xref: /freebsd/sys/dev/netmap/netmap_kern.h (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5  * Copyright (C) 2013-2016 Universita` di Pisa
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * $FreeBSD$
32  *
33  * The header contains the definitions of constants and function
34  * prototypes used only in kernelspace.
35  */
36 
37 #ifndef _NET_NETMAP_KERN_H_
38 #define _NET_NETMAP_KERN_H_
39 
40 #if defined(linux)
41 
42 #if defined(CONFIG_NETMAP_EXTMEM)
43 #define WITH_EXTMEM
44 #endif
45 #if  defined(CONFIG_NETMAP_VALE)
46 #define WITH_VALE
47 #endif
48 #if defined(CONFIG_NETMAP_PIPE)
49 #define WITH_PIPES
50 #endif
51 #if defined(CONFIG_NETMAP_MONITOR)
52 #define WITH_MONITOR
53 #endif
54 #if defined(CONFIG_NETMAP_GENERIC)
55 #define WITH_GENERIC
56 #endif
57 #if defined(CONFIG_NETMAP_PTNETMAP_GUEST)
58 #define WITH_PTNETMAP_GUEST
59 #endif
60 #if defined(CONFIG_NETMAP_PTNETMAP_HOST)
61 #define WITH_PTNETMAP_HOST
62 #endif
63 #if defined(CONFIG_NETMAP_SINK)
64 #define WITH_SINK
65 #endif
66 
67 #elif defined (_WIN32)
68 #define WITH_VALE	// comment out to disable VALE support
69 #define WITH_PIPES
70 #define WITH_MONITOR
71 #define WITH_GENERIC
72 
73 #else	/* neither linux nor windows */
74 #define WITH_VALE	// comment out to disable VALE support
75 #define WITH_PIPES
76 #define WITH_MONITOR
77 #define WITH_GENERIC
78 #define WITH_PTNETMAP_HOST	/* ptnetmap host support */
79 #define WITH_PTNETMAP_GUEST	/* ptnetmap guest support */
80 #define WITH_EXTMEM
81 #endif
82 
83 #if defined(__FreeBSD__)
84 #include <sys/selinfo.h>
85 
86 #define likely(x)	__builtin_expect((long)!!(x), 1L)
87 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
88 #define __user
89 
90 #define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
91 
92 #define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
93 #define NM_MTX_INIT(m)		sx_init(&(m), #m)
94 #define NM_MTX_DESTROY(m)	sx_destroy(&(m))
95 #define NM_MTX_LOCK(m)		sx_xlock(&(m))
96 #define NM_MTX_SPINLOCK(m)	while (!sx_try_xlock(&(m))) ;
97 #define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
98 #define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
99 
100 #define	NM_SELINFO_T	struct nm_selinfo
101 #define NM_SELRECORD_T	struct thread
102 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
103 #define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
104 #define MBUF_TRANSMIT(na, ifp, m)	((na)->if_transmit(ifp, m))
105 #define	GEN_TX_MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
106 
107 #define NM_ATOMIC_T	volatile int /* required by atomic/bitops.h */
108 /* atomic operations */
109 #include <machine/atomic.h>
110 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
111 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
112 
113 #if __FreeBSD_version >= 1100030
114 #define	WNA(_ifp)	(_ifp)->if_netmap
115 #else /* older FreeBSD */
116 #define	WNA(_ifp)	(_ifp)->if_pspare[0]
117 #endif /* older FreeBSD */
118 
119 #if __FreeBSD_version >= 1100005
120 struct netmap_adapter *netmap_getna(if_t ifp);
121 #endif
122 
123 #if __FreeBSD_version >= 1100027
124 #define MBUF_REFCNT(m)		((m)->m_ext.ext_count)
125 #define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
126 #else
127 #define MBUF_REFCNT(m)		((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
128 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
129 #endif
130 
131 #define MBUF_QUEUED(m)		1
132 
133 struct nm_selinfo {
134 	struct selinfo si;
135 	struct mtx m;
136 };
137 
138 
139 struct hrtimer {
140     /* Not used in FreeBSD. */
141 };
142 
143 #define NM_BNS_GET(b)
144 #define NM_BNS_PUT(b)
145 
146 #elif defined (linux)
147 
148 #define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
149 #define	NM_SELINFO_T	wait_queue_head_t
150 #define	MBUF_LEN(m)	((m)->len)
151 #define MBUF_TRANSMIT(na, ifp, m)							\
152 	({										\
153 		/* Avoid infinite recursion with generic. */				\
154 		m->priority = NM_MAGIC_PRIORITY_TX;					\
155 		(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp));	\
156 		0;									\
157 	})
158 
159 /* See explanation in nm_os_generic_xmit_frame. */
160 #define	GEN_TX_MBUF_IFP(m)	((struct ifnet *)skb_shinfo(m)->destructor_arg)
161 
162 #define NM_ATOMIC_T	volatile long unsigned int
163 
164 #define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
165 #define NM_MTX_INIT(m)	mutex_init(&(m))
166 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
167 #define NM_MTX_LOCK(m)		mutex_lock(&(m))
168 #define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
169 #define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
170 
171 #ifndef DEV_NETMAP
172 #define DEV_NETMAP
173 #endif /* DEV_NETMAP */
174 
175 #elif defined (__APPLE__)
176 
177 #warning apple support is incomplete.
178 #define likely(x)	__builtin_expect(!!(x), 1)
179 #define unlikely(x)	__builtin_expect(!!(x), 0)
180 #define	NM_LOCK_T	IOLock *
181 #define	NM_SELINFO_T	struct selinfo
182 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
183 
184 #elif defined (_WIN32)
185 #include "../../../WINDOWS/win_glue.h"
186 
187 #define NM_SELRECORD_T		IO_STACK_LOCATION
188 #define NM_SELINFO_T		win_SELINFO		// see win_glue.h
189 #define NM_LOCK_T		win_spinlock_t	// see win_glue.h
190 #define NM_MTX_T		KGUARDED_MUTEX	/* OS-specific mutex (sleepable) */
191 
192 #define NM_MTX_INIT(m)		KeInitializeGuardedMutex(&m);
193 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
194 #define NM_MTX_LOCK(m)		KeAcquireGuardedMutex(&(m))
195 #define NM_MTX_UNLOCK(m)	KeReleaseGuardedMutex(&(m))
196 #define NM_MTX_ASSERT(m)	assert(&m.Count>0)
197 
198 //These linknames are for the NDIS driver
199 #define NETMAP_NDIS_LINKNAME_STRING             L"\\DosDevices\\NMAPNDIS"
200 #define NETMAP_NDIS_NTDEVICE_STRING             L"\\Device\\NMAPNDIS"
201 
202 //Definition of internal driver-to-driver ioctl codes
203 #define NETMAP_KERNEL_XCHANGE_POINTERS		_IO('i', 180)
204 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL	_IO_direct('i', 195)
205 
206 typedef struct hrtimer{
207 	KTIMER timer;
208 	BOOLEAN active;
209 	KDPC deferred_proc;
210 };
211 
212 /* MSVC does not have likely/unlikely support */
213 #ifdef _MSC_VER
214 #define likely(x)	(x)
215 #define unlikely(x)	(x)
216 #else
217 #define likely(x)	__builtin_expect((long)!!(x), 1L)
218 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
219 #endif //_MSC_VER
220 
221 #else
222 
223 #error unsupported platform
224 
225 #endif /* end - platform-specific code */
226 
227 #ifndef _WIN32 /* support for emulated sysctl */
228 #define SYSBEGIN(x)
229 #define SYSEND
230 #endif /* _WIN32 */
231 
232 #define NM_ACCESS_ONCE(x)	(*(volatile __typeof__(x) *)&(x))
233 
234 #define	NMG_LOCK_T		NM_MTX_T
235 #define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
236 #define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
237 #define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
238 #define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
239 #define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
240 
241 #if defined(__FreeBSD__)
242 #define nm_prerr	printf
243 #define nm_prinf	printf
244 #elif defined (_WIN32)
245 #define nm_prerr	DbgPrint
246 #define nm_prinf	DbgPrint
247 #elif defined(linux)
248 #define nm_prerr(fmt, arg...)    printk(KERN_ERR fmt, ##arg)
249 #define nm_prinf(fmt, arg...)    printk(KERN_INFO fmt, ##arg)
250 #endif
251 
252 #define ND(format, ...)
253 #define D(format, ...)						\
254 	do {							\
255 		struct timeval __xxts;				\
256 		microtime(&__xxts);				\
257 		nm_prerr("%03d.%06d [%4d] %-25s " format "\n",	\
258 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
259 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
260 	} while (0)
261 
262 /* rate limited, lps indicates how many per second */
263 #define RD(lps, format, ...)					\
264 	do {							\
265 		static int t0, __cnt;				\
266 		if (t0 != time_second) {			\
267 			t0 = time_second;			\
268 			__cnt = 0;				\
269 		}						\
270 		if (__cnt++ < lps)				\
271 			D(format, ##__VA_ARGS__);		\
272 	} while (0)
273 
274 struct netmap_adapter;
275 struct nm_bdg_fwd;
276 struct nm_bridge;
277 struct netmap_priv_d;
278 
279 /* os-specific NM_SELINFO_T initialzation/destruction functions */
280 void nm_os_selinfo_init(NM_SELINFO_T *);
281 void nm_os_selinfo_uninit(NM_SELINFO_T *);
282 
283 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
284 
285 void nm_os_selwakeup(NM_SELINFO_T *si);
286 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
287 
288 int nm_os_ifnet_init(void);
289 void nm_os_ifnet_fini(void);
290 void nm_os_ifnet_lock(void);
291 void nm_os_ifnet_unlock(void);
292 
293 unsigned nm_os_ifnet_mtu(struct ifnet *ifp);
294 
295 void nm_os_get_module(void);
296 void nm_os_put_module(void);
297 
298 void netmap_make_zombie(struct ifnet *);
299 void netmap_undo_zombie(struct ifnet *);
300 
301 /* os independent alloc/realloc/free */
302 void *nm_os_malloc(size_t);
303 void *nm_os_vmalloc(size_t);
304 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
305 void nm_os_free(void *);
306 void nm_os_vfree(void *);
307 
308 /* passes a packet up to the host stack.
