1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo 5 * Copyright (C) 2013-2016 Universita` di Pisa 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * $FreeBSD$ 32 * 33 * The header contains the definitions of constants and function 34 * prototypes used only in kernelspace. 35 */ 36 37 #ifndef _NET_NETMAP_KERN_H_ 38 #define _NET_NETMAP_KERN_H_ 39 40 #if defined(linux) 41 42 #if defined(CONFIG_NETMAP_EXTMEM) 43 #define WITH_EXTMEM 44 #endif 45 #if defined(CONFIG_NETMAP_VALE) 46 #define WITH_VALE 47 #endif 48 #if defined(CONFIG_NETMAP_PIPE) 49 #define WITH_PIPES 50 #endif 51 #if defined(CONFIG_NETMAP_MONITOR) 52 #define WITH_MONITOR 53 #endif 54 #if defined(CONFIG_NETMAP_GENERIC) 55 #define WITH_GENERIC 56 #endif 57 #if defined(CONFIG_NETMAP_PTNETMAP_GUEST) 58 #define WITH_PTNETMAP_GUEST 59 #endif 60 #if defined(CONFIG_NETMAP_PTNETMAP_HOST) 61 #define WITH_PTNETMAP_HOST 62 #endif 63 #if defined(CONFIG_NETMAP_SINK) 64 #define WITH_SINK 65 #endif 66 67 #elif defined (_WIN32) 68 #define WITH_VALE // comment out to disable VALE support 69 #define WITH_PIPES 70 #define WITH_MONITOR 71 #define WITH_GENERIC 72 73 #else /* neither linux nor windows */ 74 #define WITH_VALE // comment out to disable VALE support 75 #define WITH_PIPES 76 #define WITH_MONITOR 77 #define WITH_GENERIC 78 #define WITH_PTNETMAP_HOST /* ptnetmap host support */ 79 #define WITH_PTNETMAP_GUEST /* ptnetmap guest support */ 80 #define WITH_EXTMEM 81 #endif 82 83 #if defined(__FreeBSD__) 84 #include <sys/selinfo.h> 85 86 #define likely(x) __builtin_expect((long)!!(x), 1L) 87 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 88 #define __user 89 90 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 91 92 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 93 #define NM_MTX_INIT(m) sx_init(&(m), #m) 94 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 95 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 96 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; 97 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 98 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 99 100 #define NM_SELINFO_T struct nm_selinfo 101 #define NM_SELRECORD_T struct thread 102 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 103 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 104 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) 105 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 106 107 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ 108 /* atomic operations */ 109 #include <machine/atomic.h> 110 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 111 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 112 113 #if __FreeBSD_version >= 1100030 114 #define WNA(_ifp) (_ifp)->if_netmap 115 #else /* older FreeBSD */ 116 #define WNA(_ifp) (_ifp)->if_pspare[0] 117 #endif /* older FreeBSD */ 118 119 #if __FreeBSD_version >= 1100005 120 struct netmap_adapter *netmap_getna(if_t ifp); 121 #endif 122 123 #if __FreeBSD_version >= 1100027 124 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) 125 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x 126 #else 127 #define MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1) 128 #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x 129 #endif 130 131 #define MBUF_QUEUED(m) 1 132 133 struct nm_selinfo { 134 struct selinfo si; 135 struct mtx m; 136 }; 137 138 139 struct hrtimer { 140 /* Not used in FreeBSD. */ 141 }; 142 143 #define NM_BNS_GET(b) 144 #define NM_BNS_PUT(b) 145 146 #elif defined (linux) 147 148 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 149 #define NM_SELINFO_T wait_queue_head_t 150 #define MBUF_LEN(m) ((m)->len) 151 #define MBUF_TRANSMIT(na, ifp, m) \ 152 ({ \ 153 /* Avoid infinite recursion with generic. */ \ 154 m->priority = NM_MAGIC_PRIORITY_TX; \ 155 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 156 0; \ 157 }) 158 159 /* See explanation in nm_os_generic_xmit_frame. */ 160 #define GEN_TX_MBUF_IFP(m) ((struct ifnet *)skb_shinfo(m)->destructor_arg) 161 162 #define NM_ATOMIC_T volatile long unsigned int 163 164 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 165 #define NM_MTX_INIT(m) mutex_init(&(m)) 166 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 167 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 168 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 169 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 170 171 #ifndef DEV_NETMAP 172 #define DEV_NETMAP 173 #endif /* DEV_NETMAP */ 174 175 #elif defined (__APPLE__) 176 177 #warning apple support is incomplete. 178 #define likely(x) __builtin_expect(!!(x), 1) 179 #define unlikely(x) __builtin_expect(!!(x), 0) 180 #define NM_LOCK_T IOLock * 181 #define NM_SELINFO_T struct selinfo 182 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 183 184 #elif defined (_WIN32) 185 #include "../../../WINDOWS/win_glue.h" 186 187 #define NM_SELRECORD_T IO_STACK_LOCATION 188 #define NM_SELINFO_T win_SELINFO // see win_glue.h 189 #define NM_LOCK_T win_spinlock_t // see win_glue.h 190 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ 191 192 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); 193 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 194 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) 195 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) 196 #define NM_MTX_ASSERT(m) assert(&m.Count>0) 197 198 //These linknames are for the NDIS driver 199 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" 200 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" 201 202 //Definition of internal driver-to-driver ioctl codes 203 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) 204 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) 205 206 typedef struct hrtimer{ 207 KTIMER timer; 208 BOOLEAN active; 209 KDPC deferred_proc; 210 }; 211 212 /* MSVC does not have likely/unlikely support */ 213 #ifdef _MSC_VER 214 #define likely(x) (x) 215 #define unlikely(x) (x) 216 #else 217 #define likely(x) __builtin_expect((long)!!(x), 1L) 218 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 219 #endif //_MSC_VER 220 221 #else 222 223 #error unsupported platform 224 225 #endif /* end - platform-specific code */ 226 227 #ifndef _WIN32 /* support for emulated sysctl */ 228 #define SYSBEGIN(x) 229 #define SYSEND 230 #endif /* _WIN32 */ 231 232 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) 233 234 #define NMG_LOCK_T NM_MTX_T 235 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 236 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 237 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 238 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 239 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 240 241 #if defined(__FreeBSD__) 242 #define nm_prerr printf 243 #define nm_prinf printf 244 #elif defined (_WIN32) 245 #define nm_prerr DbgPrint 246 #define nm_prinf DbgPrint 247 #elif defined(linux) 248 #define nm_prerr(fmt, arg...) printk(KERN_ERR fmt, ##arg) 249 #define nm_prinf(fmt, arg...) printk(KERN_INFO fmt, ##arg) 250 #endif 251 252 #define ND(format, ...) 253 #define D(format, ...) \ 254 do { \ 255 struct timeval __xxts; \ 256 microtime(&__xxts); \ 257 nm_prerr("%03d.%06d [%4d] %-25s " format "\n", \ 258 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 259 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 260 } while (0) 261 262 /* rate limited, lps indicates how many per second */ 263 #define RD(lps, format, ...) \ 264 do { \ 265 static int t0, __cnt; \ 266 if (t0 != time_second) { \ 267 t0 = time_second; \ 268 __cnt = 0; \ 269 } \ 270 if (__cnt++ < lps) \ 271 D(format, ##__VA_ARGS__); \ 272 } while (0) 273 274 struct netmap_adapter; 275 struct nm_bdg_fwd; 276 struct nm_bridge; 277 struct netmap_priv_d; 278 279 /* os-specific NM_SELINFO_T initialzation/destruction functions */ 280 void nm_os_selinfo_init(NM_SELINFO_T *); 281 void nm_os_selinfo_uninit(NM_SELINFO_T *); 282 283 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 284 285 void nm_os_selwakeup(NM_SELINFO_T *si); 286 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); 287 288 int nm_os_ifnet_init(void); 289 void nm_os_ifnet_fini(void); 290 void nm_os_ifnet_lock(void); 291 void nm_os_ifnet_unlock(void); 292 293 unsigned nm_os_ifnet_mtu(struct ifnet *ifp); 294 295 void nm_os_get_module(void); 296 void nm_os_put_module(void); 297 298 void netmap_make_zombie(struct ifnet *); 299 void netmap_undo_zombie(struct ifnet *); 300 301 /* os independent alloc/realloc/free */ 302 void *nm_os_malloc(size_t); 303 void *nm_os_vmalloc(size_t); 304 void *nm_os_realloc(void *, size_t new_size, size_t old_size); 305 void nm_os_free(void *); 306 void nm_os_vfree(void *); 307 308 /* passes a packet up to the host stack. 309 * If the packet is sent (or dropped) immediately it returns NULL, 310 * otherwise it links the packet to prev and returns m. 311 * In this case, a final call with m=NULL and prev != NULL will send up 312 * the entire chain to the host stack. 