare[0] 117 #endif /* older FreeBSD */ 118 119 #if __FreeBSD_version >= 1100005 120 struct netmap_adapter *netmap_getna(if_t ifp); 121 #endif 122 123 #if __FreeBSD_version >= 1100027 124 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) 125 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x 126 #else 127 #define MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1) 128 #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x 129 #endif 130 131 #define MBUF_QUEUED(m) 1 132 133 struct nm_selinfo { 134 /* Support for select(2) and poll(2). */ 135 struct selinfo si; 136 /* Support for kqueue(9). See comments in netmap_freebsd.c */ 137 struct taskqueue *ntfytq; 138 struct task ntfytask; 139 struct mtx m; 140 char mtxname[32]; 141 int kqueue_users; 142 }; 143 144 145 struct hrtimer { 146 /* Not used in FreeBSD. */ 147 }; 148 149 #define NM_BNS_GET(b) 150 #define NM_BNS_PUT(b) 151 152 #elif defined (linux) 153 154 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 155 #define NM_SELINFO_T wait_queue_head_t 156 #define MBUF_LEN(m) ((m)->len) 157 #define MBUF_TRANSMIT(na, ifp, m) \ 158 ({ \ 159 /* Avoid infinite recursion with generic. */ \ 160 m->priority = NM_MAGIC_PRIORITY_TX; \ 161 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 162 0; \ 163 }) 164 165 /* See explanation in nm_os_generic_xmit_frame. */ 166 #define GEN_TX_MBUF_IFP(m) ((struct ifnet *)skb_shinfo(m)->destructor_arg) 167 168 #define NM_ATOMIC_T volatile long unsigned int 169 170 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 171 #define NM_MTX_INIT(m) mutex_init(&(m)) 172 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 173 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 174 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 175 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 176 177 #ifndef DEV_NETMAP 178 #define DEV_NETMAP 179 #endif /* DEV_NETMAP */ 180 181 #elif defined (__APPLE__) 182 183 #warning apple support is incomplete. 184 #define likely(x) __builtin_expect(!!(x), 1) 185 #define unlikely(x) __builtin_expect(!!(x), 0) 186 #define NM_LOCK_T IOLock * 187 #define NM_SELINFO_T struct selinfo 188 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 189 190 #elif defined (_WIN32) 191 #include "../../../WINDOWS/win_glue.h" 192 193 #define NM_SELRECORD_T IO_STACK_LOCATION 194 #define NM_SELINFO_T win_SELINFO // see win_glue.h 195 #define NM_LOCK_T win_spinlock_t // see win_glue.h 196 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ 197 198 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); 199 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 200 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) 201 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) 202 #define NM_MTX_ASSERT(m) assert(&m.Count>0) 203 204 //These linknames are for the NDIS driver 205 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" 206 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" 207 208 //Definition of internal driver-to-driver ioctl codes 209 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) 210 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) 211 212 typedef struct hrtimer{ 213 KTIMER timer; 214 BOOLEAN active; 215 KDPC deferred_proc; 216 }; 217 218 /* MSVC does not have likely/unlikely support */ 219 #ifdef _MSC_VER 220 #define likely(x) (x) 221 #define unlikely(x) (x) 222 #else 223 #define likely(x) __builtin_expect((long)!!(x), 1L) 224 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 225 #endif //_MSC_VER 226 227 #else 228 229 #error unsupported platform 230 231 #endif /* end - platform-specific code */ 232 233 #ifndef _WIN32 /* support for emulated sysctl */ 234 #define SYSBEGIN(x) 235 #define SYSEND 236 #endif /* _WIN32 */ 237 238 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) 239 240 #define NMG_LOCK_T NM_MTX_T 241 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 242 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 243 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 244 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 245 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 246 247 #if defined(__FreeBSD__) 248 #define nm_prerr_int printf 249 #define nm_prinf_int printf 250 #elif defined (_WIN32) 251 #define nm_prerr_int DbgPrint 252 #define nm_prinf_int DbgPrint 253 #elif defined(linux) 254 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) 255 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) 256 #endif 257 258 #define nm_prinf(format, ...) \ 259 do { \ 260 struct timeval __xxts; \ 261 microtime(&__xxts); \ 262 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ 263 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 264 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 265 } while (0) 266 267 #define nm_prerr(format, ...) \ 268 do { \ 269 struct timeval __xxts; \ 270 microtime(&__xxts); \ 271 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ 272 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 273 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 274 } while (0) 275 276 /* Disabled printf (used to be nm_prdis). */ 277 #define nm_prdis(format, ...) 278 279 /* Rate limited, lps indicates how many per second. */ 280 #define nm_prlim(lps, format, ...) \ 281 do { \ 282 static int t0, __cnt; \ 283 if (t0 != time_second) { \ 284 t0 = time_second; \ 285 __cnt = 0; \ 286 } \ 287 if (__cnt++ < lps) \ 288 nm_prinf(format, ##__VA_ARGS__); \ 289 } while (0) 290 291 struct netmap_adapter; 292 struct nm_bdg_fwd; 293 struct nm_bridge; 294 struct netmap_priv_d; 295 struct nm_bdg_args; 296 297 /* os-specific NM_SELINFO_T initialization/destruction functions */ 298 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); 299 void nm_os_selinfo_uninit(NM_SELINFO_T *); 300 301 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 302 303 void nm_os_selwakeup(NM_SELINFO_T *si); 304 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); 305 306 int nm_os_ifnet_init(void); 307 void nm_os_ifnet_fini(void); 308 void nm_os_ifnet_lock(void); 309 void nm_os_ifnet_unlock(void); 310 311 unsigned nm_os_ifnet_mtu(struct ifnet *ifp); 312 313 void nm_os_get_module(void); 314 void nm_os_put_module(void); 315 316 void netmap_make_zombie(struct ifnet *); 317 void netmap_undo_zombie(struct ifnet *); 318 319 /* os independent alloc/realloc/free */ 320 void *nm_os_malloc(size_t); 321 void *nm_os_vmalloc(size_t); 322 void *nm_os_realloc(void *, size_t new_size, size_t old_size); 323 void nm_os_free(void *); 324 void nm_os_vfree(void *); 325 326 /* os specific attach/detach enter/exit-netmap-mode routines */ 327 void nm_os_onattach(struct ifnet *); 328 void nm_os_ondetach(struct ifnet *); 329 void nm_os_onenter(struct ifnet *); 330 void nm_os_onexit(struct ifnet *); 331 332 /* passes a packet up to the host stack. 333 * If the packet is sent (or dropped) immediately it returns NULL, 334 * otherwise it links the packet to prev and returns m. 335 * In this case, a final call with m=NULL and prev != NULL will send up 336 * the entire chain to the host stack. 337 */ 338 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev); 339 340 int nm_os_mbuf_has_seg_offld(struct mbuf *m); 341 int nm_os_mbuf_has_csum_offld(struct mbuf *m); 342 343 #include "netmap_mbq.h" 344 345 extern NMG_LOCK_T netmap_global_lock; 346 347 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 348 349 static __inline const char* 350 nm_txrx2str(enum txrx t) 351 { 352 return (t== NR_RX ? "RX" : "TX"); 353 } 354 355 static __inline enum txrx 356 nm_txrx_swap(enum txrx t) 357 { 358 return (t== NR_RX ? NR_TX : NR_RX); 359 } 360 361 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 362 363 #ifdef WITH_MONITOR 364 struct netmap_zmon_list { 365 struct netmap_kring *next; 366 struct netmap_kring *prev; 367 }; 368 #endif /* WITH_MONITOR */ 369 370 /* 371 * private, kernel view of a ring. Keeps track of the status of 372 * a ring across system calls. 373 * 374 * nr_hwcur index of the next buffer to refill. 375 * It corresponds to ring->head 376 * at the time the system call returns. 377 * 378 * nr_hwtail index of the first buffer owned by the kernel. 379 * On RX, hwcur->hwtail are receive buffers 380 * not yet released. hwcur is advanced following 381 * ring->head, hwtail is advanced on incoming packets, 382 * and a wakeup is generated when hwtail passes ring->cur 383 * On TX, hwcur->rcur have been filled by the sender 384 * but not sent yet to the NIC; rcur->hwtail are available 385 * for new transmissions, and hwtail->hwcur-1 are pending 386 * transmissions not yet acknowledged. 387 * 388 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 389 * This is so that, on a reset, buffers owned by userspace are not 390 * modified by the kernel. In particular: 391 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 392 * the next empty buffer as known by the hardware (next_to_check or so). 393 * TX rings: hwcur + hwofs coincides with next_to_send 394 * 395 * The following fields are used to implement lock-free copy of packets 396 * from input to output ports in VALE switch: 397 * nkr_hwlease buffer after the last one being copied. 398 * A writer in nm_bdg_flush reserves N buffers 399 * from nr_hwlease, advances it, then does the 400 * copy outside the lock. 401 * In RX rings (used for VALE ports), 402 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 403 * In TX rings (used for NIC or host stack ports) 404 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 405 * nkr_leases array of nkr_num_slots where writers can report 406 * completion of their block. NR_NOSLOT (~0) indicates 407 * that the writer has not finished yet 408 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 409 * 410 * The kring is manipulated by txsync/rxsync and generic netmap function. 411 * 412 * Concurrent rxsync or txsync on the same ring are prevented through 413 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 414 * for NIC rings, and for TX rings attached to the host stack. 