xref: /freebsd/sys/dev/netmap/netmap_kern.h (revision ca987d4641cdcd7f27e153db17c5bf064934faf5)
1 /*
2  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
3  * Copyright (C) 2013-2016 Universita` di Pisa
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *   1. Redistributions of source code must retain the above copyright
10  *      notice, this list of conditions and the following disclaimer.
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * $FreeBSD$
30  *
31  * The header contains the definitions of constants and function
32  * prototypes used only in kernelspace.
33  */
34 
35 #ifndef _NET_NETMAP_KERN_H_
36 #define _NET_NETMAP_KERN_H_
37 
38 #if defined(linux)
39 
40 #if  defined(CONFIG_NETMAP_VALE)
41 #define WITH_VALE
42 #endif
43 #if defined(CONFIG_NETMAP_PIPE)
44 #define WITH_PIPES
45 #endif
46 #if defined(CONFIG_NETMAP_MONITOR)
47 #define WITH_MONITOR
48 #endif
49 #if defined(CONFIG_NETMAP_GENERIC)
50 #define WITH_GENERIC
51 #endif
52 #if defined(CONFIG_NETMAP_PTNETMAP_GUEST)
53 #define WITH_PTNETMAP_GUEST
54 #endif
55 #if defined(CONFIG_NETMAP_PTNETMAP_HOST)
56 #define WITH_PTNETMAP_HOST
57 #endif
58 #if defined(CONFIG_NETMAP_SINK)
59 #define WITH_SINK
60 #endif
61 
62 #elif defined (_WIN32)
63 #define WITH_VALE	// comment out to disable VALE support
64 #define WITH_PIPES
65 #define WITH_MONITOR
66 #define WITH_GENERIC
67 
68 #else	/* neither linux nor windows */
69 #define WITH_VALE	// comment out to disable VALE support
70 #define WITH_PIPES
71 #define WITH_MONITOR
72 #define WITH_GENERIC
73 #define WITH_PTNETMAP_HOST	/* ptnetmap host support */
74 #define WITH_PTNETMAP_GUEST	/* ptnetmap guest support */
75 
76 #endif
77 
78 #if defined(__FreeBSD__)
79 #include <sys/selinfo.h>
80 
81 #define likely(x)	__builtin_expect((long)!!(x), 1L)
82 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
83 #define __user
84 
85 #define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
86 
87 #define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
88 #define NM_MTX_INIT(m)		sx_init(&(m), #m)
89 #define NM_MTX_DESTROY(m)	sx_destroy(&(m))
90 #define NM_MTX_LOCK(m)		sx_xlock(&(m))
91 #define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
92 #define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
93 
94 #define	NM_SELINFO_T	struct nm_selinfo
95 #define NM_SELRECORD_T	struct thread
96 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
97 #define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
98 #define MBUF_TRANSMIT(na, ifp, m)	((na)->if_transmit(ifp, m))
99 #define	GEN_TX_MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
100 
101 #define NM_ATOMIC_T	volatile int	// XXX ?
102 /* atomic operations */
103 #include <machine/atomic.h>
104 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
105 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
106 
107 #if __FreeBSD_version >= 1100030
108 #define	WNA(_ifp)	(_ifp)->if_netmap
109 #else /* older FreeBSD */
110 #define	WNA(_ifp)	(_ifp)->if_pspare[0]
111 #endif /* older FreeBSD */
112 
113 #if __FreeBSD_version >= 1100005
114 struct netmap_adapter *netmap_getna(if_t ifp);
115 #endif
116 
117 #if __FreeBSD_version >= 1100027
118 #define MBUF_REFCNT(m)		((m)->m_ext.ext_count)
119 #define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
120 #else
121 #define MBUF_REFCNT(m)		((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
122 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
123 #endif
124 
125 #define MBUF_QUEUED(m)		1
126 
127 struct nm_selinfo {
128 	struct selinfo si;
129 	struct mtx m;
130 };
131 
132 
133 // XXX linux struct, not used in FreeBSD
134 struct net_device_ops {
135 };
136 struct ethtool_ops {
137 };
138 struct hrtimer {
139 };
140 #define NM_BNS_GET(b)
141 #define NM_BNS_PUT(b)
142 
143 #elif defined (linux)
144 
145 #define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
146 #define	NM_SELINFO_T	wait_queue_head_t
147 #define	MBUF_LEN(m)	((m)->len)
148 #define MBUF_TRANSMIT(na, ifp, m)							\
149 	({										\
150 		/* Avoid infinite recursion with generic. */				\
151 		m->priority = NM_MAGIC_PRIORITY_TX;					\
152 		(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp));	\
153 		0;									\
154 	})
155 
156 /* See explanation in nm_os_generic_xmit_frame. */
157 #define	GEN_TX_MBUF_IFP(m)	((struct ifnet *)skb_shinfo(m)->destructor_arg)
158 
159 #define NM_ATOMIC_T	volatile long unsigned int
160 
161 #define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
162 #define NM_MTX_INIT(m)	mutex_init(&(m))
163 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
164 #define NM_MTX_LOCK(m)		mutex_lock(&(m))
165 #define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
166 #define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
167 
168 #ifndef DEV_NETMAP
169 #define DEV_NETMAP
170 #endif /* DEV_NETMAP */
171 
172 #elif defined (__APPLE__)
173 
174 #warning apple support is incomplete.
175 #define likely(x)	__builtin_expect(!!(x), 1)
176 #define unlikely(x)	__builtin_expect(!!(x), 0)
177 #define	NM_LOCK_T	IOLock *
178 #define	NM_SELINFO_T	struct selinfo
179 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
180 
181 #elif defined (_WIN32)
182 #include "../../../WINDOWS/win_glue.h"
183 
184 #define NM_SELRECORD_T		IO_STACK_LOCATION
185 #define NM_SELINFO_T		win_SELINFO		// see win_glue.h
186 #define NM_LOCK_T		win_spinlock_t	// see win_glue.h
187 #define NM_MTX_T		KGUARDED_MUTEX	/* OS-specific mutex (sleepable) */
188 
189 #define NM_MTX_INIT(m)		KeInitializeGuardedMutex(&m);
190 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
191 #define NM_MTX_LOCK(m)		KeAcquireGuardedMutex(&(m))
192 #define NM_MTX_UNLOCK(m)	KeReleaseGuardedMutex(&(m))
193 #define NM_MTX_ASSERT(m)	assert(&m.Count>0)
194 
195 //These linknames are for the NDIS driver
196 #define NETMAP_NDIS_LINKNAME_STRING             L"\\DosDevices\\NMAPNDIS"
197 #define NETMAP_NDIS_NTDEVICE_STRING             L"\\Device\\NMAPNDIS"
198 
199 //Definition of internal driver-to-driver ioctl codes
200 #define NETMAP_KERNEL_XCHANGE_POINTERS		_IO('i', 180)
201 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL	_IO_direct('i', 195)
202 
203 //Empty data structures are not permitted by MSVC compiler
204 //XXX_ale, try to solve this problem
205 struct net_device_ops{
206 	char data[1];
207 };
208 typedef struct ethtool_ops{
209 	char data[1];
210 };
211 typedef struct hrtimer{
212 	KTIMER timer;
213 	BOOLEAN active;
214 	KDPC deferred_proc;
215 };
216 
217 /* MSVC does not have likely/unlikely support */
218 #ifdef _MSC_VER
219 #define likely(x)	(x)
220 #define unlikely(x)	(x)
221 #else
222 #define likely(x)	__builtin_expect((long)!!(x), 1L)
223 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
224 #endif //_MSC_VER
225 
226 #else
227 
228 #error unsupported platform
229 
230 #endif /* end - platform-specific code */
231 
232 #ifndef _WIN32 /* support for emulated sysctl */
233 #define SYSBEGIN(x)
234 #define SYSEND
235 #endif /* _WIN32 */
236 
237 #define NM_ACCESS_ONCE(x)	(*(volatile __typeof__(x) *)&(x))
238 
239 #define	NMG_LOCK_T		NM_MTX_T
240 #define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
241 #define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
242 #define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
243 #define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
244 #define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
245 
246 #if defined(__FreeBSD__)
247 #define nm_prerr	printf
248 #define nm_prinf	printf
249 #elif defined (_WIN32)
250 #define nm_prerr	DbgPrint
251 #define nm_prinf	DbgPrint
252 #elif defined(linux)
253 #define nm_prerr(fmt, arg...)    printk(KERN_ERR fmt, ##arg)
254 #define nm_prinf(fmt, arg...)    printk(KERN_INFO fmt, ##arg)
255 #endif
256 
257 #define ND(format, ...)
258 #define D(format, ...)						\
259 	do {							\
260 		struct timeval __xxts;				\
261 		microtime(&__xxts);				\
262 		nm_prerr("%03d.%06d [%4d] %-25s " format "\n",	\
263 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
264 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
265 	} while (0)
266 
267 /* rate limited, lps indicates how many per second */
268 #define RD(lps, format, ...)					\
269 	do {							\
270 		static int t0, __cnt;				\
271 		if (t0 != time_second) {			\
272 			t0 = time_second;			\
273 			__cnt = 0;				\
274 		}						\
275 		if (__cnt++ < lps)				\
276 			D(format, ##__VA_ARGS__);		\
277 	} while (0)
278 
279 struct netmap_adapter;
280 struct nm_bdg_fwd;
281 struct nm_bridge;
282 struct netmap_priv_d;
283 
284 /* os-specific NM_SELINFO_T initialzation/destruction functions */
285 void nm_os_selinfo_init(NM_SELINFO_T *);
286 void nm_os_selinfo_uninit(NM_SELINFO_T *);
287 
288 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
289 
290 void nm_os_selwakeup(NM_SELINFO_T *si);
291 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
292 
293 int nm_os_ifnet_init(void);
294 void nm_os_ifnet_fini(void);
295 void nm_os_ifnet_lock(void);
296 void nm_os_ifnet_unlock(void);
297 
298 void nm_os_get_module(void);
299 void nm_os_put_module(void);
300 
301 void netmap_make_zombie(struct ifnet *);
302 void netmap_undo_zombie(struct ifnet *);
303 
304 /* os independent alloc/realloc/free */
305 void *nm_os_malloc(size_t);
306 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
307 void nm_os_free(void *);
308 
309 /* passes a packet up to the host stack.
