1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo 5 * Copyright (C) 2013-2016 Universita` di Pisa 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * $FreeBSD$ 32 * 33 * The header contains the definitions of constants and function 34 * prototypes used only in kernelspace. 35 */ 36 37 #ifndef _NET_NETMAP_KERN_H_ 38 #define _NET_NETMAP_KERN_H_ 39 40 #if defined(linux) 41 42 #if defined(CONFIG_NETMAP_EXTMEM) 43 #define WITH_EXTMEM 44 #endif 45 #if defined(CONFIG_NETMAP_VALE) 46 #define WITH_VALE 47 #endif 48 #if defined(CONFIG_NETMAP_PIPE) 49 #define WITH_PIPES 50 #endif 51 #if defined(CONFIG_NETMAP_MONITOR) 52 #define WITH_MONITOR 53 #endif 54 #if defined(CONFIG_NETMAP_GENERIC) 55 #define WITH_GENERIC 56 #endif 57 #if defined(CONFIG_NETMAP_PTNETMAP) 58 #define WITH_PTNETMAP 59 #endif 60 #if defined(CONFIG_NETMAP_SINK) 61 #define WITH_SINK 62 #endif 63 #if defined(CONFIG_NETMAP_NULL) 64 #define WITH_NMNULL 65 #endif 66 67 #elif defined (_WIN32) 68 #define WITH_VALE // comment out to disable VALE support 69 #define WITH_PIPES 70 #define WITH_MONITOR 71 #define WITH_GENERIC 72 #define WITH_NMNULL 73 74 #else /* neither linux nor windows */ 75 #define WITH_VALE // comment out to disable VALE support 76 #define WITH_PIPES 77 #define WITH_MONITOR 78 #define WITH_GENERIC 79 #define WITH_PTNETMAP /* ptnetmap guest support */ 80 #define WITH_EXTMEM 81 #define WITH_NMNULL 82 #endif 83 84 #if defined(__FreeBSD__) 85 #include <sys/selinfo.h> 86 87 #define likely(x) __builtin_expect((long)!!(x), 1L) 88 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 89 #define __user 90 91 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 92 93 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 94 #define NM_MTX_INIT(m) sx_init(&(m), #m) 95 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 96 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 97 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; 98 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 99 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 100 101 #define NM_SELINFO_T struct nm_selinfo 102 #define NM_SELRECORD_T struct thread 103 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 104 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 105 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) 106 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 107 108 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ 109 /* atomic operations */ 110 #include <machine/atomic.h> 111 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 112 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 113 114 #if __FreeBSD_version >= 1100030 115 #define WNA(_ifp) (_ifp)->if_netmap 116 #else /* older FreeBSD */ 117 #define WNA(_ifp) (_ifp)->if_pspare[0] 118 #endif /* older FreeBSD */ 119 120 #if __FreeBSD_version >= 1100005 121 struct netmap_adapter *netmap_getna(if_t ifp); 122 #endif 123 124 #if __FreeBSD_version >= 1100027 125 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) 126 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x 127 #else 128 #define MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1) 129 #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x 130 #endif 131 132 #define MBUF_QUEUED(m) 1 133 134 struct nm_selinfo { 135 /* Support for select(2) and poll(2). */ 136 struct selinfo si; 137 /* Support for kqueue(9). See comments in netmap_freebsd.c */ 138 struct taskqueue *ntfytq; 139 struct task ntfytask; 140 struct mtx m; 141 char mtxname[32]; 142 int kqueue_users; 143 }; 144 145 146 struct hrtimer { 147 /* Not used in FreeBSD. */ 148 }; 149 150 #define NM_BNS_GET(b) 151 #define NM_BNS_PUT(b) 152 153 #elif defined (linux) 154 155 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 156 #define NM_SELINFO_T wait_queue_head_t 157 #define MBUF_LEN(m) ((m)->len) 158 #define MBUF_TRANSMIT(na, ifp, m) \ 159 ({ \ 160 /* Avoid infinite recursion with generic. */ \ 161 m->priority = NM_MAGIC_PRIORITY_TX; \ 162 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 163 0; \ 164 }) 165 166 /* See explanation in nm_os_generic_xmit_frame. */ 167 #define GEN_TX_MBUF_IFP(m) ((struct ifnet *)skb_shinfo(m)->destructor_arg) 168 169 #define NM_ATOMIC_T volatile long unsigned int 170 171 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 172 #define NM_MTX_INIT(m) mutex_init(&(m)) 173 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 174 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 175 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 176 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 177 178 #ifndef DEV_NETMAP 179 #define DEV_NETMAP 180 #endif /* DEV_NETMAP */ 181 182 #elif defined (__APPLE__) 183 184 #warning apple support is incomplete. 185 #define likely(x) __builtin_expect(!!(x), 1) 186 #define unlikely(x) __builtin_expect(!!(x), 0) 187 #define NM_LOCK_T IOLock * 188 #define NM_SELINFO_T struct selinfo 189 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 190 191 #elif defined (_WIN32) 192 #include "../../../WINDOWS/win_glue.h" 193 194 #define NM_SELRECORD_T IO_STACK_LOCATION 195 #define NM_SELINFO_T win_SELINFO // see win_glue.h 196 #define NM_LOCK_T win_spinlock_t // see win_glue.h 197 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ 198 199 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); 200 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 201 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) 202 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) 203 #define NM_MTX_ASSERT(m) assert(&m.Count>0) 204 205 //These linknames are for the NDIS driver 206 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" 207 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" 208 209 //Definition of internal driver-to-driver ioctl codes 210 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) 211 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) 212 213 typedef struct hrtimer{ 214 KTIMER timer; 215 BOOLEAN active; 216 KDPC deferred_proc; 217 }; 218 219 /* MSVC does not have likely/unlikely support */ 220 #ifdef _MSC_VER 221 #define likely(x) (x) 222 #define unlikely(x) (x) 223 #else 224 #define likely(x) __builtin_expect((long)!!