309  * If the packet is sent (or dropped) immediately it returns NULL,
310  * otherwise it links the packet to prev and returns m.
311  * In this case, a final call with m=NULL and prev != NULL will send up
312  * the entire chain to the host stack.
313  */
314 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev);
315 
316 int nm_os_mbuf_has_offld(struct mbuf *m);
317 
318 #include "netmap_mbq.h"
319 
320 extern NMG_LOCK_T	netmap_global_lock;
321 
322 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
323 
324 static __inline const char*
325 nm_txrx2str(enum txrx t)
326 {
327 	return (t== NR_RX ? "RX" : "TX");
328 }
329 
330 static __inline enum txrx
331 nm_txrx_swap(enum txrx t)
332 {
333 	return (t== NR_RX ? NR_TX : NR_RX);
334 }
335 
336 #define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
337 
338 #ifdef WITH_MONITOR
339 struct netmap_zmon_list {
340 	struct netmap_kring *next;
341 	struct netmap_kring *prev;
342 };
343 #endif /* WITH_MONITOR */
344 
345 /*
346  * private, kernel view of a ring. Keeps track of the status of
347  * a ring across system calls.
348  *
349  *	nr_hwcur	index of the next buffer to refill.
350  *			It corresponds to ring->head
351  *			at the time the system call returns.
352  *
353  *	nr_hwtail	index of the first buffer owned by the kernel.
354  *			On RX, hwcur->hwtail are receive buffers
355  *			not yet released. hwcur is advanced following
356  *			ring->head, hwtail is advanced on incoming packets,
357  *			and a wakeup is generated when hwtail passes ring->cur
358  *			    On TX, hwcur->rcur have been filled by the sender
359  *			but not sent yet to the NIC; rcur->hwtail are available
360  *			for new transmissions, and hwtail->hwcur-1 are pending
361  *			transmissions not yet acknowledged.
362  *
363  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
364  * This is so that, on a reset, buffers owned by userspace are not
365  * modified by the kernel. In particular:
366  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
367  * 	the next empty buffer as known by the hardware (next_to_check or so).
368  * TX rings: hwcur + hwofs coincides with next_to_send
369  *
370  * The following fields are used to implement lock-free copy of packets
371  * from input to output ports in VALE switch:
372  *	nkr_hwlease	buffer after the last one being copied.
373  *			A writer in nm_bdg_flush reserves N buffers
374  *			from nr_hwlease, advances it, then does the
375  *			copy outside the lock.
376  *			In RX rings (used for VALE ports),
377  *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
378  *			In TX rings (used for NIC or host stack ports)
379  *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
380  *	nkr_leases	array of nkr_num_slots where writers can report
381  *			completion of their block. NR_NOSLOT (~0) indicates
382  *			that the writer has not finished yet
383  *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
384  *
385  * The kring is manipulated by txsync/rxsync and generic netmap function.
386  *
387  * Concurrent rxsync or txsync on the same ring are prevented through
388  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
389  * for NIC rings, and for TX rings attached to the host stack.
390  *
391  * RX rings attached to the host stack use an mbq (rx_queue) on both
392  * rxsync_from_host() and netmap_transmit(). The mbq is protected
393  * by its internal lock.
394  *
395  * RX rings attached to the VALE switch are accessed by both senders
396  * and receiver. They are protected through the q_lock on the RX ring.
397  */
398 struct netmap_kring {
399 	struct netmap_ring	*ring;
400 
401 	uint32_t	nr_hwcur;  /* should be nr_hwhead */
402 	uint32_t	nr_hwtail;
403 
404 	/*
405 	 * Copies of values in user rings, so we do not need to look
406 	 * at the ring (which could be modified). These are set in the
407 	 * *sync_prologue()/finalize() routines.
408 	 */
409 	uint32_t	rhead;
410 	uint32_t	rcur;
411 	uint32_t	rtail;
412 
413 	uint32_t	nr_kflags;	/* private driver flags */
414 #define NKR_PENDINTR	0x1		// Pending interrupt.
415 #define NKR_EXCLUSIVE	0x2		/* exclusive binding */
416 #define NKR_FORWARD	0x4		/* (host ring only) there are
417 					   packets to forward
418 					 */
419 #define NKR_NEEDRING	0x8		/* ring needed even if users==0
420 					 * (used internally by pipes and
421 					 *  by ptnetmap host ports)
422 					 */
423 #define NKR_NOINTR      0x10            /* don't use interrupts on this ring */
424 #define NKR_FAKERING	0x20		/* don't allocate/free buffers */
425 
426 	uint32_t	nr_mode;
427 	uint32_t	nr_pending_mode;
428 #define NKR_NETMAP_OFF	0x0
429 #define NKR_NETMAP_ON	0x1
430 
431 	uint32_t	nkr_num_slots;
432 
433 	/*
434 	 * On a NIC reset, the NIC ring indexes may be reset but the
435 	 * indexes in the netmap rings remain the same. nkr_hwofs
436 	 * keeps track of the offset between the two.
437 	 */
438 	int32_t		nkr_hwofs;
439 
440 	/* last_reclaim is opaque marker to help reduce the frequency
441 	 * of operations such as reclaiming tx buffers. A possible use
442 	 * is set it to ticks and do the reclaim only once per tick.
443 	 */
444 	uint64_t	last_reclaim;
445 
446 
447 	NM_SELINFO_T	si;		/* poll/select wait queue */
448 	NM_LOCK_T	q_lock;		/* protects kring and ring. */
449 	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
450 
451 	/* the adapter the owns this kring */
452 	struct netmap_adapter *na;
453 
454 	/* the adapter that wants to be notified when this kring has
455 	 * new slots avaialable. This is usually the same as the above,
456 	 * but wrappers may let it point to themselves
457 	 */
458 	struct netmap_adapter *notify_na;
459 
460 	/* The following fields are for VALE switch support */
461 	struct nm_bdg_fwd *nkr_ft;
462 	uint32_t	*nkr_leases;
463 #define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
464 	uint32_t	nkr_hwlease;
465 	uint32_t	nkr_lease_idx;
466 
467 	/* while nkr_stopped is set, no new [tr]xsync operations can
468 	 * be started on this kring.
469 	 * This is used by netmap_disable_all_rings()
470 	 * to find a synchronization point where critical data
471 	 * structures pointed to by the kring can be added or removed
472 	 */
473 	volatile int nkr_stopped;
474 
475 	/* Support for adapters without native netmap support.
476 	 * On tx rings we preallocate an array of tx buffers
477 	 * (same size as the netmap ring), on rx rings we
478 	 * store incoming mbufs in a queue that is drained by
479 	 * a rxsync.
480 	 */
481 	struct mbuf	**tx_pool;
482 	struct mbuf	*tx_event;	/* TX event used as a notification */
483 	NM_LOCK_T	tx_event_lock;	/* protects the tx_event mbuf */
484 	struct mbq	rx_queue;       /* intercepted rx mbufs. */
485 
486 	uint32_t	users;		/* existing bindings for this ring */
487 
488 	uint32_t	ring_id;	/* kring identifier */
489 	enum txrx	tx;		/* kind of ring (tx or rx) */
490 	char name[64];			/* diagnostic */
491 
492 	/* [tx]sync callback for this kring.
493 	 * The default nm_kring_create callback (netmap_krings_create)
494 	 * sets the nm_sync callback of each hardware tx(rx) kring to
495 	 * the corresponding nm_txsync(nm_rxsync) taken from the
496 	 * netmap_adapter; moreover, it sets the sync callback
497 	 * of the host tx(rx) ring to netmap_txsync_to_host
498 	 * (netmap_rxsync_from_host).
499 	 *
500 	 * Overrides: the above configuration is not changed by
501 	 * any of the nm_krings_create callbacks.
502 	 */
503 	int (*nm_sync)(struct netmap_kring *kring, int flags);
504 	int (*nm_notify)(struct netmap_kring *kring, int flags);
505 
506 #ifdef WITH_PIPES
507 	struct netmap_kring *pipe;	/* if this is a pipe ring,
508 					 * pointer to the other end
509 					 */
510 #endif /* WITH_PIPES */
511 
512 #ifdef WITH_VALE
513 	int (*save_notify)(struct netmap_kring *kring, int flags);
514 #endif
515 
516 #ifdef WITH_MONITOR
517 	/* array of krings that are monitoring this kring */
518 	struct netmap_kring **monitors;
519 	uint32_t max_monitors; /* current size of the monitors array */
520 	uint32_t n_monitors;	/* next unused entry in the monitor array */
521 	uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
522 	uint32_t mon_tail;  /* last seen slot on rx */
523 
524 	/* circular list of zero-copy monitors */
525 	struct netmap_zmon_list zmon_list[NR_TXRX];
526 
527 	/*
528 	 * Monitors work by intercepting the sync and notify callbacks of the
529 	 * monitored krings. This is implemented by replacing the pointers
530 	 * above and saving the previous ones in mon_* pointers below
531 	 */
532 	int (*mon_sync)(struct netmap_kring *kring, int flags);
533 	int (*mon_notify)(struct netmap_kring *kring, int flags);
534 
535 #endif
536 }
537 #ifdef _WIN32
538 __declspec(align(64));
539 #else
540 __attribute__((__aligned__(64)));
541 #endif
542 
543 /* return 1 iff the kring needs to be turned on */
544 static inline int
545 nm_kring_pending_on(struct netmap_kring *kring)
546 {
547 	return kring->nr_pending_mode == NKR_NETMAP_ON &&
548 	       kring->nr_mode == NKR_NETMAP_OFF;
549 }
550 
551 /* return 1 iff the kring needs to be turned off */
552 static inline int
553 nm_kring_pending_off(struct netmap_kring *kring)
554 {
555 	return kring->nr_pending_mode == NKR_NETMAP_OFF &&
556 	       kring->nr_mode == NKR_NETMAP_ON;
557 }
558 
559 /* return the next index, with wraparound */
560 static inline uint32_t
561 nm_next(uint32_t i, uint32_t lim)
562 {
563 	return unlikely (i == lim) ? 0 : i + 1;
564 }
565 
566 
567 /* return the previous index, with wraparound */
568 static inline uint32_t
569 nm_prev(uint32_t i, uint32_t lim)
570 {
571 	return unlikely (i == 0) ? lim : i - 1;
572 }
573 
574 
575 /*
576  *
577  * Here is the layout for the Rx and Tx rings.