310  * If the packet is sent (or dropped) immediately it returns NULL,
311  * otherwise it links the packet to prev and returns m.
312  * In this case, a final call with m=NULL and prev != NULL will send up
313  * the entire chain to the host stack.
314  */
315 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev);
316 
317 int nm_os_mbuf_has_offld(struct mbuf *m);
318 
319 #include "netmap_mbq.h"
320 
321 extern NMG_LOCK_T	netmap_global_lock;
322 
323 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
324 
325 static __inline const char*
326 nm_txrx2str(enum txrx t)
327 {
328 	return (t== NR_RX ? "RX" : "TX");
329 }
330 
331 static __inline enum txrx
332 nm_txrx_swap(enum txrx t)
333 {
334 	return (t== NR_RX ? NR_TX : NR_RX);
335 }
336 
337 #define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
338 
339 #ifdef WITH_MONITOR
340 struct netmap_zmon_list {
341 	struct netmap_kring *next;
342 	struct netmap_kring *prev;
343 };
344 #endif /* WITH_MONITOR */
345 
346 /*
347  * private, kernel view of a ring. Keeps track of the status of
348  * a ring across system calls.
349  *
350  *	nr_hwcur	index of the next buffer to refill.
351  *			It corresponds to ring->head
352  *			at the time the system call returns.
353  *
354  *	nr_hwtail	index of the first buffer owned by the kernel.
355  *			On RX, hwcur->hwtail are receive buffers
356  *			not yet released. hwcur is advanced following
357  *			ring->head, hwtail is advanced on incoming packets,
358  *			and a wakeup is generated when hwtail passes ring->cur
359  *			    On TX, hwcur->rcur have been filled by the sender
360  *			but not sent yet to the NIC; rcur->hwtail are available
361  *			for new transmissions, and hwtail->hwcur-1 are pending
362  *			transmissions not yet acknowledged.
363  *
364  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
365  * This is so that, on a reset, buffers owned by userspace are not
366  * modified by the kernel. In particular:
367  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
368  * 	the next empty buffer as known by the hardware (next_to_check or so).
369  * TX rings: hwcur + hwofs coincides with next_to_send
370  *
371  * For received packets, slot->flags is set to nkr_slot_flags
372  * so we can provide a proper initial value (e.g. set NS_FORWARD
373  * when operating in 'transparent' mode).
374  *
375  * The following fields are used to implement lock-free copy of packets
376  * from input to output ports in VALE switch:
377  *	nkr_hwlease	buffer after the last one being copied.
378  *			A writer in nm_bdg_flush reserves N buffers
379  *			from nr_hwlease, advances it, then does the
380  *			copy outside the lock.
381  *			In RX rings (used for VALE ports),
382  *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
383  *			In TX rings (used for NIC or host stack ports)
384  *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
385  *	nkr_leases	array of nkr_num_slots where writers can report
386  *			completion of their block. NR_NOSLOT (~0) indicates
387  *			that the writer has not finished yet
388  *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
389  *
390  * The kring is manipulated by txsync/rxsync and generic netmap function.
391  *
392  * Concurrent rxsync or txsync on the same ring are prevented through
393  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
394  * for NIC rings, and for TX rings attached to the host stack.
395  *
396  * RX rings attached to the host stack use an mbq (rx_queue) on both
397  * rxsync_from_host() and netmap_transmit(). The mbq is protected
398  * by its internal lock.
399  *
400  * RX rings attached to the VALE switch are accessed by both senders
401  * and receiver. They are protected through the q_lock on the RX ring.
402  */
403 struct netmap_kring {
404 	struct netmap_ring	*ring;
405 
406 	uint32_t	nr_hwcur;
407 	uint32_t	nr_hwtail;
408 
409 	/*
410 	 * Copies of values in user rings, so we do not need to look
411 	 * at the ring (which could be modified). These are set in the
412 	 * *sync_prologue()/finalize() routines.
413 	 */
414 	uint32_t	rhead;
415 	uint32_t	rcur;
416 	uint32_t	rtail;
417 
418 	uint32_t	nr_kflags;	/* private driver flags */
419 #define NKR_PENDINTR	0x1		// Pending interrupt.
420 #define NKR_EXCLUSIVE	0x2		/* exclusive binding */
421 #define NKR_FORWARD	0x4		/* (host ring only) there are
422 					   packets to forward
423 					 */
424 #define NKR_NEEDRING	0x8		/* ring needed even if users==0
425 					 * (used internally by pipes and
426 					 *  by ptnetmap host ports)
427 					 */
428 
429 	uint32_t	nr_mode;
430 	uint32_t	nr_pending_mode;
431 #define NKR_NETMAP_OFF	0x0
432 #define NKR_NETMAP_ON	0x1
433 
434 	uint32_t	nkr_num_slots;
435 
436 	/*
437 	 * On a NIC reset, the NIC ring indexes may be reset but the
438 	 * indexes in the netmap rings remain the same. nkr_hwofs
439 	 * keeps track of the offset between the two.
440 	 */
441 	int32_t		nkr_hwofs;
442 
443 	uint16_t	nkr_slot_flags;	/* initial value for flags */
444 
445 	/* last_reclaim is opaque marker to help reduce the frequency
446 	 * of operations such as reclaiming tx buffers. A possible use
447 	 * is set it to ticks and do the reclaim only once per tick.
448 	 */
449 	uint64_t	last_reclaim;
450 
451 
452 	NM_SELINFO_T	si;		/* poll/select wait queue */
453 	NM_LOCK_T	q_lock;		/* protects kring and ring. */
454 	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
455 
456 	struct netmap_adapter *na;
457 
458 	/* The following fields are for VALE switch support */
459 	struct nm_bdg_fwd *nkr_ft;
460 	uint32_t	*nkr_leases;
461 #define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
462 	uint32_t	nkr_hwlease;
463 	uint32_t	nkr_lease_idx;
464 
465 	/* while nkr_stopped is set, no new [tr]xsync operations can
466 	 * be started on this kring.
467 	 * This is used by netmap_disable_all_rings()
468 	 * to find a synchronization point where critical data
469 	 * structures pointed to by the kring can be added or removed
470 	 */
471 	volatile int nkr_stopped;
472 
473 	/* Support for adapters without native netmap support.
474 	 * On tx rings we preallocate an array of tx buffers
475 	 * (same size as the netmap ring), on rx rings we
476 	 * store incoming mbufs in a queue that is drained by
477 	 * a rxsync.
478 	 */
479 	struct mbuf	**tx_pool;
480 	struct mbuf	*tx_event;	/* TX event used as a notification */
481 	NM_LOCK_T	tx_event_lock;	/* protects the tx_event mbuf */
482 	struct mbq	rx_queue;       /* intercepted rx mbufs. */
483 
484 	uint32_t	users;		/* existing bindings for this ring */
485 
486 	uint32_t	ring_id;	/* kring identifier */
487 	enum txrx	tx;		/* kind of ring (tx or rx) */
488 	char name[64];			/* diagnostic */
489 
490 	/* [tx]sync callback for this kring.
491 	 * The default nm_kring_create callback (netmap_krings_create)
492 	 * sets the nm_sync callback of each hardware tx(rx) kring to
493 	 * the corresponding nm_txsync(nm_rxsync) taken from the
494 	 * netmap_adapter; moreover, it sets the sync callback
495 	 * of the host tx(rx) ring to netmap_txsync_to_host
496 	 * (netmap_rxsync_from_host).
497 	 *
498 	 * Overrides: the above configuration is not changed by
499 	 * any of the nm_krings_create callbacks.
500 	 */
501 	int (*nm_sync)(struct netmap_kring *kring, int flags);
502 	int (*nm_notify)(struct netmap_kring *kring, int flags);
503 
504 #ifdef WITH_PIPES
505 	struct netmap_kring *pipe;	/* if this is a pipe ring,
506 					 * pointer to the other end
507 					 */
508 #endif /* WITH_PIPES */
509 
510 #ifdef WITH_VALE
511 	int (*save_notify)(struct netmap_kring *kring, int flags);
512 #endif
513 
514 #ifdef WITH_MONITOR
515 	/* array of krings that are monitoring this kring */
516 	struct netmap_kring **monitors;
517 	uint32_t max_monitors; /* current size of the monitors array */
518 	uint32_t n_monitors;	/* next unused entry in the monitor array */
519 	uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
520 	uint32_t mon_tail;  /* last seen slot on rx */
521 
522 	/* circular list of zero-copy monitors */
523 	struct netmap_zmon_list zmon_list[NR_TXRX];
524 
525 	/*
526 	 * Monitors work by intercepting the sync and notify callbacks of the
527 	 * monitored krings. This is implemented by replacing the pointers
528 	 * above and saving the previous ones in mon_* pointers below
529 	 */
530 	int (*mon_sync)(struct netmap_kring *kring, int flags);
531 	int (*mon_notify)(struct netmap_kring *kring, int flags);
532 
533 #endif
534 }
535 #ifdef _WIN32
536 __declspec(align(64));
537 #else
538 __attribute__((__aligned__(64)));
539 #endif
540 
541 /* return 1 iff the kring needs to be turned on */
542 static inline int
543 nm_kring_pending_on(struct netmap_kring *kring)
544 {
545 	return kring->nr_pending_mode == NKR_NETMAP_ON &&
546 	       kring->nr_mode == NKR_NETMAP_OFF;
547 }
548 
549 /* return 1 iff the kring needs to be turned off */
550 static inline int
551 nm_kring_pending_off(struct netmap_kring *kring)
552 {
553 	return kring->nr_pending_mode == NKR_NETMAP_OFF &&
554 	       kring->nr_mode == NKR_NETMAP_ON;
555 }
556 
557 /* return the next index, with wraparound */
558 static inline uint32_t
559 nm_next(uint32_t i, uint32_t lim)
560 {
561 	return unlikely (i == lim) ? 0 : i + 1;
562 }
563 
564 
565 /* return the previous index, with wraparound */
566 static inline uint32_t
567 nm_prev(uint32_t i, uint32_t lim)
568 {
569 	return unlikely (i == 0) ? lim : i - 1;
570 }
571 
572 
573 /*
574  *
575  * Here is the layout for the Rx and Tx rings.