(x), 1L) 225 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 226 #endif //_MSC_VER 227 228 #else 229 230 #error unsupported platform 231 232 #endif /* end - platform-specific code */ 233 234 #ifndef _WIN32 /* support for emulated sysctl */ 235 #define SYSBEGIN(x) 236 #define SYSEND 237 #endif /* _WIN32 */ 238 239 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) 240 241 #define NMG_LOCK_T NM_MTX_T 242 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 243 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 244 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 245 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 246 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 247 248 #if defined(__FreeBSD__) 249 #define nm_prerr_int printf 250 #define nm_prinf_int printf 251 #elif defined (_WIN32) 252 #define nm_prerr_int DbgPrint 253 #define nm_prinf_int DbgPrint 254 #elif defined(linux) 255 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) 256 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) 257 #endif 258 259 #define nm_prinf(format, ...) \ 260 do { \ 261 struct timeval __xxts; \ 262 microtime(&__xxts); \ 263 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ 264 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 265 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 266 } while (0) 267 268 #define nm_prerr(format, ...) \ 269 do { \ 270 struct timeval __xxts; \ 271 microtime(&__xxts); \ 272 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ 273 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 274 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 275 } while (0) 276 277 /* Disabled printf (used to be nm_prdis). */ 278 #define nm_prdis(format, ...) 279 280 /* Rate limited, lps indicates how many per second. */ 281 #define nm_prlim(lps, format, ...) \ 282 do { \ 283 static int t0, __cnt; \ 284 if (t0 != time_second) { \ 285 t0 = time_second; \ 286 __cnt = 0; \ 287 } \ 288 if (__cnt++ < lps) \ 289 nm_prinf(format, ##__VA_ARGS__); \ 290 } while (0) 291 292 struct netmap_adapter; 293 struct nm_bdg_fwd; 294 struct nm_bridge; 295 struct netmap_priv_d; 296 struct nm_bdg_args; 297 298 /* os-specific NM_SELINFO_T initialzation/destruction functions */ 299 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); 300 void nm_os_selinfo_uninit(NM_SELINFO_T *); 301 302 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 303 304 void nm_os_selwakeup(NM_SELINFO_T *si); 305 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); 306 307 int nm_os_ifnet_init(void); 308 void nm_os_ifnet_fini(void); 309 void nm_os_ifnet_lock(void); 310 void nm_os_ifnet_unlock(void); 311 312 unsigned nm_os_ifnet_mtu(struct ifnet *ifp); 313 314 void nm_os_get_module(void); 315 void nm_os_put_module(void); 316 317 void netmap_make_zombie(struct ifnet *); 318 void netmap_undo_zombie(struct ifnet *); 319 320 /* os independent alloc/realloc/free */ 321 void *nm_os_malloc(size_t); 322 void *nm_os_vmalloc(size_t); 323 void *nm_os_realloc(void *, size_t new_size, size_t old_size); 324 void nm_os_free(void *); 325 void nm_os_vfree(void *); 326 327 /* os specific attach/detach enter/exit-netmap-mode routines */ 328 void nm_os_onattach(struct ifnet *); 329 void nm_os_ondetach(struct ifnet *); 330 void nm_os_onenter(struct ifnet *); 331 void nm_os_onexit(struct ifnet *); 332 333 /* passes a packet up to the host stack. 334 * If the packet is sent (or dropped) immediately it returns NULL, 335 * otherwise it links the packet to prev and returns m. 336 * In this case, a final call with m=NULL and prev != NULL will send up 337 * the entire chain to the host stack. 338 */ 339 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev); 340 341 int nm_os_mbuf_has_seg_offld(struct mbuf *m); 342 int nm_os_mbuf_has_csum_offld(struct mbuf *m); 343 344 #include "netmap_mbq.h" 345 346 extern NMG_LOCK_T netmap_global_lock; 347 348 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 349 350 static __inline const char* 351 nm_txrx2str(enum txrx t) 352 { 353 return (t== NR_RX ? "RX" : "TX"); 354 } 355 356 static __inline enum txrx 357 nm_txrx_swap(enum txrx t) 358 { 359 return (t== NR_RX ? NR_TX : NR_RX); 360 } 361 362 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 363 364 #ifdef WITH_MONITOR 365 struct netmap_zmon_list { 366 struct netmap_kring *next; 367 struct netmap_kring *prev; 368 }; 369 #endif /* WITH_MONITOR */ 370 371 /* 372 * private, kernel view of a ring. Keeps track of the status of 373 * a ring across system calls. 374 * 375 * nr_hwcur index of the next buffer to refill. 376 * It corresponds to ring->head 377 * at the time the system call returns. 378 * 379 * nr_hwtail index of the first buffer owned by the kernel. 380 * On RX, hwcur->hwtail are receive buffers 381 * not yet released. hwcur is advanced following 382 * ring->head, hwtail is advanced on incoming packets, 383 * and a wakeup is generated when hwtail passes ring->cur 384 * On TX, hwcur->rcur have been filled by the sender 385 * but not sent yet to the NIC; rcur->hwtail are available 386 * for new transmissions, and hwtail->hwcur-1 are pending 387 * transmissions not yet acknowledged. 388 * 389 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 390 * This is so that, on a reset, buffers owned by userspace are not 391 * modified by the kernel. In particular: 392 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 393 * the next empty buffer as known by the hardware (next_to_check or so). 394 * TX rings: hwcur + hwofs coincides with next_to_send 395 * 396 * The following fields are used to implement lock-free copy of packets 397 * from input to output ports in VALE switch: 398 * nkr_hwlease buffer after the last one being copied. 