578 
579        RxRING                            TxRING
580 
581       +-----------------+            +-----------------+
582       |                 |            |                 |
583       |      free       |            |      free       |
584       +-----------------+            +-----------------+
585 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
586       |                 |            | yet             |
587       +-----------------+            |                 |
588  cur->| available to    |            |                 |
589       | user, not read  |            +-----------------+
590       | yet             |       cur->| (being          |
591       |                 |            |  prepared)      |
592       |                 |            |                 |
593       +-----------------+            +     ------      +
594 tail->|                 |<-hwtail    |                 |<-hwlease
595       | (being          | ...        |                 | ...
596       |  prepared)      | ...        |                 | ...
597       +-----------------+ ...        |                 | ...
598       |                 |<-hwlease   +-----------------+
599       |                 |      tail->|                 |<-hwtail
600       |                 |            |                 |
601       |                 |            |                 |
602       |                 |            |                 |
603       +-----------------+            +-----------------+
604 
605  * The cur/tail (user view) and hwcur/hwtail (kernel view)
606  * are used in the normal operation of the card.
607  *
608  * When a ring is the output of a switch port (Rx ring for
609  * a VALE port, Tx ring for the host stack or NIC), slots
610  * are reserved in blocks through 'hwlease' which points
611  * to the next unused slot.
612  * On an Rx ring, hwlease is always after hwtail,
613  * and completions cause hwtail to advance.
614  * On a Tx ring, hwlease is always between cur and hwtail,
615  * and completions cause cur to advance.
616  *
617  * nm_kr_space() returns the maximum number of slots that
618  * can be assigned.
619  * nm_kr_lease() reserves the required number of buffers,
620  *    advances nkr_hwlease and also returns an entry in
621  *    a circular array where completions should be reported.
622  */
623 
624 struct lut_entry;
625 #ifdef __FreeBSD__
626 #define plut_entry lut_entry
627 #endif
628 
629 struct netmap_lut {
630 	struct lut_entry *lut;
631 	struct plut_entry *plut;
632 	uint32_t objtotal;	/* max buffer index */
633 	uint32_t objsize;	/* buffer size */
634 };
635 
636 struct netmap_vp_adapter; // forward
637 
638 /* Struct to be filled by nm_config callbacks. */
639 struct nm_config_info {
640 	unsigned num_tx_rings;
641 	unsigned num_rx_rings;
642 	unsigned num_tx_descs;
643 	unsigned num_rx_descs;
644 	unsigned rx_buf_maxsize;
645 };
646 
647 /*
648  * The "struct netmap_adapter" extends the "struct adapter"
649  * (or equivalent) device descriptor.
650  * It contains all base fields needed to support netmap operation.
651  * There are in fact different types of netmap adapters
652  * (native, generic, VALE switch...) so a netmap_adapter is
653  * just the first field in the derived type.
654  */
655 struct netmap_adapter {
656 	/*
657 	 * On linux we do not have a good way to tell if an interface
658 	 * is netmap-capable. So we always use the following trick:
659 	 * NA(ifp) points here, and the first entry (which hopefully
660 	 * always exists and is at least 32 bits) contains a magic
661 	 * value which we can use to detect that the interface is good.
662 	 */
663 	uint32_t magic;
664 	uint32_t na_flags;	/* enabled, and other flags */
665 #define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
666 				 * useful during initialization
667 				 */
668 #define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
669 #define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
670 				 * forwarding packets coming from this
671 				 * interface
672 				 */
673 #define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
674 				 * that cannot be changed
675 				 */
676 #define NAF_NATIVE      16      /* the adapter is native.
677 				 * Virtual ports (non persistent vale ports,
678 				 * pipes, monitors...) should never use
679 				 * this flag.
680 				 */
681 #define	NAF_NETMAP_ON	32	/* netmap is active (either native or
682 				 * emulated). Where possible (e.g. FreeBSD)
683 				 * IFCAP_NETMAP also mirrors this flag.
684 				 */
685 #define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
686 #define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
687 #define NAF_PTNETMAP_HOST 256	/* the adapter supports ptnetmap in the host */
688 #define NAF_MOREFRAG	512	/* the adapter supports NS_MOREFRAG */
689 #define NAF_ZOMBIE	(1U<<30) /* the nic driver has been unloaded */
690 #define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
691 				  * cannot be registered from userspace
692 				  */
693 	int active_fds; /* number of user-space descriptors using this
694 			 interface, which is equal to the number of
695 			 struct netmap_if objs in the mapped region. */
696 
697 	u_int num_rx_rings; /* number of adapter receive rings */
698 	u_int num_tx_rings; /* number of adapter transmit rings */
699 
700 	u_int num_tx_desc;  /* number of descriptor in each queue */
701 	u_int num_rx_desc;
702 
703 	/* tx_rings and rx_rings are private but allocated
704 	 * as a contiguous chunk of memory. Each array has
705 	 * N+1 entries, for the adapter queues and for the host queue.
706 	 */
707 	struct netmap_kring **tx_rings; /* array of TX rings. */
708 	struct netmap_kring **rx_rings; /* array of RX rings. */
709 
710 	void *tailroom;		       /* space below the rings array */
711 				       /* (used for leases) */
712 
713 
714 	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
715 
716 	/* count users of the global wait queues */
717 	int si_users[NR_TXRX];
718 
719 	void *pdev; /* used to store pci device */
720 
721 	/* copy of if_qflush and if_transmit pointers, to intercept
722 	 * packets from the network stack when netmap is active.
723 	 */
724 	int     (*if_transmit)(struct ifnet *, struct mbuf *);
725 
726 	/* copy of if_input for netmap_send_up() */
727 	void     (*if_input)(struct ifnet *, struct mbuf *);
728 
729 	/* Back reference to the parent ifnet struct. Used for
730 	 * hardware ports (emulated netmap included). */
731 	struct ifnet *ifp; /* adapter is ifp->if_softc */
732 
733 	/*---- callbacks for this netmap adapter -----*/
734 	/*
735 	 * nm_dtor() is the cleanup routine called when destroying
736 	 *	the adapter.
737 	 *	Called with NMG_LOCK held.
738 	 *
739 	 * nm_register() is called on NIOCREGIF and close() to enter
740 	 *	or exit netmap mode on the NIC
741 	 *	Called with NNG_LOCK held.
742 	 *
743 	 * nm_txsync() pushes packets to the underlying hw/switch
744 	 *
745 	 * nm_rxsync() collects packets from the underlying hw/switch
746 	 *
747 	 * nm_config() returns configuration information from the OS
748 	 *	Called with NMG_LOCK held.
749 	 *
750 	 * nm_krings_create() create and init the tx_rings and
751 	 * 	rx_rings arrays of kring structures. In particular,
752 	 * 	set the nm_sync callbacks for each ring.
753 	 * 	There is no need to also allocate the corresponding
754 	 * 	netmap_rings, since netmap_mem_rings_create() will always
755 	 * 	be called to provide the missing ones.
756 	 *	Called with NNG_LOCK held.
757 	 *
758 	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
759 	 * 	arrays
760 	 *	Called with NMG_LOCK held.
761 	 *
762 	 * nm_notify() is used to act after data have become available
763 	 * 	(or the stopped state of the ring has changed)
764 	 *	For hw devices this is typically a selwakeup(),
765 	 *	but for NIC/host ports attached to a switch (or vice-versa)
766 	 *	we also need to invoke the 'txsync' code downstream.
767 	 *      This callback pointer is actually used only to initialize
768 	 *      kring->nm_notify.
769 	 *      Return values are the same as for netmap_rx_irq().
770 	 */
771 	void (*nm_dtor)(struct netmap_adapter *);
772 
773 	int (*nm_register)(struct netmap_adapter *, int onoff);
774 	void (*nm_intr)(struct netmap_adapter *, int onoff);
775 
776 	int (*nm_txsync)(struct netmap_kring *kring, int flags);
777 	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
778 	int (*nm_notify)(struct netmap_kring *kring, int flags);
779 #define NAF_FORCE_READ      1
780 #define NAF_FORCE_RECLAIM   2
781 #define NAF_CAN_FORWARD_DOWN 4
782 	/* return configuration information */
783 	int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
784 	int (*nm_krings_create)(struct netmap_adapter *);
785 	void (*nm_krings_delete)(struct netmap_adapter *);
786 #ifdef WITH_VALE
787 	/*
788 	 * nm_bdg_attach() initializes the na_vp field to point
789 	 *      to an adapter that can be attached to a VALE switch. If the
790 	 *      current adapter is already a VALE port, na_vp is simply a cast;
791 	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
792 	 *      If applicable, this callback also initializes na_hostvp,
793 	 *      that can be used to connect the adapter host rings to the
794 	 *      switch.
795 	 *      Called with NMG_LOCK held.
796 	 *
797 	 * nm_bdg_ctl() is called on the actual attach/detach to/from
798 	 *      to/from the switch, to perform adapter-specific
799 	 *      initializations
800 	 *      Called with NMG_LOCK held.
801 	 */
802 	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *);
803 	int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
804 
805 	/* adapter used to attach this adapter to a VALE switch (if any) */
806 	struct netmap_vp_adapter *na_vp;
807 	/* adapter used to attach the host rings of this adapter
808 	 * to a VALE switch (if any) */
809 	struct netmap_vp_adapter *na_hostvp;
810 #endif
811 
812 	/* standard refcount to control the lifetime of the adapter
813 	 * (it should be equal to the lifetime of the corresponding ifp)
814 	 */
815 	int na_refcount;
816 
817 	/* memory allocator (opaque)
818 	 * We also cache a pointer to the lut_entry for translating
819 	 * buffer addresses, the total number of buffers and the buffer size.