313 */ 314 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev); 315 316 int nm_os_mbuf_has_offld(struct mbuf *m); 317 318 #include "netmap_mbq.h" 319 320 extern NMG_LOCK_T netmap_global_lock; 321 322 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 323 324 static __inline const char* 325 nm_txrx2str(enum txrx t) 326 { 327 return (t== NR_RX ? "RX" : "TX"); 328 } 329 330 static __inline enum txrx 331 nm_txrx_swap(enum txrx t) 332 { 333 return (t== NR_RX ? NR_TX : NR_RX); 334 } 335 336 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 337 338 #ifdef WITH_MONITOR 339 struct netmap_zmon_list { 340 struct netmap_kring *next; 341 struct netmap_kring *prev; 342 }; 343 #endif /* WITH_MONITOR */ 344 345 /* 346 * private, kernel view of a ring. Keeps track of the status of 347 * a ring across system calls. 348 * 349 * nr_hwcur index of the next buffer to refill. 350 * It corresponds to ring->head 351 * at the time the system call returns. 352 * 353 * nr_hwtail index of the first buffer owned by the kernel. 354 * On RX, hwcur->hwtail are receive buffers 355 * not yet released. hwcur is advanced following 356 * ring->head, hwtail is advanced on incoming packets, 357 * and a wakeup is generated when hwtail passes ring->cur 358 * On TX, hwcur->rcur have been filled by the sender 359 * but not sent yet to the NIC; rcur->hwtail are available 360 * for new transmissions, and hwtail->hwcur-1 are pending 361 * transmissions not yet acknowledged. 362 * 363 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 364 * This is so that, on a reset, buffers owned by userspace are not 365 * modified by the kernel. In particular: 366 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 367 * the next empty buffer as known by the hardware (next_to_check or so). 368 * TX rings: hwcur + hwofs coincides with next_to_send 369 * 370 * The following fields are used to implement lock-free copy of packets 371 * from input to output ports in VALE switch: 372 * nkr_hwlease buffer after the last one being copied. 373 * A writer in nm_bdg_flush reserves N buffers 374 * from nr_hwlease, advances it, then does the 375 * copy outside the lock. 376 * In RX rings (used for VALE ports), 377 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 378 * In TX rings (used for NIC or host stack ports) 379 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 380 * nkr_leases array of nkr_num_slots where writers can report 381 * completion of their block. NR_NOSLOT (~0) indicates 382 * that the writer has not finished yet 383 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 384 * 385 * The kring is manipulated by txsync/rxsync and generic netmap function. 386 * 387 * Concurrent rxsync or txsync on the same ring are prevented through 388 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 389 * for NIC rings, and for TX rings attached to the host stack. 390 * 391 * RX rings attached to the host stack use an mbq (rx_queue) on both 392 * rxsync_from_host() and netmap_transmit(). The mbq is protected 393 * by its internal lock. 394 * 395 * RX rings attached to the VALE switch are accessed by both senders 396 * and receiver. They are protected through the q_lock on the RX ring. 397 */ 398 struct netmap_kring { 399 struct netmap_ring *ring; 400 401 uint32_t nr_hwcur; /* should be nr_hwhead */ 402 uint32_t nr_hwtail; 403 404 /* 405 * Copies of values in user rings, so we do not need to look 406 * at the ring (which could be modified). These are set in the 407 * *sync_prologue()/finalize() routines. 408 */ 409 uint32_t rhead; 410 uint32_t rcur; 411 uint32_t rtail; 412 413 uint32_t nr_kflags; /* private driver flags */ 414 #define NKR_PENDINTR 0x1 // Pending interrupt. 415 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 416 #define NKR_FORWARD 0x4 /* (host ring only) there are 417 packets to forward 418 */ 419 #define NKR_NEEDRING 0x8 /* ring needed even if users==0 420 * (used internally by pipes and 421 * by ptnetmap host ports) 422 */ 423 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ 424 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ 425 426 uint32_t nr_mode; 427 uint32_t nr_pending_mode; 428 #define NKR_NETMAP_OFF 0x0 429 #define NKR_NETMAP_ON 0x1 430 431 uint32_t nkr_num_slots; 432 433 /* 434 * On a NIC reset, the NIC ring indexes may be reset but the 435 * indexes in the netmap rings remain the same. nkr_hwofs 436 * keeps track of the offset between the two. 437 */ 438 int32_t nkr_hwofs; 439 440 /* last_reclaim is opaque marker to help reduce the frequency 441 * of operations such as reclaiming tx buffers. A possible use 442 * is set it to ticks and do the reclaim only once per tick. 443 */ 444 uint64_t last_reclaim; 445 446 447 NM_SELINFO_T si; /* poll/select wait queue */ 448 NM_LOCK_T q_lock; /* protects kring and ring. */ 449 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 450 451 /* the adapter the owns this kring */ 452 struct netmap_adapter *na; 453 454 /* the adapter that wants to be notified when this kring has 455 * new slots avaialable. This is usually the same as the above, 456 * but wrappers may let it point to themselves 457 */ 458 struct netmap_adapter *notify_na; 459 460 /* The following fields are for VALE switch support */ 461 struct nm_bdg_fwd *nkr_ft; 462 uint32_t *nkr_leases; 463 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 464 uint32_t nkr_hwlease; 465 uint32_t nkr_lease_idx; 466 467 /* while nkr_stopped is set, no new [tr]xsync operations can 468 * be started on this kring. 469 * This is used by netmap_disable_all_rings() 470 * to find a synchronization point where critical data 471 * structures pointed to by the kring can be added or removed 472 */ 473 volatile int nkr_stopped; 474 475 /* Support for adapters without native netmap support. 476 * On tx rings we preallocate an array of tx buffers 477 * (same size as the netmap ring), on rx rings we 478 * store incoming mbufs in a queue that is drained by 479 * a rxsync. 480 */ 481 struct mbuf **tx_pool; 482 struct mbuf *tx_event; /* TX event used as a notification */ 483 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ 484 struct mbq rx_queue; /* intercepted rx mbufs. */ 485 486 uint32_t users; /* existing bindings for this ring */ 487 488 uint32_t ring_id; /* kring identifier */ 489 enum txrx tx; /* kind of ring (tx or rx) */ 490 char name[64]; /* diagnostic */ 491 492 /* [tx]sync callback for this kring. 493 * The default nm_kring_create callback (netmap_krings_create) 494 * sets the nm_sync callback of each hardware tx(rx) kring to 495 * the corresponding nm_txsync(nm_rxsync) taken from the 496 * netmap_adapter; moreover, it sets the sync callback 497 * of the host tx(rx) ring to netmap_txsync_to_host 498 * (netmap_rxsync_from_host). 499 * 500 * Overrides: the above configuration is not changed by 501 * any of the nm_krings_create callbacks. 502 */ 503 int (*nm_sync)(struct netmap_kring *kring, int flags); 504 int (*nm_notify)(struct netmap_kring *kring, int flags); 505 506 #ifdef WITH_PIPES 507 struct netmap_kring *pipe; /* if this is a pipe ring, 508 * pointer to the other end 509 */ 510 #endif /* WITH_PIPES */ 511 512 #ifdef WITH_VALE 513 int (*save_notify)(struct netmap_kring *kring, int flags); 514 #endif 515 516 #ifdef WITH_MONITOR 517 /* array of krings that are monitoring this kring */ 518 struct netmap_kring **monitors; 519 uint32_t max_monitors; /* current size of the monitors array */ 520 uint32_t n_monitors; /* next unused entry in the monitor array */ 521 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ 522 uint32_t mon_tail; /* last seen slot on rx */ 523 524 /* circular list of zero-copy monitors */ 525 struct netmap_zmon_list zmon_list[NR_TXRX]; 526 527 /* 528 * Monitors work by intercepting the sync and notify callbacks of the 529 * monitored krings. This is implemented by replacing the pointers 530 * above and saving the previous ones in mon_* pointers below 531 */ 532 int (*mon_sync)(struct netmap_kring *kring, int flags); 533 int (*mon_notify)(struct netmap_kring *kring, int flags); 534 535 #endif 536 } 537 #ifdef _WIN32 538 __declspec(align(64)); 539 #else 540 __attribute__((__aligned__(64))); 541 #endif 542 543 /* return 1 iff the kring needs to be turned on */ 544 static inline int 545 nm_kring_pending_on(struct netmap_kring *kring) 546 { 547 return kring->nr_pending_mode == NKR_NETMAP_ON && 548 kring->nr_mode == NKR_NETMAP_OFF; 549 } 550 551 /* return 1 iff the kring needs to be turned off */ 552 static inline int 553 nm_kring_pending_off(struct netmap_kring *kring) 554 { 555 return kring->nr_pending_mode == NKR_NETMAP_OFF && 556 kring->nr_mode == NKR_NETMAP_ON; 557 } 558 559 /* return the next index, with wraparound */ 560 static inline uint32_t 561 nm_next(uint32_t i, uint32_t lim) 562 { 563 return unlikely (i == lim) ? 0 : i + 1; 564 } 565 566 567 /* return the previous index, with wraparound */ 568 static inline uint32_t 569 nm_prev(uint32_t i, uint32_t lim) 570 { 571 return unlikely (i == 0) ? lim : i - 1; 572 } 573 574 575 /* 576 * 577 * Here is the layout for the Rx and Tx rings. 578 579 RxRING TxRING 580 581 +-----------------+ +-----------------+ 582 | | | | 583 | free | | free | 584 +-----------------+ +-----------------+ 585 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 586 | | | yet | 587 +-----------------+ | | 588 cur->| available to | | | 589 | user, not read | +-----------------+ 590 | yet | cur->| (being | 591 | | | prepared) | 592 | | | | 593 +-----------------+ + ------ + 594 tail->| |<-hwtail | |<-hwlease 595 | (being | ... | | ... 