576 
577        RxRING                            TxRING
578 
579       +-----------------+            +-----------------+
580       |                 |            |                 |
581       |XXX free slot XXX|            |XXX free slot XXX|
582       +-----------------+            +-----------------+
583 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
584       |                 |            | yet             |
585       +-----------------+            |                 |
586  cur->| available to    |            |                 |
587       | user, not read  |            +-----------------+
588       | yet             |       cur->| (being          |
589       |                 |            |  prepared)      |
590       |                 |            |                 |
591       +-----------------+            +     ------      +
592 tail->|                 |<-hwtail    |                 |<-hwlease
593       | (being          | ...        |                 | ...
594       |  prepared)      | ...        |                 | ...
595       +-----------------+ ...        |                 | ...
596       |                 |<-hwlease   +-----------------+
597       |                 |      tail->|                 |<-hwtail
598       |                 |            |                 |
599       |                 |            |                 |
600       |                 |            |                 |
601       +-----------------+            +-----------------+
602 
603  * The cur/tail (user view) and hwcur/hwtail (kernel view)
604  * are used in the normal operation of the card.
605  *
606  * When a ring is the output of a switch port (Rx ring for
607  * a VALE port, Tx ring for the host stack or NIC), slots
608  * are reserved in blocks through 'hwlease' which points
609  * to the next unused slot.
610  * On an Rx ring, hwlease is always after hwtail,
611  * and completions cause hwtail to advance.
612  * On a Tx ring, hwlease is always between cur and hwtail,
613  * and completions cause cur to advance.
614  *
615  * nm_kr_space() returns the maximum number of slots that
616  * can be assigned.
617  * nm_kr_lease() reserves the required number of buffers,
618  *    advances nkr_hwlease and also returns an entry in
619  *    a circular array where completions should be reported.
620  */
621 
622 
623 struct netmap_lut {
624 	struct lut_entry *lut;
625 	uint32_t objtotal;	/* max buffer index */
626 	uint32_t objsize;	/* buffer size */
627 };
628 
629 struct netmap_vp_adapter; // forward
630 
631 /*
632  * The "struct netmap_adapter" extends the "struct adapter"
633  * (or equivalent) device descriptor.
634  * It contains all base fields needed to support netmap operation.
635  * There are in fact different types of netmap adapters
636  * (native, generic, VALE switch...) so a netmap_adapter is
637  * just the first field in the derived type.
638  */
639 struct netmap_adapter {
640 	/*
641 	 * On linux we do not have a good way to tell if an interface
642 	 * is netmap-capable. So we always use the following trick:
643 	 * NA(ifp) points here, and the first entry (which hopefully
644 	 * always exists and is at least 32 bits) contains a magic
645 	 * value which we can use to detect that the interface is good.
646 	 */
647 	uint32_t magic;
648 	uint32_t na_flags;	/* enabled, and other flags */
649 #define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
650 				 * useful during initialization
651 				 */
652 #define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
653 #define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
654 				 * forwarding packets coming from this
655 				 * interface
656 				 */
657 #define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
658 				 * that cannot be changed
659 				 */
660 #define NAF_NATIVE      16      /* the adapter is native.
661 				 * Virtual ports (non persistent vale ports,
662 				 * pipes, monitors...) should never use
663 				 * this flag.
664 				 */
665 #define	NAF_NETMAP_ON	32	/* netmap is active (either native or
666 				 * emulated). Where possible (e.g. FreeBSD)
667 				 * IFCAP_NETMAP also mirrors this flag.
668 				 */
669 #define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
670 #define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
671 #define NAF_PTNETMAP_HOST 256	/* the adapter supports ptnetmap in the host */
672 #define NAF_ZOMBIE	(1U<<30) /* the nic driver has been unloaded */
673 #define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
674 				  * cannot be registered from userspace
675 				  */
676 	int active_fds; /* number of user-space descriptors using this
677 			 interface, which is equal to the number of
678 			 struct netmap_if objs in the mapped region. */
679 
680 	u_int num_rx_rings; /* number of adapter receive rings */
681 	u_int num_tx_rings; /* number of adapter transmit rings */
682 
683 	u_int num_tx_desc;  /* number of descriptor in each queue */
684 	u_int num_rx_desc;
685 
686 	/* tx_rings and rx_rings are private but allocated
687 	 * as a contiguous chunk of memory. Each array has
688 	 * N+1 entries, for the adapter queues and for the host queue.
689 	 */
690 	struct netmap_kring *tx_rings; /* array of TX rings. */
691 	struct netmap_kring *rx_rings; /* array of RX rings. */
692 
693 	void *tailroom;		       /* space below the rings array */
694 				       /* (used for leases) */
695 
696 
697 	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
698 
699 	/* count users of the global wait queues */
700 	int si_users[NR_TXRX];
701 
702 	void *pdev; /* used to store pci device */
703 
704 	/* copy of if_qflush and if_transmit pointers, to intercept
705 	 * packets from the network stack when netmap is active.
706 	 */
707 	int     (*if_transmit)(struct ifnet *, struct mbuf *);
708 
709 	/* copy of if_input for netmap_send_up() */
710 	void     (*if_input)(struct ifnet *, struct mbuf *);
711 
712 	/* references to the ifnet and device routines, used by
713 	 * the generic netmap functions.
714 	 */
715 	struct ifnet *ifp; /* adapter is ifp->if_softc */
716 
717 	/*---- callbacks for this netmap adapter -----*/
718 	/*
719 	 * nm_dtor() is the cleanup routine called when destroying
720 	 *	the adapter.
721 	 *	Called with NMG_LOCK held.
722 	 *
723 	 * nm_register() is called on NIOCREGIF and close() to enter
724 	 *	or exit netmap mode on the NIC
725 	 *	Called with NNG_LOCK held.
726 	 *
727 	 * nm_txsync() pushes packets to the underlying hw/switch
728 	 *
729 	 * nm_rxsync() collects packets from the underlying hw/switch
730 	 *
731 	 * nm_config() returns configuration information from the OS
732 	 *	Called with NMG_LOCK held.
733 	 *
734 	 * nm_krings_create() create and init the tx_rings and
735 	 * 	rx_rings arrays of kring structures. In particular,
736 	 * 	set the nm_sync callbacks for each ring.
737 	 * 	There is no need to also allocate the corresponding
738 	 * 	netmap_rings, since netmap_mem_rings_create() will always
739 	 * 	be called to provide the missing ones.
740 	 *	Called with NNG_LOCK held.
741 	 *
742 	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
743 	 * 	arrays
744 	 *	Called with NMG_LOCK held.
745 	 *
746 	 * nm_notify() is used to act after data have become available
747 	 * 	(or the stopped state of the ring has changed)
748 	 *	For hw devices this is typically a selwakeup(),
749 	 *	but for NIC/host ports attached to a switch (or vice-versa)
750 	 *	we also need to invoke the 'txsync' code downstream.
751 	 *      This callback pointer is actually used only to initialize
752 	 *      kring->nm_notify.
753 	 *      Return values are the same as for netmap_rx_irq().
754 	 */
755 	void (*nm_dtor)(struct netmap_adapter *);
756 
757 	int (*nm_register)(struct netmap_adapter *, int onoff);
758 	void (*nm_intr)(struct netmap_adapter *, int onoff);
759 
760 	int (*nm_txsync)(struct netmap_kring *kring, int flags);
761 	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
762 	int (*nm_notify)(struct netmap_kring *kring, int flags);
763 #define NAF_FORCE_READ      1
764 #define NAF_FORCE_RECLAIM   2
765 #define NAF_CAN_FORWARD_DOWN 4
766 	/* return configuration information */
767 	int (*nm_config)(struct netmap_adapter *,
768 		u_int *txr, u_int *txd, u_int *rxr, u_int *rxd);
769 	int (*nm_krings_create)(struct netmap_adapter *);
770 	void (*nm_krings_delete)(struct netmap_adapter *);
771 #ifdef WITH_VALE
772 	/*
773 	 * nm_bdg_attach() initializes the na_vp field to point
774 	 *      to an adapter that can be attached to a VALE switch. If the
775 	 *      current adapter is already a VALE port, na_vp is simply a cast;
776 	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
777 	 *      If applicable, this callback also initializes na_hostvp,
778 	 *      that can be used to connect the adapter host rings to the
779 	 *      switch.
780 	 *      Called with NMG_LOCK held.
781 	 *
782 	 * nm_bdg_ctl() is called on the actual attach/detach to/from
783 	 *      to/from the switch, to perform adapter-specific
784 	 *      initializations
785 	 *      Called with NMG_LOCK held.