415 * 416 * RX rings attached to the host stack use an mbq (rx_queue) on both 417 * rxsync_from_host() and netmap_transmit(). The mbq is protected 418 * by its internal lock. 419 * 420 * RX rings attached to the VALE switch are accessed by both senders 421 * and receiver. They are protected through the q_lock on the RX ring. 422 */ 423 struct netmap_kring { 424 struct netmap_ring *ring; 425 426 uint32_t nr_hwcur; /* should be nr_hwhead */ 427 uint32_t nr_hwtail; 428 429 /* 430 * Copies of values in user rings, so we do not need to look 431 * at the ring (which could be modified). These are set in the 432 * *sync_prologue()/finalize() routines. 433 */ 434 uint32_t rhead; 435 uint32_t rcur; 436 uint32_t rtail; 437 438 uint32_t nr_kflags; /* private driver flags */ 439 #define NKR_PENDINTR 0x1 // Pending interrupt. 440 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 441 #define NKR_FORWARD 0x4 /* (host ring only) there are 442 packets to forward 443 */ 444 #define NKR_NEEDRING 0x8 /* ring needed even if users==0 445 * (used internally by pipes and 446 * by ptnetmap host ports) 447 */ 448 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ 449 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ 450 451 uint32_t nr_mode; 452 uint32_t nr_pending_mode; 453 #define NKR_NETMAP_OFF 0x0 454 #define NKR_NETMAP_ON 0x1 455 456 uint32_t nkr_num_slots; 457 458 /* 459 * On a NIC reset, the NIC ring indexes may be reset but the 460 * indexes in the netmap rings remain the same. nkr_hwofs 461 * keeps track of the offset between the two. 462 * 463 * Moreover, during reset, we can restore only the subset of 464 * the NIC ring that corresponds to the kernel-owned part of 465 * the netmap ring. The rest of the slots must be restored 466 * by the *sync routines when the user releases more slots. 467 * The nkr_to_refill field keeps track of the number of slots 468 * that still need to be restored. 469 */ 470 int32_t nkr_hwofs; 471 int32_t nkr_to_refill; 472 473 /* last_reclaim is opaque marker to help reduce the frequency 474 * of operations such as reclaiming tx buffers. A possible use 475 * is set it to ticks and do the reclaim only once per tick. 476 */ 477 uint64_t last_reclaim; 478 479 480 NM_SELINFO_T si; /* poll/select wait queue */ 481 NM_LOCK_T q_lock; /* protects kring and ring. */ 482 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 483 484 /* the adapter the owns this kring */ 485 struct netmap_adapter *na; 486 487 /* the adapter that wants to be notified when this kring has 488 * new slots available. This is usually the same as the above, 489 * but wrappers may let it point to themselves 490 */ 491 struct netmap_adapter *notify_na; 492 493 /* The following fields are for VALE switch support */ 494 struct nm_bdg_fwd *nkr_ft; 495 uint32_t *nkr_leases; 496 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 497 uint32_t nkr_hwlease; 498 uint32_t nkr_lease_idx; 499 500 /* while nkr_stopped is set, no new [tr]xsync operations can 501 * be started on this kring. 502 * This is used by netmap_disable_all_rings() 503 * to find a synchronization point where critical data 504 * structures pointed to by the kring can be added or removed 505 */ 506 volatile int nkr_stopped; 507 508 /* Support for adapters without native netmap support. 509 * On tx rings we preallocate an array of tx buffers 510 * (same size as the netmap ring), on rx rings we 511 * store incoming mbufs in a queue that is drained by 512 * a rxsync. 513 */ 514 struct mbuf **tx_pool; 515 struct mbuf *tx_event; /* TX event used as a notification */ 516 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ 517 struct mbq rx_queue; /* intercepted rx mbufs. */ 518 519 uint32_t users; /* existing bindings for this ring */ 520 521 uint32_t ring_id; /* kring identifier */ 522 enum txrx tx; /* kind of ring (tx or rx) */ 523 char name[64]; /* diagnostic */ 524 525 /* [tx]sync callback for this kring. 526 * The default nm_kring_create callback (netmap_krings_create) 527 * sets the nm_sync callback of each hardware tx(rx) kring to 528 * the corresponding nm_txsync(nm_rxsync) taken from the 529 * netmap_adapter; moreover, it sets the sync callback 530 * of the host tx(rx) ring to netmap_txsync_to_host 531 * (netmap_rxsync_from_host). 532 * 533 * Overrides: the above configuration is not changed by 534 * any of the nm_krings_create callbacks. 535 */ 536 int (*nm_sync)(struct netmap_kring *kring, int flags); 537 int (*nm_notify)(struct netmap_kring *kring, int flags); 538 539 #ifdef WITH_PIPES 540 struct netmap_kring *pipe; /* if this is a pipe ring, 541 * pointer to the other end 542 */ 543 uint32_t pipe_tail; /* hwtail updated by the other end */ 544 #endif /* WITH_PIPES */ 545 546 /* mask for the offset-related part of the ptr field in the slots */ 547 uint64_t offset_mask; 548 /* maximum user-specified offset, as stipulated at bind time. 549 * Larger offset requests will be silently capped to offset_max. 550 */ 551 uint64_t offset_max; 552 /* minimum gap between two consecutive offsets into the same 553 * buffer, as stipulated at bind time. This is used to choose 554 * the hwbuf_len, but is not otherwise checked for compliance 555 * at runtime. 556 */ 557 uint64_t offset_gap; 558 559 /* size of hardware buffer. This may be less than the size of 560 * the netmap buffers because of non-zero offsets, or because 561 * the netmap buffer size exceeds the capability of the hardware. 562 */ 563 uint64_t hwbuf_len; 564 565 /* required alignment (in bytes) for the buffers used by this ring. 566 * Netmap buffers are aligned to cachelines, which should suffice 567 * for most NICs. If the user is passing offsets, though, we need 568 * to check that the resulting buf address complies with any 569 * alignment restriction. 570 */ 571 uint64_t buf_align; 572 573 /* hardware specific logic for the selection of the hwbuf_len */ 574 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); 575 576 int (*save_notify)(struct netmap_kring *kring, int flags); 577 578 #ifdef WITH_MONITOR 579 /* array of krings that are monitoring this kring */ 580 struct netmap_kring **monitors; 581 uint32_t max_monitors; /* current size of the monitors array */ 582 uint32_t n_monitors; /* next unused entry in the monitor array */ 583 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ 584 uint32_t mon_tail; /* last seen slot on rx */ 585 586 /* circular list of zero-copy monitors */ 587 struct netmap_zmon_list zmon_list[NR_TXRX]; 588 589 /* 590 * Monitors work by intercepting the sync and notify callbacks of the 591 * monitored krings. This is implemented by replacing the pointers 592 * above and saving the previous ones in mon_* pointers below 593 */ 594 int (*mon_sync)(struct netmap_kring *kring, int flags); 595 int (*mon_notify)(struct netmap_kring *kring, int flags); 596 597 #endif 598 } 599 #ifdef _WIN32 600 __declspec(align(64)); 601 #else 602 __attribute__((__aligned__(64))); 603 #endif 604 605 /* return 1 iff the kring needs to be turned on */ 606 static inline int 607 nm_kring_pending_on(struct netmap_kring *kring) 608 { 609 return kring->nr_pending_mode == NKR_NETMAP_ON && 610 kring->nr_mode == NKR_NETMAP_OFF; 611 } 612 613 /* return 1 iff the kring needs to be turned off */ 614 static inline int 615 nm_kring_pending_off(struct netmap_kring *kring) 616 { 617 return kring->nr_pending_mode == NKR_NETMAP_OFF && 618 kring->nr_mode == NKR_NETMAP_ON; 619 } 620 621 /* return the next index, with wraparound */ 622 static inline uint32_t 623 nm_next(uint32_t i, uint32_t lim) 624 { 625 return unlikely (i == lim) ? 0 : i + 1; 626 } 627 628 629 /* return the previous index, with wraparound */ 630 static inline uint32_t 631 nm_prev(uint32_t i, uint32_t lim) 632 { 633 return unlikely (i == 0) ? lim : i - 1; 634 } 635 636 637 /* 638 * 639 * Here is the layout for the Rx and Tx rings. 640 641 RxRING TxRING 642 643 +-----------------+ +-----------------+ 644 | | | | 645 | free | | free | 646 +-----------------+ +-----------------+ 647 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 648 | | | yet | 649 +-----------------+ | | 650 cur->| available to | | | 651 | user, not read | +-----------------+ 652 | yet | cur->| (being | 653 | | | prepared) | 654 | | | | 655 +-----------------+ + ------ + 656 tail->| |<-hwtail | |<-hwlease 657 | (being | ... | | ... 658 | prepared) | ... | | ... 659 +-----------------+ ... | | ... 660 | |<-hwlease +-----------------+ 661 | | tail->| |<-hwtail 662 | | | | 663 | | | | 664 | | | | 665 +-----------------+ +-----------------+ 666 667 * The cur/tail (user view) and hwcur/hwtail (kernel view) 668 * are used in the normal operation of the card. 669 * 670 * When a ring is the output of a switch port (Rx ring for 671 * a VALE port, Tx ring for the host stack or NIC), slots 672 * are reserved in blocks through 'hwlease' which points 673 * to the next unused slot. 674 * On an Rx ring, hwlease is always after hwtail, 675 * and completions cause hwtail to advance. 676 * On a Tx ring, hwlease is always between cur and hwtail, 677 * and completions cause cur to advance. 678 * 679 * nm_kr_space() returns the maximum number of slots that 680 * can be assigned. 681 * nm_kr_lease() reserves the required number of buffers, 682 * advances nkr_hwlease and also returns an entry in 683 * a circular array where completions should be reported. 684 */ 685 686 struct lut_entry; 687 #ifdef __FreeBSD__ 688 #define plut_entry lut_entry 689 #endif 690 691 struct netmap_lut { 692 struct lut_entry *lut; 693 struct plut_entry *plut; 694 uint32_t objtotal; /* max buffer index */ 695 uint32_t objsize; /* buffer size */ 696 }; 697 698 struct netmap_vp_adapter; // forward 699 struct nm_bridge; 700 701 /* Struct to be filled by nm_config callbacks. */ 702 struct nm_config_info { 703 unsigned num_tx_rings; 704 unsigned num_rx_rings; 705 unsigned num_tx_descs; 706 unsigned num_rx_descs; 707 unsigned rx_buf_maxsize; 708 }; 709 710 /* 711 * default type for the magic field. 712 * May be overridden in glue code. 713 */ 714 #ifndef NM_OS_MAGIC 715 #define NM_OS_MAGIC uint32_t 716 #endif /* !NM_OS_MAGIC */ 717 718 /* 719 * The "struct netmap_adapter" extends the "struct adapter" 720 * (or equivalent) device descriptor. 721 * It contains all base fields needed to support netmap operation. 