399 * A writer in nm_bdg_flush reserves N buffers 400 * from nr_hwlease, advances it, then does the 401 * copy outside the lock. 402 * In RX rings (used for VALE ports), 403 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 404 * In TX rings (used for NIC or host stack ports) 405 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 406 * nkr_leases array of nkr_num_slots where writers can report 407 * completion of their block. NR_NOSLOT (~0) indicates 408 * that the writer has not finished yet 409 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 410 * 411 * The kring is manipulated by txsync/rxsync and generic netmap function. 412 * 413 * Concurrent rxsync or txsync on the same ring are prevented through 414 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 415 * for NIC rings, and for TX rings attached to the host stack. 416 * 417 * RX rings attached to the host stack use an mbq (rx_queue) on both 418 * rxsync_from_host() and netmap_transmit(). The mbq is protected 419 * by its internal lock. 420 * 421 * RX rings attached to the VALE switch are accessed by both senders 422 * and receiver. They are protected through the q_lock on the RX ring. 423 */ 424 struct netmap_kring { 425 struct netmap_ring *ring; 426 427 uint32_t nr_hwcur; /* should be nr_hwhead */ 428 uint32_t nr_hwtail; 429 430 /* 431 * Copies of values in user rings, so we do not need to look 432 * at the ring (which could be modified). These are set in the 433 * *sync_prologue()/finalize() routines. 434 */ 435 uint32_t rhead; 436 uint32_t rcur; 437 uint32_t rtail; 438 439 uint32_t nr_kflags; /* private driver flags */ 440 #define NKR_PENDINTR 0x1 // Pending interrupt. 441 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 442 #define NKR_FORWARD 0x4 /* (host ring only) there are 443 packets to forward 444 */ 445 #define NKR_NEEDRING 0x8 /* ring needed even if users==0 446 * (used internally by pipes and 447 * by ptnetmap host ports) 448 */ 449 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ 450 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ 451 452 uint32_t nr_mode; 453 uint32_t nr_pending_mode; 454 #define NKR_NETMAP_OFF 0x0 455 #define NKR_NETMAP_ON 0x1 456 457 uint32_t nkr_num_slots; 458 459 /* 460 * On a NIC reset, the NIC ring indexes may be reset but the 461 * indexes in the netmap rings remain the same. nkr_hwofs 462 * keeps track of the offset between the two. 463 */ 464 int32_t nkr_hwofs; 465 466 /* last_reclaim is opaque marker to help reduce the frequency 467 * of operations such as reclaiming tx buffers. A possible use 468 * is set it to ticks and do the reclaim only once per tick. 469 */ 470 uint64_t last_reclaim; 471 472 473 NM_SELINFO_T si; /* poll/select wait queue */ 474 NM_LOCK_T q_lock; /* protects kring and ring. */ 475 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 476 477 /* the adapter the owns this kring */ 478 struct netmap_adapter *na; 479 480 /* the adapter that wants to be notified when this kring has 481 * new slots avaialable. This is usually the same as the above, 482 * but wrappers may let it point to themselves 483 */ 484 struct netmap_adapter *notify_na; 485 486 /* The following fields are for VALE switch support */ 487 struct nm_bdg_fwd *nkr_ft; 488 uint32_t *nkr_leases; 489 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 490 uint32_t nkr_hwlease; 491 uint32_t nkr_lease_idx; 492 493 /* while nkr_stopped is set, no new [tr]xsync operations can 494 * be started on this kring. 495 * This is used by netmap_disable_all_rings() 496 * to find a synchronization point where critical data 497 * structures pointed to by the kring can be added or removed 498 */ 499 volatile int nkr_stopped; 500 501 /* Support for adapters without native netmap support. 502 * On tx rings we preallocate an array of tx buffers 503 * (same size as the netmap ring), on rx rings we 504 * store incoming mbufs in a queue that is drained by 505 * a rxsync. 506 */ 507 struct mbuf **tx_pool; 508 struct mbuf *tx_event; /* TX event used as a notification */ 509 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ 510 struct mbq rx_queue; /* intercepted rx mbufs. */ 511 512 uint32_t users; /* existing bindings for this ring */ 513 514 uint32_t ring_id; /* kring identifier */ 515 enum txrx tx; /* kind of ring (tx or rx) */ 516 char name[64]; /* diagnostic */ 517 518 /* [tx]sync callback for this kring. 519 * The default nm_kring_create callback (netmap_krings_create) 520 * sets the nm_sync callback of each hardware tx(rx) kring to 521 * the corresponding nm_txsync(nm_rxsync) taken from the 522 * netmap_adapter; moreover, it sets the sync callback 523 * of the host tx(rx) ring to netmap_txsync_to_host 524 * (netmap_rxsync_from_host). 525 * 526 * Overrides: the above configuration is not changed by 527 * any of the nm_krings_create callbacks. 528 */ 529 int (*nm_sync)(struct netmap_kring *kring, int flags); 530 int (*nm_notify)(struct netmap_kring *kring, int flags); 531 532 #ifdef WITH_PIPES 533 struct netmap_kring *pipe; /* if this is a pipe ring, 534 * pointer to the other end 535 */ 536 uint32_t pipe_tail; /* hwtail updated by the other end */ 537 #endif /* WITH_PIPES */ 538 539 int (*save_notify)(struct netmap_kring *kring, int flags); 540 541 #ifdef WITH_MONITOR 542 /* array of krings that are monitoring this kring */ 543 struct netmap_kring **monitors; 544 uint32_t max_monitors; /* current size of the monitors array */ 545 uint32_t n_monitors; /* next unused entry in the monitor array */ 546 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ 547 uint32_t mon_tail; /* last seen slot on rx */ 548 549 /* circular list of zero-copy monitors */ 550 struct netmap_zmon_list zmon_list[NR_TXRX]; 551 552 /* 553 * Monitors work by intercepting the sync and notify callbacks of the 554 * monitored krings. This is implemented by replacing the pointers 555 * above and saving the previous ones in mon_* pointers below 556 */ 557 int (*mon_sync)(struct netmap_kring *kring, int flags); 558 int (*mon_notify)(struct netmap_kring *kring, int flags); 559 560 #endif 561 } 562 #ifdef _WIN32 563 __declspec(align(64)); 564 #else 565 __attribute__((__aligned__(64))); 566 #endif 567 568 /* return 1 iff the kring needs to be turned on */ 569 static inline int 570 nm_kring_pending_on(struct netmap_kring *kring) 571 { 572 return kring->nr_pending_mode == NKR_NETMAP_ON && 573 kring->nr_mode == NKR_NETMAP_OFF; 574 } 575 576 /* return 1 iff the kring needs to be turned off */ 577 static inline int 578 nm_kring_pending_off(struct netmap_kring *kring) 579 { 580 return kring->nr_pending_mode == NKR_NETMAP_OFF && 581 kring->nr_mode == NKR_NETMAP_ON; 582 } 583 584 /* return the next index, with wraparound */ 585 static inline uint32_t 586 nm_next(uint32_t i, uint32_t lim) 587 { 588 return unlikely (i == lim) ? 