596 | prepared) | ... | | ... 597 +-----------------+ ... | | ... 598 | |<-hwlease +-----------------+ 599 | | tail->| |<-hwtail 600 | | | | 601 | | | | 602 | | | | 603 +-----------------+ +-----------------+ 604 605 * The cur/tail (user view) and hwcur/hwtail (kernel view) 606 * are used in the normal operation of the card. 607 * 608 * When a ring is the output of a switch port (Rx ring for 609 * a VALE port, Tx ring for the host stack or NIC), slots 610 * are reserved in blocks through 'hwlease' which points 611 * to the next unused slot. 612 * On an Rx ring, hwlease is always after hwtail, 613 * and completions cause hwtail to advance. 614 * On a Tx ring, hwlease is always between cur and hwtail, 615 * and completions cause cur to advance. 616 * 617 * nm_kr_space() returns the maximum number of slots that 618 * can be assigned. 619 * nm_kr_lease() reserves the required number of buffers, 620 * advances nkr_hwlease and also returns an entry in 621 * a circular array where completions should be reported. 622 */ 623 624 struct lut_entry; 625 #ifdef __FreeBSD__ 626 #define plut_entry lut_entry 627 #endif 628 629 struct netmap_lut { 630 struct lut_entry *lut; 631 struct plut_entry *plut; 632 uint32_t objtotal; /* max buffer index */ 633 uint32_t objsize; /* buffer size */ 634 }; 635 636 struct netmap_vp_adapter; // forward 637 638 /* Struct to be filled by nm_config callbacks. */ 639 struct nm_config_info { 640 unsigned num_tx_rings; 641 unsigned num_rx_rings; 642 unsigned num_tx_descs; 643 unsigned num_rx_descs; 644 unsigned rx_buf_maxsize; 645 }; 646 647 /* 648 * The "struct netmap_adapter" extends the "struct adapter" 649 * (or equivalent) device descriptor. 650 * It contains all base fields needed to support netmap operation. 651 * There are in fact different types of netmap adapters 652 * (native, generic, VALE switch...) so a netmap_adapter is 653 * just the first field in the derived type. 654 */ 655 struct netmap_adapter { 656 /* 657 * On linux we do not have a good way to tell if an interface 658 * is netmap-capable. So we always use the following trick: 659 * NA(ifp) points here, and the first entry (which hopefully 660 * always exists and is at least 32 bits) contains a magic 661 * value which we can use to detect that the interface is good. 662 */ 663 uint32_t magic; 664 uint32_t na_flags; /* enabled, and other flags */ 665 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 666 * useful during initialization 667 */ 668 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 669 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 670 * forwarding packets coming from this 671 * interface 672 */ 673 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 674 * that cannot be changed 675 */ 676 #define NAF_NATIVE 16 /* the adapter is native. 677 * Virtual ports (non persistent vale ports, 678 * pipes, monitors...) should never use 679 * this flag. 680 */ 681 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 682 * emulated). Where possible (e.g. FreeBSD) 683 * IFCAP_NETMAP also mirrors this flag. 684 */ 685 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 686 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 687 #define NAF_PTNETMAP_HOST 256 /* the adapter supports ptnetmap in the host */ 688 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ 689 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ 690 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 691 * cannot be registered from userspace 692 */ 693 int active_fds; /* number of user-space descriptors using this 694 interface, which is equal to the number of 695 struct netmap_if objs in the mapped region. */ 696 697 u_int num_rx_rings; /* number of adapter receive rings */ 698 u_int num_tx_rings; /* number of adapter transmit rings */ 699 700 u_int num_tx_desc; /* number of descriptor in each queue */ 701 u_int num_rx_desc; 702 703 /* tx_rings and rx_rings are private but allocated 704 * as a contiguous chunk of memory. Each array has 705 * N+1 entries, for the adapter queues and for the host queue. 706 */ 707 struct netmap_kring **tx_rings; /* array of TX rings. */ 708 struct netmap_kring **rx_rings; /* array of RX rings. */ 709 710 void *tailroom; /* space below the rings array */ 711 /* (used for leases) */ 712 713 714 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 715 716 /* count users of the global wait queues */ 717 int si_users[NR_TXRX]; 718 719 void *pdev; /* used to store pci device */ 720 721 /* copy of if_qflush and if_transmit pointers, to intercept 722 * packets from the network stack when netmap is active. 723 */ 724 int (*if_transmit)(struct ifnet *, struct mbuf *); 725 726 /* copy of if_input for netmap_send_up() */ 727 void (*if_input)(struct ifnet *, struct mbuf *); 728 729 /* Back reference to the parent ifnet struct. Used for 730 * hardware ports (emulated netmap included). */ 731 struct ifnet *ifp; /* adapter is ifp->if_softc */ 732 733 /*---- callbacks for this netmap adapter -----*/ 734 /* 735 * nm_dtor() is the cleanup routine called when destroying 736 * the adapter. 737 * Called with NMG_LOCK held. 738 * 739 * nm_register() is called on NIOCREGIF and close() to enter 740 * or exit netmap mode on the NIC 741 * Called with NNG_LOCK held. 742 * 743 * nm_txsync() pushes packets to the underlying hw/switch 744 * 745 * nm_rxsync() collects packets from the underlying hw/switch 746 * 747 * nm_config() returns configuration information from the OS 748 * Called with NMG_LOCK held. 749 * 750 * nm_krings_create() create and init the tx_rings and 751 * rx_rings arrays of kring structures. In particular, 752 * set the nm_sync callbacks for each ring. 753 * There is no need to also allocate the corresponding 754 * netmap_rings, since netmap_mem_rings_create() will always 755 * be called to provide the missing ones. 756 * Called with NNG_LOCK held. 757 * 758 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 759 * arrays 760 * Called with NMG_LOCK held. 761 * 762 * nm_notify() is used to act after data have become available 763 * (or the stopped state of the ring has changed) 764 * For hw devices this is typically a selwakeup(), 765 * but for NIC/host ports attached to a switch (or vice-versa) 766 * we also need to invoke the 'txsync' code downstream. 767 * This callback pointer is actually used only to initialize 768 * kring->nm_notify. 769 * Return values are the same as for netmap_rx_irq(). 770 */ 771 void (*nm_dtor)(struct netmap_adapter *); 772 773 int (*nm_register)(struct netmap_adapter *, int onoff); 774 void (*nm_intr)(struct netmap_adapter *, int onoff); 775 776 int (*nm_txsync)(struct netmap_kring *kring, int flags); 777 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 778 int (*nm_notify)(struct netmap_kring *kring, int flags); 779 #define NAF_FORCE_READ 1 780 #define NAF_FORCE_RECLAIM 2 781 #define NAF_CAN_FORWARD_DOWN 4 782 /* return configuration information */ 783 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); 784 int (*nm_krings_create)(struct netmap_adapter *); 785 void (*nm_krings_delete)(struct netmap_adapter *); 786 #ifdef WITH_VALE 787 /* 788 * nm_bdg_attach() initializes the na_vp field to point 789 * to an adapter that can be attached to a VALE switch. If the 790 * current adapter is already a VALE port, na_vp is simply a cast; 791 * otherwise, na_vp points to a netmap_bwrap_adapter. 792 * If applicable, this callback also initializes na_hostvp, 793 * that can be used to connect the adapter host rings to the 794 * switch. 795 * Called with NMG_LOCK held. 796 * 797 * nm_bdg_ctl() is called on the actual attach/detach to/from 798 * to/from the switch, to perform adapter-specific 799 * initializations 800 * Called with NMG_LOCK held. 801 */ 802 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *); 803 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); 804 805 /* adapter used to attach this adapter to a VALE switch (if any) */ 806 struct netmap_vp_adapter *na_vp; 807 /* adapter used to attach the host rings of this adapter 808 * to a VALE switch (if any) */ 809 struct netmap_vp_adapter *na_hostvp; 810 #endif 811 812 /* standard refcount to control the lifetime of the adapter 813 * (it should be equal to the lifetime of the corresponding ifp) 814 */ 815 int na_refcount; 816 817 /* memory allocator (opaque) 818 * We also cache a pointer to the lut_entry for translating 819 * buffer addresses, the total number of buffers and the buffer size. 820 */ 821 struct netmap_mem_d *nm_mem; 822 struct netmap_mem_d *nm_mem_prev; 823 struct netmap_lut na_lut; 824 825 /* additional information attached to this adapter 826 * by other netmap subsystems. Currently used by 827 * bwrap, LINUX/v1000 and ptnetmap 828 */ 829 void *na_private; 830 831 /* array of pipes that have this adapter as a parent */ 832 struct netmap_pipe_adapter **na_pipes; 833 int na_next_pipe; /* next free slot in the array */ 834 int na_max_pipes; /* size of the array */ 835 836 /* Offset of ethernet header for each packet. */ 837 u_int virt_hdr_len; 838 839 /* Max number of bytes that the NIC can store in the buffer 840 * referenced by each RX descriptor. This translates to the maximum 841 * bytes that a single netmap slot can reference. Larger packets 842 * require NS_MOREFRAG support. */ 843 unsigned rx_buf_maxsize; 844 845 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ 846 }; 847 848 static __inline u_int 849 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 850 { 851 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 852 } 853 854 static __inline void 855 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 856 { 857 if (t == NR_TX) 858 na->num_tx_desc = v; 859 else 860 na->num_rx_desc = v; 861 } 862 863 static __inline u_int 864 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 865 { 866 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 867 } 868 869 static __inline void 870 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 871 { 872 if (t == NR_TX) 873 na->num_tx_rings = v; 874 else 875 na->num_rx_rings = v; 876 } 877 878 static __inline struct netmap_kring** 879 NMR(struct netmap_adapter *na, enum txrx t) 880 { 881 return (t == NR_TX ? na->tx_rings : na->rx_rings); 882 } 883 884 int nma_intr_enable(struct netmap_adapter *na, int onoff); 885 886 /* 887 * If the NIC is owned by the kernel 888 * (i.e., bridge), neither another bridge nor user can use it; 889 * if the NIC is owned by a user, only users can share it. 890 * Evaluation must be done under NMG_LOCK(). 