820 	 */
821  	struct netmap_mem_d *nm_mem;
822 	struct netmap_mem_d *nm_mem_prev;
823 	struct netmap_lut na_lut;
824 
825 	/* additional information attached to this adapter
826 	 * by other netmap subsystems. Currently used by
827 	 * bwrap, LINUX/v1000 and ptnetmap
828 	 */
829 	void *na_private;
830 
831 	/* array of pipes that have this adapter as a parent */
832 	struct netmap_pipe_adapter **na_pipes;
833 	int na_next_pipe;	/* next free slot in the array */
834 	int na_max_pipes;	/* size of the array */
835 
836 	/* Offset of ethernet header for each packet. */
837 	u_int virt_hdr_len;
838 
839 	/* Max number of bytes that the NIC can store in the buffer
840 	 * referenced by each RX descriptor. This translates to the maximum
841 	 * bytes that a single netmap slot can reference. Larger packets
842 	 * require NS_MOREFRAG support. */
843 	unsigned rx_buf_maxsize;
844 
845 	char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
846 };
847 
848 static __inline u_int
849 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
850 {
851 	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
852 }
853 
854 static __inline void
855 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
856 {
857 	if (t == NR_TX)
858 		na->num_tx_desc = v;
859 	else
860 		na->num_rx_desc = v;
861 }
862 
863 static __inline u_int
864 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
865 {
866 	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
867 }
868 
869 static __inline void
870 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
871 {
872 	if (t == NR_TX)
873 		na->num_tx_rings = v;
874 	else
875 		na->num_rx_rings = v;
876 }
877 
878 static __inline struct netmap_kring**
879 NMR(struct netmap_adapter *na, enum txrx t)
880 {
881 	return (t == NR_TX ? na->tx_rings : na->rx_rings);
882 }
883 
884 int nma_intr_enable(struct netmap_adapter *na, int onoff);
885 
886 /*
887  * If the NIC is owned by the kernel
888  * (i.e., bridge), neither another bridge nor user can use it;
889  * if the NIC is owned by a user, only users can share it.
890  * Evaluation must be done under NMG_LOCK().
891  */
892 #define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
893 #define NETMAP_OWNED_BY_ANY(na) \
894 	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
895 
896 /*
897  * derived netmap adapters for various types of ports
898  */
899 struct netmap_vp_adapter {	/* VALE software port */
900 	struct netmap_adapter up;
901 
902 	/*
903 	 * Bridge support:
904 	 *
905 	 * bdg_port is the port number used in the bridge;
906 	 * na_bdg points to the bridge this NA is attached to.
907 	 */
908 	int bdg_port;
909 	struct nm_bridge *na_bdg;
910 	int retry;
911 	int autodelete; /* remove the ifp on last reference */
912 
913 	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
914 	u_int mfs;
915 	/* Last source MAC on this port */
916 	uint64_t last_smac;
917 };
918 
919 
920 struct netmap_hw_adapter {	/* physical device */
921 	struct netmap_adapter up;
922 
923 #ifdef linux
924 	struct net_device_ops nm_ndo;
925 	struct ethtool_ops    nm_eto;
926 #endif
927 	const struct ethtool_ops*   save_ethtool;
928 
929 	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
930 };
931 
932 #ifdef WITH_GENERIC
933 /* Mitigation support. */
934 struct nm_generic_mit {
935 	struct hrtimer mit_timer;
936 	int mit_pending;
937 	int mit_ring_idx;  /* index of the ring being mitigated */
938 	struct netmap_adapter *mit_na;  /* backpointer */
939 };
940 
941 struct netmap_generic_adapter {	/* emulated device */
942 	struct netmap_hw_adapter up;
943 
944 	/* Pointer to a previously used netmap adapter. */
945 	struct netmap_adapter *prev;
946 
947 	/* Emulated netmap adapters support:
948 	 *  - save_if_input saves the if_input hook (FreeBSD);
949 	 *  - mit implements rx interrupt mitigation;
950 	 */
951 	void (*save_if_input)(struct ifnet *, struct mbuf *);
952 
953 	struct nm_generic_mit *mit;
954 #ifdef linux
955         netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
956 #endif
957 	/* Is the adapter able to use multiple RX slots to scatter
958 	 * each packet pushed up by the driver? */
959 	int rxsg;
960 
961 	/* Is the transmission path controlled by a netmap-aware
962 	 * device queue (i.e. qdisc on linux)? */
963 	int txqdisc;
964 };
965 #endif  /* WITH_GENERIC */
966 
967 static __inline int
968 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
969 {
970 	return nma_get_nrings(na, t) + !!(na->na_flags & NAF_HOST_RINGS);
971 }
972 
973 #ifdef WITH_VALE
974 struct nm_bdg_polling_state;
975 /*
976  * Bridge wrapper for non VALE ports attached to a VALE switch.
977  *
978  * The real device must already have its own netmap adapter (hwna).
979  * The bridge wrapper and the hwna adapter share the same set of
980  * netmap rings and buffers, but they have two separate sets of
981  * krings descriptors, with tx/rx meanings swapped:
982  *
983  *                                  netmap
984  *           bwrap     krings       rings      krings      hwna
985  *         +------+   +------+     +-----+    +------+   +------+
986  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
987  *         |      |   +------+ \ / +-----+    +------+   |      |
988  *         |      |             X                        |      |
989  *         |      |            / \                       |      |
990  *         |      |   +------+/   \+-----+    +------+   |      |
991  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
992  *         |      |   +------+     +-----+    +------+   |      |
993  *         +------+                                      +------+
994  *
995  * - packets coming from the bridge go to the brwap rx rings,
996  *   which are also the hwna tx rings.  The bwrap notify callback
997  *   will then complete the hwna tx (see netmap_bwrap_notify).
998  *
999  * - packets coming from the outside go to the hwna rx rings,
1000  *   which are also the bwrap tx rings.  The (overwritten) hwna
1001  *   notify method will then complete the bridge tx
1002  *   (see netmap_bwrap_intr_notify).
1003  *
1004  *   The bridge wrapper may optionally connect the hwna 'host' rings
1005  *   to the bridge. This is done by using a second port in the
1006  *   bridge and connecting it to the 'host' netmap_vp_adapter
1007  *   contained in the netmap_bwrap_adapter. The brwap host adapter
1008  *   cross-links the hwna host rings in the same way as shown above.
1009  *
1010  * - packets coming from the bridge and directed to the host stack
1011  *   are handled by the bwrap host notify callback
1012  *   (see netmap_bwrap_host_notify)
1013  *
1014  * - packets coming from the host stack are still handled by the
1015  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
1016  *   but are diverted to the host adapter depending on the ring number.
1017  *
1018  */
1019 struct netmap_bwrap_adapter {
1020 	struct netmap_vp_adapter up;
1021 	struct netmap_vp_adapter host;  /* for host rings */
1022 	struct netmap_adapter *hwna;	/* the underlying device */
1023 
1024 	/*
1025 	 * When we attach a physical interface to the bridge, we
1026 	 * allow the controlling process to terminate, so we need
1027 	 * a place to store the n_detmap_priv_d data structure.
1028 	 * This is only done when physical interfaces
1029 	 * are attached to a bridge.
1030 	 */
1031 	struct netmap_priv_d *na_kpriv;
1032 	struct nm_bdg_polling_state *na_polling_state;
1033 	/* we overwrite the hwna->na_vp pointer, so we save
1034 	 * here its original value, to be restored at detach
1035 	 */
1036 	struct netmap_vp_adapter *saved_na_vp;
1037 };
1038 int nm_bdg_ctl_attach(struct nmreq_header *hdr, void *auth_token);
1039 int nm_bdg_ctl_detach(struct nmreq_header *hdr, void *auth_token);
1040 int nm_bdg_polling(struct nmreq_header *hdr);
1041 int netmap_bwrap_attach(const char *name, struct netmap_adapter *);
1042 int netmap_vi_create(struct nmreq_header *hdr, int);
1043 int nm_vi_create(struct nmreq_header *);
1044 int nm_vi_destroy(const char *name);
1045 int netmap_bdg_list(struct nmreq_header *hdr);
1046 
1047 #else /* !WITH_VALE */
1048 #define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1049 #endif /* WITH_VALE */
1050 
1051 #ifdef WITH_PIPES
1052 
1053 #define NM_MAXPIPES 	64	/* max number of pipes per adapter */
1054 
1055 struct netmap_pipe_adapter {
1056 	/* pipe identifier is up.name */
1057 	struct netmap_adapter up;
1058 
1059 #define NM_PIPE_ROLE_MASTER	0x1
1060 #define NM_PIPE_ROLE_SLAVE	0x2
1061 	int role;	/* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1062 
1063 	struct netmap_adapter *parent; /* adapter that owns the memory */
1064 	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1065 	int peer_ref;		/* 1 iff we are holding a ref to the peer */
1066 	struct ifnet *parent_ifp;	/* maybe null */
1067 
1068 	u_int parent_slot; /* index in the parent pipe array */
1069 };
1070 
1071 #endif /* WITH_PIPES */
1072 
1073 
1074 /* return slots reserved to rx clients; used in drivers */
1075 static inline uint32_t
1076 nm_kr_rxspace(struct netmap_kring *k)
1077 {
1078 	int space = k->nr_hwtail - k->nr_hwcur;
1079 	if (space < 0)
1080 		space += k->nkr_num_slots;
1081 	ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1082 
1083 	return space;
1084 }
1085 
1086 /* return slots reserved to tx clients */
1087 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1088 
1089 
1090 /* True if no space in the tx ring, only valid after txsync_prologue */
1091 static inline int
1092 nm_kr_txempty(struct netmap_kring *kring)
1093 {
1094 	return kring->rcur == kring->nr_hwtail;
1095 }
1096 
1097 /* True if no more completed slots in the rx ring, only valid after
1098  * rxsync_prologue */
1099 #define nm_kr_rxempty(_k)	nm_kr_txempty(_k)
1100 
1101 /*
1102  * protect against multiple threads using the same ring.