0 : i + 1; 589 } 590 591 592 /* return the previous index, with wraparound */ 593 static inline uint32_t 594 nm_prev(uint32_t i, uint32_t lim) 595 { 596 return unlikely (i == 0) ? lim : i - 1; 597 } 598 599 600 /* 601 * 602 * Here is the layout for the Rx and Tx rings. 603 604 RxRING TxRING 605 606 +-----------------+ +-----------------+ 607 | | | | 608 | free | | free | 609 +-----------------+ +-----------------+ 610 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 611 | | | yet | 612 +-----------------+ | | 613 cur->| available to | | | 614 | user, not read | +-----------------+ 615 | yet | cur->| (being | 616 | | | prepared) | 617 | | | | 618 +-----------------+ + ------ + 619 tail->| |<-hwtail | |<-hwlease 620 | (being | ... | | ... 621 | prepared) | ... | | ... 622 +-----------------+ ... | | ... 623 | |<-hwlease +-----------------+ 624 | | tail->| |<-hwtail 625 | | | | 626 | | | | 627 | | | | 628 +-----------------+ +-----------------+ 629 630 * The cur/tail (user view) and hwcur/hwtail (kernel view) 631 * are used in the normal operation of the card. 632 * 633 * When a ring is the output of a switch port (Rx ring for 634 * a VALE port, Tx ring for the host stack or NIC), slots 635 * are reserved in blocks through 'hwlease' which points 636 * to the next unused slot. 637 * On an Rx ring, hwlease is always after hwtail, 638 * and completions cause hwtail to advance. 639 * On a Tx ring, hwlease is always between cur and hwtail, 640 * and completions cause cur to advance. 641 * 642 * nm_kr_space() returns the maximum number of slots that 643 * can be assigned. 644 * nm_kr_lease() reserves the required number of buffers, 645 * advances nkr_hwlease and also returns an entry in 646 * a circular array where completions should be reported. 647 */ 648 649 struct lut_entry; 650 #ifdef __FreeBSD__ 651 #define plut_entry lut_entry 652 #endif 653 654 struct netmap_lut { 655 struct lut_entry *lut; 656 struct plut_entry *plut; 657 uint32_t objtotal; /* max buffer index */ 658 uint32_t objsize; /* buffer size */ 659 }; 660 661 struct netmap_vp_adapter; // forward 662 struct nm_bridge; 663 664 /* Struct to be filled by nm_config callbacks. */ 665 struct nm_config_info { 666 unsigned num_tx_rings; 667 unsigned num_rx_rings; 668 unsigned num_tx_descs; 669 unsigned num_rx_descs; 670 unsigned rx_buf_maxsize; 671 }; 672 673 /* 674 * default type for the magic field. 675 * May be overriden in glue code. 676 */ 677 #ifndef NM_OS_MAGIC 678 #define NM_OS_MAGIC uint32_t 679 #endif /* !NM_OS_MAGIC */ 680 681 /* 682 * The "struct netmap_adapter" extends the "struct adapter" 683 * (or equivalent) device descriptor. 684 * It contains all base fields needed to support netmap operation. 685 * There are in fact different types of netmap adapters 686 * (native, generic, VALE switch...) so a netmap_adapter is 687 * just the first field in the derived type. 688 */ 689 struct netmap_adapter { 690 /* 691 * On linux we do not have a good way to tell if an interface 692 * is netmap-capable. So we always use the following trick: 693 * NA(ifp) points here, and the first entry (which hopefully 694 * always exists and is at least 32 bits) contains a magic 695 * value which we can use to detect that the interface is good. 696 */ 697 NM_OS_MAGIC magic; 698 uint32_t na_flags; /* enabled, and other flags */ 699 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 700 * useful during initialization 701 */ 702 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 703 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 704 * forwarding packets coming from this 705 * interface 706 */ 707 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 708 * that cannot be changed 709 */ 710 #define NAF_NATIVE 16 /* the adapter is native. 711 * Virtual ports (non persistent vale ports, 712 * pipes, monitors...) should never use 713 * this flag. 714 */ 715 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 716 * emulated). Where possible (e.g. FreeBSD) 717 * IFCAP_NETMAP also mirrors this flag. 718 */ 719 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 720 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 721 /* free */ 722 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ 723 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ 724 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 725 * cannot be registered from userspace 726 */ 727 int active_fds; /* number of user-space descriptors using this 728 interface, which is equal to the number of 729 struct netmap_if objs in the mapped region. */ 730 731 u_int num_rx_rings; /* number of adapter receive rings */ 732 u_int num_tx_rings; /* number of adapter transmit rings */ 733 u_int num_host_rx_rings; /* number of host receive rings */ 734 u_int num_host_tx_rings; /* number of host transmit rings */ 735 736 u_int num_tx_desc; /* number of descriptor in each queue */ 737 u_int num_rx_desc; 738 739 /* tx_rings and rx_rings are private but allocated as a 740 * contiguous chunk of memory. Each array has N+K entries, 741 * N for the hardware rings and K for the host rings. 742 */ 743 struct netmap_kring **tx_rings; /* array of TX rings. */ 744 struct netmap_kring **rx_rings; /* array of RX rings. */ 745 746 void *tailroom; /* space below the rings array */ 747 /* (used for leases) */ 748 749 750 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 751 752 /* count users of the global wait queues */ 753 int si_users[NR_TXRX]; 754 755 void *pdev; /* used to store pci device */ 756 757 /* copy of if_qflush and if_transmit pointers, to intercept 758 * packets from the network stack when netmap is active. 