891 */ 892 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 893 #define NETMAP_OWNED_BY_ANY(na) \ 894 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 895 896 /* 897 * derived netmap adapters for various types of ports 898 */ 899 struct netmap_vp_adapter { /* VALE software port */ 900 struct netmap_adapter up; 901 902 /* 903 * Bridge support: 904 * 905 * bdg_port is the port number used in the bridge; 906 * na_bdg points to the bridge this NA is attached to. 907 */ 908 int bdg_port; 909 struct nm_bridge *na_bdg; 910 int retry; 911 int autodelete; /* remove the ifp on last reference */ 912 913 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 914 u_int mfs; 915 /* Last source MAC on this port */ 916 uint64_t last_smac; 917 }; 918 919 920 struct netmap_hw_adapter { /* physical device */ 921 struct netmap_adapter up; 922 923 #ifdef linux 924 struct net_device_ops nm_ndo; 925 struct ethtool_ops nm_eto; 926 #endif 927 const struct ethtool_ops* save_ethtool; 928 929 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 930 }; 931 932 #ifdef WITH_GENERIC 933 /* Mitigation support. */ 934 struct nm_generic_mit { 935 struct hrtimer mit_timer; 936 int mit_pending; 937 int mit_ring_idx; /* index of the ring being mitigated */ 938 struct netmap_adapter *mit_na; /* backpointer */ 939 }; 940 941 struct netmap_generic_adapter { /* emulated device */ 942 struct netmap_hw_adapter up; 943 944 /* Pointer to a previously used netmap adapter. */ 945 struct netmap_adapter *prev; 946 947 /* Emulated netmap adapters support: 948 * - save_if_input saves the if_input hook (FreeBSD); 949 * - mit implements rx interrupt mitigation; 950 */ 951 void (*save_if_input)(struct ifnet *, struct mbuf *); 952 953 struct nm_generic_mit *mit; 954 #ifdef linux 955 netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); 956 #endif 957 /* Is the adapter able to use multiple RX slots to scatter 958 * each packet pushed up by the driver? */ 959 int rxsg; 960 961 /* Is the transmission path controlled by a netmap-aware 962 * device queue (i.e. qdisc on linux)? */ 963 int txqdisc; 964 }; 965 #endif /* WITH_GENERIC */ 966 967 static __inline int 968 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 969 { 970 return nma_get_nrings(na, t) + !!(na->na_flags & NAF_HOST_RINGS); 971 } 972 973 #ifdef WITH_VALE 974 struct nm_bdg_polling_state; 975 /* 976 * Bridge wrapper for non VALE ports attached to a VALE switch. 977 * 978 * The real device must already have its own netmap adapter (hwna). 979 * The bridge wrapper and the hwna adapter share the same set of 980 * netmap rings and buffers, but they have two separate sets of 981 * krings descriptors, with tx/rx meanings swapped: 982 * 983 * netmap 984 * bwrap krings rings krings hwna 985 * +------+ +------+ +-----+ +------+ +------+ 986 * |tx_rings->| |\ /| |----| |<-tx_rings| 987 * | | +------+ \ / +-----+ +------+ | | 988 * | | X | | 989 * | | / \ | | 990 * | | +------+/ \+-----+ +------+ | | 991 * |rx_rings->| | | |----| |<-rx_rings| 992 * | | +------+ +-----+ +------+ | | 993 * +------+ +------+ 994 * 995 * - packets coming from the bridge go to the brwap rx rings, 996 * which are also the hwna tx rings. The bwrap notify callback 997 * will then complete the hwna tx (see netmap_bwrap_notify). 998 * 999 * - packets coming from the outside go to the hwna rx rings, 1000 * which are also the bwrap tx rings. The (overwritten) hwna 1001 * notify method will then complete the bridge tx 1002 * (see netmap_bwrap_intr_notify). 1003 * 1004 * The bridge wrapper may optionally connect the hwna 'host' rings 1005 * to the bridge. This is done by using a second port in the 1006 * bridge and connecting it to the 'host' netmap_vp_adapter 1007 * contained in the netmap_bwrap_adapter. The brwap host adapter 1008 * cross-links the hwna host rings in the same way as shown above. 1009 * 1010 * - packets coming from the bridge and directed to the host stack 1011 * are handled by the bwrap host notify callback 1012 * (see netmap_bwrap_host_notify) 1013 * 1014 * - packets coming from the host stack are still handled by the 1015 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 1016 * but are diverted to the host adapter depending on the ring number. 1017 * 1018 */ 1019 struct netmap_bwrap_adapter { 1020 struct netmap_vp_adapter up; 1021 struct netmap_vp_adapter host; /* for host rings */ 1022 struct netmap_adapter *hwna; /* the underlying device */ 1023 1024 /* 1025 * When we attach a physical interface to the bridge, we 1026 * allow the controlling process to terminate, so we need 1027 * a place to store the n_detmap_priv_d data structure. 1028 * This is only done when physical interfaces 1029 * are attached to a bridge. 1030 */ 1031 struct netmap_priv_d *na_kpriv; 1032 struct nm_bdg_polling_state *na_polling_state; 1033 /* we overwrite the hwna->na_vp pointer, so we save 1034 * here its original value, to be restored at detach 1035 */ 1036 struct netmap_vp_adapter *saved_na_vp; 1037 }; 1038 int nm_bdg_ctl_attach(struct nmreq_header *hdr, void *auth_token); 1039 int nm_bdg_ctl_detach(struct nmreq_header *hdr, void *auth_token); 1040 int nm_bdg_polling(struct nmreq_header *hdr); 1041 int netmap_bwrap_attach(const char *name, struct netmap_adapter *); 1042 int netmap_vi_create(struct nmreq_header *hdr, int); 1043 int nm_vi_create(struct nmreq_header *); 1044 int nm_vi_destroy(const char *name); 1045 int netmap_bdg_list(struct nmreq_header *hdr); 1046 1047 #else /* !WITH_VALE */ 1048 #define netmap_vi_create(hdr, a) (EOPNOTSUPP) 1049 #endif /* WITH_VALE */ 1050 1051 #ifdef WITH_PIPES 1052 1053 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 1054 1055 struct netmap_pipe_adapter { 1056 /* pipe identifier is up.name */ 1057 struct netmap_adapter up; 1058 1059 #define NM_PIPE_ROLE_MASTER 0x1 1060 #define NM_PIPE_ROLE_SLAVE 0x2 1061 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ 1062 1063 struct netmap_adapter *parent; /* adapter that owns the memory */ 1064 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 1065 int peer_ref; /* 1 iff we are holding a ref to the peer */ 1066 struct ifnet *parent_ifp; /* maybe null */ 1067 1068 u_int parent_slot; /* index in the parent pipe array */ 1069 }; 1070 1071 #endif /* WITH_PIPES */ 1072 1073 1074 /* return slots reserved to rx clients; used in drivers */ 1075 static inline uint32_t 1076 nm_kr_rxspace(struct netmap_kring *k) 1077 { 1078 int space = k->nr_hwtail - k->nr_hwcur; 1079 if (space < 0) 1080 space += k->nkr_num_slots; 1081 ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 1082 1083 return space; 1084 } 1085 1086 /* return slots reserved to tx clients */ 1087 #define nm_kr_txspace(_k) nm_kr_rxspace(_k) 1088 1089 1090 /* True if no space in the tx ring, only valid after txsync_prologue */ 1091 static inline int 1092 nm_kr_txempty(struct netmap_kring *kring) 1093 { 1094 return kring->rcur == kring->nr_hwtail; 1095 } 1096 1097 /* True if no more completed slots in the rx ring, only valid after 1098 * rxsync_prologue */ 1099 #define nm_kr_rxempty(_k) nm_kr_txempty(_k) 1100 1101 /* 1102 * protect against multiple threads using the same ring. 1103 * also check that the ring has not been stopped or locked 1104 */ 1105 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ 1106 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ 1107 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ 1108 1109 1110 /* release the previously acquired right to use the *sync() methods of the ring */ 1111 static __inline void nm_kr_put(struct netmap_kring *kr) 1112 { 1113 NM_ATOMIC_CLEAR(&kr->nr_busy); 1114 } 1115 1116 1117 /* true if the ifp that backed the adapter has disappeared (e.g., the 1118 * driver has been unloaded) 1119 */ 1120 static inline int nm_iszombie(struct netmap_adapter *na); 1121 1122 /* try to obtain exclusive right to issue the *sync() operations on the ring. 1123 * The right is obtained and must be later relinquished via nm_kr_put() if and 1124 * only if nm_kr_tryget() returns 0. 