786 	 */
787 	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *);
788 	int (*nm_bdg_ctl)(struct netmap_adapter *, struct nmreq *, int);
789 
790 	/* adapter used to attach this adapter to a VALE switch (if any) */
791 	struct netmap_vp_adapter *na_vp;
792 	/* adapter used to attach the host rings of this adapter
793 	 * to a VALE switch (if any) */
794 	struct netmap_vp_adapter *na_hostvp;
795 #endif
796 
797 	/* standard refcount to control the lifetime of the adapter
798 	 * (it should be equal to the lifetime of the corresponding ifp)
799 	 */
800 	int na_refcount;
801 
802 	/* memory allocator (opaque)
803 	 * We also cache a pointer to the lut_entry for translating
804 	 * buffer addresses, the total number of buffers and the buffer size.
805 	 */
806  	struct netmap_mem_d *nm_mem;
807 	struct netmap_lut na_lut;
808 
809 	/* additional information attached to this adapter
810 	 * by other netmap subsystems. Currently used by
811 	 * bwrap, LINUX/v1000 and ptnetmap
812 	 */
813 	void *na_private;
814 
815 	/* array of pipes that have this adapter as a parent */
816 	struct netmap_pipe_adapter **na_pipes;
817 	int na_next_pipe;	/* next free slot in the array */
818 	int na_max_pipes;	/* size of the array */
819 
820 	/* Offset of ethernet header for each packet. */
821 	u_int virt_hdr_len;
822 
823 	char name[64];
824 };
825 
826 static __inline u_int
827 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
828 {
829 	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
830 }
831 
832 static __inline void
833 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
834 {
835 	if (t == NR_TX)
836 		na->num_tx_desc = v;
837 	else
838 		na->num_rx_desc = v;
839 }
840 
841 static __inline u_int
842 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
843 {
844 	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
845 }
846 
847 static __inline void
848 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
849 {
850 	if (t == NR_TX)
851 		na->num_tx_rings = v;
852 	else
853 		na->num_rx_rings = v;
854 }
855 
856 static __inline struct netmap_kring*
857 NMR(struct netmap_adapter *na, enum txrx t)
858 {
859 	return (t == NR_TX ? na->tx_rings : na->rx_rings);
860 }
861 
862 /*
863  * If the NIC is owned by the kernel
864  * (i.e., bridge), neither another bridge nor user can use it;
865  * if the NIC is owned by a user, only users can share it.
866  * Evaluation must be done under NMG_LOCK().
867  */
868 #define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
869 #define NETMAP_OWNED_BY_ANY(na) \
870 	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
871 
872 /*
873  * derived netmap adapters for various types of ports
874  */
875 struct netmap_vp_adapter {	/* VALE software port */
876 	struct netmap_adapter up;
877 
878 	/*
879 	 * Bridge support:
880 	 *
881 	 * bdg_port is the port number used in the bridge;
882 	 * na_bdg points to the bridge this NA is attached to.
883 	 */
884 	int bdg_port;
885 	struct nm_bridge *na_bdg;
886 	int retry;
887 	int autodelete; /* remove the ifp on last reference */
888 
889 	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
890 	u_int mfs;
891 	/* Last source MAC on this port */
892 	uint64_t last_smac;
893 };
894 
895 
896 struct netmap_hw_adapter {	/* physical device */
897 	struct netmap_adapter up;
898 
899 	struct net_device_ops nm_ndo;	// XXX linux only
900 	struct ethtool_ops    nm_eto;	// XXX linux only
901 	const struct ethtool_ops*   save_ethtool;
902 
903 	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
904 };
905 
906 #ifdef WITH_GENERIC
907 /* Mitigation support. */
908 struct nm_generic_mit {
909 	struct hrtimer mit_timer;
910 	int mit_pending;
911 	int mit_ring_idx;  /* index of the ring being mitigated */
912 	struct netmap_adapter *mit_na;  /* backpointer */
913 };
914 
915 struct netmap_generic_adapter {	/* emulated device */
916 	struct netmap_hw_adapter up;
917 
918 	/* Pointer to a previously used netmap adapter. */
919 	struct netmap_adapter *prev;
920 
921 	/* generic netmap adapters support:
922 	 * a net_device_ops struct overrides ndo_select_queue(),
923 	 * save_if_input saves the if_input hook (FreeBSD),
924 	 * mit implements rx interrupt mitigation,
925 	 */
926 	struct net_device_ops generic_ndo;
927 	void (*save_if_input)(struct ifnet *, struct mbuf *);
928 
929 	struct nm_generic_mit *mit;
930 #ifdef linux
931         netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
932 #endif
933 	/* Is the adapter able to use multiple RX slots to scatter
934 	 * each packet pushed up by the driver? */
935 	int rxsg;
936 
937 	/* Is the transmission path controlled by a netmap-aware
938 	 * device queue (i.e. qdisc on linux)? */
939 	int txqdisc;
940 };
941 #endif  /* WITH_GENERIC */
942 
943 static __inline int
944 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
945 {
946 	return nma_get_nrings(na, t) + !!(na->na_flags & NAF_HOST_RINGS);
947 }
948 
949 #ifdef WITH_VALE
950 struct nm_bdg_polling_state;
951 /*
952  * Bridge wrapper for non VALE ports attached to a VALE switch.
953  *
954  * The real device must already have its own netmap adapter (hwna).
955  * The bridge wrapper and the hwna adapter share the same set of
956  * netmap rings and buffers, but they have two separate sets of
957  * krings descriptors, with tx/rx meanings swapped:
958  *
959  *                                  netmap
960  *           bwrap     krings       rings      krings      hwna
961  *         +------+   +------+     +-----+    +------+   +------+
962  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
963  *         |      |   +------+ \ / +-----+    +------+   |      |
964  *         |      |             X                        |      |
965  *         |      |            / \                       |      |
966  *         |      |   +------+/   \+-----+    +------+   |      |
967  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
968  *         |      |   +------+     +-----+    +------+   |      |
969  *         +------+                                      +------+
970  *
971  * - packets coming from the bridge go to the brwap rx rings,
972  *   which are also the hwna tx rings.  The bwrap notify callback
973  *   will then complete the hwna tx (see netmap_bwrap_notify).
974  *
975  * - packets coming from the outside go to the hwna rx rings,
976  *   which are also the bwrap tx rings.  The (overwritten) hwna
977  *   notify method will then complete the bridge tx
978  *   (see netmap_bwrap_intr_notify).
979  *
980  *   The bridge wrapper may optionally connect the hwna 'host' rings
981  *   to the bridge. This is done by using a second port in the
982  *   bridge and connecting it to the 'host' netmap_vp_adapter
983  *   contained in the netmap_bwrap_adapter. The brwap host adapter
984  *   cross-links the hwna host rings in the same way as shown above.
985  *
986  * - packets coming from the bridge and directed to the host stack
987  *   are handled by the bwrap host notify callback
988  *   (see netmap_bwrap_host_notify)
989  *
990  * - packets coming from the host stack are still handled by the
991  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
992  *   but are diverted to the host adapter depending on the ring number.
993  *
994  */
995 struct netmap_bwrap_adapter {
996 	struct netmap_vp_adapter up;
997 	struct netmap_vp_adapter host;  /* for host rings */
998 	struct netmap_adapter *hwna;	/* the underlying device */
999 
1000 	/*
1001 	 * When we attach a physical interface to the bridge, we
1002 	 * allow the controlling process to terminate, so we need
1003 	 * a place to store the n_detmap_priv_d data structure.
1004 	 * This is only done when physical interfaces
1005 	 * are attached to a bridge.
1006 	 */
1007 	struct netmap_priv_d *na_kpriv;
1008 	struct nm_bdg_polling_state *na_polling_state;
1009 };
1010 int netmap_bwrap_attach(const char *name, struct netmap_adapter *);
1011 int netmap_vi_create(struct nmreq *, int);
1012 
1013 #else /* !WITH_VALE */
1014 #define netmap_vi_create(nmr, a) (EOPNOTSUPP)
1015 #endif /* WITH_VALE */
1016 
1017 #ifdef WITH_PIPES
1018 
1019 #define NM_MAXPIPES 	64	/* max number of pipes per adapter */
1020 
1021 struct netmap_pipe_adapter {
1022 	struct netmap_adapter up;
1023 
1024 	u_int id; 	/* pipe identifier */
1025 	int role;	/* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */
1026 
1027 	struct netmap_adapter *parent; /* adapter that owns the memory */
1028 	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1029 	int peer_ref;		/* 1 iff we are holding a ref to the peer */
1030 	struct ifnet *parent_ifp;	/* maybe null */
1031 
1032 	u_int parent_slot; /* index in the parent pipe array */
1033 };
1034 
1035 #endif /* WITH_PIPES */
1036 
1037 
1038 /* return slots reserved to rx clients; used in drivers */
1039 static inline uint32_t
1040 nm_kr_rxspace(struct netmap_kring *k)
1041 {
1042 	int space = k->nr_hwtail - k->nr_hwcur;
1043 	if (space < 0)
1044 		space += k->nkr_num_slots;
1045 	ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1046 
1047 	return space;
1048 }
1049 
1050 /* return slots reserved to tx clients */
1051 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1052 
1053 
1054 /* True if no space in the tx ring, only valid after txsync_prologue */
1055 static inline int
1056 nm_kr_txempty(struct netmap_kring *kring)
1057 {
1058 	return kring->rcur == kring->nr_hwtail;
1059 }
1060 
1061 /* True if no more completed slots in the rx ring, only valid after
1062  * rxsync_prologue */
1063 #define nm_kr_rxempty(_k)	nm_kr_txempty(_k)
1064 
1065 /*
1066  * protect against multiple threads using the same ring.