759 */ 760 int (*if_transmit)(struct ifnet *, struct mbuf *); 761 762 /* copy of if_input for netmap_send_up() */ 763 void (*if_input)(struct ifnet *, struct mbuf *); 764 765 /* Back reference to the parent ifnet struct. Used for 766 * hardware ports (emulated netmap included). */ 767 struct ifnet *ifp; /* adapter is ifp->if_softc */ 768 769 /*---- callbacks for this netmap adapter -----*/ 770 /* 771 * nm_dtor() is the cleanup routine called when destroying 772 * the adapter. 773 * Called with NMG_LOCK held. 774 * 775 * nm_register() is called on NIOCREGIF and close() to enter 776 * or exit netmap mode on the NIC 777 * Called with NNG_LOCK held. 778 * 779 * nm_txsync() pushes packets to the underlying hw/switch 780 * 781 * nm_rxsync() collects packets from the underlying hw/switch 782 * 783 * nm_config() returns configuration information from the OS 784 * Called with NMG_LOCK held. 785 * 786 * nm_krings_create() create and init the tx_rings and 787 * rx_rings arrays of kring structures. In particular, 788 * set the nm_sync callbacks for each ring. 789 * There is no need to also allocate the corresponding 790 * netmap_rings, since netmap_mem_rings_create() will always 791 * be called to provide the missing ones. 792 * Called with NNG_LOCK held. 793 * 794 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 795 * arrays 796 * Called with NMG_LOCK held. 797 * 798 * nm_notify() is used to act after data have become available 799 * (or the stopped state of the ring has changed) 800 * For hw devices this is typically a selwakeup(), 801 * but for NIC/host ports attached to a switch (or vice-versa) 802 * we also need to invoke the 'txsync' code downstream. 803 * This callback pointer is actually used only to initialize 804 * kring->nm_notify. 805 * Return values are the same as for netmap_rx_irq(). 806 */ 807 void (*nm_dtor)(struct netmap_adapter *); 808 809 int (*nm_register)(struct netmap_adapter *, int onoff); 810 void (*nm_intr)(struct netmap_adapter *, int onoff); 811 812 int (*nm_txsync)(struct netmap_kring *kring, int flags); 813 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 814 int (*nm_notify)(struct netmap_kring *kring, int flags); 815 #define NAF_FORCE_READ 1 816 #define NAF_FORCE_RECLAIM 2 817 #define NAF_CAN_FORWARD_DOWN 4 818 /* return configuration information */ 819 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); 820 int (*nm_krings_create)(struct netmap_adapter *); 821 void (*nm_krings_delete)(struct netmap_adapter *); 822 /* 823 * nm_bdg_attach() initializes the na_vp field to point 824 * to an adapter that can be attached to a VALE switch. If the 825 * current adapter is already a VALE port, na_vp is simply a cast; 826 * otherwise, na_vp points to a netmap_bwrap_adapter. 827 * If applicable, this callback also initializes na_hostvp, 828 * that can be used to connect the adapter host rings to the 829 * switch. 830 * Called with NMG_LOCK held. 831 * 832 * nm_bdg_ctl() is called on the actual attach/detach to/from 833 * to/from the switch, to perform adapter-specific 834 * initializations 835 * Called with NMG_LOCK held. 836 */ 837 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, 838 struct nm_bridge *); 839 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); 840 841 /* adapter used to attach this adapter to a VALE switch (if any) */ 842 struct netmap_vp_adapter *na_vp; 843 /* adapter used to attach the host rings of this adapter 844 * to a VALE switch (if any) */ 845 struct netmap_vp_adapter *na_hostvp; 846 847 /* standard refcount to control the lifetime of the adapter 848 * (it should be equal to the lifetime of the corresponding ifp) 849 */ 850 int na_refcount; 851 852 /* memory allocator (opaque) 853 * We also cache a pointer to the lut_entry for translating 854 * buffer addresses, the total number of buffers and the buffer size. 855 */ 856 struct netmap_mem_d *nm_mem; 857 struct netmap_mem_d *nm_mem_prev; 858 struct netmap_lut na_lut; 859 860 /* additional information attached to this adapter 861 * by other netmap subsystems. Currently used by 862 * bwrap, LINUX/v1000 and ptnetmap 863 */ 864 void *na_private; 865 866 /* array of pipes that have this adapter as a parent */ 867 struct netmap_pipe_adapter **na_pipes; 868 int na_next_pipe; /* next free slot in the array */ 869 int na_max_pipes; /* size of the array */ 870 871 /* Offset of ethernet header for each packet. */ 872 u_int virt_hdr_len; 873 874 /* Max number of bytes that the NIC can store in the buffer 875 * referenced by each RX descriptor. This translates to the maximum 876 * bytes that a single netmap slot can reference. Larger packets 877 * require NS_MOREFRAG support. */ 878 unsigned rx_buf_maxsize; 879 880 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ 881 882 #ifdef WITH_MONITOR 883 unsigned long monitor_id; /* debugging */ 884 #endif 885 }; 886 887 static __inline u_int 888 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 889 { 890 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 891 } 892 893 static __inline void 894 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 895 { 896 if (t == NR_TX) 897 na->num_tx_desc = v; 898 else 899 na->num_rx_desc = v; 900 } 901 902 static __inline u_int 903 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 904 { 905 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 906 } 907 908 static __inline u_int 909 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) 910 { 911 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); 912 } 913 914 static __inline void 915 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 916 { 917 if (t == NR_TX) 918 na->num_tx_rings = v; 919 else 920 na->num_rx_rings = v; 921 } 922 923 static __inline void 924 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 925 { 926 if (t == NR_TX) 927 na->num_host_tx_rings = v; 928 else 929 na->num_host_rx_rings = v; 930 } 931 932 static __inline struct netmap_kring** 933 NMR(struct netmap_adapter *na, enum txrx t) 934 { 935 return (t == NR_TX ? na->tx_rings : na->rx_rings); 936 } 937 938 int nma_intr_enable(struct netmap_adapter *na, int onoff); 939 940 /* 941 * If the NIC is owned by the kernel 942 * (i.e., bridge), neither another bridge nor user can use it; 943 * if the NIC is owned by a user, only users can share it. 944 * Evaluation must be done under NMG_LOCK(). 