1125 * If can_sleep is 1 there are only two other possible outcomes: 1126 * - the function returns NM_KR_BUSY 1127 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr 1128 * (if non-null) 1129 * In both cases the caller will typically skip the ring, possibly collecting 1130 * errors along the way. 1131 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. 1132 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr 1133 * untouched: ideally, the caller should try again at a later time. 1134 */ 1135 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) 1136 { 1137 int busy = 1, stopped; 1138 /* check a first time without taking the lock 1139 * to avoid starvation for nm_kr_get() 1140 */ 1141 retry: 1142 stopped = kr->nkr_stopped; 1143 if (unlikely(stopped)) { 1144 goto stop; 1145 } 1146 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); 1147 /* we should not return NM_KR_BUSY if the ring was 1148 * actually stopped, so check another time after 1149 * the barrier provided by the atomic operation 1150 */ 1151 stopped = kr->nkr_stopped; 1152 if (unlikely(stopped)) { 1153 goto stop; 1154 } 1155 1156 if (unlikely(nm_iszombie(kr->na))) { 1157 stopped = NM_KR_STOPPED; 1158 goto stop; 1159 } 1160 1161 return unlikely(busy) ? NM_KR_BUSY : 0; 1162 1163 stop: 1164 if (!busy) 1165 nm_kr_put(kr); 1166 if (stopped == NM_KR_STOPPED) { 1167 /* if POLLERR is defined we want to use it to simplify netmap_poll(). 1168 * Otherwise, any non-zero value will do. 1169 */ 1170 #ifdef POLLERR 1171 #define NM_POLLERR POLLERR 1172 #else 1173 #define NM_POLLERR 1 1174 #endif /* POLLERR */ 1175 if (perr) 1176 *perr |= NM_POLLERR; 1177 #undef NM_POLLERR 1178 } else if (can_sleep) { 1179 tsleep(kr, 0, "NM_KR_TRYGET", 4); 1180 goto retry; 1181 } 1182 return stopped; 1183 } 1184 1185 /* put the ring in the 'stopped' state and wait for the current user (if any) to 1186 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED 1187 */ 1188 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) 1189 { 1190 kr->nkr_stopped = stopped; 1191 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 1192 tsleep(kr, 0, "NM_KR_GET", 4); 1193 } 1194 1195 /* restart a ring after a stop */ 1196 static __inline void nm_kr_start(struct netmap_kring *kr) 1197 { 1198 kr->nkr_stopped = 0; 1199 nm_kr_put(kr); 1200 } 1201 1202 1203 /* 1204 * The following functions are used by individual drivers to 1205 * support netmap operation. 1206 * 1207 * netmap_attach() initializes a struct netmap_adapter, allocating the 1208 * struct netmap_ring's and the struct selinfo. 1209 * 1210 * netmap_detach() frees the memory allocated by netmap_attach(). 1211 * 1212 * netmap_transmit() replaces the if_transmit routine of the interface, 1213 * and is used to intercept packets coming from the stack. 1214 * 1215 * netmap_load_map/netmap_reload_map are helper routines to set/reset 1216 * the dmamap for a packet buffer 1217 * 1218 * netmap_reset() is a helper routine to be called in the hw driver 1219 * when reinitializing a ring. It should not be called by 1220 * virtual ports (vale, pipes, monitor) 1221 */ 1222 int netmap_attach(struct netmap_adapter *); 1223 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); 1224 void netmap_detach(struct ifnet *); 1225 int netmap_transmit(struct ifnet *, struct mbuf *); 1226 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 1227 enum txrx tx, u_int n, u_int new_cur); 1228 int netmap_ring_reinit(struct netmap_kring *); 1229 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); 1230 1231 /* Return codes for netmap_*x_irq. */ 1232 enum { 1233 /* Driver should do normal interrupt processing, e.g. because 1234 * the interface is not in netmap mode. */ 1235 NM_IRQ_PASS = 0, 1236 /* Port is in netmap mode, and the interrupt work has been 1237 * completed. The driver does not have to notify netmap 1238 * again before the next interrupt. */ 1239 NM_IRQ_COMPLETED = -1, 1240 /* Port is in netmap mode, but the interrupt work has not been 1241 * completed. The driver has to make sure netmap will be 1242 * notified again soon, even if no more interrupts come (e.g. 1243 * on Linux the driver should not call napi_complete()). */ 1244 NM_IRQ_RESCHED = -2, 1245 }; 1246 1247 /* default functions to handle rx/tx interrupts */ 1248 int netmap_rx_irq(struct ifnet *, u_int, u_int *); 1249 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 1250 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); 1251 1252 1253 #ifdef WITH_VALE 1254 /* functions used by external modules to interface with VALE */ 1255 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 1256 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 1257 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 1258 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 1259 const char *netmap_bdg_name(struct netmap_vp_adapter *); 1260 #else /* !WITH_VALE */ 1261 #define netmap_vp_to_ifp(_vp) NULL 1262 #define netmap_ifp_to_vp(_ifp) NULL 1263 #define netmap_ifp_to_host_vp(_ifp) NULL 1264 #define netmap_bdg_idx(_vp) -1 1265 #define netmap_bdg_name(_vp) NULL 1266 #endif /* WITH_VALE */ 1267 1268 static inline int 1269 nm_netmap_on(struct netmap_adapter *na) 1270 { 1271 return na && na->na_flags & NAF_NETMAP_ON; 1272 } 1273 1274 static inline int 1275 nm_native_on(struct netmap_adapter *na) 1276 { 1277 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 1278 } 1279 1280 static inline int 1281 nm_iszombie(struct netmap_adapter *na) 1282 { 1283 return na == NULL || (na->na_flags & NAF_ZOMBIE); 1284 } 1285 1286 static inline void 1287 nm_update_hostrings_mode(struct netmap_adapter *na) 1288 { 1289 /* Process nr_mode and nr_pending_mode for host rings. */ 1290 na->tx_rings[na->num_tx_rings]->nr_mode = 1291 na->tx_rings[na->num_tx_rings]->nr_pending_mode; 1292 na->rx_rings[na->num_rx_rings]->nr_mode = 1293 na->rx_rings[na->num_rx_rings]->nr_pending_mode; 1294 } 1295 1296 /* set/clear native flags and if_transmit/netdev_ops */ 1297 static inline void 1298 nm_set_native_flags(struct netmap_adapter *na) 1299 { 1300 struct ifnet *ifp = na->ifp; 1301 1302 /* We do the setup for intercepting packets only if we are the 1303 * first user of this adapapter. */ 1304 if (na->active_fds > 0) { 1305 return; 1306 } 1307 1308 na->na_flags |= NAF_NETMAP_ON; 1309 #ifdef IFCAP_NETMAP /* or FreeBSD ? */ 1310 ifp->if_capenable |= IFCAP_NETMAP; 1311 #endif 1312 #if defined (__FreeBSD__) 1313 na->if_transmit = ifp->if_transmit; 1314 ifp->if_transmit = netmap_transmit; 1315 #elif defined (_WIN32) 1316 (void)ifp; /* prevent a warning */ 1317 #elif defined (linux) 1318 na->if_transmit = (void *)ifp->netdev_ops; 1319 ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo; 1320 ((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops; 1321 ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto; 1322 #endif /* linux */ 1323 nm_update_hostrings_mode(na); 1324 } 1325 1326 static inline void 1327 nm_clear_native_flags(struct netmap_adapter *na) 1328 { 1329 struct ifnet *ifp = na->ifp; 1330 1331 /* We undo the setup for intercepting packets only if we are the 1332 * last user of this adapapter. */ 1333 if (na->active_fds > 0) { 1334 return; 1335 } 1336 1337 nm_update_hostrings_mode(na); 1338 1339 #if defined(__FreeBSD__) 1340 ifp->if_transmit = na->if_transmit; 1341 #elif defined(_WIN32) 1342 (void)ifp; /* prevent a warning */ 1343 #else 1344 ifp->netdev_ops = (void *)na->if_transmit; 1345 ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool; 1346 #endif 1347 na->na_flags &= ~NAF_NETMAP_ON; 1348 #ifdef IFCAP_NETMAP /* or FreeBSD ? */ 1349 ifp->if_capenable &= ~IFCAP_NETMAP; 1350 #endif 1351 } 1352 1353 #ifdef linux 1354 int netmap_linux_config(struct netmap_adapter *na, 1355 struct nm_config_info *info); 1356 #endif /* linux */ 1357 1358 /* 1359 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap 1360 * kthreads. 1361 * We need netmap_ring* parameter, because in ptnetmap it is decoupled 1362 * from host kring. 1363 * The user-space ring pointers (head/cur/tail) are shared through 1364 * CSB between host and guest. 1365 */ 1366 1367 /* 1368 * validates parameters in the ring/kring, returns a value for head 1369 * If any error, returns ring_size to force a reinit. 1370 */ 1371 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); 1372 1373 1374 /* 1375 * validates parameters in the ring/kring, returns a value for head 1376 * If any error, returns ring_size lim to force a reinit. 1377 */ 1378 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); 1379 1380 1381 /* check/fix address and len in tx rings */ 1382 #if 1 /* debug version */ 1383 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1384 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1385 RD(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1386 kring->ring_id, nm_i, slot->buf_idx, len); \ 1387 if (_l > NETMAP_BUF_SIZE(_na)) \ 1388 _l = NETMAP_BUF_SIZE(_na); \ 1389 } } while (0) 1390 #else /* no debug version */ 1391 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1392 if (_l > NETMAP_BUF_SIZE(_na)) \ 1393 _l = NETMAP_BUF_SIZE(_na); \ 1394 } while (0) 1395 #endif 1396 1397 1398 /*---------------------------------------------------------------*/ 1399 /* 1400 * Support routines used by netmap subsystems 1401 * (native drivers, VALE, generic, pipes, monitors, ...) 