1067  * also check that the ring has not been stopped or locked
1068  */
1069 #define NM_KR_BUSY	1	/* some other thread is syncing the ring */
1070 #define NM_KR_STOPPED	2	/* unbounded stop (ifconfig down or driver unload) */
1071 #define NM_KR_LOCKED	3	/* bounded, brief stop for mutual exclusion */
1072 
1073 
1074 /* release the previously acquired right to use the *sync() methods of the ring */
1075 static __inline void nm_kr_put(struct netmap_kring *kr)
1076 {
1077 	NM_ATOMIC_CLEAR(&kr->nr_busy);
1078 }
1079 
1080 
1081 /* true if the ifp that backed the adapter has disappeared (e.g., the
1082  * driver has been unloaded)
1083  */
1084 static inline int nm_iszombie(struct netmap_adapter *na);
1085 
1086 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1087  * The right is obtained and must be later relinquished via nm_kr_put() if and
1088  * only if nm_kr_tryget() returns 0.
1089  * If can_sleep is 1 there are only two other possible outcomes:
1090  * - the function returns NM_KR_BUSY
1091  * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1092  *   (if non-null)
1093  * In both cases the caller will typically skip the ring, possibly collecting
1094  * errors along the way.
1095  * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1096  * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1097  * untouched: ideally, the caller should try again at a later time.
1098  */
1099 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1100 {
1101 	int busy = 1, stopped;
1102 	/* check a first time without taking the lock
1103 	 * to avoid starvation for nm_kr_get()
1104 	 */
1105 retry:
1106 	stopped = kr->nkr_stopped;
1107 	if (unlikely(stopped)) {
1108 		goto stop;
1109 	}
1110 	busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1111 	/* we should not return NM_KR_BUSY if the ring was
1112 	 * actually stopped, so check another time after
1113 	 * the barrier provided by the atomic operation
1114 	 */
1115 	stopped = kr->nkr_stopped;
1116 	if (unlikely(stopped)) {
1117 		goto stop;
1118 	}
1119 
1120 	if (unlikely(nm_iszombie(kr->na))) {
1121 		stopped = NM_KR_STOPPED;
1122 		goto stop;
1123 	}
1124 
1125 	return unlikely(busy) ? NM_KR_BUSY : 0;
1126 
1127 stop:
1128 	if (!busy)
1129 		nm_kr_put(kr);
1130 	if (stopped == NM_KR_STOPPED) {
1131 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1132  * Otherwise, any non-zero value will do.
1133  */
1134 #ifdef POLLERR
1135 #define NM_POLLERR POLLERR
1136 #else
1137 #define NM_POLLERR 1
1138 #endif /* POLLERR */
1139 		if (perr)
1140 			*perr |= NM_POLLERR;
1141 #undef NM_POLLERR
1142 	} else if (can_sleep) {
1143 		tsleep(kr, 0, "NM_KR_TRYGET", 4);
1144 		goto retry;
1145 	}
1146 	return stopped;
1147 }
1148 
1149 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1150  * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1151  */
1152 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1153 {
1154 	kr->nkr_stopped = stopped;
1155 	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1156 		tsleep(kr, 0, "NM_KR_GET", 4);
1157 }
1158 
1159 /* restart a ring after a stop */
1160 static __inline void nm_kr_start(struct netmap_kring *kr)
1161 {
1162 	kr->nkr_stopped = 0;
1163 	nm_kr_put(kr);
1164 }
1165 
1166 
1167 /*
1168  * The following functions are used by individual drivers to
1169  * support netmap operation.
1170  *
1171  * netmap_attach() initializes a struct netmap_adapter, allocating the
1172  * 	struct netmap_ring's and the struct selinfo.
1173  *
1174  * netmap_detach() frees the memory allocated by netmap_attach().
1175  *
1176  * netmap_transmit() replaces the if_transmit routine of the interface,
1177  *	and is used to intercept packets coming from the stack.
1178  *
1179  * netmap_load_map/netmap_reload_map are helper routines to set/reset
1180  *	the dmamap for a packet buffer
1181  *
1182  * netmap_reset() is a helper routine to be called in the hw driver
1183  *	when reinitializing a ring. It should not be called by
1184  *	virtual ports (vale, pipes, monitor)
1185  */
1186 int netmap_attach(struct netmap_adapter *);
1187 int netmap_attach_ext(struct netmap_adapter *, size_t size);
1188 void netmap_detach(struct ifnet *);
1189 int netmap_transmit(struct ifnet *, struct mbuf *);
1190 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1191 	enum txrx tx, u_int n, u_int new_cur);
1192 int netmap_ring_reinit(struct netmap_kring *);
1193 
1194 /* Return codes for netmap_*x_irq. */
1195 enum {
1196 	/* Driver should do normal interrupt processing, e.g. because
1197 	 * the interface is not in netmap mode. */
1198 	NM_IRQ_PASS = 0,
1199 	/* Port is in netmap mode, and the interrupt work has been
1200 	 * completed. The driver does not have to notify netmap
1201 	 * again before the next interrupt. */
1202 	NM_IRQ_COMPLETED = -1,
1203 	/* Port is in netmap mode, but the interrupt work has not been
1204 	 * completed. The driver has to make sure netmap will be
1205 	 * notified again soon, even if no more interrupts come (e.g.
1206 	 * on Linux the driver should not call napi_complete()). */
1207 	NM_IRQ_RESCHED = -2,
1208 };
1209 
1210 /* default functions to handle rx/tx interrupts */
1211 int netmap_rx_irq(struct ifnet *, u_int, u_int *);
1212 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1213 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1214 
1215 
1216 #ifdef WITH_VALE
1217 /* functions used by external modules to interface with VALE */
1218 #define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
1219 #define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
1220 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1221 #define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
1222 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1223 #else /* !WITH_VALE */
1224 #define netmap_vp_to_ifp(_vp)	NULL
1225 #define netmap_ifp_to_vp(_ifp)	NULL
1226 #define netmap_ifp_to_host_vp(_ifp) NULL
1227 #define netmap_bdg_idx(_vp)	-1
1228 #define netmap_bdg_name(_vp)	NULL
1229 #endif /* WITH_VALE */
1230 
1231 static inline int
1232 nm_netmap_on(struct netmap_adapter *na)
1233 {
1234 	return na && na->na_flags & NAF_NETMAP_ON;
1235 }
1236 
1237 static inline int
1238 nm_native_on(struct netmap_adapter *na)
1239 {
1240 	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1241 }
1242 
1243 static inline int
1244 nm_iszombie(struct netmap_adapter *na)
1245 {
1246 	return na == NULL || (na->na_flags & NAF_ZOMBIE);
1247 }
1248 
1249 static inline void
1250 nm_update_hostrings_mode(struct netmap_adapter *na)
1251 {
1252 	/* Process nr_mode and nr_pending_mode for host rings. */
1253 	na->tx_rings[na->num_tx_rings].nr_mode =
1254 		na->tx_rings[na->num_tx_rings].nr_pending_mode;
1255 	na->rx_rings[na->num_rx_rings].nr_mode =
1256 		na->rx_rings[na->num_rx_rings].nr_pending_mode;
1257 }
1258 
1259 /* set/clear native flags and if_transmit/netdev_ops */
1260 static inline void
1261 nm_set_native_flags(struct netmap_adapter *na)
1262 {
1263 	struct ifnet *ifp = na->ifp;
1264 
1265 	/* We do the setup for intercepting packets only if we are the
1266 	 * first user of this adapapter. */
1267 	if (na->active_fds > 0) {
1268 		return;
1269 	}
1270 
1271 	na->na_flags |= NAF_NETMAP_ON;
1272 #ifdef IFCAP_NETMAP /* or FreeBSD ? */
1273 	ifp->if_capenable |= IFCAP_NETMAP;
1274 #endif
1275 #if defined (__FreeBSD__)
1276 	na->if_transmit = ifp->if_transmit;
1277 	ifp->if_transmit = netmap_transmit;
1278 #elif defined (_WIN32)
1279 	(void)ifp; /* prevent a warning */
1280 	//XXX_ale can we just comment those?
1281 	//na->if_transmit = ifp->if_transmit;
1282 	//ifp->if_transmit = netmap_transmit;
1283 #else
1284 	na->if_transmit = (void *)ifp->netdev_ops;
1285 	ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo;
1286 	((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops;
1287 	ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto;
1288 #endif
1289 	nm_update_hostrings_mode(na);
1290 }
1291 
1292 static inline void
1293 nm_clear_native_flags(struct netmap_adapter *na)
1294 {
1295 	struct ifnet *ifp = na->ifp;
1296 
1297 	/* We undo the setup for intercepting packets only if we are the
1298 	 * last user of this adapapter. */
1299 	if (na->active_fds > 0) {
1300 		return;
1301 	}
1302 
1303 	nm_update_hostrings_mode(na);
1304 
1305 #if defined(__FreeBSD__)
1306 	ifp->if_transmit = na->if_transmit;
1307 #elif defined(_WIN32)
1308 	(void)ifp; /* prevent a warning */
1309 	//XXX_ale can we just comment those?
1310 	//ifp->if_transmit = na->if_transmit;
1311 #else
1312 	ifp->netdev_ops = (void *)na->if_transmit;
1313 	ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool;
1314 #endif
1315 	na->na_flags &= ~NAF_NETMAP_ON;
1316 #ifdef IFCAP_NETMAP /* or FreeBSD ? */
1317 	ifp->if_capenable &= ~IFCAP_NETMAP;
1318 #endif
1319 }
1320 
1321 /*
1322  * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1323  * kthreads.
1324  * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1325  * from host kring.
1326  * The user-space ring pointers (head/cur/tail) are shared through
1327  * CSB between host and guest.
1328  */
1329 
1330 /*
1331  * validates parameters in the ring/kring, returns a value for head
1332  * If any error, returns ring_size to force a reinit.
1333  */
1334 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1335 
1336 
1337 /*
1338  * validates parameters in the ring/kring, returns a value for head
1339  * If any error, returns ring_size lim to force a reinit.