1103  * also check that the ring has not been stopped or locked
1104  */
1105 #define NM_KR_BUSY	1	/* some other thread is syncing the ring */
1106 #define NM_KR_STOPPED	2	/* unbounded stop (ifconfig down or driver unload) */
1107 #define NM_KR_LOCKED	3	/* bounded, brief stop for mutual exclusion */
1108 
1109 
1110 /* release the previously acquired right to use the *sync() methods of the ring */
1111 static __inline void nm_kr_put(struct netmap_kring *kr)
1112 {
1113 	NM_ATOMIC_CLEAR(&kr->nr_busy);
1114 }
1115 
1116 
1117 /* true if the ifp that backed the adapter has disappeared (e.g., the
1118  * driver has been unloaded)
1119  */
1120 static inline int nm_iszombie(struct netmap_adapter *na);
1121 
1122 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1123  * The right is obtained and must be later relinquished via nm_kr_put() if and
1124  * only if nm_kr_tryget() returns 0.
1125  * If can_sleep is 1 there are only two other possible outcomes:
1126  * - the function returns NM_KR_BUSY
1127  * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1128  *   (if non-null)
1129  * In both cases the caller will typically skip the ring, possibly collecting
1130  * errors along the way.
1131  * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1132  * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1133  * untouched: ideally, the caller should try again at a later time.
1134  */
1135 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1136 {
1137 	int busy = 1, stopped;
1138 	/* check a first time without taking the lock
1139 	 * to avoid starvation for nm_kr_get()
1140 	 */
1141 retry:
1142 	stopped = kr->nkr_stopped;
1143 	if (unlikely(stopped)) {
1144 		goto stop;
1145 	}
1146 	busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1147 	/* we should not return NM_KR_BUSY if the ring was
1148 	 * actually stopped, so check another time after
1149 	 * the barrier provided by the atomic operation
1150 	 */
1151 	stopped = kr->nkr_stopped;
1152 	if (unlikely(stopped)) {
1153 		goto stop;
1154 	}
1155 
1156 	if (unlikely(nm_iszombie(kr->na))) {
1157 		stopped = NM_KR_STOPPED;
1158 		goto stop;
1159 	}
1160 
1161 	return unlikely(busy) ? NM_KR_BUSY : 0;
1162 
1163 stop:
1164 	if (!busy)
1165 		nm_kr_put(kr);
1166 	if (stopped == NM_KR_STOPPED) {
1167 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1168  * Otherwise, any non-zero value will do.
1169  */
1170 #ifdef POLLERR
1171 #define NM_POLLERR POLLERR
1172 #else
1173 #define NM_POLLERR 1
1174 #endif /* POLLERR */
1175 		if (perr)
1176 			*perr |= NM_POLLERR;
1177 #undef NM_POLLERR
1178 	} else if (can_sleep) {
1179 		tsleep(kr, 0, "NM_KR_TRYGET", 4);
1180 		goto retry;
1181 	}
1182 	return stopped;
1183 }
1184 
1185 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1186  * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1187  */
1188 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1189 {
1190 	kr->nkr_stopped = stopped;
1191 	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1192 		tsleep(kr, 0, "NM_KR_GET", 4);
1193 }
1194 
1195 /* restart a ring after a stop */
1196 static __inline void nm_kr_start(struct netmap_kring *kr)
1197 {
1198 	kr->nkr_stopped = 0;
1199 	nm_kr_put(kr);
1200 }
1201 
1202 
1203 /*
1204  * The following functions are used by individual drivers to
1205  * support netmap operation.
1206  *
1207  * netmap_attach() initializes a struct netmap_adapter, allocating the
1208  * 	struct netmap_ring's and the struct selinfo.
1209  *
1210  * netmap_detach() frees the memory allocated by netmap_attach().
1211  *
1212  * netmap_transmit() replaces the if_transmit routine of the interface,
1213  *	and is used to intercept packets coming from the stack.
1214  *
1215  * netmap_load_map/netmap_reload_map are helper routines to set/reset
1216  *	the dmamap for a packet buffer
1217  *
1218  * netmap_reset() is a helper routine to be called in the hw driver
1219  *	when reinitializing a ring. It should not be called by
1220  *	virtual ports (vale, pipes, monitor)
1221  */
1222 int netmap_attach(struct netmap_adapter *);
1223 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1224 void netmap_detach(struct ifnet *);
1225 int netmap_transmit(struct ifnet *, struct mbuf *);
1226 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1227 	enum txrx tx, u_int n, u_int new_cur);
1228 int netmap_ring_reinit(struct netmap_kring *);
1229 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1230 
1231 /* Return codes for netmap_*x_irq. */
1232 enum {
1233 	/* Driver should do normal interrupt processing, e.g. because
1234 	 * the interface is not in netmap mode. */
1235 	NM_IRQ_PASS = 0,
1236 	/* Port is in netmap mode, and the interrupt work has been
1237 	 * completed. The driver does not have to notify netmap
1238 	 * again before the next interrupt. */
1239 	NM_IRQ_COMPLETED = -1,
1240 	/* Port is in netmap mode, but the interrupt work has not been
1241 	 * completed. The driver has to make sure netmap will be
1242 	 * notified again soon, even if no more interrupts come (e.g.
1243 	 * on Linux the driver should not call napi_complete()). */
1244 	NM_IRQ_RESCHED = -2,
1245 };
1246 
1247 /* default functions to handle rx/tx interrupts */
1248 int netmap_rx_irq(struct ifnet *, u_int, u_int *);
1249 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1250 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1251 
1252 
1253 #ifdef WITH_VALE
1254 /* functions used by external modules to interface with VALE */
1255 #define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
1256 #define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
1257 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1258 #define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
1259 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1260 #else /* !WITH_VALE */
1261 #define netmap_vp_to_ifp(_vp)	NULL
1262 #define netmap_ifp_to_vp(_ifp)	NULL
1263 #define netmap_ifp_to_host_vp(_ifp) NULL
1264 #define netmap_bdg_idx(_vp)	-1
1265 #define netmap_bdg_name(_vp)	NULL
1266 #endif /* WITH_VALE */
1267 
1268 static inline int
1269 nm_netmap_on(struct netmap_adapter *na)
1270 {
1271 	return na && na->na_flags & NAF_NETMAP_ON;
1272 }
1273 
1274 static inline int
1275 nm_native_on(struct netmap_adapter *na)
1276 {
1277 	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1278 }
1279 
1280 static inline int
1281 nm_iszombie(struct netmap_adapter *na)
1282 {
1283 	return na == NULL || (na->na_flags & NAF_ZOMBIE);
1284 }
1285 
1286 static inline void
1287 nm_update_hostrings_mode(struct netmap_adapter *na)
1288 {
1289 	/* Process nr_mode and nr_pending_mode for host rings. */
1290 	na->tx_rings[na->num_tx_rings]->nr_mode =
1291 		na->tx_rings[na->num_tx_rings]->nr_pending_mode;
1292 	na->rx_rings[na->num_rx_rings]->nr_mode =
1293 		na->rx_rings[na->num_rx_rings]->nr_pending_mode;
1294 }
1295 
1296 /* set/clear native flags and if_transmit/netdev_ops */
1297 static inline void
1298 nm_set_native_flags(struct netmap_adapter *na)
1299 {
1300 	struct ifnet *ifp = na->ifp;
1301 
1302 	/* We do the setup for intercepting packets only if we are the
1303 	 * first user of this adapapter. */
1304 	if (na->active_fds > 0) {
1305 		return;
1306 	}
1307 
1308 	na->na_flags |= NAF_NETMAP_ON;
1309 #ifdef IFCAP_NETMAP /* or FreeBSD ? */
1310 	ifp->if_capenable |= IFCAP_NETMAP;
1311 #endif
1312 #if defined (__FreeBSD__)
1313 	na->if_transmit = ifp->if_transmit;
1314 	ifp->if_transmit = netmap_transmit;
1315 #elif defined (_WIN32)
1316 	(void)ifp; /* prevent a warning */
1317 #elif defined (linux)
1318 	na->if_transmit = (void *)ifp->netdev_ops;
1319 	ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo;
1320 	((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops;
1321 	ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto;
1322 #endif /* linux */
1323 	nm_update_hostrings_mode(na);
1324 }
1325 
1326 static inline void
1327 nm_clear_native_flags(struct netmap_adapter *na)
1328 {
1329 	struct ifnet *ifp = na->ifp;
1330 
1331 	/* We undo the setup for intercepting packets only if we are the
1332 	 * last user of this adapapter. */
1333 	if (na->active_fds > 0) {
1334 		return;
1335 	}
1336 
1337 	nm_update_hostrings_mode(na);
1338 
1339 #if defined(__FreeBSD__)
1340 	ifp->if_transmit = na->if_transmit;
1341 #elif defined(_WIN32)
1342 	(void)ifp; /* prevent a warning */
1343 #else
1344 	ifp->netdev_ops = (void *)na->if_transmit;
1345 	ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool;
1346 #endif
1347 	na->na_flags &= ~NAF_NETMAP_ON;
1348 #ifdef IFCAP_NETMAP /* or FreeBSD ? */
1349 	ifp->if_capenable &= ~IFCAP_NETMAP;
1350 #endif
1351 }
1352 
1353 #ifdef linux
1354 int netmap_linux_config(struct netmap_adapter *na,
1355 			struct nm_config_info *info);
1356 #endif /* linux */
1357 
1358 /*
1359  * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1360  * kthreads.
1361  * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1362  * from host kring.
1363  * The user-space ring pointers (head/cur/tail) are shared through
1364  * CSB between host and guest.
1365  */
1366 
1367 /*
1368  * validates parameters in the ring/kring, returns a value for head
1369  * If any error, returns ring_size to force a reinit.
1370  */
1371 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1372 
1373 
1374 /*
1375  * validates parameters in the ring/kring, returns a value for head
1376  * If any error, returns ring_size lim to force a reinit.