722 * There are in fact different types of netmap adapters 723 * (native, generic, VALE switch...) so a netmap_adapter is 724 * just the first field in the derived type. 725 */ 726 struct netmap_adapter { 727 /* 728 * On linux we do not have a good way to tell if an interface 729 * is netmap-capable. So we always use the following trick: 730 * NA(ifp) points here, and the first entry (which hopefully 731 * always exists and is at least 32 bits) contains a magic 732 * value which we can use to detect that the interface is good. 733 */ 734 NM_OS_MAGIC magic; 735 uint32_t na_flags; /* enabled, and other flags */ 736 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 737 * useful during initialization 738 */ 739 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 740 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 741 * forwarding packets coming from this 742 * interface 743 */ 744 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 745 * that cannot be changed 746 */ 747 #define NAF_NATIVE 16 /* the adapter is native. 748 * Virtual ports (non persistent vale ports, 749 * pipes, monitors...) should never use 750 * this flag. 751 */ 752 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 753 * emulated). Where possible (e.g. FreeBSD) 754 * IFCAP_NETMAP also mirrors this flag. 755 */ 756 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 757 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 758 /* free */ 759 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ 760 #define NAF_OFFSETS 1024 /* the adapter supports the slot offsets */ 761 #define NAF_HOST_ALL 2048 /* the adapter wants as many host rings as hw */ 762 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ 763 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 764 * cannot be registered from userspace 765 */ 766 int active_fds; /* number of user-space descriptors using this 767 interface, which is equal to the number of 768 struct netmap_if objs in the mapped region. */ 769 770 u_int num_rx_rings; /* number of adapter receive rings */ 771 u_int num_tx_rings; /* number of adapter transmit rings */ 772 u_int num_host_rx_rings; /* number of host receive rings */ 773 u_int num_host_tx_rings; /* number of host transmit rings */ 774 775 u_int num_tx_desc; /* number of descriptor in each queue */ 776 u_int num_rx_desc; 777 778 /* tx_rings and rx_rings are private but allocated as a 779 * contiguous chunk of memory. Each array has N+K entries, 780 * N for the hardware rings and K for the host rings. 781 */ 782 struct netmap_kring **tx_rings; /* array of TX rings. */ 783 struct netmap_kring **rx_rings; /* array of RX rings. */ 784 785 void *tailroom; /* space below the rings array */ 786 /* (used for leases) */ 787 788 789 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 790 791 /* count users of the global wait queues */ 792 int si_users[NR_TXRX]; 793 794 void *pdev; /* used to store pci device */ 795 796 /* copy of if_qflush and if_transmit pointers, to intercept 797 * packets from the network stack when netmap is active. 798 */ 799 int (*if_transmit)(struct ifnet *, struct mbuf *); 800 801 /* copy of if_input for netmap_send_up() */ 802 void (*if_input)(struct ifnet *, struct mbuf *); 803 804 /* Back reference to the parent ifnet struct. Used for 805 * hardware ports (emulated netmap included). */ 806 struct ifnet *ifp; /* adapter is ifp->if_softc */ 807 808 /*---- callbacks for this netmap adapter -----*/ 809 /* 810 * nm_dtor() is the cleanup routine called when destroying 811 * the adapter. 812 * Called with NMG_LOCK held. 813 * 814 * nm_register() is called on NIOCREGIF and close() to enter 815 * or exit netmap mode on the NIC 816 * Called with NNG_LOCK held. 817 * 818 * nm_txsync() pushes packets to the underlying hw/switch 819 * 820 * nm_rxsync() collects packets from the underlying hw/switch 821 * 822 * nm_config() returns configuration information from the OS 823 * Called with NMG_LOCK held. 824 * 825 * nm_bufcfg() 826 * the purpose of this callback is to fill the kring->hwbuf_len 827 * (l) and kring->buf_align fields. The l value is most important 828 * for RX rings, where we want to disallow writes outside of the 829 * netmap buffer. The l value must be computed taking into account 830 * the stipulated max_offset (o), possibly increased if there are 831 * alignment constraints, the maxframe (m), if known, and the 832 * current NETMAP_BUF_SIZE (b) of the memory region used by the 833 * adapter. We want the largest supported l such that o + l <= b. 834 * If m is known to be <= b - o, the callback may also choose the 835 * largest l <= m, ignoring the offset. The buf_align field is 836 * most important for TX rings when there are offsets. The user 837 * will see this value in the ring->buf_align field. Misaligned 838 * offsets will cause the corresponding packets to be silently 839 * dropped. 840 * 841 * nm_krings_create() create and init the tx_rings and 842 * rx_rings arrays of kring structures. In particular, 843 * set the nm_sync callbacks for each ring. 844 * There is no need to also allocate the corresponding 845 * netmap_rings, since netmap_mem_rings_create() will always 846 * be called to provide the missing ones. 847 * Called with NNG_LOCK held. 848 * 849 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 850 * arrays 851 * Called with NMG_LOCK held. 852 * 853 * nm_notify() is used to act after data have become available 854 * (or the stopped state of the ring has changed) 855 * For hw devices this is typically a selwakeup(), 856 * but for NIC/host ports attached to a switch (or vice-versa) 857 * we also need to invoke the 'txsync' code downstream. 858 * This callback pointer is actually used only to initialize 859 * kring->nm_notify. 860 * Return values are the same as for netmap_rx_irq(). 861 */ 862 void (*nm_dtor)(struct netmap_adapter *); 863 864 int (*nm_register)(struct netmap_adapter *, int onoff); 865 void (*nm_intr)(struct netmap_adapter *, int onoff); 866 867 int (*nm_txsync)(struct netmap_kring *kring, int flags); 868 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 869 int (*nm_notify)(struct netmap_kring *kring, int flags); 870 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); 871 #define NAF_FORCE_READ 1 872 #define NAF_FORCE_RECLAIM 2 873 #define NAF_CAN_FORWARD_DOWN 4 874 /* return configuration information */ 875 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); 876 int (*nm_krings_create)(struct netmap_adapter *); 877 void (*nm_krings_delete)(struct netmap_adapter *); 878 /* 879 * nm_bdg_attach() initializes the na_vp field to point 880 * to an adapter that can be attached to a VALE switch. If the 881 * current adapter is already a VALE port, na_vp is simply a cast; 882 * otherwise, na_vp points to a netmap_bwrap_adapter. 883 * If applicable, this callback also initializes na_hostvp, 884 * that can be used to connect the adapter host rings to the 885 * switch. 886 * Called with NMG_LOCK held. 887 * 888 * nm_bdg_ctl() is called on the actual attach/detach to/from 889 * to/from the switch, to perform adapter-specific 890 * initializations 891 * Called with NMG_LOCK held. 892 */ 893 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, 894 struct nm_bridge *); 895 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); 896 897 /* adapter used to attach this adapter to a VALE switch (if any) */ 898 struct netmap_vp_adapter *na_vp; 899 /* adapter used to attach the host rings of this adapter 900 * to a VALE switch (if any) */ 901 struct netmap_vp_adapter *na_hostvp; 902 903 /* standard refcount to control the lifetime of the adapter 904 * (it should be equal to the lifetime of the corresponding ifp) 905 */ 906 int na_refcount; 907 908 /* memory allocator (opaque) 909 * We also cache a pointer to the lut_entry for translating 910 * buffer addresses, the total number of buffers and the buffer size. 911 */ 912 struct netmap_mem_d *nm_mem; 913 struct netmap_mem_d *nm_mem_prev; 914 struct netmap_lut na_lut; 915 916 /* additional information attached to this adapter 917 * by other netmap subsystems. Currently used by 918 * bwrap, LINUX/v1000 and ptnetmap 919 */ 920 void *na_private; 921 922 /* array of pipes that have this adapter as a parent */ 923 struct netmap_pipe_adapter **na_pipes; 924 int na_next_pipe; /* next free slot in the array */ 925 int na_max_pipes; /* size of the array */ 926 927 /* Offset of ethernet header for each packet. */ 928 u_int virt_hdr_len; 929 930 /* Max number of bytes that the NIC can store in the buffer 931 * referenced by each RX descriptor. This translates to the maximum 932 * bytes that a single netmap slot can reference. Larger packets 933 * require NS_MOREFRAG support. */ 934 unsigned rx_buf_maxsize; 935 936 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ 937 938 #ifdef WITH_MONITOR 939 unsigned long monitor_id; /* debugging */ 940 #endif 941 }; 942 943 static __inline u_int 944 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 945 { 946 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 947 } 948 949 static __inline void 950 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 951 { 952 if (t == NR_TX) 953 na->num_tx_desc = v; 954 else 955 na->num_rx_desc = v; 956 } 957 958 static __inline u_int 959 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 960 { 961 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 962 } 963 964 static __inline u_int 965 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) 966 { 967 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); 968 } 969 970 static __inline void 971 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 972 { 973 if (t == NR_TX) 974 na->num_tx_rings = v; 975 else 976 na->num_rx_rings = v; 977 } 978 979 static __inline void 980 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 981 { 982 if (t == NR_TX) 983 na->num_host_tx_rings = v; 984 else 985 na->num_host_rx_rings = v; 986 } 987 988 static __inline struct netmap_kring** 989 NMR(struct netmap_adapter *na, enum txrx t) 990 { 991 return (t == NR_TX ? na->tx_rings : na->rx_rings); 992 } 993 994 int nma_intr_enable(struct netmap_adapter *na, int onoff); 995 996 /* 997 * If the NIC is owned by the kernel 998 * (i.e., bridge), neither another bridge nor user can use it; 999 * if the NIC is owned by a user, only users can share it. 1000 * Evaluation must be done under NMG_LOCK(). 