1340  */
1341 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1342 
1343 
1344 /* check/fix address and len in tx rings */
1345 #if 1 /* debug version */
1346 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1347 	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1348 		RD(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1349 			kring->ring_id, nm_i, slot->buf_idx, len);	\
1350 		if (_l > NETMAP_BUF_SIZE(_na))				\
1351 			_l = NETMAP_BUF_SIZE(_na);			\
1352 	} } while (0)
1353 #else /* no debug version */
1354 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1355 		if (_l > NETMAP_BUF_SIZE(_na))				\
1356 			_l = NETMAP_BUF_SIZE(_na);			\
1357 	} while (0)
1358 #endif
1359 
1360 
1361 /*---------------------------------------------------------------*/
1362 /*
1363  * Support routines used by netmap subsystems
1364  * (native drivers, VALE, generic, pipes, monitors, ...)
1365  */
1366 
1367 
1368 /* common routine for all functions that create a netmap adapter. It performs
1369  * two main tasks:
1370  * - if the na points to an ifp, mark the ifp as netmap capable
1371  *   using na as its native adapter;
1372  * - provide defaults for the setup callbacks and the memory allocator
1373  */
1374 int netmap_attach_common(struct netmap_adapter *);
1375 /* common actions to be performed on netmap adapter destruction */
1376 void netmap_detach_common(struct netmap_adapter *);
1377 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1378  * coming from a struct nmreq
1379  */
1380 int netmap_interp_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags);
1381 /* update the ring parameters (number and size of tx and rx rings).
1382  * It calls the nm_config callback, if available.
1383  */
1384 int netmap_update_config(struct netmap_adapter *na);
1385 /* create and initialize the common fields of the krings array.
1386  * using the information that must be already available in the na.
1387  * tailroom can be used to request the allocation of additional
1388  * tailroom bytes after the krings array. This is used by
1389  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1390  * leasing-related data structures
1391  */
1392 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1393 /* deletes the kring array of the adapter. The array must have
1394  * been created using netmap_krings_create
1395  */
1396 void netmap_krings_delete(struct netmap_adapter *na);
1397 
1398 int netmap_hw_krings_create(struct netmap_adapter *na);
1399 void netmap_hw_krings_delete(struct netmap_adapter *na);
1400 
1401 /* set the stopped/enabled status of ring
1402  * When stopping, they also wait for all current activity on the ring to
1403  * terminate. The status change is then notified using the na nm_notify
1404  * callback.
1405  */
1406 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1407 /* set the stopped/enabled status of all rings of the adapter. */
1408 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1409 /* convenience wrappers for netmap_set_all_rings */
1410 void netmap_disable_all_rings(struct ifnet *);
1411 void netmap_enable_all_rings(struct ifnet *);
1412 
1413 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1414 	uint16_t ringid, uint32_t flags);
1415 void netmap_do_unregif(struct netmap_priv_d *priv);
1416 
1417 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1418 int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na,
1419 		  struct ifnet **ifp, struct netmap_mem_d *nmd, int create);
1420 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp);
1421 int netmap_get_hw_na(struct ifnet *ifp,
1422 		struct netmap_mem_d *nmd, struct netmap_adapter **na);
1423 
1424 
1425 #ifdef WITH_VALE
1426 /*
1427  * The following bridge-related functions are used by other
1428  * kernel modules.
1429  *
1430  * VALE only supports unicast or broadcast. The lookup
1431  * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports,
1432  * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown.
1433  * XXX in practice "unknown" might be handled same as broadcast.
1434  */
1435 typedef u_int (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr,
1436 		struct netmap_vp_adapter *);
1437 typedef int (*bdg_config_fn_t)(struct nm_ifreq *);
1438 typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *);
1439 struct netmap_bdg_ops {
1440 	bdg_lookup_fn_t lookup;
1441 	bdg_config_fn_t config;
1442 	bdg_dtor_fn_t	dtor;
1443 };
1444 
1445 u_int netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1446 		struct netmap_vp_adapter *);
1447 
1448 #define	NM_BRIDGES		8	/* number of bridges */
1449 #define	NM_BDG_MAXPORTS		254	/* up to 254 */
1450 #define	NM_BDG_BROADCAST	NM_BDG_MAXPORTS
1451 #define	NM_BDG_NOPORT		(NM_BDG_MAXPORTS+1)
1452 
1453 /* these are redefined in case of no VALE support */
1454 int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na,
1455 		struct netmap_mem_d *nmd, int create);
1456 struct nm_bridge *netmap_init_bridges2(u_int);
1457 void netmap_uninit_bridges2(struct nm_bridge *, u_int);
1458 int netmap_init_bridges(void);
1459 void netmap_uninit_bridges(void);
1460 int netmap_bdg_ctl(struct nmreq *nmr, struct netmap_bdg_ops *bdg_ops);
1461 int netmap_bdg_config(struct nmreq *nmr);
1462 
1463 #else /* !WITH_VALE */
1464 #define	netmap_get_bdg_na(_1, _2, _3, _4)	0
1465 #define netmap_init_bridges(_1) 0
1466 #define netmap_uninit_bridges()
1467 #define	netmap_bdg_ctl(_1, _2)	EINVAL
1468 #endif /* !WITH_VALE */
1469 
1470 #ifdef WITH_PIPES
1471 /* max number of pipes per device */
1472 #define NM_MAXPIPES	64	/* XXX how many? */
1473 void netmap_pipe_dealloc(struct netmap_adapter *);
1474 int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na,
1475 		struct netmap_mem_d *nmd, int create);
1476 #else /* !WITH_PIPES */
1477 #define NM_MAXPIPES	0
1478 #define netmap_pipe_alloc(_1, _2) 	0
1479 #define netmap_pipe_dealloc(_1)
1480 #define netmap_get_pipe_na(nmr, _2, _3, _4)	\
1481 	({ int role__ = (nmr)->nr_flags & NR_REG_MASK; \
1482 	   (role__ == NR_REG_PIPE_MASTER || 	       \
1483 	    role__ == NR_REG_PIPE_SLAVE) ? EOPNOTSUPP : 0; })
1484 #endif
1485 
1486 #ifdef WITH_MONITOR
1487 int netmap_get_monitor_na(struct nmreq *nmr, struct netmap_adapter **na,
1488 		struct netmap_mem_d *nmd, int create);
1489 void netmap_monitor_stop(struct netmap_adapter *na);
1490 #else
1491 #define netmap_get_monitor_na(nmr, _2, _3, _4) \
1492 	((nmr)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1493 #endif
1494 
1495 #ifdef CONFIG_NET_NS
1496 struct net *netmap_bns_get(void);
1497 void netmap_bns_put(struct net *);
1498 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1499 #else
1500 #define netmap_bns_get()
1501 #define netmap_bns_put(_1)
1502 #define netmap_bns_getbridges(b, n) \
1503 	do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
1504 #endif
1505 
1506 /* Various prototypes */
1507 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1508 int netmap_init(void);
1509 void netmap_fini(void);
1510 int netmap_get_memory(struct netmap_priv_d* p);
1511 void netmap_dtor(void *data);
1512 
1513 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, struct thread *);
1514 
1515 /* netmap_adapter creation/destruction */
1516 
1517 // #define NM_DEBUG_PUTGET 1
1518 
1519 #ifdef NM_DEBUG_PUTGET
1520 
1521 #define NM_DBG(f) __##f
1522 
1523 void __netmap_adapter_get(struct netmap_adapter *na);
1524 
1525 #define netmap_adapter_get(na) 				\
1526 	do {						\
1527 		struct netmap_adapter *__na = na;	\
1528 		D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1529 		__netmap_adapter_get(__na);		\
1530 	} while (0)
1531 
1532 int __netmap_adapter_put(struct netmap_adapter *na);
1533 
1534 #define netmap_adapter_put(na)				\
1535 	({						\
1536 		struct netmap_adapter *__na = na;	\
1537 		D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1538 		__netmap_adapter_put(__na);		\
1539 	})
1540 
1541 #else /* !NM_DEBUG_PUTGET */
1542 
1543 #define NM_DBG(f) f
1544 void netmap_adapter_get(struct netmap_adapter *na);
1545 int netmap_adapter_put(struct netmap_adapter *na);
1546 
1547 #endif /* !NM_DEBUG_PUTGET */
1548 
1549 
1550 /*
1551  * module variables
1552  */
1553 #define NETMAP_BUF_BASE(_na)	((_na)->na_lut.lut[0].vaddr)
1554 #define NETMAP_BUF_SIZE(_na)	((_na)->na_lut.objsize)
1555 extern int netmap_no_pendintr;
1556 extern int netmap_mitigate;
1557 extern int netmap_verbose;		/* for debugging */
1558 enum {                                  /* verbose flags */
1559 	NM_VERB_ON = 1,                 /* generic verbose */
1560 	NM_VERB_HOST = 0x2,             /* verbose host stack */
1561 	NM_VERB_RXSYNC = 0x10,          /* verbose on rxsync/txsync */
1562 	NM_VERB_TXSYNC = 0x20,
1563 	NM_VERB_RXINTR = 0x100,         /* verbose on rx/tx intr (driver) */
1564 	NM_VERB_TXINTR = 0x200,
1565 	NM_VERB_NIC_RXSYNC = 0x1000,    /* verbose on rx/tx intr (driver) */
1566 	NM_VERB_NIC_TXSYNC = 0x2000,
1567 };
1568 
1569 extern int netmap_txsync_retry;
1570 extern int netmap_flags;
1571 extern int netmap_generic_mit;
1572 extern int netmap_generic_ringsize;
1573 extern int netmap_generic_rings;
1574 extern int netmap_generic_txqdisc;
1575 extern int ptnetmap_tx_workers;
1576 
1577 /*
1578  * NA returns a pointer to the struct netmap adapter from the ifp,
1579  * WNA is used to write it.