1377  */
1378 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1379 
1380 
1381 /* check/fix address and len in tx rings */
1382 #if 1 /* debug version */
1383 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1384 	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1385 		RD(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1386 			kring->ring_id, nm_i, slot->buf_idx, len);	\
1387 		if (_l > NETMAP_BUF_SIZE(_na))				\
1388 			_l = NETMAP_BUF_SIZE(_na);			\
1389 	} } while (0)
1390 #else /* no debug version */
1391 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1392 		if (_l > NETMAP_BUF_SIZE(_na))				\
1393 			_l = NETMAP_BUF_SIZE(_na);			\
1394 	} while (0)
1395 #endif
1396 
1397 
1398 /*---------------------------------------------------------------*/
1399 /*
1400  * Support routines used by netmap subsystems
1401  * (native drivers, VALE, generic, pipes, monitors, ...)
1402  */
1403 
1404 
1405 /* common routine for all functions that create a netmap adapter. It performs
1406  * two main tasks:
1407  * - if the na points to an ifp, mark the ifp as netmap capable
1408  *   using na as its native adapter;
1409  * - provide defaults for the setup callbacks and the memory allocator
1410  */
1411 int netmap_attach_common(struct netmap_adapter *);
1412 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1413  * coming from a struct nmreq_register
1414  */
1415 int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1416 			uint16_t nr_ringid, uint64_t nr_flags);
1417 /* update the ring parameters (number and size of tx and rx rings).
1418  * It calls the nm_config callback, if available.
1419  */
1420 int netmap_update_config(struct netmap_adapter *na);
1421 /* create and initialize the common fields of the krings array.
1422  * using the information that must be already available in the na.
1423  * tailroom can be used to request the allocation of additional
1424  * tailroom bytes after the krings array. This is used by
1425  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1426  * leasing-related data structures
1427  */
1428 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1429 /* deletes the kring array of the adapter. The array must have
1430  * been created using netmap_krings_create
1431  */
1432 void netmap_krings_delete(struct netmap_adapter *na);
1433 
1434 int netmap_hw_krings_create(struct netmap_adapter *na);
1435 void netmap_hw_krings_delete(struct netmap_adapter *na);
1436 
1437 /* set the stopped/enabled status of ring
1438  * When stopping, they also wait for all current activity on the ring to
1439  * terminate. The status change is then notified using the na nm_notify
1440  * callback.
1441  */
1442 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1443 /* set the stopped/enabled status of all rings of the adapter. */
1444 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1445 /* convenience wrappers for netmap_set_all_rings */
1446 void netmap_disable_all_rings(struct ifnet *);
1447 void netmap_enable_all_rings(struct ifnet *);
1448 
1449 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1450 		uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags);
1451 void netmap_do_unregif(struct netmap_priv_d *priv);
1452 
1453 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1454 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1455 		struct ifnet **ifp, struct netmap_mem_d *nmd, int create);
1456 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp);
1457 int netmap_get_hw_na(struct ifnet *ifp,
1458 		struct netmap_mem_d *nmd, struct netmap_adapter **na);
1459 
1460 
1461 #ifdef WITH_VALE
1462 /*
1463  * The following bridge-related functions are used by other
1464  * kernel modules.
1465  *
1466  * VALE only supports unicast or broadcast. The lookup
1467  * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports,
1468  * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 to indicate
1469  * drop.
1470  */
1471 typedef uint32_t (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr,
1472 		struct netmap_vp_adapter *, void *private_data);
1473 typedef int (*bdg_config_fn_t)(struct nm_ifreq *);
1474 typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *);
1475 typedef void *(*bdg_update_private_data_fn_t)(void *private_data, void *callback_data, int *error);
1476 struct netmap_bdg_ops {
1477 	bdg_lookup_fn_t lookup;
1478 	bdg_config_fn_t config;
1479 	bdg_dtor_fn_t	dtor;
1480 };
1481 
1482 uint32_t netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1483 		struct netmap_vp_adapter *, void *private_data);
1484 
1485 #define	NM_BRIDGES		8	/* number of bridges */
1486 #define	NM_BDG_MAXPORTS		254	/* up to 254 */
1487 #define	NM_BDG_BROADCAST	NM_BDG_MAXPORTS
1488 #define	NM_BDG_NOPORT		(NM_BDG_MAXPORTS+1)
1489 
1490 /* these are redefined in case of no VALE support */
1491 int netmap_get_bdg_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1492 		struct netmap_mem_d *nmd, int create);
1493 struct nm_bridge *netmap_init_bridges2(u_int);
1494 void netmap_uninit_bridges2(struct nm_bridge *, u_int);
1495 int netmap_init_bridges(void);
1496 void netmap_uninit_bridges(void);
1497 int netmap_bdg_regops(const char *name, struct netmap_bdg_ops *bdg_ops, void *private_data, void *auth_token);
1498 int nm_bdg_update_private_data(const char *name, bdg_update_private_data_fn_t callback,
1499 	void *callback_data, void *auth_token);
1500 int netmap_bdg_config(struct nm_ifreq *nifr);
1501 void *netmap_bdg_create(const char *bdg_name, int *return_status);
1502 int netmap_bdg_destroy(const char *bdg_name, void *auth_token);
1503 
1504 #else /* !WITH_VALE */
1505 #define	netmap_get_bdg_na(_1, _2, _3, _4)	0
1506 #define netmap_init_bridges(_1) 0
1507 #define netmap_uninit_bridges()
1508 #define	netmap_bdg_regops(_1, _2)	EINVAL
1509 #endif /* !WITH_VALE */
1510 
1511 #ifdef WITH_PIPES
1512 /* max number of pipes per device */
1513 #define NM_MAXPIPES	64	/* XXX this should probably be a sysctl */
1514 void netmap_pipe_dealloc(struct netmap_adapter *);
1515 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1516 			struct netmap_mem_d *nmd, int create);
1517 #else /* !WITH_PIPES */
1518 #define NM_MAXPIPES	0
1519 #define netmap_pipe_alloc(_1, _2) 	0
1520 #define netmap_pipe_dealloc(_1)
1521 #define netmap_get_pipe_na(hdr, _2, _3, _4)	\
1522 	((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1523 #endif
1524 
1525 #ifdef WITH_MONITOR
1526 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1527 		struct netmap_mem_d *nmd, int create);
1528 void netmap_monitor_stop(struct netmap_adapter *na);
1529 #else
1530 #define netmap_get_monitor_na(hdr, _2, _3, _4) \
1531 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1532 #endif
1533 
1534 #ifdef CONFIG_NET_NS
1535 struct net *netmap_bns_get(void);
1536 void netmap_bns_put(struct net *);
1537 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1538 #else
1539 #define netmap_bns_get()
1540 #define netmap_bns_put(_1)
1541 #define netmap_bns_getbridges(b, n) \
1542 	do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
1543 #endif
1544 
1545 /* Various prototypes */
1546 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1547 int netmap_init(void);
1548 void netmap_fini(void);
1549 int netmap_get_memory(struct netmap_priv_d* p);
1550 void netmap_dtor(void *data);
1551 
1552 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1553 		struct thread *, int nr_body_is_user);
1554 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1555 			struct thread *td);
1556 size_t nmreq_size_by_type(uint16_t nr_reqtype);
1557 
1558 /* netmap_adapter creation/destruction */
1559 
1560 // #define NM_DEBUG_PUTGET 1
1561 
1562 #ifdef NM_DEBUG_PUTGET
1563 
1564 #define NM_DBG(f) __##f
1565 
1566 void __netmap_adapter_get(struct netmap_adapter *na);
1567 
1568 #define netmap_adapter_get(na) 				\
1569 	do {						\
1570 		struct netmap_adapter *__na = na;	\
1571 		D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1572 		__netmap_adapter_get(__na);		\
1573 	} while (0)
1574 
1575 int __netmap_adapter_put(struct netmap_adapter *na);
1576 
1577 #define netmap_adapter_put(na)				\
1578 	({						\
1579 		struct netmap_adapter *__na = na;	\
1580 		D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1581 		__netmap_adapter_put(__na);		\
1582 	})
1583 
1584 #else /* !NM_DEBUG_PUTGET */
1585 
1586 #define NM_DBG(f) f
1587 void netmap_adapter_get(struct netmap_adapter *na);
1588 int netmap_adapter_put(struct netmap_adapter *na);
1589 
1590 #endif /* !NM_DEBUG_PUTGET */
1591 
1592 
1593 /*
1594  * module variables
1595  */
1596 #define NETMAP_BUF_BASE(_na)	((_na)->na_lut.lut[0].vaddr)
1597 #define NETMAP_BUF_SIZE(_na)	((_na)->na_lut.objsize)
1598 extern int netmap_no_pendintr;
1599 extern int netmap_mitigate;
1600 extern int netmap_verbose;		/* for debugging */
1601 enum {                                  /* verbose flags */
1602 	NM_VERB_ON = 1,                 /* generic verbose */
1603 	NM_VERB_HOST = 0x2,             /* verbose host stack */
1604 	NM_VERB_RXSYNC = 0x10,          /* verbose on rxsync/txsync */
1605 	NM_VERB_TXSYNC = 0x20,
1606 	NM_VERB_RXINTR = 0x100,         /* verbose on rx/tx intr (driver) */
1607 	NM_VERB_TXINTR = 0x200,
1608 	NM_VERB_NIC_RXSYNC = 0x1000,    /* verbose on rx/tx intr (driver) */
1609 	NM_VERB_NIC_TXSYNC = 0x2000,
1610 };
1611 
1612 extern int netmap_txsync_retry;
1613 extern int netmap_flags;
1614 extern int netmap_generic_mit;
1615 extern int netmap_generic_ringsize;
1616 extern int netmap_generic_rings;
1617 #ifdef linux
1618 extern int netmap_generic_txqdisc;
1619 #endif
1620 extern int ptnetmap_tx_workers;
1621 
1622 /*
1623  * NA returns a pointer to the struct netmap adapter from the ifp,
1624  * WNA is used to write it.
1625  */
1626 #define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1627 
1628 /*
1629  * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1630  * overload another pointer in the netdev.