1001 */ 1002 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 1003 #define NETMAP_OWNED_BY_ANY(na) \ 1004 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 1005 1006 /* 1007 * derived netmap adapters for various types of ports 1008 */ 1009 struct netmap_vp_adapter { /* VALE software port */ 1010 struct netmap_adapter up; 1011 1012 /* 1013 * Bridge support: 1014 * 1015 * bdg_port is the port number used in the bridge; 1016 * na_bdg points to the bridge this NA is attached to. 1017 */ 1018 int bdg_port; 1019 struct nm_bridge *na_bdg; 1020 int retry; 1021 int autodelete; /* remove the ifp on last reference */ 1022 1023 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 1024 u_int mfs; 1025 /* Last source MAC on this port */ 1026 uint64_t last_smac; 1027 }; 1028 1029 1030 struct netmap_hw_adapter { /* physical device */ 1031 struct netmap_adapter up; 1032 1033 #ifdef linux 1034 struct net_device_ops nm_ndo; 1035 struct ethtool_ops nm_eto; 1036 #endif 1037 const struct ethtool_ops* save_ethtool; 1038 1039 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 1040 }; 1041 1042 #ifdef WITH_GENERIC 1043 /* Mitigation support. */ 1044 struct nm_generic_mit { 1045 struct hrtimer mit_timer; 1046 int mit_pending; 1047 int mit_ring_idx; /* index of the ring being mitigated */ 1048 struct netmap_adapter *mit_na; /* backpointer */ 1049 }; 1050 1051 struct netmap_generic_adapter { /* emulated device */ 1052 struct netmap_hw_adapter up; 1053 1054 /* Pointer to a previously used netmap adapter. */ 1055 struct netmap_adapter *prev; 1056 1057 /* Emulated netmap adapters support: 1058 * - save_if_input saves the if_input hook (FreeBSD); 1059 * - mit implements rx interrupt mitigation; 1060 */ 1061 void (*save_if_input)(struct ifnet *, struct mbuf *); 1062 1063 struct nm_generic_mit *mit; 1064 #ifdef linux 1065 netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); 1066 #endif 1067 /* Is the adapter able to use multiple RX slots to scatter 1068 * each packet pushed up by the driver? */ 1069 int rxsg; 1070 1071 /* Is the transmission path controlled by a netmap-aware 1072 * device queue (i.e. qdisc on linux)? */ 1073 int txqdisc; 1074 }; 1075 #endif /* WITH_GENERIC */ 1076 1077 static __inline u_int 1078 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 1079 { 1080 return nma_get_nrings(na, t) + 1081 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); 1082 } 1083 1084 /* account for fake rings */ 1085 static __inline u_int 1086 netmap_all_rings(struct netmap_adapter *na, enum txrx t) 1087 { 1088 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); 1089 } 1090 1091 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, 1092 struct nm_bridge *); 1093 struct nm_bdg_polling_state; 1094 /* 1095 * Bridge wrapper for non VALE ports attached to a VALE switch. 1096 * 1097 * The real device must already have its own netmap adapter (hwna). 1098 * The bridge wrapper and the hwna adapter share the same set of 1099 * netmap rings and buffers, but they have two separate sets of 1100 * krings descriptors, with tx/rx meanings swapped: 1101 * 1102 * netmap 1103 * bwrap krings rings krings hwna 1104 * +------+ +------+ +-----+ +------+ +------+ 1105 * |tx_rings->| |\ /| |----| |<-tx_rings| 1106 * | | +------+ \ / +-----+ +------+ | | 1107 * | | X | | 1108 * | | / \ | | 1109 * | | +------+/ \+-----+ +------+ | | 1110 * |rx_rings->| | | |----| |<-rx_rings| 1111 * | | +------+ +-----+ +------+ | | 1112 * +------+ +------+ 1113 * 1114 * - packets coming from the bridge go to the brwap rx rings, 1115 * which are also the hwna tx rings. The bwrap notify callback 1116 * will then complete the hwna tx (see netmap_bwrap_notify). 1117 * 1118 * - packets coming from the outside go to the hwna rx rings, 1119 * which are also the bwrap tx rings. The (overwritten) hwna 1120 * notify method will then complete the bridge tx 1121 * (see netmap_bwrap_intr_notify). 1122 * 1123 * The bridge wrapper may optionally connect the hwna 'host' rings 1124 * to the bridge. This is done by using a second port in the 1125 * bridge and connecting it to the 'host' netmap_vp_adapter 1126 * contained in the netmap_bwrap_adapter. The brwap host adapter 1127 * cross-links the hwna host rings in the same way as shown above. 1128 * 1129 * - packets coming from the bridge and directed to the host stack 1130 * are handled by the bwrap host notify callback 1131 * (see netmap_bwrap_host_notify) 1132 * 1133 * - packets coming from the host stack are still handled by the 1134 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 1135 * but are diverted to the host adapter depending on the ring number. 1136 * 1137 */ 1138 struct netmap_bwrap_adapter { 1139 struct netmap_vp_adapter up; 1140 struct netmap_vp_adapter host; /* for host rings */ 1141 struct netmap_adapter *hwna; /* the underlying device */ 1142 1143 /* 1144 * When we attach a physical interface to the bridge, we 1145 * allow the controlling process to terminate, so we need 1146 * a place to store the n_detmap_priv_d data structure. 1147 * This is only done when physical interfaces 1148 * are attached to a bridge. 1149 */ 1150 struct netmap_priv_d *na_kpriv; 1151 struct nm_bdg_polling_state *na_polling_state; 1152 /* we overwrite the hwna->na_vp pointer, so we save 1153 * here its original value, to be restored at detach 1154 */ 1155 struct netmap_vp_adapter *saved_na_vp; 1156 int (*nm_intr_notify)(struct netmap_kring *kring, int flags); 1157 }; 1158 int nm_bdg_polling(struct nmreq_header *hdr); 1159 1160 int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token); 1161 int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token); 1162 #ifdef WITH_VALE 1163 int netmap_vale_list(struct nmreq_header *hdr); 1164 int netmap_vi_create(struct nmreq_header *hdr, int); 1165 int nm_vi_create(struct nmreq_header *); 1166 int nm_vi_destroy(const char *name); 1167 #else /* !WITH_VALE */ 1168 #define netmap_vi_create(hdr, a) (EOPNOTSUPP) 1169 #endif /* WITH_VALE */ 1170 1171 #ifdef WITH_PIPES 1172 1173 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 1174 1175 struct netmap_pipe_adapter { 1176 /* pipe identifier is up.name */ 1177 struct netmap_adapter up; 1178 1179 #define NM_PIPE_ROLE_MASTER 0x1 1180 #define NM_PIPE_ROLE_SLAVE 0x2 1181 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ 1182 1183 struct netmap_adapter *parent; /* adapter that owns the memory */ 1184 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 1185 int peer_ref; /* 1 iff we are holding a ref to the peer */ 1186 struct ifnet *parent_ifp; /* maybe null */ 1187 1188 u_int parent_slot; /* index in the parent pipe array */ 1189 }; 1190 1191 #endif /* WITH_PIPES */ 1192 1193 #ifdef WITH_NMNULL 1194 struct netmap_null_adapter { 1195 struct netmap_adapter up; 1196 }; 1197 #endif /* WITH_NMNULL */ 1198 1199 1200 /* return slots reserved to rx clients; used in drivers */ 1201 static inline uint32_t 1202 nm_kr_rxspace(struct netmap_kring *k) 1203 { 1204 int space = k->nr_hwtail - k->nr_hwcur; 1205 if (space < 0) 1206 space += k->nkr_num_slots; 1207 nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 1208 1209 return space; 1210 } 1211 1212 /* return slots reserved to tx clients */ 1213 #define nm_kr_txspace(_k) nm_kr_rxspace(_k) 1214 1215 1216 /* True if no space in the tx ring, only valid after txsync_prologue */ 1217 static inline int 1218 nm_kr_txempty(struct netmap_kring *kring) 1219 { 1220 return kring->rhead == kring->nr_hwtail; 1221 } 1222 1223 /* True if no more completed slots in the rx ring, only valid after 1224 * rxsync_prologue */ 1225 #define nm_kr_rxempty(_k) nm_kr_txempty(_k) 1226 1227 /* True if the application needs to wait for more space on the ring 1228 * (more received packets or more free tx slots). 1229 * Only valid after *xsync_prologue. */ 1230 static inline int 1231 nm_kr_wouldblock(struct netmap_kring *kring) 1232 { 1233 return kring->rcur == kring->nr_hwtail; 1234 } 1235 1236 /* 1237 * protect against multiple threads using the same ring. 1238 * also check that the ring has not been stopped or locked 1239 */ 1240 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ 1241 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ 1242 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ 1243 1244 1245 /* release the previously acquired right to use the *sync() methods of the ring */ 1246 static __inline void nm_kr_put(struct netmap_kring *kr) 1247 { 1248 NM_ATOMIC_CLEAR(&kr->nr_busy); 1249 } 1250 1251 1252 /* true if the ifp that backed the adapter has disappeared (e.g., the 1253 * driver has been unloaded) 1254 */ 1255 static inline int nm_iszombie(struct netmap_adapter *na); 1256 1257 /* try to obtain exclusive right to issue the *sync() operations on the ring. 1258 * The right is obtained and must be later relinquished via nm_kr_put() if and 1259 * only if nm_kr_tryget() returns 0. 1260 * If can_sleep is 1 there are only two other possible outcomes: 1261 * - the function returns NM_KR_BUSY 1262 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr 1263 * (if non-null) 1264 * In both cases the caller will typically skip the ring, possibly collecting 1265 * errors along the way. 1266 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. 1267 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr 1268 * untouched: ideally, the caller should try again at a later time. 1269 */ 1270 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) 1271 { 1272 int busy = 1, stopped; 1273 /* check a first time without taking the lock 1274 * to avoid starvation for nm_kr_get() 1275 */ 1276 retry: 1277 stopped = kr->nkr_stopped; 1278 if (unlikely(stopped)) { 1279 goto stop; 1280 } 1281 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); 1282 /* we should not return NM_KR_BUSY if the ring was 1283 * actually stopped, so check another time after 1284 * the barrier provided by the atomic operation 1285 */ 1286 stopped = kr->nkr_stopped; 1287 if (unlikely(stopped)) { 1288 goto stop; 1289 } 1290 1291 if (unlikely(nm_iszombie(kr->na))) { 1292 stopped = NM_KR_STOPPED; 1293 goto stop; 1294 } 1295 1296 return unlikely(busy) ? NM_KR_BUSY : 0; 1297 1298 stop: 1299 if (!busy) 1300 nm_kr_put(kr); 1301 if (stopped == NM_KR_STOPPED) { 1302 /* if POLLERR is defined we want to use it to simplify netmap_poll(). 