1580  */
1581 #define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1582 
1583 /*
1584  * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1585  * overload another pointer in the netdev.
1586  *
1587  * We check if NA(ifp) is set and its first element has a related
1588  * magic value. The capenable is within the struct netmap_adapter.
1589  */
1590 #define	NETMAP_MAGIC	0x52697a7a
1591 
1592 #define NM_NA_VALID(ifp)	(NA(ifp) &&		\
1593 	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1594 
1595 #define	NM_ATTACH_NA(ifp, na) do {					\
1596 	WNA(ifp) = na;							\
1597 	if (NA(ifp))							\
1598 		NA(ifp)->magic = 					\
1599 			((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC;	\
1600 } while(0)
1601 
1602 #define NM_IS_NATIVE(ifp)	(NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1603 
1604 #if defined(__FreeBSD__)
1605 
1606 /* Assigns the device IOMMU domain to an allocator.
1607  * Returns -ENOMEM in case the domain is different */
1608 #define nm_iommu_group_id(dev) (0)
1609 
1610 /* Callback invoked by the dma machinery after a successful dmamap_load */
1611 static void netmap_dmamap_cb(__unused void *arg,
1612     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1613 {
1614 }
1615 
1616 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1617  * XXX can we do it without a callback ?
1618  */
1619 static inline void
1620 netmap_load_map(struct netmap_adapter *na,
1621 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1622 {
1623 	if (map)
1624 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1625 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1626 }
1627 
1628 static inline void
1629 netmap_unload_map(struct netmap_adapter *na,
1630         bus_dma_tag_t tag, bus_dmamap_t map)
1631 {
1632 	if (map)
1633 		bus_dmamap_unload(tag, map);
1634 }
1635 
1636 /* update the map when a buffer changes. */
1637 static inline void
1638 netmap_reload_map(struct netmap_adapter *na,
1639 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1640 {
1641 	if (map) {
1642 		bus_dmamap_unload(tag, map);
1643 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1644 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1645 	}
1646 }
1647 
1648 #elif defined(_WIN32)
1649 
1650 #else /* linux */
1651 
1652 int nm_iommu_group_id(bus_dma_tag_t dev);
1653 #include <linux/dma-mapping.h>
1654 
1655 static inline void
1656 netmap_load_map(struct netmap_adapter *na,
1657 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1658 {
1659 	if (0 && map) {
1660 		*map = dma_map_single(na->pdev, buf, NETMAP_BUF_SIZE(na),
1661 				      DMA_BIDIRECTIONAL);
1662 	}
1663 }
1664 
1665 static inline void
1666 netmap_unload_map(struct netmap_adapter *na,
1667 	bus_dma_tag_t tag, bus_dmamap_t map)
1668 {
1669 	u_int sz = NETMAP_BUF_SIZE(na);
1670 
1671 	if (*map) {
1672 		dma_unmap_single(na->pdev, *map, sz,
1673 				 DMA_BIDIRECTIONAL);
1674 	}
1675 }
1676 
1677 static inline void
1678 netmap_reload_map(struct netmap_adapter *na,
1679 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1680 {
1681 	u_int sz = NETMAP_BUF_SIZE(na);
1682 
1683 	if (*map) {
1684 		dma_unmap_single(na->pdev, *map, sz,
1685 				DMA_BIDIRECTIONAL);
1686 	}
1687 
1688 	*map = dma_map_single(na->pdev, buf, sz,
1689 				DMA_BIDIRECTIONAL);
1690 }
1691 
1692 /*
1693  * XXX How do we redefine these functions:
1694  *
1695  * on linux we need
1696  *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1697  *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction
1698  * The len can be implicit (on netmap it is NETMAP_BUF_SIZE)
1699  * unfortunately the direction is not, so we need to change
1700  * something to have a cross API
1701  */
1702 
1703 #if 0
1704 	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1705 	/* set time_stamp *before* dma to help avoid a possible race */
1706 	buffer_info->time_stamp = jiffies;
1707 	buffer_info->mapped_as_page = false;
1708 	buffer_info->length = len;
1709 	//buffer_info->next_to_watch = l;
1710 	/* reload dma map */
1711 	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1712 			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1713 	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1714 			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1715 
1716 	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1717 		D("dma mapping error");
1718 		/* goto dma_error; See e1000_put_txbuf() */
1719 		/* XXX reset */
1720 	}
1721 	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1722 
1723 #endif
1724 
1725 /*
1726  * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction.
1727  */
1728 #define bus_dmamap_sync(_a, _b, _c)
1729 
1730 #endif /* linux */
1731 
1732 
1733 /*
1734  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1735  */
1736 static inline int
1737 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1738 {
1739 	int n = kr->nkr_num_slots;
1740 	idx += kr->nkr_hwofs;
1741 	if (idx < 0)
1742 		return idx + n;
1743 	else if (idx < n)
1744 		return idx;
1745 	else
1746 		return idx - n;
1747 }
1748 
1749 
1750 static inline int
1751 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1752 {
1753 	int n = kr->nkr_num_slots;
1754 	idx -= kr->nkr_hwofs;
1755 	if (idx < 0)
1756 		return idx + n;
1757 	else if (idx < n)
1758 		return idx;
1759 	else
1760 		return idx - n;
1761 }
1762 
1763 
1764 /* Entries of the look-up table. */
1765 struct lut_entry {
1766 	void *vaddr;		/* virtual address. */
1767 	vm_paddr_t paddr;	/* physical address. */
1768 };
1769 
1770 struct netmap_obj_pool;
1771 
1772 /*
1773  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1774  * PNMB also fills the physical address
1775  */
1776 static inline void *
1777 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1778 {
1779 	struct lut_entry *lut = na->na_lut.lut;
1780 	uint32_t i = slot->buf_idx;
1781 	return (unlikely(i >= na->na_lut.objtotal)) ?
1782 		lut[0].vaddr : lut[i].vaddr;
1783 }
1784 
1785 static inline void *
1786 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1787 {
1788 	uint32_t i = slot->buf_idx;
1789 	struct lut_entry *lut = na->na_lut.lut;
1790 	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1791 
1792 #ifndef _WIN32
1793 	*pp = (i >= na->na_lut.objtotal) ? lut[0].paddr : lut[i].paddr;
1794 #else
1795 	*pp = (i >= na->na_lut.objtotal) ? (uint64_t)lut[0].paddr.QuadPart : (uint64_t)lut[i].paddr.QuadPart;
1796 #endif
1797 	return ret;
1798 }
1799 
1800 
1801 /*
1802  * Structure associated to each netmap file descriptor.
1803  * It is created on open and left unbound (np_nifp == NULL).
1804  * A successful NIOCREGIF will set np_nifp and the first few fields;
1805  * this is protected by a global lock (NMG_LOCK) due to low contention.
1806  *
1807  * np_refs counts the number of references to the structure: one for the fd,
1808  * plus (on FreeBSD) one for each active mmap which we track ourselves
1809  * (linux automatically tracks them, but FreeBSD does not).
1810  * np_refs is protected by NMG_LOCK.
1811  *
1812  * Read access to the structure is lock free, because ni_nifp once set
1813  * can only go to 0 when nobody is using the entry anymore. Readers
1814  * must check that np_nifp != NULL before using the other fields.
1815  */
1816 struct netmap_priv_d {
1817 	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
1818 
1819 	struct netmap_adapter	*np_na;
1820 	struct ifnet	*np_ifp;
1821 	uint32_t	np_flags;	/* from the ioctl */
1822 	u_int		np_qfirst[NR_TXRX],
1823 			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
1824 	uint16_t	np_txpoll;	/* XXX and also np_rxpoll ? */
1825 	int             np_sync_flags; /* to be passed to nm_sync */
1826 
1827 	int		np_refs;	/* use with NMG_LOCK held */
1828 
1829 	/* pointers to the selinfo to be used for selrecord.
1830 	 * Either the local or the global one depending on the
1831 	 * number of rings.
1832 	 */
1833 	NM_SELINFO_T *np_si[NR_TXRX];
1834 	struct thread	*np_td;		/* kqueue, just debugging */
1835 };
1836 
1837 struct netmap_priv_d *netmap_priv_new(void);
1838 void netmap_priv_delete(struct netmap_priv_d *);
1839 
1840 static inline int nm_kring_pending(struct netmap_priv_d *np)
1841 {
1842 	struct netmap_adapter *na = np->np_na;
1843 	enum txrx t;
1844 	int i;
1845 
1846 	for_rx_tx(t) {
1847 		for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
1848 			struct netmap_kring *kring = &NMR(na, t)[i];
1849 			if (kring->nr_mode != kring->nr_pending_mode) {
1850 				return 1;
1851 			}
1852 		}
1853 	}
1854 	return 0;
1855 }
1856 
1857 #ifdef WITH_PIPES
1858 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
1859 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
1860 #endif /* WITH_PIPES */
1861 
1862 #ifdef WITH_MONITOR
1863 
1864 struct netmap_monitor_adapter {
1865 	struct netmap_adapter up;
1866 
1867 	struct netmap_priv_d priv;
1868 	uint32_t flags;
1869 };
1870 
1871 #endif /* WITH_MONITOR */
1872 
1873 
1874 #ifdef WITH_GENERIC
1875 /*
1876  * generic netmap emulation for devices that do not have
1877  * native netmap support.
1878  */
1879 int generic_netmap_attach(struct ifnet *ifp);
1880 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
1881 
1882 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
1883 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
1884 
1885 int na_is_generic(struct netmap_adapter *na);
1886 
1887 /*
1888  * the generic transmit routine is passed a structure to optionally
1889  * build a queue of descriptors, in an OS-specific way.
1890  * The payload is at addr, if non-null, and the routine should send or queue
1891  * the packet, returning 0 if successful, 1 on failure.