1402 */ 1403 1404 1405 /* common routine for all functions that create a netmap adapter. It performs 1406 * two main tasks: 1407 * - if the na points to an ifp, mark the ifp as netmap capable 1408 * using na as its native adapter; 1409 * - provide defaults for the setup callbacks and the memory allocator 1410 */ 1411 int netmap_attach_common(struct netmap_adapter *); 1412 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1413 * coming from a struct nmreq_register 1414 */ 1415 int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1416 uint16_t nr_ringid, uint64_t nr_flags); 1417 /* update the ring parameters (number and size of tx and rx rings). 1418 * It calls the nm_config callback, if available. 1419 */ 1420 int netmap_update_config(struct netmap_adapter *na); 1421 /* create and initialize the common fields of the krings array. 1422 * using the information that must be already available in the na. 1423 * tailroom can be used to request the allocation of additional 1424 * tailroom bytes after the krings array. This is used by 1425 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1426 * leasing-related data structures 1427 */ 1428 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1429 /* deletes the kring array of the adapter. The array must have 1430 * been created using netmap_krings_create 1431 */ 1432 void netmap_krings_delete(struct netmap_adapter *na); 1433 1434 int netmap_hw_krings_create(struct netmap_adapter *na); 1435 void netmap_hw_krings_delete(struct netmap_adapter *na); 1436 1437 /* set the stopped/enabled status of ring 1438 * When stopping, they also wait for all current activity on the ring to 1439 * terminate. The status change is then notified using the na nm_notify 1440 * callback. 1441 */ 1442 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1443 /* set the stopped/enabled status of all rings of the adapter. */ 1444 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1445 /* convenience wrappers for netmap_set_all_rings */ 1446 void netmap_disable_all_rings(struct ifnet *); 1447 void netmap_enable_all_rings(struct ifnet *); 1448 1449 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1450 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags); 1451 void netmap_do_unregif(struct netmap_priv_d *priv); 1452 1453 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1454 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1455 struct ifnet **ifp, struct netmap_mem_d *nmd, int create); 1456 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp); 1457 int netmap_get_hw_na(struct ifnet *ifp, 1458 struct netmap_mem_d *nmd, struct netmap_adapter **na); 1459 1460 1461 #ifdef WITH_VALE 1462 /* 1463 * The following bridge-related functions are used by other 1464 * kernel modules. 1465 * 1466 * VALE only supports unicast or broadcast. The lookup 1467 * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports, 1468 * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 to indicate 1469 * drop. 1470 */ 1471 typedef uint32_t (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr, 1472 struct netmap_vp_adapter *, void *private_data); 1473 typedef int (*bdg_config_fn_t)(struct nm_ifreq *); 1474 typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *); 1475 typedef void *(*bdg_update_private_data_fn_t)(void *private_data, void *callback_data, int *error); 1476 struct netmap_bdg_ops { 1477 bdg_lookup_fn_t lookup; 1478 bdg_config_fn_t config; 1479 bdg_dtor_fn_t dtor; 1480 }; 1481 1482 uint32_t netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1483 struct netmap_vp_adapter *, void *private_data); 1484 1485 #define NM_BRIDGES 8 /* number of bridges */ 1486 #define NM_BDG_MAXPORTS 254 /* up to 254 */ 1487 #define NM_BDG_BROADCAST NM_BDG_MAXPORTS 1488 #define NM_BDG_NOPORT (NM_BDG_MAXPORTS+1) 1489 1490 /* these are redefined in case of no VALE support */ 1491 int netmap_get_bdg_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1492 struct netmap_mem_d *nmd, int create); 1493 struct nm_bridge *netmap_init_bridges2(u_int); 1494 void netmap_uninit_bridges2(struct nm_bridge *, u_int); 1495 int netmap_init_bridges(void); 1496 void netmap_uninit_bridges(void); 1497 int netmap_bdg_regops(const char *name, struct netmap_bdg_ops *bdg_ops, void *private_data, void *auth_token); 1498 int nm_bdg_update_private_data(const char *name, bdg_update_private_data_fn_t callback, 1499 void *callback_data, void *auth_token); 1500 int netmap_bdg_config(struct nm_ifreq *nifr); 1501 void *netmap_bdg_create(const char *bdg_name, int *return_status); 1502 int netmap_bdg_destroy(const char *bdg_name, void *auth_token); 1503 1504 #else /* !WITH_VALE */ 1505 #define netmap_get_bdg_na(_1, _2, _3, _4) 0 1506 #define netmap_init_bridges(_1) 0 1507 #define netmap_uninit_bridges() 1508 #define netmap_bdg_regops(_1, _2) EINVAL 1509 #endif /* !WITH_VALE */ 1510 1511 #ifdef WITH_PIPES 1512 /* max number of pipes per device */ 1513 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ 1514 void netmap_pipe_dealloc(struct netmap_adapter *); 1515 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1516 struct netmap_mem_d *nmd, int create); 1517 #else /* !WITH_PIPES */ 1518 #define NM_MAXPIPES 0 1519 #define netmap_pipe_alloc(_1, _2) 0 1520 #define netmap_pipe_dealloc(_1) 1521 #define netmap_get_pipe_na(hdr, _2, _3, _4) \ 1522 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) 1523 #endif 1524 1525 #ifdef WITH_MONITOR 1526 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1527 struct netmap_mem_d *nmd, int create); 1528 void netmap_monitor_stop(struct netmap_adapter *na); 1529 #else 1530 #define netmap_get_monitor_na(hdr, _2, _3, _4) \ 1531 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1532 #endif 1533 1534 #ifdef CONFIG_NET_NS 1535 struct net *netmap_bns_get(void); 1536 void netmap_bns_put(struct net *); 1537 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1538 #else 1539 #define netmap_bns_get() 1540 #define netmap_bns_put(_1) 1541 #define netmap_bns_getbridges(b, n) \ 1542 do { *b = nm_bridges; *n = NM_BRIDGES; } while (0) 1543 #endif 1544 1545 /* Various prototypes */ 1546 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); 1547 int netmap_init(void); 1548 void netmap_fini(void); 1549 int netmap_get_memory(struct netmap_priv_d* p); 1550 void netmap_dtor(void *data); 1551 1552 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1553 struct thread *, int nr_body_is_user); 1554 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1555 struct thread *td); 1556 size_t nmreq_size_by_type(uint16_t nr_reqtype); 1557 1558 /* netmap_adapter creation/destruction */ 1559 1560 // #define NM_DEBUG_PUTGET 1 1561 1562 #ifdef NM_DEBUG_PUTGET 1563 1564 #define NM_DBG(f) __##f 1565 1566 void __netmap_adapter_get(struct netmap_adapter *na); 1567 1568 #define netmap_adapter_get(na) \ 1569 do { \ 1570 struct netmap_adapter *__na = na; \ 1571 D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1572 __netmap_adapter_get(__na); \ 1573 } while (0) 1574 1575 int __netmap_adapter_put(struct netmap_adapter *na); 1576 1577 #define netmap_adapter_put(na) \ 1578 ({ \ 1579 struct netmap_adapter *__na = na; \ 1580 D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1581 __netmap_adapter_put(__na); \ 1582 }) 1583 1584 #else /* !NM_DEBUG_PUTGET */ 1585 1586 #define NM_DBG(f) f 1587 void netmap_adapter_get(struct netmap_adapter *na); 1588 int netmap_adapter_put(struct netmap_adapter *na); 1589 1590 #endif /* !NM_DEBUG_PUTGET */ 1591 1592 1593 /* 1594 * module variables 1595 */ 1596 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) 1597 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) 1598 extern int netmap_no_pendintr; 1599 extern int netmap_mitigate; 1600 extern int netmap_verbose; /* for debugging */ 1601 enum { /* verbose flags */ 1602 NM_VERB_ON = 1, /* generic verbose */ 1603 NM_VERB_HOST = 0x2, /* verbose host stack */ 1604 NM_VERB_RXSYNC = 0x10, /* verbose on rxsync/txsync */ 1605 NM_VERB_TXSYNC = 0x20, 1606 NM_VERB_RXINTR = 0x100, /* verbose on rx/tx intr (driver) */ 1607 NM_VERB_TXINTR = 0x200, 1608 NM_VERB_NIC_RXSYNC = 0x1000, /* verbose on rx/tx intr (driver) */ 1609 NM_VERB_NIC_TXSYNC = 0x2000, 1610 }; 1611 1612 extern int netmap_txsync_retry; 1613 extern int netmap_flags; 1614 extern int netmap_generic_mit; 1615 extern int netmap_generic_ringsize; 1616 extern int netmap_generic_rings; 1617 #ifdef linux 1618 extern int netmap_generic_txqdisc; 1619 #endif 1620 extern int ptnetmap_tx_workers; 1621 1622 /* 1623 * NA returns a pointer to the struct netmap adapter from the ifp, 1624 * WNA is used to write it. 1625 */ 1626 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 1627 1628 /* 1629 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we 1630 * overload another pointer in the netdev. 1631 * 1632 * We check if NA(ifp) is set and its first element has a related 1633 * magic value. The capenable is within the struct netmap_adapter. 