1303 * Otherwise, any non-zero value will do. 1304 */ 1305 #ifdef POLLERR 1306 #define NM_POLLERR POLLERR 1307 #else 1308 #define NM_POLLERR 1 1309 #endif /* POLLERR */ 1310 if (perr) 1311 *perr |= NM_POLLERR; 1312 #undef NM_POLLERR 1313 } else if (can_sleep) { 1314 tsleep(kr, 0, "NM_KR_TRYGET", 4); 1315 goto retry; 1316 } 1317 return stopped; 1318 } 1319 1320 /* put the ring in the 'stopped' state and wait for the current user (if any) to 1321 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED 1322 */ 1323 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) 1324 { 1325 kr->nkr_stopped = stopped; 1326 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 1327 tsleep(kr, 0, "NM_KR_GET", 4); 1328 } 1329 1330 /* restart a ring after a stop */ 1331 static __inline void nm_kr_start(struct netmap_kring *kr) 1332 { 1333 kr->nkr_stopped = 0; 1334 nm_kr_put(kr); 1335 } 1336 1337 1338 /* 1339 * The following functions are used by individual drivers to 1340 * support netmap operation. 1341 * 1342 * netmap_attach() initializes a struct netmap_adapter, allocating the 1343 * struct netmap_ring's and the struct selinfo. 1344 * 1345 * netmap_detach() frees the memory allocated by netmap_attach(). 1346 * 1347 * netmap_transmit() replaces the if_transmit routine of the interface, 1348 * and is used to intercept packets coming from the stack. 1349 * 1350 * netmap_load_map/netmap_reload_map are helper routines to set/reset 1351 * the dmamap for a packet buffer 1352 * 1353 * netmap_reset() is a helper routine to be called in the hw driver 1354 * when reinitializing a ring. It should not be called by 1355 * virtual ports (vale, pipes, monitor) 1356 */ 1357 int netmap_attach(struct netmap_adapter *); 1358 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); 1359 void netmap_detach(struct ifnet *); 1360 int netmap_transmit(struct ifnet *, struct mbuf *); 1361 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 1362 enum txrx tx, u_int n, u_int new_cur); 1363 int netmap_ring_reinit(struct netmap_kring *); 1364 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); 1365 1366 /* Return codes for netmap_*x_irq. */ 1367 enum { 1368 /* Driver should do normal interrupt processing, e.g. because 1369 * the interface is not in netmap mode. */ 1370 NM_IRQ_PASS = 0, 1371 /* Port is in netmap mode, and the interrupt work has been 1372 * completed. The driver does not have to notify netmap 1373 * again before the next interrupt. */ 1374 NM_IRQ_COMPLETED = -1, 1375 /* Port is in netmap mode, but the interrupt work has not been 1376 * completed. The driver has to make sure netmap will be 1377 * notified again soon, even if no more interrupts come (e.g. 1378 * on Linux the driver should not call napi_complete()). */ 1379 NM_IRQ_RESCHED = -2, 1380 }; 1381 1382 /* default functions to handle rx/tx interrupts */ 1383 int netmap_rx_irq(struct ifnet *, u_int, u_int *); 1384 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 1385 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); 1386 1387 1388 #ifdef WITH_VALE 1389 /* functions used by external modules to interface with VALE */ 1390 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 1391 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 1392 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 1393 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 1394 const char *netmap_bdg_name(struct netmap_vp_adapter *); 1395 #else /* !WITH_VALE */ 1396 #define netmap_vp_to_ifp(_vp) NULL 1397 #define netmap_ifp_to_vp(_ifp) NULL 1398 #define netmap_ifp_to_host_vp(_ifp) NULL 1399 #define netmap_bdg_idx(_vp) -1 1400 #endif /* WITH_VALE */ 1401 1402 static inline int 1403 nm_netmap_on(struct netmap_adapter *na) 1404 { 1405 return na && na->na_flags & NAF_NETMAP_ON; 1406 } 1407 1408 static inline int 1409 nm_native_on(struct netmap_adapter *na) 1410 { 1411 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 1412 } 1413 1414 static inline struct netmap_kring * 1415 netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t) 1416 { 1417 struct netmap_kring *kring = NULL; 1418 1419 if (!nm_native_on(na)) 1420 return NULL; 1421 1422 if (t == NR_RX && q < na->num_rx_rings) 1423 kring = na->rx_rings[q]; 1424 else if (t == NR_TX && q < na->num_tx_rings) 1425 kring = na->tx_rings[q]; 1426 else 1427 return NULL; 1428 1429 return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL; 1430 } 1431 1432 static inline int 1433 nm_iszombie(struct netmap_adapter *na) 1434 { 1435 return na == NULL || (na->na_flags & NAF_ZOMBIE); 1436 } 1437 1438 void nm_set_native_flags(struct netmap_adapter *); 1439 void nm_clear_native_flags(struct netmap_adapter *); 1440 1441 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff); 1442 1443 /* 1444 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap 1445 * kthreads. 1446 * We need netmap_ring* parameter, because in ptnetmap it is decoupled 1447 * from host kring. 1448 * The user-space ring pointers (head/cur/tail) are shared through 1449 * CSB between host and guest. 1450 */ 1451 1452 /* 1453 * validates parameters in the ring/kring, returns a value for head 1454 * If any error, returns ring_size to force a reinit. 1455 */ 1456 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); 1457 1458 1459 /* 1460 * validates parameters in the ring/kring, returns a value for head 1461 * If any error, returns ring_size lim to force a reinit. 1462 */ 1463 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); 1464 1465 1466 /* check/fix address and len in tx rings */ 1467 #if 1 /* debug version */ 1468 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1469 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1470 nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1471 kring->ring_id, nm_i, slot->buf_idx, len); \ 1472 if (_l > NETMAP_BUF_SIZE(_na)) \ 1473 _l = NETMAP_BUF_SIZE(_na); \ 1474 } } while (0) 1475 #else /* no debug version */ 1476 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1477 if (_l > NETMAP_BUF_SIZE(_na)) \ 1478 _l = NETMAP_BUF_SIZE(_na); \ 1479 } while (0) 1480 #endif 1481 1482 #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do { \ 1483 if ((l_) + (o_) < (l_) || \ 1484 (l_) + (o_) > NETMAP_BUF_SIZE(na_)) { \ 1485 (l_) = NETMAP_BUF_SIZE(na_) - (o_); \ 1486 } } while (0) 1487 1488 1489 /*---------------------------------------------------------------*/ 1490 /* 1491 * Support routines used by netmap subsystems 1492 * (native drivers, VALE, generic, pipes, monitors, ...) 1493 */ 1494 1495 1496 /* common routine for all functions that create a netmap adapter. It performs 1497 * two main tasks: 1498 * - if the na points to an ifp, mark the ifp as netmap capable 1499 * using na as its native adapter; 1500 * - provide defaults for the setup callbacks and the memory allocator 1501 */ 1502 int netmap_attach_common(struct netmap_adapter *); 1503 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1504 * coming from a struct nmreq_register 1505 */ 1506 int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr); 1507 /* update the ring parameters (number and size of tx and rx rings). 1508 * It calls the nm_config callback, if available. 1509 */ 1510 int netmap_update_config(struct netmap_adapter *na); 1511 /* create and initialize the common fields of the krings array. 1512 * using the information that must be already available in the na. 1513 * tailroom can be used to request the allocation of additional 1514 * tailroom bytes after the krings array. This is used by 1515 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1516 * leasing-related data structures 1517 */ 1518 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1519 /* deletes the kring array of the adapter. The array must have 1520 * been created using netmap_krings_create 1521 */ 1522 void netmap_krings_delete(struct netmap_adapter *na); 1523 1524 int netmap_hw_krings_create(struct netmap_adapter *na); 1525 void netmap_hw_krings_delete(struct netmap_adapter *na); 1526 1527 /* set the stopped/enabled status of ring 1528 * When stopping, they also wait for all current activity on the ring to 1529 * terminate. The status change is then notified using the na nm_notify 1530 * callback. 1531 */ 1532 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1533 /* set the stopped/enabled status of all rings of the adapter. */ 1534 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1535 /* convenience wrappers for netmap_set_all_rings */ 1536 void netmap_disable_all_rings(struct ifnet *); 1537 void netmap_enable_all_rings(struct ifnet *); 1538 1539 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); 1540 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1541 struct nmreq_header *); 1542 void netmap_do_unregif(struct netmap_priv_d *priv); 1543 1544 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1545 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1546 struct ifnet **ifp, struct netmap_mem_d *nmd, int create); 1547 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp); 1548 int netmap_get_hw_na(struct ifnet *ifp, 1549 struct netmap_mem_d *nmd, struct netmap_adapter **na); 1550 void netmap_mem_restore(struct netmap_adapter *na); 1551 1552 #ifdef WITH_VALE 1553 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1554 struct netmap_vp_adapter *, void *private_data); 1555 1556 /* these are redefined in case of no VALE support */ 1557 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1558 struct netmap_mem_d *nmd, int create); 1559 void *netmap_vale_create(const char *bdg_name, int *return_status); 1560 int netmap_vale_destroy(const char *bdg_name, void *auth_token); 1561 1562 extern unsigned int vale_max_bridges; 1563 1564 #else /* !WITH_VALE */ 1565 #define netmap_bdg_learning(_1, _2, _3, _4) 0 1566 #define netmap_get_vale_na(_1, _2, _3, _4) 0 1567 #define netmap_bdg_create(_1, _2) NULL 1568 #define netmap_bdg_destroy(_1, _2) 0 1569 #endif /* !WITH_VALE */ 1570 1571 #ifdef WITH_PIPES 1572 /* max number of pipes per device */ 1573 