945 */ 946 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 947 #define NETMAP_OWNED_BY_ANY(na) \ 948 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 949 950 /* 951 * derived netmap adapters for various types of ports 952 */ 953 struct netmap_vp_adapter { /* VALE software port */ 954 struct netmap_adapter up; 955 956 /* 957 * Bridge support: 958 * 959 * bdg_port is the port number used in the bridge; 960 * na_bdg points to the bridge this NA is attached to. 961 */ 962 int bdg_port; 963 struct nm_bridge *na_bdg; 964 int retry; 965 int autodelete; /* remove the ifp on last reference */ 966 967 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 968 u_int mfs; 969 /* Last source MAC on this port */ 970 uint64_t last_smac; 971 }; 972 973 974 struct netmap_hw_adapter { /* physical device */ 975 struct netmap_adapter up; 976 977 #ifdef linux 978 struct net_device_ops nm_ndo; 979 struct ethtool_ops nm_eto; 980 #endif 981 const struct ethtool_ops* save_ethtool; 982 983 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 984 }; 985 986 #ifdef WITH_GENERIC 987 /* Mitigation support. */ 988 struct nm_generic_mit { 989 struct hrtimer mit_timer; 990 int mit_pending; 991 int mit_ring_idx; /* index of the ring being mitigated */ 992 struct netmap_adapter *mit_na; /* backpointer */ 993 }; 994 995 struct netmap_generic_adapter { /* emulated device */ 996 struct netmap_hw_adapter up; 997 998 /* Pointer to a previously used netmap adapter. */ 999 struct netmap_adapter *prev; 1000 1001 /* Emulated netmap adapters support: 1002 * - save_if_input saves the if_input hook (FreeBSD); 1003 * - mit implements rx interrupt mitigation; 1004 */ 1005 void (*save_if_input)(struct ifnet *, struct mbuf *); 1006 1007 struct nm_generic_mit *mit; 1008 #ifdef linux 1009 netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); 1010 #endif 1011 /* Is the adapter able to use multiple RX slots to scatter 1012 * each packet pushed up by the driver? */ 1013 int rxsg; 1014 1015 /* Is the transmission path controlled by a netmap-aware 1016 * device queue (i.e. qdisc on linux)? */ 1017 int txqdisc; 1018 }; 1019 #endif /* WITH_GENERIC */ 1020 1021 static __inline u_int 1022 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 1023 { 1024 return nma_get_nrings(na, t) + 1025 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); 1026 } 1027 1028 /* account for fake rings */ 1029 static __inline u_int 1030 netmap_all_rings(struct netmap_adapter *na, enum txrx t) 1031 { 1032 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); 1033 } 1034 1035 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, 1036 struct nm_bridge *); 1037 struct nm_bdg_polling_state; 1038 /* 1039 * Bridge wrapper for non VALE ports attached to a VALE switch. 1040 * 1041 * The real device must already have its own netmap adapter (hwna). 1042 * The bridge wrapper and the hwna adapter share the same set of 1043 * netmap rings and buffers, but they have two separate sets of 1044 * krings descriptors, with tx/rx meanings swapped: 1045 * 1046 * netmap 1047 * bwrap krings rings krings hwna 1048 * +------+ +------+ +-----+ +------+ +------+ 1049 * |tx_rings->| |\ /| |----| |<-tx_rings| 1050 * | | +------+ \ / +-----+ +------+ | | 1051 * | | X | | 1052 * | | / \ | | 1053 * | | +------+/ \+-----+ +------+ | | 1054 * |rx_rings->| | | |----| |<-rx_rings| 1055 * | | +------+ +-----+ +------+ | | 1056 * +------+ +------+ 1057 * 1058 * - packets coming from the bridge go to the brwap rx rings, 1059 * which are also the hwna tx rings. The bwrap notify callback 1060 * will then complete the hwna tx (see netmap_bwrap_notify). 1061 * 1062 * - packets coming from the outside go to the hwna rx rings, 1063 * which are also the bwrap tx rings. The (overwritten) hwna 1064 * notify method will then complete the bridge tx 1065 * (see netmap_bwrap_intr_notify). 1066 * 1067 * The bridge wrapper may optionally connect the hwna 'host' rings 1068 * to the bridge. This is done by using a second port in the 1069 * bridge and connecting it to the 'host' netmap_vp_adapter 1070 * contained in the netmap_bwrap_adapter. The brwap host adapter 1071 * cross-links the hwna host rings in the same way as shown above. 1072 * 1073 * - packets coming from the bridge and directed to the host stack 1074 * are handled by the bwrap host notify callback 1075 * (see netmap_bwrap_host_notify) 1076 * 1077 * - packets coming from the host stack are still handled by the 1078 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 1079 * but are diverted to the host adapter depending on the ring number. 1080 * 1081 */ 1082 struct netmap_bwrap_adapter { 1083 struct netmap_vp_adapter up; 1084 struct netmap_vp_adapter host; /* for host rings */ 1085 struct netmap_adapter *hwna; /* the underlying device */ 1086 1087 /* 1088 * When we attach a physical interface to the bridge, we 1089 * allow the controlling process to terminate, so we need 1090 * a place to store the n_detmap_priv_d data structure. 1091 * This is only done when physical interfaces 1092 * are attached to a bridge. 