1892  *
1893  * At the end, if head is non-null, there will be an additional call
1894  * to the function with addr = NULL; this should tell the OS-specific
1895  * routine to send the queue and free any resources. Failure is ignored.
1896  */
1897 struct nm_os_gen_arg {
1898 	struct ifnet *ifp;
1899 	void *m;	/* os-specific mbuf-like object */
1900 	void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
1901 	void *addr;	/* payload of current packet */
1902 	u_int len;	/* packet length */
1903 	u_int ring_nr;	/* packet length */
1904 	u_int qevent;   /* in txqdisc mode, place an event on this mbuf */
1905 };
1906 
1907 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
1908 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
1909 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
1910 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
1911 
1912 static inline struct ifnet*
1913 netmap_generic_getifp(struct netmap_generic_adapter *gna)
1914 {
1915         if (gna->prev)
1916             return gna->prev->ifp;
1917 
1918         return gna->up.up.ifp;
1919 }
1920 
1921 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
1922 
1923 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
1924 #ifdef RATE_GENERIC
1925 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
1926 #else
1927 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
1928 #endif
1929 
1930 /*
1931  * netmap_mitigation API. This is used by the generic adapter
1932  * to reduce the number of interrupt requests/selwakeup
1933  * to clients on incoming packets.
1934  */
1935 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
1936                                 struct netmap_adapter *na);
1937 void nm_os_mitigation_start(struct nm_generic_mit *mit);
1938 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
1939 int nm_os_mitigation_active(struct nm_generic_mit *mit);
1940 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
1941 #else /* !WITH_GENERIC */
1942 #define generic_netmap_attach(ifp)	(EOPNOTSUPP)
1943 #define na_is_generic(na)		(0)
1944 #endif /* WITH_GENERIC */
1945 
1946 /* Shared declarations for the VALE switch. */
1947 
1948 /*
1949  * Each transmit queue accumulates a batch of packets into
1950  * a structure before forwarding. Packets to the same
1951  * destination are put in a list using ft_next as a link field.
1952  * ft_frags and ft_next are valid only on the first fragment.
1953  */
1954 struct nm_bdg_fwd {	/* forwarding entry for a bridge */
1955 	void *ft_buf;		/* netmap or indirect buffer */
1956 	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
1957 	uint8_t _ft_port;	/* dst port (unused) */
1958 	uint16_t ft_flags;	/* flags, e.g. indirect */
1959 	uint16_t ft_len;	/* src fragment len */
1960 	uint16_t ft_next;	/* next packet to same destination */
1961 };
1962 
1963 /* struct 'virtio_net_hdr' from linux. */
1964 struct nm_vnet_hdr {
1965 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
1966 #define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
1967     uint8_t flags;
1968 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
1969 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
1970 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
1971 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
1972 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
1973     uint8_t gso_type;
1974     uint16_t hdr_len;
1975     uint16_t gso_size;
1976     uint16_t csum_start;
1977     uint16_t csum_offset;
1978 };
1979 
1980 #define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
1981 
1982 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
1983 
1984 struct nm_iphdr {
1985 	uint8_t		version_ihl;
1986 	uint8_t		tos;
1987 	uint16_t	tot_len;
1988 	uint16_t	id;
1989 	uint16_t	frag_off;
1990 	uint8_t		ttl;
1991 	uint8_t		protocol;
1992 	uint16_t	check;
1993 	uint32_t	saddr;
1994 	uint32_t	daddr;
1995 	/*The options start here. */
1996 };
1997 
1998 struct nm_tcphdr {
1999 	uint16_t	source;
2000 	uint16_t	dest;
2001 	uint32_t	seq;
2002 	uint32_t	ack_seq;
2003 	uint8_t		doff;  /* Data offset + Reserved */
2004 	uint8_t		flags;
2005 	uint16_t	window;
2006 	uint16_t	check;
2007 	uint16_t	urg_ptr;
2008 };
2009 
2010 struct nm_udphdr {
2011 	uint16_t	source;
2012 	uint16_t	dest;
2013 	uint16_t	len;
2014 	uint16_t	check;
2015 };
2016 
2017 struct nm_ipv6hdr {
2018 	uint8_t		priority_version;
2019 	uint8_t		flow_lbl[3];
2020 
2021 	uint16_t	payload_len;
2022 	uint8_t		nexthdr;
2023 	uint8_t		hop_limit;
2024 
2025 	uint8_t		saddr[16];
2026 	uint8_t		daddr[16];
2027 };
2028 
2029 /* Type used to store a checksum (in host byte order) that hasn't been
2030  * folded yet.
2031  */
2032 #define rawsum_t uint32_t
2033 
2034 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2035 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2036 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2037 		      size_t datalen, uint16_t *check);
2038 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2039 		      size_t datalen, uint16_t *check);
2040 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2041 
2042 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2043 			   struct netmap_vp_adapter *dst_na,
2044 			   const struct nm_bdg_fwd *ft_p,
2045 			   struct netmap_ring *dst_ring,
2046 			   u_int *j, u_int lim, u_int *howmany);
2047 
2048 /* persistent virtual port routines */
2049 int nm_os_vi_persist(const char *, struct ifnet **);
2050 void nm_os_vi_detach(struct ifnet *);
2051 void nm_os_vi_init_index(void);
2052 
2053 /*
2054  * kernel thread routines
2055  */
2056 struct nm_kctx; /* OS-specific kernel context - opaque */
2057 typedef void (*nm_kctx_worker_fn_t)(void *data, int is_kthread);
2058 typedef void (*nm_kctx_notify_fn_t)(void *data);
2059 
2060 /* kthread configuration */
2061 struct nm_kctx_cfg {
2062 	long			type;		/* kthread type/identifier */
2063 	nm_kctx_worker_fn_t	worker_fn;	/* worker function */
2064 	void			*worker_private;/* worker parameter */
2065 	nm_kctx_notify_fn_t	notify_fn;	/* notify function */
2066 	int			attach_user;	/* attach kthread to user process */
2067 	int			use_kthread;	/* use a kthread for the context */
2068 };
2069 /* kthread configuration */
2070 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2071 					unsigned int cfgtype,
2072 					void *opaque);
2073 int nm_os_kctx_worker_start(struct nm_kctx *);
2074 void nm_os_kctx_worker_stop(struct nm_kctx *);
2075 void nm_os_kctx_destroy(struct nm_kctx *);
2076 void nm_os_kctx_worker_wakeup(struct nm_kctx *nmk);
2077 void nm_os_kctx_send_irq(struct nm_kctx *);
2078 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2079 u_int nm_os_ncpus(void);
2080 
2081 #ifdef WITH_PTNETMAP_HOST
2082 /*
2083  * netmap adapter for host ptnetmap ports
2084  */
2085 struct netmap_pt_host_adapter {
2086 	struct netmap_adapter up;
2087 
2088 	/* the passed-through adapter */
2089 	struct netmap_adapter *parent;
2090 	/* parent->na_flags, saved at NETMAP_PT_HOST_CREATE time,
2091 	 * and restored at NETMAP_PT_HOST_DELETE time */
2092 	uint32_t parent_na_flags;
2093 
2094 	int (*parent_nm_notify)(struct netmap_kring *kring, int flags);
2095 	void *ptns;
2096 };
2097 /* ptnetmap HOST routines */
2098 int netmap_get_pt_host_na(struct nmreq *nmr, struct netmap_adapter **na,
2099 		struct netmap_mem_d * nmd, int create);
2100 int ptnetmap_ctl(struct nmreq *nmr, struct netmap_adapter *na);
2101 static inline int
2102 nm_ptnetmap_host_on(struct netmap_adapter *na)
2103 {
2104 	return na && na->na_flags & NAF_PTNETMAP_HOST;
2105 }
2106 #else /* !WITH_PTNETMAP_HOST */
2107 #define netmap_get_pt_host_na(nmr, _2, _3, _4) \
2108 	((nmr)->nr_flags & (NR_PTNETMAP_HOST) ? EOPNOTSUPP : 0)
2109 #define ptnetmap_ctl(_1, _2)   EINVAL
2110 #define nm_ptnetmap_host_on(_1)   EINVAL
2111 #endif /* !WITH_PTNETMAP_HOST */
2112 
2113 #ifdef WITH_PTNETMAP_GUEST
2114 /* ptnetmap GUEST routines */
2115 
2116 /*
2117  * netmap adapter for guest ptnetmap ports
2118  */
2119 struct netmap_pt_guest_adapter {
2120         /* The netmap adapter to be used by netmap applications.
2121 	 * This field must be the first, to allow upcast. */
2122 	struct netmap_hw_adapter hwup;
2123 
2124         /* The netmap adapter to be used by the driver. */
2125         struct netmap_hw_adapter dr;
2126 
2127 	void *csb;
2128 
2129 	/* Reference counter to track users of backend netmap port: the
2130 	 * network stack and netmap clients.
2131 	 * Used to decide when we need (de)allocate krings/rings and
2132 	 * start (stop) ptnetmap kthreads. */
2133 	int backend_regifs;
2134 
2135 };
2136 
2137 int netmap_pt_guest_attach(struct netmap_adapter *na, void *csb,
2138 			   unsigned int nifp_offset, unsigned int memid);
2139 struct ptnet_ring;
2140 bool netmap_pt_guest_txsync(struct ptnet_ring *ptring, struct netmap_kring *kring,
2141 			    int flags);
2142 bool netmap_pt_guest_rxsync(struct ptnet_ring *ptring, struct netmap_kring *kring,
2143 			    int flags);
2144 int ptnet_nm_krings_create(struct netmap_adapter *na);
2145 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2146 void ptnet_nm_dtor(struct netmap_adapter *na);
2147 #endif /* WITH_PTNETMAP_GUEST */
2148 
2149 #endif /* _NET_NETMAP_KERN_H_ */
2150