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ 1574 void netmap_pipe_dealloc(struct netmap_adapter *); 1575 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1576 struct netmap_mem_d *nmd, int create); 1577 #else /* !WITH_PIPES */ 1578 #define NM_MAXPIPES 0 1579 #define netmap_pipe_alloc(_1, _2) 0 1580 #define netmap_pipe_dealloc(_1) 1581 #define netmap_get_pipe_na(hdr, _2, _3, _4) \ 1582 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) 1583 #endif 1584 1585 #ifdef WITH_MONITOR 1586 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1587 struct netmap_mem_d *nmd, int create); 1588 void netmap_monitor_stop(struct netmap_adapter *na); 1589 #else 1590 #define netmap_get_monitor_na(hdr, _2, _3, _4) \ 1591 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1592 #endif 1593 1594 #ifdef WITH_NMNULL 1595 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1596 struct netmap_mem_d *nmd, int create); 1597 #else /* !WITH_NMNULL */ 1598 #define netmap_get_null_na(hdr, _2, _3, _4) \ 1599 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1600 #endif /* WITH_NMNULL */ 1601 1602 #ifdef CONFIG_NET_NS 1603 struct net *netmap_bns_get(void); 1604 void netmap_bns_put(struct net *); 1605 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1606 #else 1607 extern struct nm_bridge *nm_bridges; 1608 #define netmap_bns_get() 1609 #define netmap_bns_put(_1) 1610 #define netmap_bns_getbridges(b, n) \ 1611 do { *b = nm_bridges; *n = vale_max_bridges; } while (0) 1612 #endif 1613 1614 /* Various prototypes */ 1615 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); 1616 int netmap_init(void); 1617 void netmap_fini(void); 1618 int netmap_get_memory(struct netmap_priv_d* p); 1619 void netmap_dtor(void *data); 1620 1621 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1622 struct thread *, int nr_body_is_user); 1623 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1624 struct thread *td); 1625 size_t nmreq_size_by_type(uint16_t nr_reqtype); 1626 1627 /* netmap_adapter creation/destruction */ 1628 1629 // #define NM_DEBUG_PUTGET 1 1630 1631 #ifdef NM_DEBUG_PUTGET 1632 1633 #define NM_DBG(f) __##f 1634 1635 void __netmap_adapter_get(struct netmap_adapter *na); 1636 1637 #define netmap_adapter_get(na) \ 1638 do { \ 1639 struct netmap_adapter *__na = na; \ 1640 nm_prinf("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1641 __netmap_adapter_get(__na); \ 1642 } while (0) 1643 1644 int __netmap_adapter_put(struct netmap_adapter *na); 1645 1646 #define netmap_adapter_put(na) \ 1647 ({ \ 1648 struct netmap_adapter *__na = na; \ 1649 nm_prinf("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1650 __netmap_adapter_put(__na); \ 1651 }) 1652 1653 #else /* !NM_DEBUG_PUTGET */ 1654 1655 #define NM_DBG(f) f 1656 void netmap_adapter_get(struct netmap_adapter *na); 1657 int netmap_adapter_put(struct netmap_adapter *na); 1658 1659 #endif /* !NM_DEBUG_PUTGET */ 1660 1661 1662 /* 1663 * module variables 1664 */ 1665 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) 1666 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) 1667 extern int netmap_no_pendintr; 1668 extern int netmap_verbose; 1669 #ifdef CONFIG_NETMAP_DEBUG 1670 extern int netmap_debug; /* for debugging */ 1671 #else /* !CONFIG_NETMAP_DEBUG */ 1672 #define netmap_debug (0) 1673 #endif /* !CONFIG_NETMAP_DEBUG */ 1674 enum { /* debug flags */ 1675 NM_DEBUG_ON = 1, /* generic debug messages */ 1676 NM_DEBUG_HOST = 0x2, /* debug host stack */ 1677 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ 1678 NM_DEBUG_TXSYNC = 0x20, 1679 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ 1680 NM_DEBUG_TXINTR = 0x200, 1681 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ 1682 NM_DEBUG_NIC_TXSYNC = 0x2000, 1683 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ 1684 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ 1685 NM_DEBUG_BDG = NM_DEBUG_VALE, 1686 }; 1687 1688 extern int netmap_txsync_retry; 1689 extern int netmap_generic_hwcsum; 1690 extern int netmap_generic_mit; 1691 extern int netmap_generic_ringsize; 1692 extern int netmap_generic_rings; 1693 #ifdef linux 1694 extern int netmap_generic_txqdisc; 1695 #endif 1696 1697 /* 1698 * NA returns a pointer to the struct netmap adapter from the ifp. 1699 * WNA is os-specific and must be defined in glue code. 1700 */ 1701 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 1702 1703 /* 1704 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA 1705 * based on the WNA field. 1706 * Glue code may override this by defining its own NM_ATTACH_NA 1707 */ 1708 #ifndef NM_ATTACH_NA 1709 /* 1710 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we 1711 * overload another pointer in the netdev. 1712 * 1713 * We check if NA(ifp) is set and its first element has a related 1714 * magic value. The capenable is within the struct netmap_adapter. 1715 */ 1716 #define NETMAP_MAGIC 0x52697a7a 1717 1718 #define NM_NA_VALID(ifp) (NA(ifp) && \ 1719 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1720 1721 #define NM_ATTACH_NA(ifp, na) do { \ 1722 WNA(ifp) = na; \ 1723 if (NA(ifp)) \ 1724 NA(ifp)->magic = \ 1725 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ 1726 } while(0) 1727 #define NM_RESTORE_NA(ifp, na) WNA(ifp) = na; 1728 1729 #define NM_DETACH_NA(ifp) do { WNA(ifp) = NULL; } while (0) 1730 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) 1731 #endif /* !NM_ATTACH_NA */ 1732 1733 1734 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) 1735 1736 #if defined(__FreeBSD__) 1737 1738 /* Assigns the device IOMMU domain to an allocator. 1739 * Returns -ENOMEM in case the domain is different */ 1740 #define nm_iommu_group_id(dev) (-1) 1741 1742 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1743 static void netmap_dmamap_cb(__unused void *arg, 1744 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1745 { 1746 } 1747 1748 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1749 * XXX can we do it without a callback ? 1750 */ 1751 static inline int 1752 netmap_load_map(struct netmap_adapter *na, 1753 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1754 { 1755 if (map) 1756 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1757 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1758 return 0; 1759 } 1760 1761 static inline void 1762 netmap_unload_map(struct netmap_adapter *na, 1763 bus_dma_tag_t tag, bus_dmamap_t map) 1764 { 1765 if (map) 1766 bus_dmamap_unload(tag, map); 1767 } 1768 1769 #define netmap_sync_map(na, tag, map, sz, t) 1770 1771 /* update the map when a buffer changes. */ 1772 static inline void 1773 netmap_reload_map(struct netmap_adapter *na, 1774 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1775 { 1776 if (map) { 1777 bus_dmamap_unload(tag, map); 1778 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1779 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1780 } 1781 } 1782 1783 #elif defined(_WIN32) 1784 1785 #else /* linux */ 1786 1787 int nm_iommu_group_id(bus_dma_tag_t dev); 1788 #include <linux/dma-mapping.h> 1789 1790 /* 1791 * on linux we need 1792 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1793 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) 1794 */ 1795 #if 0 1796 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1797 /* set time_stamp *before* dma to help avoid a possible race */ 1798 buffer_info->time_stamp = jiffies; 1799 buffer_info->mapped_as_page = false; 1800 buffer_info->length = len; 1801 //buffer_info->next_to_watch = l; 1802 /* reload dma map */ 1803 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1804 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1805 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1806 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1807 1808 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1809 nm_prerr("dma mapping error"); 1810 /* goto dma_error; See e1000_put_txbuf() */ 1811 /* XXX reset */ 1812 } 1813 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1814 1815 #endif 1816 1817 static inline int 1818 netmap_load_map(struct netmap_adapter *na, 1819 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) 1820 { 1821 if (map) { 1822 *map = dma_map_single(na->pdev, buf, size, 1823 DMA_BIDIRECTIONAL); 1824 if (dma_mapping_error(na->pdev, *map)) { 1825 *map = 0; 1826 return ENOMEM; 1827 } 1828 } 1829 return 0; 1830 } 1831 1832 static inline void 1833 netmap_unload_map(struct netmap_adapter *na, 1834 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) 1835 { 1836 if (*map) { 1837 dma_unmap_single(na->pdev, *map, sz, 1838 DMA_BIDIRECTIONAL); 1839 } 1840 } 1841 1842 #ifdef NETMAP_LINUX_HAVE_DMASYNC 1843 static inline void 1844 netmap_sync_map_cpu(struct netmap_adapter *na, 1845 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1846 { 1847 if (*map) { 1848 dma_sync_single_for_cpu(na->pdev, *map, sz, 1849 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1850 } 1851 } 1852 1853 static inline void 1854 netmap_sync_map_dev(struct netmap_adapter *na, 1855 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1856 { 1857 if (*map) { 1858 dma_sync_single_for_device(na->pdev, *map, sz, 1859 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1860 } 1861 } 1862 1863 static inline void 1864 netmap_reload_map(struct netmap_adapter *na, 1865 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1866 { 1867 u_int sz = NETMAP_BUF_SIZE(na); 1868 1869 if (*map) { 1870 dma_unmap_single(na->pdev, *map, sz, 1871 DMA_BIDIRECTIONAL); 1872 } 1873 1874 *map = dma_map_single(na->pdev, buf, sz, 1875 DMA_BIDIRECTIONAL); 1876 } 1877 #else /* !NETMAP_LINUX_HAVE_DMASYNC */ 1878 #define netmap_sync_map_cpu(na, tag, map, sz, t) 1879 #define netmap_sync_map_dev(na, tag, map, sz, t) 1880 #endif /* NETMAP_LINUX_HAVE_DMASYNC */ 1881 1882 #endif /* linux */ 1883 1884 1885 /* 1886 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1887 */ 1888 static inline int 1889 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1890 { 1891 int n = kr->nkr_num_slots; 1892 1893 if (likely(kr->nkr_hwofs == 0)) { 1894 return idx; 1895 } 1896 1897 idx += kr->nkr_hwofs; 1898 if (idx < 0) 1899 return idx + n; 1900 else if (idx < n) 1901 return idx; 1902 else 1903 return idx - n; 1904 } 1905 1906 1907 static inline int 1908 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1909 { 1910 int n = kr->nkr_num_slots; 1911 1912 if (likely(kr->nkr_hwofs == 0)) { 1913 return idx; 1914 } 1915 1916 idx -= kr->nkr_hwofs; 1917 if (idx < 0) 1918 return idx + n; 1919 else if (idx < n) 1920 return idx; 1921 else 1922 return idx - n; 1923 } 1924 1925 1926 /* Entries of the look-up table. */ 1927 #ifdef __FreeBSD__ 1928 struct lut_entry { 1929 void *vaddr; /* virtual address. */ 1930 vm_paddr_t paddr; /* physical address. */ 1931 }; 1932 #else /* linux & _WIN32 */ 1933 /* dma-mapping in linux can assign a buffer a different address 1934 * depending on the device, so we need to have a separate 1935 * physical-address look-up table for each na. 1936 * We can still share the vaddrs, though, therefore we split 1937 * the lut_entry structure. 