1093 */ 1094 struct netmap_priv_d *na_kpriv; 1095 struct nm_bdg_polling_state *na_polling_state; 1096 /* we overwrite the hwna->na_vp pointer, so we save 1097 * here its original value, to be restored at detach 1098 */ 1099 struct netmap_vp_adapter *saved_na_vp; 1100 }; 1101 int nm_bdg_polling(struct nmreq_header *hdr); 1102 1103 #ifdef WITH_VALE 1104 int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token); 1105 int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token); 1106 int netmap_vale_list(struct nmreq_header *hdr); 1107 int netmap_vi_create(struct nmreq_header *hdr, int); 1108 int nm_vi_create(struct nmreq_header *); 1109 int nm_vi_destroy(const char *name); 1110 #else /* !WITH_VALE */ 1111 #define netmap_vi_create(hdr, a) (EOPNOTSUPP) 1112 #endif /* WITH_VALE */ 1113 1114 #ifdef WITH_PIPES 1115 1116 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 1117 1118 struct netmap_pipe_adapter { 1119 /* pipe identifier is up.name */ 1120 struct netmap_adapter up; 1121 1122 #define NM_PIPE_ROLE_MASTER 0x1 1123 #define NM_PIPE_ROLE_SLAVE 0x2 1124 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ 1125 1126 struct netmap_adapter *parent; /* adapter that owns the memory */ 1127 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 1128 int peer_ref; /* 1 iff we are holding a ref to the peer */ 1129 struct ifnet *parent_ifp; /* maybe null */ 1130 1131 u_int parent_slot; /* index in the parent pipe array */ 1132 }; 1133 1134 #endif /* WITH_PIPES */ 1135 1136 #ifdef WITH_NMNULL 1137 struct netmap_null_adapter { 1138 struct netmap_adapter up; 1139 }; 1140 #endif /* WITH_NMNULL */ 1141 1142 1143 /* return slots reserved to rx clients; used in drivers */ 1144 static inline uint32_t 1145 nm_kr_rxspace(struct netmap_kring *k) 1146 { 1147 int space = k->nr_hwtail - k->nr_hwcur; 1148 if (space < 0) 1149 space += k->nkr_num_slots; 1150 nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 1151 1152 return space; 1153 } 1154 1155 /* return slots reserved to tx clients */ 1156 #define nm_kr_txspace(_k) nm_kr_rxspace(_k) 1157 1158 1159 /* True if no space in the tx ring, only valid after txsync_prologue */ 1160 static inline int 1161 nm_kr_txempty(struct netmap_kring *kring) 1162 { 1163 return kring->rhead == kring->nr_hwtail; 1164 } 1165 1166 /* True if no more completed slots in the rx ring, only valid after 1167 * rxsync_prologue */ 1168 #define nm_kr_rxempty(_k) nm_kr_txempty(_k) 1169 1170 /* True if the application needs to wait for more space on the ring 1171 * (more received packets or more free tx slots). 1172 * Only valid after *xsync_prologue. */ 1173 static inline int 1174 nm_kr_wouldblock(struct netmap_kring *kring) 1175 { 1176 return kring->rcur == kring->nr_hwtail; 1177 } 1178 1179 /* 1180 * protect against multiple threads using the same ring. 1181 * also check that the ring has not been stopped or locked 1182 */ 1183 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ 1184 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ 1185 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ 1186 1187 1188 /* release the previously acquired right to use the *sync() methods of the ring */ 1189 static __inline void nm_kr_put(struct netmap_kring *kr) 1190 { 1191 NM_ATOMIC_CLEAR(&kr->nr_busy); 1192 } 1193 1194 1195 /* true if the ifp that backed the adapter has disappeared (e.g., the 1196 * driver has been unloaded) 1197 */ 1198 static inline int nm_iszombie(struct netmap_adapter *na); 1199 1200 /* try to obtain exclusive right to issue the *sync() operations on the ring. 1201 * The right is obtained and must be later relinquished via nm_kr_put() if and 1202 * only if nm_kr_tryget() returns 0. 1203 * If can_sleep is 1 there are only two other possible outcomes: 1204 * - the function returns NM_KR_BUSY 1205 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr 1206 * (if non-null) 1207 * In both cases the caller will typically skip the ring, possibly collecting 1208 * errors along the way. 1209 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. 1210 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr 1211 * untouched: ideally, the caller should try again at a later time. 1212 */ 1213 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) 1214 { 1215 int busy = 1, stopped; 1216 /* check a first time without taking the lock 1217 * to avoid starvation for nm_kr_get() 1218 */ 1219 retry: 1220 stopped = kr->nkr_stopped; 1221 if (unlikely(stopped)) { 1222 goto stop; 1223 } 1224 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); 1225 /* we should not return NM_KR_BUSY if the ring was 1226 * actually stopped, so check another time after 1227 * the barrier provided by the atomic operation 1228 */ 1229 stopped = kr->nkr_stopped; 1230 if (unlikely(stopped)) { 1231 goto stop; 1232 } 1233 1234 if (unlikely(nm_iszombie(kr->na))) { 1235 stopped = NM_KR_STOPPED; 1236 goto stop; 1237 } 1238 1239 return unlikely(busy) ? NM_KR_BUSY : 0; 1240 1241 stop: 1242 if (!busy) 1243 nm_kr_put(kr); 1244 if (stopped == NM_KR_STOPPED) { 1245 /* if POLLERR is defined we want to use it to simplify netmap_poll(). 1246 * Otherwise, any non-zero value will do. 1247 */ 1248 #ifdef POLLERR 1249 #define NM_POLLERR POLLERR 1250 #else 1251 #define NM_POLLERR 1 1252 #endif /* POLLERR */ 1253 if (perr) 1254 *perr |= NM_POLLERR; 1255 #undef NM_POLLERR 1256 } else if (can_sleep) { 1257 tsleep(kr, 0, "NM_KR_TRYGET", 4); 1258 goto retry; 1259 } 1260 return stopped; 1261 } 1262 1263 /* put the ring in the 'stopped' state and wait for the current user (if any) to 1264 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED 1265 */ 1266 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) 1267 { 1268 kr->nkr_stopped = stopped; 1269 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 1270 tsleep(kr, 0, "NM_KR_GET", 4); 1271 } 1272 1273 /* restart a ring after a stop */ 1274 static __inline void nm_kr_start(struct netmap_kring *kr) 1275 { 1276 kr->nkr_stopped = 0; 1277 nm_kr_put(kr); 1278 } 1279 1280 1281 /* 1282 * The following functions are used by individual drivers to 1283 * support netmap operation. 1284 * 1285 * netmap_attach() initializes a struct netmap_adapter, allocating the 1286 * struct netmap_ring's and the struct selinfo. 1287 * 1288 * netmap_detach() frees the memory allocated by netmap_attach(). 1289 * 1290 * netmap_transmit() replaces the if_transmit routine of the interface, 1291 * and is used to intercept packets coming from the stack. 