1631  *
1632  * We check if NA(ifp) is set and its first element has a related
1633  * magic value. The capenable is within the struct netmap_adapter.
1634  */
1635 #define	NETMAP_MAGIC	0x52697a7a
1636 
1637 #define NM_NA_VALID(ifp)	(NA(ifp) &&		\
1638 	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1639 
1640 #define	NM_ATTACH_NA(ifp, na) do {					\
1641 	WNA(ifp) = na;							\
1642 	if (NA(ifp))							\
1643 		NA(ifp)->magic = 					\
1644 			((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC;	\
1645 } while(0)
1646 
1647 #define NM_IS_NATIVE(ifp)	(NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1648 
1649 #if defined(__FreeBSD__)
1650 
1651 /* Assigns the device IOMMU domain to an allocator.
1652  * Returns -ENOMEM in case the domain is different */
1653 #define nm_iommu_group_id(dev) (0)
1654 
1655 /* Callback invoked by the dma machinery after a successful dmamap_load */
1656 static void netmap_dmamap_cb(__unused void *arg,
1657     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1658 {
1659 }
1660 
1661 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1662  * XXX can we do it without a callback ?
1663  */
1664 static inline int
1665 netmap_load_map(struct netmap_adapter *na,
1666 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1667 {
1668 	if (map)
1669 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1670 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1671 	return 0;
1672 }
1673 
1674 static inline void
1675 netmap_unload_map(struct netmap_adapter *na,
1676         bus_dma_tag_t tag, bus_dmamap_t map)
1677 {
1678 	if (map)
1679 		bus_dmamap_unload(tag, map);
1680 }
1681 
1682 #define netmap_sync_map(na, tag, map, sz, t)
1683 
1684 /* update the map when a buffer changes. */
1685 static inline void
1686 netmap_reload_map(struct netmap_adapter *na,
1687 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1688 {
1689 	if (map) {
1690 		bus_dmamap_unload(tag, map);
1691 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1692 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1693 	}
1694 }
1695 
1696 #elif defined(_WIN32)
1697 
1698 #else /* linux */
1699 
1700 int nm_iommu_group_id(bus_dma_tag_t dev);
1701 #include <linux/dma-mapping.h>
1702 
1703 /*
1704  * on linux we need
1705  *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1706  *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1707  */
1708 #if 0
1709 	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1710 	/* set time_stamp *before* dma to help avoid a possible race */
1711 	buffer_info->time_stamp = jiffies;
1712 	buffer_info->mapped_as_page = false;
1713 	buffer_info->length = len;
1714 	//buffer_info->next_to_watch = l;
1715 	/* reload dma map */
1716 	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1717 			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1718 	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1719 			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1720 
1721 	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1722 		D("dma mapping error");
1723 		/* goto dma_error; See e1000_put_txbuf() */
1724 		/* XXX reset */
1725 	}
1726 	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1727 
1728 #endif
1729 
1730 static inline int
1731 netmap_load_map(struct netmap_adapter *na,
1732 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1733 {
1734 	if (map) {
1735 		*map = dma_map_single(na->pdev, buf, size,
1736 				      DMA_BIDIRECTIONAL);
1737 		if (dma_mapping_error(na->pdev, *map)) {
1738 			*map = 0;
1739 			return ENOMEM;
1740 		}
1741 	}
1742 	return 0;
1743 }
1744 
1745 static inline void
1746 netmap_unload_map(struct netmap_adapter *na,
1747 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1748 {
1749 	if (*map) {
1750 		dma_unmap_single(na->pdev, *map, sz,
1751 				 DMA_BIDIRECTIONAL);
1752 	}
1753 }
1754 
1755 static inline void
1756 netmap_sync_map(struct netmap_adapter *na,
1757 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1758 {
1759 	if (*map) {
1760 		if (t == NR_RX)
1761 			dma_sync_single_for_cpu(na->pdev, *map, sz,
1762 					DMA_FROM_DEVICE);
1763 		else
1764 			dma_sync_single_for_device(na->pdev, *map, sz,
1765 					DMA_TO_DEVICE);
1766 	}
1767 }
1768 
1769 static inline void
1770 netmap_reload_map(struct netmap_adapter *na,
1771 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1772 {
1773 	u_int sz = NETMAP_BUF_SIZE(na);
1774 
1775 	if (*map) {
1776 		dma_unmap_single(na->pdev, *map, sz,
1777 				DMA_BIDIRECTIONAL);
1778 	}
1779 
1780 	*map = dma_map_single(na->pdev, buf, sz,
1781 				DMA_BIDIRECTIONAL);
1782 }
1783 
1784 #endif /* linux */
1785 
1786 
1787 /*
1788  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1789  */
1790 static inline int
1791 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1792 {
1793 	int n = kr->nkr_num_slots;
1794 	idx += kr->nkr_hwofs;
1795 	if (idx < 0)
1796 		return idx + n;
1797 	else if (idx < n)
1798 		return idx;
1799 	else
1800 		return idx - n;
1801 }
1802 
1803 
1804 static inline int
1805 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1806 {
1807 	int n = kr->nkr_num_slots;
1808 	idx -= kr->nkr_hwofs;
1809 	if (idx < 0)
1810 		return idx + n;
1811 	else if (idx < n)
1812 		return idx;
1813 	else
1814 		return idx - n;
1815 }
1816 
1817 
1818 /* Entries of the look-up table. */
1819 #ifdef __FreeBSD__
1820 struct lut_entry {
1821 	void *vaddr;		/* virtual address. */
1822 	vm_paddr_t paddr;	/* physical address. */
1823 };
1824 #else /* linux & _WIN32 */
1825 /* dma-mapping in linux can assign a buffer a different address
1826  * depending on the device, so we need to have a separate
1827  * physical-address look-up table for each na.
1828  * We can still share the vaddrs, though, therefore we split
1829  * the lut_entry structure.
1830  */
1831 struct lut_entry {
1832 	void *vaddr;		/* virtual address. */
1833 };
1834 
1835 struct plut_entry {
1836 	vm_paddr_t paddr;	/* physical address. */
1837 };
1838 #endif /* linux & _WIN32 */
1839 
1840 struct netmap_obj_pool;
1841 
1842 /*
1843  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1844  * PNMB also fills the physical address
1845  */
1846 static inline void *
1847 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1848 {
1849 	struct lut_entry *lut = na->na_lut.lut;
1850 	uint32_t i = slot->buf_idx;
1851 	return (unlikely(i >= na->na_lut.objtotal)) ?
1852 		lut[0].vaddr : lut[i].vaddr;
1853 }
1854 
1855 static inline void *
1856 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1857 {
1858 	uint32_t i = slot->buf_idx;
1859 	struct lut_entry *lut = na->na_lut.lut;
1860 	struct plut_entry *plut = na->na_lut.plut;
1861 	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1862 
1863 #ifdef _WIN32
1864 	*pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1865 #else
1866 	*pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1867 #endif
1868 	return ret;
1869 }
1870 
1871 
1872 /*
1873  * Structure associated to each netmap file descriptor.
1874  * It is created on open and left unbound (np_nifp == NULL).
1875  * A successful NIOCREGIF will set np_nifp and the first few fields;
1876  * this is protected by a global lock (NMG_LOCK) due to low contention.
1877  *
1878  * np_refs counts the number of references to the structure: one for the fd,
1879  * plus (on FreeBSD) one for each active mmap which we track ourselves
1880  * (linux automatically tracks them, but FreeBSD does not).
1881  * np_refs is protected by NMG_LOCK.
1882  *
1883  * Read access to the structure is lock free, because ni_nifp once set
1884  * can only go to 0 when nobody is using the entry anymore. Readers
1885  * must check that np_nifp != NULL before using the other fields.
1886  */
1887 struct netmap_priv_d {
1888 	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
1889 
1890 	struct netmap_adapter	*np_na;
1891 	struct ifnet	*np_ifp;
1892 	uint32_t	np_flags;	/* from the ioctl */
1893 	u_int		np_qfirst[NR_TXRX],
1894 			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
1895 	uint16_t	np_txpoll;
1896 	int             np_sync_flags; /* to be passed to nm_sync */
1897 
1898 	int		np_refs;	/* use with NMG_LOCK held */
1899 
1900 	/* pointers to the selinfo to be used for selrecord.
1901 	 * Either the local or the global one depending on the
1902 	 * number of rings.
1903 	 */
1904 	NM_SELINFO_T *np_si[NR_TXRX];
1905 	struct thread	*np_td;		/* kqueue, just debugging */
1906 };
1907 
1908 struct netmap_priv_d *netmap_priv_new(void);
1909 void netmap_priv_delete(struct netmap_priv_d *);
1910 
1911 static inline int nm_kring_pending(struct netmap_priv_d *np)
1912 {
1913 	struct netmap_adapter *na = np->np_na;
1914 	enum txrx t;
1915 	int i;
1916 
1917 	for_rx_tx(t) {
1918 		for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
1919 			struct netmap_kring *kring = NMR(na, t)[i];
1920 			if (kring->nr_mode != kring->nr_pending_mode) {
1921 				return 1;
1922 			}
1923 		}
1924 	}
1925 	return 0;
1926 }
1927 
1928 #ifdef WITH_PIPES
1929 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
1930 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
1931 #endif /* WITH_PIPES */
1932 
1933 #ifdef WITH_MONITOR
1934 
1935 struct netmap_monitor_adapter {
1936 	struct netmap_adapter up;
1937 
1938 	struct netmap_priv_d priv;
1939 	uint32_t flags;
1940 };
1941 
1942 #endif /* WITH_MONITOR */
1943 
1944 
1945 #ifdef WITH_GENERIC
1946 /*
1947  * generic netmap emulation for devices that do not have
1948  * native netmap support.
1949  */
1950 int generic_netmap_attach(struct ifnet *ifp);
1951 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
1952 
1953 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
1954 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
1955 
1956 int na_is_generic(struct netmap_adapter *na);
1957 
1958 /*
1959  * the generic transmit routine is passed a structure to optionally
1960  * build a queue of descriptors, in an OS-specific way.