1938 */ 1939 struct lut_entry { 1940 void *vaddr; /* virtual address. */ 1941 }; 1942 1943 struct plut_entry { 1944 vm_paddr_t paddr; /* physical address. */ 1945 }; 1946 #endif /* linux & _WIN32 */ 1947 1948 struct netmap_obj_pool; 1949 1950 /* alignment for netmap buffers */ 1951 #define NM_BUF_ALIGN 64 1952 1953 /* 1954 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1955 * PNMB also fills the physical address 1956 */ 1957 static inline void * 1958 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1959 { 1960 struct lut_entry *lut = na->na_lut.lut; 1961 uint32_t i = slot->buf_idx; 1962 return (unlikely(i >= na->na_lut.objtotal)) ? 1963 lut[0].vaddr : lut[i].vaddr; 1964 } 1965 1966 static inline void * 1967 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1968 { 1969 uint32_t i = slot->buf_idx; 1970 struct lut_entry *lut = na->na_lut.lut; 1971 struct plut_entry *plut = na->na_lut.plut; 1972 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1973 1974 #ifdef _WIN32 1975 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; 1976 #else 1977 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; 1978 #endif 1979 return ret; 1980 } 1981 1982 static inline void 1983 nm_write_offset(struct netmap_kring *kring, 1984 struct netmap_slot *slot, uint64_t offset) 1985 { 1986 slot->ptr = (slot->ptr & ~kring->offset_mask) | 1987 (offset & kring->offset_mask); 1988 } 1989 1990 static inline uint64_t 1991 nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot) 1992 { 1993 uint64_t offset = (slot->ptr & kring->offset_mask); 1994 if (unlikely(offset > kring->offset_max)) 1995 offset = kring->offset_max; 1996 return offset; 1997 } 1998 1999 static inline void * 2000 NMB_O(struct netmap_kring *kring, struct netmap_slot *slot) 2001 { 2002 void *addr = NMB(kring->na, slot); 2003 return (char *)addr + nm_get_offset(kring, slot); 2004 } 2005 2006 static inline void * 2007 PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp) 2008 { 2009 void *addr = PNMB(kring->na, slot, pp); 2010 uint64_t offset = nm_get_offset(kring, slot); 2011 addr = (char *)addr + offset; 2012 *pp += offset; 2013 return addr; 2014 } 2015 2016 2017 /* 2018 * Structure associated to each netmap file descriptor. 2019 * It is created on open and left unbound (np_nifp == NULL). 2020 * A successful NIOCREGIF will set np_nifp and the first few fields; 2021 * this is protected by a global lock (NMG_LOCK) due to low contention. 2022 * 2023 * np_refs counts the number of references to the structure: one for the fd, 2024 * plus (on FreeBSD) one for each active mmap which we track ourselves 2025 * (linux automatically tracks them, but FreeBSD does not). 2026 * np_refs is protected by NMG_LOCK. 2027 * 2028 * Read access to the structure is lock free, because ni_nifp once set 2029 * can only go to 0 when nobody is using the entry anymore. Readers 2030 * must check that np_nifp != NULL before using the other fields. 2031 */ 2032 struct netmap_priv_d { 2033 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 2034 2035 struct netmap_adapter *np_na; 2036 struct ifnet *np_ifp; 2037 uint32_t np_flags; /* from the ioctl */ 2038 u_int np_qfirst[NR_TXRX], 2039 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 2040 uint16_t np_txpoll; 2041 uint16_t np_kloop_state; /* use with NMG_LOCK held */ 2042 #define NM_SYNC_KLOOP_RUNNING (1 << 0) 2043 #define NM_SYNC_KLOOP_STOPPING (1 << 1) 2044 int np_sync_flags; /* to be passed to nm_sync */ 2045 2046 int np_refs; /* use with NMG_LOCK held */ 2047 2048 /* pointers to the selinfo to be used for selrecord. 2049 * Either the local or the global one depending on the 2050 * number of rings. 2051 */ 2052 NM_SELINFO_T *np_si[NR_TXRX]; 2053 2054 /* In the optional CSB mode, the user must specify the start address 2055 * of two arrays of Communication Status Block (CSB) entries, for the 2056 * two directions (kernel read application write, and kernel write 2057 * application read). 2058 * The number of entries must agree with the number of rings bound to 2059 * the netmap file descriptor. The entries corresponding to the TX 2060 * rings are laid out before the ones corresponding to the RX rings. 2061 * 2062 * Array of CSB entries for application --> kernel communication 2063 * (N entries). */ 2064 struct nm_csb_atok *np_csb_atok_base; 2065 /* Array of CSB entries for kernel --> application communication 2066 * (N entries). */ 2067 struct nm_csb_ktoa *np_csb_ktoa_base; 2068 2069 #ifdef linux 2070 struct file *np_filp; /* used by sync kloop */ 2071 #endif /* linux */ 2072 }; 2073 2074 struct netmap_priv_d *netmap_priv_new(void); 2075 void netmap_priv_delete(struct netmap_priv_d *); 2076 2077 static inline int nm_kring_pending(struct netmap_priv_d *np) 2078 { 2079 struct netmap_adapter *na = np->np_na; 2080 enum txrx t; 2081 int i; 2082 2083 for_rx_tx(t) { 2084 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { 2085 struct netmap_kring *kring = NMR(na, t)[i]; 2086 if (kring->nr_mode != kring->nr_pending_mode) { 2087 return 1; 2088 } 2089 } 2090 } 2091 return 0; 2092 } 2093 2094 /* call with NMG_LOCK held */ 2095 static __inline int 2096 nm_si_user(struct netmap_priv_d *priv, enum txrx t) 2097 { 2098 return (priv->np_na != NULL && 2099 (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); 2100 } 2101 2102 #ifdef WITH_PIPES 2103 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); 2104 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); 2105 int netmap_pipe_krings_create_both(struct netmap_adapter *na, 2106 struct netmap_adapter *ona); 2107 void netmap_pipe_krings_delete_both(struct netmap_adapter *na, 2108 struct netmap_adapter *ona); 2109 int netmap_pipe_reg_both(struct netmap_adapter *na, 2110 struct netmap_adapter *ona); 2111 #endif /* WITH_PIPES */ 2112 2113 #ifdef WITH_MONITOR 2114 2115 struct netmap_monitor_adapter { 2116 struct netmap_adapter up; 2117 2118 struct netmap_priv_d priv; 2119 uint32_t flags; 2120 }; 2121 2122 #endif /* WITH_MONITOR */ 2123 2124 2125 #ifdef WITH_GENERIC 2126 /* 2127 * generic netmap emulation for devices that do not have 2128 * native netmap support. 2129 */ 2130 int generic_netmap_attach(struct ifnet *ifp); 2131 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m); 2132 2133 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); 2134 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); 2135 2136 int na_is_generic(struct netmap_adapter *na); 2137 2138 /* 2139 * the generic transmit routine is passed a structure to optionally 2140 * build a queue of descriptors, in an OS-specific way. 2141 * The payload is at addr, if non-null, and the routine should send or queue 2142 * the packet, returning 0 if successful, 1 on failure. 2143 * 2144 * At the end, if head is non-null, there will be an additional call 2145 * to the function with addr = NULL; this should tell the OS-specific 2146 * routine to send the queue and free any resources. Failure is ignored. 2147 */ 2148 struct nm_os_gen_arg { 2149 struct ifnet *ifp; 2150 void *m; /* os-specific mbuf-like object */ 2151 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ 2152 void *addr; /* payload of current packet */ 2153 u_int len; /* packet length */ 2154 u_int ring_nr; /* packet length */ 2155 u_int qevent; /* in txqdisc mode, place an event on this mbuf */ 2156 }; 2157 2158 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); 2159 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); 2160 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); 2161 void nm_os_generic_set_features(struct netmap_generic_adapter *gna); 2162 2163 static inline struct ifnet* 2164 netmap_generic_getifp(struct netmap_generic_adapter *gna) 2165 { 2166 if (gna->prev) 2167 return gna->prev->ifp; 2168 2169 return gna->up.up.ifp; 2170 } 2171 2172 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); 2173 2174 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 2175 #ifdef RATE_GENERIC 2176 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 2177 #else 2178 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 2179 #endif 2180 2181 /* 2182 * netmap_mitigation API. This is used by the generic adapter 2183 * to reduce the number of interrupt requests/selwakeup 2184 * to clients on incoming packets. 2185 */ 2186 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, 2187 struct netmap_adapter *na); 2188 void nm_os_mitigation_start(struct nm_generic_mit *mit); 2189 void nm_os_mitigation_restart(struct nm_generic_mit *mit); 2190 int nm_os_mitigation_active(struct nm_generic_mit *mit); 2191 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); 2192 #else /* !WITH_GENERIC */ 2193 #define generic_netmap_attach(ifp) (EOPNOTSUPP) 2194 #define na_is_generic(na) (0) 2195 #endif /* WITH_GENERIC */ 2196 2197 /* Shared declarations for the VALE switch. */ 2198 2199 /* 2200 * Each transmit queue accumulates a batch of packets into 2201 * a structure before forwarding. Packets to the same 2202 * destination are put in a list using ft_next as a link field. 2203 * ft_frags and ft_next are valid only on the first fragment. 