1634 */ 1635 #define NETMAP_MAGIC 0x52697a7a 1636 1637 #define NM_NA_VALID(ifp) (NA(ifp) && \ 1638 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1639 1640 #define NM_ATTACH_NA(ifp, na) do { \ 1641 WNA(ifp) = na; \ 1642 if (NA(ifp)) \ 1643 NA(ifp)->magic = \ 1644 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ 1645 } while(0) 1646 1647 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) 1648 1649 #if defined(__FreeBSD__) 1650 1651 /* Assigns the device IOMMU domain to an allocator. 1652 * Returns -ENOMEM in case the domain is different */ 1653 #define nm_iommu_group_id(dev) (0) 1654 1655 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1656 static void netmap_dmamap_cb(__unused void *arg, 1657 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1658 { 1659 } 1660 1661 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1662 * XXX can we do it without a callback ? 1663 */ 1664 static inline int 1665 netmap_load_map(struct netmap_adapter *na, 1666 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1667 { 1668 if (map) 1669 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1670 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1671 return 0; 1672 } 1673 1674 static inline void 1675 netmap_unload_map(struct netmap_adapter *na, 1676 bus_dma_tag_t tag, bus_dmamap_t map) 1677 { 1678 if (map) 1679 bus_dmamap_unload(tag, map); 1680 } 1681 1682 #define netmap_sync_map(na, tag, map, sz, t) 1683 1684 /* update the map when a buffer changes. */ 1685 static inline void 1686 netmap_reload_map(struct netmap_adapter *na, 1687 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1688 { 1689 if (map) { 1690 bus_dmamap_unload(tag, map); 1691 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1692 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1693 } 1694 } 1695 1696 #elif defined(_WIN32) 1697 1698 #else /* linux */ 1699 1700 int nm_iommu_group_id(bus_dma_tag_t dev); 1701 #include <linux/dma-mapping.h> 1702 1703 /* 1704 * on linux we need 1705 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1706 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) 1707 */ 1708 #if 0 1709 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1710 /* set time_stamp *before* dma to help avoid a possible race */ 1711 buffer_info->time_stamp = jiffies; 1712 buffer_info->mapped_as_page = false; 1713 buffer_info->length = len; 1714 //buffer_info->next_to_watch = l; 1715 /* reload dma map */ 1716 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1717 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1718 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1719 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1720 1721 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1722 D("dma mapping error"); 1723 /* goto dma_error; See e1000_put_txbuf() */ 1724 /* XXX reset */ 1725 } 1726 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1727 1728 #endif 1729 1730 static inline int 1731 netmap_load_map(struct netmap_adapter *na, 1732 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) 1733 { 1734 if (map) { 1735 *map = dma_map_single(na->pdev, buf, size, 1736 DMA_BIDIRECTIONAL); 1737 if (dma_mapping_error(na->pdev, *map)) { 1738 *map = 0; 1739 return ENOMEM; 1740 } 1741 } 1742 return 0; 1743 } 1744 1745 static inline void 1746 netmap_unload_map(struct netmap_adapter *na, 1747 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) 1748 { 1749 if (*map) { 1750 dma_unmap_single(na->pdev, *map, sz, 1751 DMA_BIDIRECTIONAL); 1752 } 1753 } 1754 1755 static inline void 1756 netmap_sync_map(struct netmap_adapter *na, 1757 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1758 { 1759 if (*map) { 1760 if (t == NR_RX) 1761 dma_sync_single_for_cpu(na->pdev, *map, sz, 1762 DMA_FROM_DEVICE); 1763 else 1764 dma_sync_single_for_device(na->pdev, *map, sz, 1765 DMA_TO_DEVICE); 1766 } 1767 } 1768 1769 static inline void 1770 netmap_reload_map(struct netmap_adapter *na, 1771 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1772 { 1773 u_int sz = NETMAP_BUF_SIZE(na); 1774 1775 if (*map) { 1776 dma_unmap_single(na->pdev, *map, sz, 1777 DMA_BIDIRECTIONAL); 1778 } 1779 1780 *map = dma_map_single(na->pdev, buf, sz, 1781 DMA_BIDIRECTIONAL); 1782 } 1783 1784 #endif /* linux */ 1785 1786 1787 /* 1788 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1789 */ 1790 static inline int 1791 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1792 { 1793 int n = kr->nkr_num_slots; 1794 idx += kr->nkr_hwofs; 1795 if (idx < 0) 1796 return idx + n; 1797 else if (idx < n) 1798 return idx; 1799 else 1800 return idx - n; 1801 } 1802 1803 1804 static inline int 1805 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1806 { 1807 int n = kr->nkr_num_slots; 1808 idx -= kr->nkr_hwofs; 1809 if (idx < 0) 1810 return idx + n; 1811 else if (idx < n) 1812 return idx; 1813 else 1814 return idx - n; 1815 } 1816 1817 1818 /* Entries of the look-up table. */ 1819 #ifdef __FreeBSD__ 1820 struct lut_entry { 1821 void *vaddr; /* virtual address. */ 1822 vm_paddr_t paddr; /* physical address. */ 1823 }; 1824 #else /* linux & _WIN32 */ 1825 /* dma-mapping in linux can assign a buffer a different address 1826 * depending on the device, so we need to have a separate 1827 * physical-address look-up table for each na. 1828 * We can still share the vaddrs, though, therefore we split 1829 * the lut_entry structure. 1830 */ 1831 struct lut_entry { 1832 void *vaddr; /* virtual address. */ 1833 }; 1834 1835 struct plut_entry { 1836 vm_paddr_t paddr; /* physical address. */ 1837 }; 1838 #endif /* linux & _WIN32 */ 1839 1840 struct netmap_obj_pool; 1841 1842 /* 1843 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1844 * PNMB also fills the physical address 1845 */ 1846 static inline void * 1847 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1848 { 1849 struct lut_entry *lut = na->na_lut.lut; 1850 uint32_t i = slot->buf_idx; 1851 return (unlikely(i >= na->na_lut.objtotal)) ? 1852 lut[0].vaddr : lut[i].vaddr; 1853 } 1854 1855 static inline void * 1856 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1857 { 1858 uint32_t i = slot->buf_idx; 1859 struct lut_entry *lut = na->na_lut.lut; 1860 struct plut_entry *plut = na->na_lut.plut; 1861 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1862 1863 #ifdef _WIN32 1864 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; 1865 #else 1866 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; 1867 #endif 1868 return ret; 1869 } 1870 1871 1872 /* 1873 * Structure associated to each netmap file descriptor. 1874 * It is created on open and left unbound (np_nifp == NULL). 1875 * A successful NIOCREGIF will set np_nifp and the first few fields; 1876 * this is protected by a global lock (NMG_LOCK) due to low contention. 1877 * 1878 * np_refs counts the number of references to the structure: one for the fd, 1879 * plus (on FreeBSD) one for each active mmap which we track ourselves 1880 * (linux automatically tracks them, but FreeBSD does not). 1881 * np_refs is protected by NMG_LOCK. 1882 * 1883 * Read access to the structure is lock free, because ni_nifp once set 1884 * can only go to 0 when nobody is using the entry anymore. Readers 1885 * must check that np_nifp != NULL before using the other fields. 1886 */ 1887 struct netmap_priv_d { 1888 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 1889 1890 struct netmap_adapter *np_na; 1891 struct ifnet *np_ifp; 1892 uint32_t np_flags; /* from the ioctl */ 1893 u_int np_qfirst[NR_TXRX], 1894 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 1895 uint16_t np_txpoll; 1896 int np_sync_flags; /* to be passed to nm_sync */ 1897 1898 int np_refs; /* use with NMG_LOCK held */ 1899 1900 /* pointers to the selinfo to be used for selrecord. 1901 * Either the local or the global one depending on the 1902 * number of rings. 1903 */ 1904 NM_SELINFO_T *np_si[NR_TXRX]; 1905 struct thread *np_td; /* kqueue, just debugging */ 1906 }; 1907 1908 struct netmap_priv_d *netmap_priv_new(void); 1909 void netmap_priv_delete(struct netmap_priv_d *); 1910 1911 static inline int nm_kring_pending(struct netmap_priv_d *np) 1912 { 1913 struct netmap_adapter *na = np->np_na; 1914 enum txrx t; 1915 int i; 1916 1917 for_rx_tx(t) { 1918 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { 1919 struct netmap_kring *kring = NMR(na, t)[i]; 1920 if (kring->nr_mode != kring->nr_pending_mode) { 1921 return 1; 1922 } 1923 } 1924 } 1925 return 0; 1926 } 1927 1928 #ifdef WITH_PIPES 1929 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); 1930 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); 1931 #endif /* WITH_PIPES */ 1932 1933 #ifdef WITH_MONITOR 1934 1935 struct netmap_monitor_adapter { 1936 struct netmap_adapter up; 1937 1938 struct netmap_priv_d priv; 1939 uint32_t flags; 1940 }; 1941 1942 #endif /* WITH_MONITOR */ 1943 1944 1945 #ifdef WITH_GENERIC 1946 /* 1947 * generic netmap emulation for devices that do not have 1948 * native netmap support. 1949 */ 1950 int generic_netmap_attach(struct ifnet *ifp); 1951 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; 1952 1953 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); 1954 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); 1955 1956 int na_is_generic(struct netmap_adapter *na); 1957 1958 /* 1959 * the generic transmit routine is passed a structure to optionally 1960 * build a queue of descriptors, in an OS-specific way. 1961 * The payload is at addr, if non-null, and the routine should send or queue 1962 * the packet, returning 0 if successful, 1 on failure. 