1961  * The payload is at addr, if non-null, and the routine should send or queue
1962  * the packet, returning 0 if successful, 1 on failure.
1963  *
1964  * At the end, if head is non-null, there will be an additional call
1965  * to the function with addr = NULL; this should tell the OS-specific
1966  * routine to send the queue and free any resources. Failure is ignored.
1967  */
1968 struct nm_os_gen_arg {
1969 	struct ifnet *ifp;
1970 	void *m;	/* os-specific mbuf-like object */
1971 	void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
1972 	void *addr;	/* payload of current packet */
1973 	u_int len;	/* packet length */
1974 	u_int ring_nr;	/* packet length */
1975 	u_int qevent;   /* in txqdisc mode, place an event on this mbuf */
1976 };
1977 
1978 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
1979 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
1980 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
1981 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
1982 
1983 static inline struct ifnet*
1984 netmap_generic_getifp(struct netmap_generic_adapter *gna)
1985 {
1986         if (gna->prev)
1987             return gna->prev->ifp;
1988 
1989         return gna->up.up.ifp;
1990 }
1991 
1992 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
1993 
1994 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
1995 #ifdef RATE_GENERIC
1996 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
1997 #else
1998 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
1999 #endif
2000 
2001 /*
2002  * netmap_mitigation API. This is used by the generic adapter
2003  * to reduce the number of interrupt requests/selwakeup
2004  * to clients on incoming packets.
2005  */
2006 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2007                                 struct netmap_adapter *na);
2008 void nm_os_mitigation_start(struct nm_generic_mit *mit);
2009 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2010 int nm_os_mitigation_active(struct nm_generic_mit *mit);
2011 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2012 #else /* !WITH_GENERIC */
2013 #define generic_netmap_attach(ifp)	(EOPNOTSUPP)
2014 #define na_is_generic(na)		(0)
2015 #endif /* WITH_GENERIC */
2016 
2017 /* Shared declarations for the VALE switch. */
2018 
2019 /*
2020  * Each transmit queue accumulates a batch of packets into
2021  * a structure before forwarding. Packets to the same
2022  * destination are put in a list using ft_next as a link field.
2023  * ft_frags and ft_next are valid only on the first fragment.
2024  */
2025 struct nm_bdg_fwd {	/* forwarding entry for a bridge */
2026 	void *ft_buf;		/* netmap or indirect buffer */
2027 	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
2028 	uint16_t ft_offset;	/* dst port (unused) */
2029 	uint16_t ft_flags;	/* flags, e.g. indirect */
2030 	uint16_t ft_len;	/* src fragment len */
2031 	uint16_t ft_next;	/* next packet to same destination */
2032 };
2033 
2034 /* struct 'virtio_net_hdr' from linux. */
2035 struct nm_vnet_hdr {
2036 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
2037 #define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
2038     uint8_t flags;
2039 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
2040 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
2041 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
2042 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
2043 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
2044     uint8_t gso_type;
2045     uint16_t hdr_len;
2046     uint16_t gso_size;
2047     uint16_t csum_start;
2048     uint16_t csum_offset;
2049 };
2050 
2051 #define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
2052 
2053 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2054 
2055 struct nm_iphdr {
2056 	uint8_t		version_ihl;
2057 	uint8_t		tos;
2058 	uint16_t	tot_len;
2059 	uint16_t	id;
2060 	uint16_t	frag_off;
2061 	uint8_t		ttl;
2062 	uint8_t		protocol;
2063 	uint16_t	check;
2064 	uint32_t	saddr;
2065 	uint32_t	daddr;
2066 	/*The options start here. */
2067 };
2068 
2069 struct nm_tcphdr {
2070 	uint16_t	source;
2071 	uint16_t	dest;
2072 	uint32_t	seq;
2073 	uint32_t	ack_seq;
2074 	uint8_t		doff;  /* Data offset + Reserved */
2075 	uint8_t		flags;
2076 	uint16_t	window;
2077 	uint16_t	check;
2078 	uint16_t	urg_ptr;
2079 };
2080 
2081 struct nm_udphdr {
2082 	uint16_t	source;
2083 	uint16_t	dest;
2084 	uint16_t	len;
2085 	uint16_t	check;
2086 };
2087 
2088 struct nm_ipv6hdr {
2089 	uint8_t		priority_version;
2090 	uint8_t		flow_lbl[3];
2091 
2092 	uint16_t	payload_len;
2093 	uint8_t		nexthdr;
2094 	uint8_t		hop_limit;
2095 
2096 	uint8_t		saddr[16];
2097 	uint8_t		daddr[16];
2098 };
2099 
2100 /* Type used to store a checksum (in host byte order) that hasn't been
2101  * folded yet.
2102  */
2103 #define rawsum_t uint32_t
2104 
2105 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2106 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2107 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2108 		      size_t datalen, uint16_t *check);
2109 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2110 		      size_t datalen, uint16_t *check);
2111 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2112 
2113 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2114 			   struct netmap_vp_adapter *dst_na,
2115 			   const struct nm_bdg_fwd *ft_p,
2116 			   struct netmap_ring *dst_ring,
2117 			   u_int *j, u_int lim, u_int *howmany);
2118 
2119 /* persistent virtual port routines */
2120 int nm_os_vi_persist(const char *, struct ifnet **);
2121 void nm_os_vi_detach(struct ifnet *);
2122 void nm_os_vi_init_index(void);
2123 
2124 /*
2125  * kernel thread routines
2126  */
2127 struct nm_kctx; /* OS-specific kernel context - opaque */
2128 typedef void (*nm_kctx_worker_fn_t)(void *data, int is_kthread);
2129 typedef void (*nm_kctx_notify_fn_t)(void *data);
2130 
2131 /* kthread configuration */
2132 struct nm_kctx_cfg {
2133 	long			type;		/* kthread type/identifier */
2134 	nm_kctx_worker_fn_t	worker_fn;	/* worker function */
2135 	void			*worker_private;/* worker parameter */
2136 	nm_kctx_notify_fn_t	notify_fn;	/* notify function */
2137 	int			attach_user;	/* attach kthread to user process */
2138 	int			use_kthread;	/* use a kthread for the context */
2139 };
2140 /* kthread configuration */
2141 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2142 					void *opaque);
2143 int nm_os_kctx_worker_start(struct nm_kctx *);
2144 void nm_os_kctx_worker_stop(struct nm_kctx *);
2145 void nm_os_kctx_destroy(struct nm_kctx *);
2146 void nm_os_kctx_worker_wakeup(struct nm_kctx *nmk);
2147 void nm_os_kctx_send_irq(struct nm_kctx *);
2148 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2149 u_int nm_os_ncpus(void);
2150 
2151 #ifdef WITH_PTNETMAP_HOST
2152 /*
2153  * netmap adapter for host ptnetmap ports
2154  */
2155 struct netmap_pt_host_adapter {
2156 	struct netmap_adapter up;
2157 
2158 	/* the passed-through adapter */
2159 	struct netmap_adapter *parent;
2160 	/* parent->na_flags, saved at NETMAP_PT_HOST_CREATE time,
2161 	 * and restored at NETMAP_PT_HOST_DELETE time */
2162 	uint32_t parent_na_flags;
2163 
2164 	int (*parent_nm_notify)(struct netmap_kring *kring, int flags);
2165 	void *ptns;
2166 };
2167 
2168 /* ptnetmap host-side routines */
2169 int netmap_get_pt_host_na(struct nmreq_header *hdr, struct netmap_adapter **na,
2170 			struct netmap_mem_d * nmd, int create);
2171 int ptnetmap_ctl(const char *nr_name, int create, struct netmap_adapter *na);
2172 
2173 static inline int
2174 nm_ptnetmap_host_on(struct netmap_adapter *na)
2175 {
2176 	return na && na->na_flags & NAF_PTNETMAP_HOST;
2177 }
2178 #else /* !WITH_PTNETMAP_HOST */
2179 #define netmap_get_pt_host_na(hdr, _2, _3, _4) \
2180 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_PTNETMAP_HOST) ? EOPNOTSUPP : 0)
2181 #define ptnetmap_ctl(_1, _2, _3)   EINVAL
2182 #define nm_ptnetmap_host_on(_1)   EINVAL
2183 #endif /* !WITH_PTNETMAP_HOST */
2184 
2185 #ifdef WITH_PTNETMAP_GUEST
2186 /* ptnetmap GUEST routines */
2187 
2188 /*
2189  * netmap adapter for guest ptnetmap ports
2190  */
2191 struct netmap_pt_guest_adapter {
2192         /* The netmap adapter to be used by netmap applications.
2193 	 * This field must be the first, to allow upcast. */
2194 	struct netmap_hw_adapter hwup;
2195 
2196         /* The netmap adapter to be used by the driver. */
2197         struct netmap_hw_adapter dr;
2198 
2199 	/* Reference counter to track users of backend netmap port: the
2200 	 * network stack and netmap clients.
2201 	 * Used to decide when we need (de)allocate krings/rings and
2202 	 * start (stop) ptnetmap kthreads. */
2203 	int backend_regifs;
2204 
2205 };
2206 
2207 int netmap_pt_guest_attach(struct netmap_adapter *na,
2208 			unsigned int nifp_offset,
2209 			unsigned int memid);
2210 struct ptnet_csb_gh;
2211 struct ptnet_csb_hg;
2212 bool netmap_pt_guest_txsync(struct ptnet_csb_gh *ptgh,
2213 			struct ptnet_csb_hg *pthg,
2214 			struct netmap_kring *kring,
2215 			int flags);
2216 bool netmap_pt_guest_rxsync(struct ptnet_csb_gh *ptgh,
2217 			struct ptnet_csb_hg *pthg,
2218 			struct netmap_kring *kring, int flags);
2219 int ptnet_nm_krings_create(struct netmap_adapter *na);
2220 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2221 void ptnet_nm_dtor(struct netmap_adapter *na);
2222 #endif /* WITH_PTNETMAP_GUEST */
2223 
2224 struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t);
2225 int nmreq_checkduplicate(struct nmreq_option *);
2226 
2227 #endif /* _NET_NETMAP_KERN_H_ */
2228