2204 */ 2205 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 2206 void *ft_buf; /* netmap or indirect buffer */ 2207 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 2208 uint16_t ft_offset; /* dst port (unused) */ 2209 uint16_t ft_flags; /* flags, e.g. indirect */ 2210 uint16_t ft_len; /* src fragment len */ 2211 uint16_t ft_next; /* next packet to same destination */ 2212 }; 2213 2214 /* struct 'virtio_net_hdr' from linux. */ 2215 struct nm_vnet_hdr { 2216 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 2217 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 2218 uint8_t flags; 2219 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 2220 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 2221 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 2222 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 2223 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 2224 uint8_t gso_type; 2225 uint16_t hdr_len; 2226 uint16_t gso_size; 2227 uint16_t csum_start; 2228 uint16_t csum_offset; 2229 }; 2230 2231 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 2232 2233 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 2234 2235 struct nm_iphdr { 2236 uint8_t version_ihl; 2237 uint8_t tos; 2238 uint16_t tot_len; 2239 uint16_t id; 2240 uint16_t frag_off; 2241 uint8_t ttl; 2242 uint8_t protocol; 2243 uint16_t check; 2244 uint32_t saddr; 2245 uint32_t daddr; 2246 /*The options start here. */ 2247 }; 2248 2249 struct nm_tcphdr { 2250 uint16_t source; 2251 uint16_t dest; 2252 uint32_t seq; 2253 uint32_t ack_seq; 2254 uint8_t doff; /* Data offset + Reserved */ 2255 uint8_t flags; 2256 uint16_t window; 2257 uint16_t check; 2258 uint16_t urg_ptr; 2259 }; 2260 2261 struct nm_udphdr { 2262 uint16_t source; 2263 uint16_t dest; 2264 uint16_t len; 2265 uint16_t check; 2266 }; 2267 2268 struct nm_ipv6hdr { 2269 uint8_t priority_version; 2270 uint8_t flow_lbl[3]; 2271 2272 uint16_t payload_len; 2273 uint8_t nexthdr; 2274 uint8_t hop_limit; 2275 2276 uint8_t saddr[16]; 2277 uint8_t daddr[16]; 2278 }; 2279 2280 /* Type used to store a checksum (in host byte order) that hasn't been 2281 * folded yet. 2282 */ 2283 #define rawsum_t uint32_t 2284 2285 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 2286 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); 2287 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 2288 size_t datalen, uint16_t *check); 2289 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 2290 size_t datalen, uint16_t *check); 2291 uint16_t nm_os_csum_fold(rawsum_t cur_sum); 2292 2293 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 2294 struct netmap_vp_adapter *dst_na, 2295 const struct nm_bdg_fwd *ft_p, 2296 struct netmap_ring *dst_ring, 2297 u_int *j, u_int lim, u_int *howmany); 2298 2299 /* persistent virtual port routines */ 2300 int nm_os_vi_persist(const char *, struct ifnet **); 2301 void nm_os_vi_detach(struct ifnet *); 2302 void nm_os_vi_init_index(void); 2303 2304 /* 2305 * kernel thread routines 2306 */ 2307 struct nm_kctx; /* OS-specific kernel context - opaque */ 2308 typedef void (*nm_kctx_worker_fn_t)(void *data); 2309 2310 /* kthread configuration */ 2311 struct nm_kctx_cfg { 2312 long type; /* kthread type/identifier */ 2313 nm_kctx_worker_fn_t worker_fn; /* worker function */ 2314 void *worker_private;/* worker parameter */ 2315 int attach_user; /* attach kthread to user process */ 2316 }; 2317 /* kthread configuration */ 2318 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, 2319 void *opaque); 2320 int nm_os_kctx_worker_start(struct nm_kctx *); 2321 void nm_os_kctx_worker_stop(struct nm_kctx *); 2322 void nm_os_kctx_destroy(struct nm_kctx *); 2323 void nm_os_kctx_worker_setaff(struct nm_kctx *, int); 2324 u_int nm_os_ncpus(void); 2325 2326 int netmap_sync_kloop(struct netmap_priv_d *priv, 2327 struct nmreq_header *hdr); 2328 int netmap_sync_kloop_stop(struct netmap_priv_d *priv); 2329 2330 #ifdef WITH_PTNETMAP 2331 /* ptnetmap guest routines */ 2332 2333 /* 2334 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver 2335 */ 2336 struct ptnetmap_memdev; 2337 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, 2338 uint64_t *); 2339 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); 2340 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); 2341 2342 /* 2343 * netmap adapter for guest ptnetmap ports 2344 */ 2345 struct netmap_pt_guest_adapter { 2346 /* The netmap adapter to be used by netmap applications. 2347 * This field must be the first, to allow upcast. */ 2348 struct netmap_hw_adapter hwup; 2349 2350 /* The netmap adapter to be used by the driver. */ 2351 struct netmap_hw_adapter dr; 2352 2353 /* Reference counter to track users of backend netmap port: the 2354 * network stack and netmap clients. 2355 * Used to decide when we need (de)allocate krings/rings and 2356 * start (stop) ptnetmap kthreads. */ 2357 int backend_users; 2358 2359 }; 2360 2361 int netmap_pt_guest_attach(struct netmap_adapter *na, 2362 unsigned int nifp_offset, 2363 unsigned int memid); 2364 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, 2365 struct nm_csb_ktoa *ktoa, 2366 struct netmap_kring *kring, int flags); 2367 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, 2368 struct nm_csb_ktoa *ktoa, 2369 struct netmap_kring *kring, int flags); 2370 int ptnet_nm_krings_create(struct netmap_adapter *na); 2371 void ptnet_nm_krings_delete(struct netmap_adapter *na); 2372 void ptnet_nm_dtor(struct netmap_adapter *na); 2373 2374 /* Helper function wrapping nm_sync_kloop_appl_read(). */ 2375 static inline void 2376 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) 2377 { 2378 struct netmap_ring *ring = kring->ring; 2379 2380 /* Update hwcur and hwtail as known by the host. */ 2381 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); 2382 2383 /* nm_sync_finalize */ 2384 ring->tail = kring->rtail = kring->nr_hwtail; 2385 } 2386 #endif /* WITH_PTNETMAP */ 2387 2388 #ifdef __FreeBSD__ 2389 /* 2390 * FreeBSD mbuf allocator/deallocator in emulation mode: 2391 */ 2392 #if __FreeBSD_version < 1100000 2393 2394 /* 2395 * For older versions of FreeBSD: 2396 * 2397 * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE 2398 * so that the destructor, if invoked, will not free the packet. 2399 * In principle we should set the destructor only on demand, 2400 * but since there might be a race we better do it on allocation. 2401 * As a consequence, we also need to set the destructor or we 2402 * would leak buffers. 2403 */ 2404 2405 /* mbuf destructor, also need to change the type to EXT_EXTREF, 2406 * add an M_NOFREE flag, and then clear the flag and 2407 * chain into uma_zfree(zone_pack, mf) 2408 * (or reinstall the buffer ?) 2409 */ 2410 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2411 (m)->m_ext.ext_free = (void *)fn; \ 2412 (m)->m_ext.ext_type = EXT_EXTREF; \ 2413 } while (0) 2414 2415 static int 2416 void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) 2417 { 2418 /* restore original mbuf */ 2419 m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1; 2420 m->m_ext.ext_arg1 = NULL; 2421 m->m_ext.ext_type = EXT_PACKET; 2422 m->m_ext.ext_free = NULL; 2423 if (MBUF_REFCNT(m) == 0) 2424 SET_MBUF_REFCNT(m, 1); 2425 uma_zfree(zone_pack, m); 2426 2427 return 0; 2428 } 2429 2430 static inline struct mbuf * 2431 nm_os_get_mbuf(struct ifnet *ifp, int len) 2432 { 2433 struct mbuf *m; 2434 2435 (void)ifp; 2436 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2437 if (m) { 2438 /* m_getcl() (mb_ctor_mbuf) has an assert that checks that 2439 * M_NOFREE flag is not specified as third argument, 2440 * so we have to set M_NOFREE after m_getcl(). */ 2441 m->m_flags |= M_NOFREE; 2442 m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save 2443 m->m_ext.ext_free = (void *)void_mbuf_dtor; 2444 m->m_ext.ext_type = EXT_EXTREF; 2445 nm_prdis(5, "create m %p refcnt %d", m, MBUF_REFCNT(m)); 2446 } 2447 return m; 2448 } 2449 2450 #else /* __FreeBSD_version >= 1100000 */ 2451 2452 /* 2453 * Newer versions of FreeBSD, using a straightforward scheme. 2454 * 2455 * We allocate mbufs with m_gethdr(), since the mbuf header is needed 2456 * by the driver. We also attach a customly-provided external storage, 2457 * which in this case is a netmap buffer. When calling m_extadd(), however 2458 * we pass a NULL address, since the real address (and length) will be 2459 * filled in by nm_os_generic_xmit_frame() right before calling 2460 * if_transmit(). 2461 * 2462 * The dtor function does nothing, however we need it since mb_free_ext() 2463 * has a KASSERT(), checking that the mbuf dtor function is not NULL. 2464 */ 2465 2466 #if __FreeBSD_version <= 1200050 2467 static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { } 2468 #else /* __FreeBSD_version >= 1200051 */ 2469 /* The arg1 and arg2 pointers argument were removed by r324446, which 2470 * in included since version 1200051. */ 2471 static void void_mbuf_dtor(struct mbuf *m) { } 2472 #endif /* __FreeBSD_version >= 1200051 */ 2473 2474 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2475 (m)->m_ext.ext_free = (fn != NULL) ? \ 2476 (void *)fn : (void *)void_mbuf_dtor; \ 2477 } while (0) 2478 2479 static inline struct mbuf * 2480 nm_os_get_mbuf(struct ifnet *ifp, int len) 2481 { 2482 struct mbuf *m; 2483 2484 (void)ifp; 2485 (void)len; 2486 2487 m = m_gethdr(M_NOWAIT, MT_DATA); 2488 if (m == NULL) { 2489 return m; 2490 } 2491 2492 m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor, 2493 NULL, NULL, 0, EXT_NET_DRV); 2494 2495 return m; 2496 } 2497 2498 #endif /* __FreeBSD_version >= 1100000 */ 2499 #endif /* __FreeBSD__ */ 2500 2501 struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t); 2502 2503 int netmap_init_bridges(void); 2504 void netmap_uninit_bridges(void); 2505 2506 /* Functions to read and write CSB fields from the kernel. */ 2507 #if defined (linux) 2508 #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) 2509 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) 2510 #else /* ! linux */ 2511 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field)) 2512 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v)) 2513 #endif /* ! linux */ 2514 2515 /* some macros that may not be defined */ 2516 #ifndef ETH_HLEN 2517 #define ETH_HLEN 6 2518 #endif 2519 #ifndef ETH_FCS_LEN 2520 #define ETH_FCS_LEN 4 2521 #endif 2522 #ifndef VLAN_HLEN 2523 #define VLAN_HLEN 4 2524 #endif 2525 2526 #endif /* _NET_NETMAP_KERN_H_ */ 2527