1963 * 1964 * At the end, if head is non-null, there will be an additional call 1965 * to the function with addr = NULL; this should tell the OS-specific 1966 * routine to send the queue and free any resources. Failure is ignored. 1967 */ 1968 struct nm_os_gen_arg { 1969 struct ifnet *ifp; 1970 void *m; /* os-specific mbuf-like object */ 1971 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ 1972 void *addr; /* payload of current packet */ 1973 u_int len; /* packet length */ 1974 u_int ring_nr; /* packet length */ 1975 u_int qevent; /* in txqdisc mode, place an event on this mbuf */ 1976 }; 1977 1978 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); 1979 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); 1980 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); 1981 void nm_os_generic_set_features(struct netmap_generic_adapter *gna); 1982 1983 static inline struct ifnet* 1984 netmap_generic_getifp(struct netmap_generic_adapter *gna) 1985 { 1986 if (gna->prev) 1987 return gna->prev->ifp; 1988 1989 return gna->up.up.ifp; 1990 } 1991 1992 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); 1993 1994 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 1995 #ifdef RATE_GENERIC 1996 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 1997 #else 1998 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 1999 #endif 2000 2001 /* 2002 * netmap_mitigation API. This is used by the generic adapter 2003 * to reduce the number of interrupt requests/selwakeup 2004 * to clients on incoming packets. 2005 */ 2006 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, 2007 struct netmap_adapter *na); 2008 void nm_os_mitigation_start(struct nm_generic_mit *mit); 2009 void nm_os_mitigation_restart(struct nm_generic_mit *mit); 2010 int nm_os_mitigation_active(struct nm_generic_mit *mit); 2011 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); 2012 #else /* !WITH_GENERIC */ 2013 #define generic_netmap_attach(ifp) (EOPNOTSUPP) 2014 #define na_is_generic(na) (0) 2015 #endif /* WITH_GENERIC */ 2016 2017 /* Shared declarations for the VALE switch. */ 2018 2019 /* 2020 * Each transmit queue accumulates a batch of packets into 2021 * a structure before forwarding. Packets to the same 2022 * destination are put in a list using ft_next as a link field. 2023 * ft_frags and ft_next are valid only on the first fragment. 2024 */ 2025 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 2026 void *ft_buf; /* netmap or indirect buffer */ 2027 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 2028 uint16_t ft_offset; /* dst port (unused) */ 2029 uint16_t ft_flags; /* flags, e.g. indirect */ 2030 uint16_t ft_len; /* src fragment len */ 2031 uint16_t ft_next; /* next packet to same destination */ 2032 }; 2033 2034 /* struct 'virtio_net_hdr' from linux. */ 2035 struct nm_vnet_hdr { 2036 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 2037 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 2038 uint8_t flags; 2039 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 2040 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 2041 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 2042 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 2043 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 2044 uint8_t gso_type; 2045 uint16_t hdr_len; 2046 uint16_t gso_size; 2047 uint16_t csum_start; 2048 uint16_t csum_offset; 2049 }; 2050 2051 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 2052 2053 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 2054 2055 struct nm_iphdr { 2056 uint8_t version_ihl; 2057 uint8_t tos; 2058 uint16_t tot_len; 2059 uint16_t id; 2060 uint16_t frag_off; 2061 uint8_t ttl; 2062 uint8_t protocol; 2063 uint16_t check; 2064 uint32_t saddr; 2065 uint32_t daddr; 2066 /*The options start here. */ 2067 }; 2068 2069 struct nm_tcphdr { 2070 uint16_t source; 2071 uint16_t dest; 2072 uint32_t seq; 2073 uint32_t ack_seq; 2074 uint8_t doff; /* Data offset + Reserved */ 2075 uint8_t flags; 2076 uint16_t window; 2077 uint16_t check; 2078 uint16_t urg_ptr; 2079 }; 2080 2081 struct nm_udphdr { 2082 uint16_t source; 2083 uint16_t dest; 2084 uint16_t len; 2085 uint16_t check; 2086 }; 2087 2088 struct nm_ipv6hdr { 2089 uint8_t priority_version; 2090 uint8_t flow_lbl[3]; 2091 2092 uint16_t payload_len; 2093 uint8_t nexthdr; 2094 uint8_t hop_limit; 2095 2096 uint8_t saddr[16]; 2097 uint8_t daddr[16]; 2098 }; 2099 2100 /* Type used to store a checksum (in host byte order) that hasn't been 2101 * folded yet. 2102 */ 2103 #define rawsum_t uint32_t 2104 2105 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 2106 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); 2107 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 2108 size_t datalen, uint16_t *check); 2109 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 2110 size_t datalen, uint16_t *check); 2111 uint16_t nm_os_csum_fold(rawsum_t cur_sum); 2112 2113 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 2114 struct netmap_vp_adapter *dst_na, 2115 const struct nm_bdg_fwd *ft_p, 2116 struct netmap_ring *dst_ring, 2117 u_int *j, u_int lim, u_int *howmany); 2118 2119 /* persistent virtual port routines */ 2120 int nm_os_vi_persist(const char *, struct ifnet **); 2121 void nm_os_vi_detach(struct ifnet *); 2122 void nm_os_vi_init_index(void); 2123 2124 /* 2125 * kernel thread routines 2126 */ 2127 struct nm_kctx; /* OS-specific kernel context - opaque */ 2128 typedef void (*nm_kctx_worker_fn_t)(void *data, int is_kthread); 2129 typedef void (*nm_kctx_notify_fn_t)(void *data); 2130 2131 /* kthread configuration */ 2132 struct nm_kctx_cfg { 2133 long type; /* kthread type/identifier */ 2134 nm_kctx_worker_fn_t worker_fn; /* worker function */ 2135 void *worker_private;/* worker parameter */ 2136 nm_kctx_notify_fn_t notify_fn; /* notify function */ 2137 int attach_user; /* attach kthread to user process */ 2138 int use_kthread; /* use a kthread for the context */ 2139 }; 2140 /* kthread configuration */ 2141 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, 2142 void *opaque); 2143 int nm_os_kctx_worker_start(struct nm_kctx *); 2144 void nm_os_kctx_worker_stop(struct nm_kctx *); 2145 void nm_os_kctx_destroy(struct nm_kctx *); 2146 void nm_os_kctx_worker_wakeup(struct nm_kctx *nmk); 2147 void nm_os_kctx_send_irq(struct nm_kctx *); 2148 void nm_os_kctx_worker_setaff(struct nm_kctx *, int); 2149 u_int nm_os_ncpus(void); 2150 2151 #ifdef WITH_PTNETMAP_HOST 2152 /* 2153 * netmap adapter for host ptnetmap ports 2154 */ 2155 struct netmap_pt_host_adapter { 2156 struct netmap_adapter up; 2157 2158 /* the passed-through adapter */ 2159 struct netmap_adapter *parent; 2160 /* parent->na_flags, saved at NETMAP_PT_HOST_CREATE time, 2161 * and restored at NETMAP_PT_HOST_DELETE time */ 2162 uint32_t parent_na_flags; 2163 2164 int (*parent_nm_notify)(struct netmap_kring *kring, int flags); 2165 void *ptns; 2166 }; 2167 2168 /* ptnetmap host-side routines */ 2169 int netmap_get_pt_host_na(struct nmreq_header *hdr, struct netmap_adapter **na, 2170 struct netmap_mem_d * nmd, int create); 2171 int ptnetmap_ctl(const char *nr_name, int create, struct netmap_adapter *na); 2172 2173 static inline int 2174 nm_ptnetmap_host_on(struct netmap_adapter *na) 2175 { 2176 return na && na->na_flags & NAF_PTNETMAP_HOST; 2177 } 2178 #else /* !WITH_PTNETMAP_HOST */ 2179 #define netmap_get_pt_host_na(hdr, _2, _3, _4) \ 2180 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_PTNETMAP_HOST) ? EOPNOTSUPP : 0) 2181 #define ptnetmap_ctl(_1, _2, _3) EINVAL 2182 #define nm_ptnetmap_host_on(_1) EINVAL 2183 #endif /* !WITH_PTNETMAP_HOST */ 2184 2185 #ifdef WITH_PTNETMAP_GUEST 2186 /* ptnetmap GUEST routines */ 2187 2188 /* 2189 * netmap adapter for guest ptnetmap ports 2190 */ 2191 struct netmap_pt_guest_adapter { 2192 /* The netmap adapter to be used by netmap applications. 2193 * This field must be the first, to allow upcast. */ 2194 struct netmap_hw_adapter hwup; 2195 2196 /* The netmap adapter to be used by the driver. */ 2197 struct netmap_hw_adapter dr; 2198 2199 /* Reference counter to track users of backend netmap port: the 2200 * network stack and netmap clients. 2201 * Used to decide when we need (de)allocate krings/rings and 2202 * start (stop) ptnetmap kthreads. */ 2203 int backend_regifs; 2204 2205 }; 2206 2207 int netmap_pt_guest_attach(struct netmap_adapter *na, 2208 unsigned int nifp_offset, 2209 unsigned int memid); 2210 struct ptnet_csb_gh; 2211 struct ptnet_csb_hg; 2212 bool netmap_pt_guest_txsync(struct ptnet_csb_gh *ptgh, 2213 struct ptnet_csb_hg *pthg, 2214 struct netmap_kring *kring, 2215 int flags); 2216 bool netmap_pt_guest_rxsync(struct ptnet_csb_gh *ptgh, 2217 struct ptnet_csb_hg *pthg, 2218 struct netmap_kring *kring, int flags); 2219 int ptnet_nm_krings_create(struct netmap_adapter *na); 2220 void ptnet_nm_krings_delete(struct netmap_adapter *na); 2221 void ptnet_nm_dtor(struct netmap_adapter *na); 2222 #endif /* WITH_PTNETMAP_GUEST */ 2223 2224 struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t); 2225 int nmreq_checkduplicate(struct nmreq_option *); 2226 2227 #endif /* _NET_NETMAP_KERN_H_ */ 2228