1292 * 1293 * netmap_load_map/netmap_reload_map are helper routines to set/reset 1294 * the dmamap for a packet buffer 1295 * 1296 * netmap_reset() is a helper routine to be called in the hw driver 1297 * when reinitializing a ring. It should not be called by 1298 * virtual ports (vale, pipes, monitor) 1299 */ 1300 int netmap_attach(struct netmap_adapter *); 1301 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); 1302 void netmap_detach(struct ifnet *); 1303 int netmap_transmit(struct ifnet *, struct mbuf *); 1304 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 1305 enum txrx tx, u_int n, u_int new_cur); 1306 int netmap_ring_reinit(struct netmap_kring *); 1307 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); 1308 1309 /* Return codes for netmap_*x_irq. */ 1310 enum { 1311 /* Driver should do normal interrupt processing, e.g. because 1312 * the interface is not in netmap mode. */ 1313 NM_IRQ_PASS = 0, 1314 /* Port is in netmap mode, and the interrupt work has been 1315 * completed. The driver does not have to notify netmap 1316 * again before the next interrupt. */ 1317 NM_IRQ_COMPLETED = -1, 1318 /* Port is in netmap mode, but the interrupt work has not been 1319 * completed. The driver has to make sure netmap will be 1320 * notified again soon, even if no more interrupts come (e.g. 1321 * on Linux the driver should not call napi_complete()). */ 1322 NM_IRQ_RESCHED = -2, 1323 }; 1324 1325 /* default functions to handle rx/tx interrupts */ 1326 int netmap_rx_irq(struct ifnet *, u_int, u_int *); 1327 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 1328 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); 1329 1330 1331 #ifdef WITH_VALE 1332 /* functions used by external modules to interface with VALE */ 1333 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 1334 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 1335 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 1336 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 1337 const char *netmap_bdg_name(struct netmap_vp_adapter *); 1338 #else /* !WITH_VALE */ 1339 #define netmap_vp_to_ifp(_vp) NULL 1340 #define netmap_ifp_to_vp(_ifp) NULL 1341 #define netmap_ifp_to_host_vp(_ifp) NULL 1342 #define netmap_bdg_idx(_vp) -1 1343 #endif /* WITH_VALE */ 1344 1345 static inline int 1346 nm_netmap_on(struct netmap_adapter *na) 1347 { 1348 return na && na->na_flags & NAF_NETMAP_ON; 1349 } 1350 1351 static inline int 1352 nm_native_on(struct netmap_adapter *na) 1353 { 1354 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 1355 } 1356 1357 static inline int 1358 nm_iszombie(struct netmap_adapter *na) 1359 { 1360 return na == NULL || (na->na_flags & NAF_ZOMBIE); 1361 } 1362 1363 static inline void 1364 nm_update_hostrings_mode(struct netmap_adapter *na) 1365 { 1366 /* Process nr_mode and nr_pending_mode for host rings. */ 1367 na->tx_rings[na->num_tx_rings]->nr_mode = 1368 na->tx_rings[na->num_tx_rings]->nr_pending_mode; 1369 na->rx_rings[na->num_rx_rings]->nr_mode = 1370 na->rx_rings[na->num_rx_rings]->nr_pending_mode; 1371 } 1372 1373 void nm_set_native_flags(struct netmap_adapter *); 1374 void nm_clear_native_flags(struct netmap_adapter *); 1375 1376 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff); 1377 1378 /* 1379 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap 1380 * kthreads. 1381 * We need netmap_ring* parameter, because in ptnetmap it is decoupled 1382 * from host kring. 1383 * The user-space ring pointers (head/cur/tail) are shared through 1384 * CSB between host and guest. 1385 */ 1386 1387 /* 1388 * validates parameters in the ring/kring, returns a value for head 1389 * If any error, returns ring_size to force a reinit. 1390 */ 1391 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); 1392 1393 1394 /* 1395 * validates parameters in the ring/kring, returns a value for head 1396 * If any error, returns ring_size lim to force a reinit. 1397 */ 1398 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); 1399 1400 1401 /* check/fix address and len in tx rings */ 1402 #if 1 /* debug version */ 1403 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1404 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1405 nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1406 kring->ring_id, nm_i, slot->buf_idx, len); \ 1407 if (_l > NETMAP_BUF_SIZE(_na)) \ 1408 _l = NETMAP_BUF_SIZE(_na); \ 1409 } } while (0) 1410 #else /* no debug version */ 1411 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1412 if (_l > NETMAP_BUF_SIZE(_na)) \ 1413 _l = NETMAP_BUF_SIZE(_na); \ 1414 } while (0) 1415 #endif 1416 1417 1418 /*---------------------------------------------------------------*/ 1419 /* 1420 * Support routines used by netmap subsystems 1421 * (native drivers, VALE, generic, pipes, monitors, ...) 1422 */ 1423 1424 1425 /* common routine for all functions that create a netmap adapter. It performs 1426 * two main tasks: 1427 * - if the na points to an ifp, mark the ifp as netmap capable 1428 * using na as its native adapter; 1429 * - provide defaults for the setup callbacks and the memory allocator 1430 */ 1431 int netmap_attach_common(struct netmap_adapter *); 1432 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1433 * coming from a struct nmreq_register 1434 */ 1435 int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1436 uint16_t nr_ringid, uint64_t nr_flags); 1437 /* update the ring parameters (number and size of tx and rx rings). 1438 * It calls the nm_config callback, if available. 1439 */ 1440 int netmap_update_config(struct netmap_adapter *na); 1441 /* create and initialize the common fields of the krings array. 1442 * using the information that must be already available in the na. 1443 * tailroom can be used to request the allocation of additional 1444 * tailroom bytes after the krings array. This is used by 1445 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1446 * leasing-related data structures 1447 */ 1448 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1449 /* deletes the kring array of the adapter. The array must have 1450 * been created using netmap_krings_create 1451 */ 1452 void netmap_krings_delete(struct netmap_adapter *na); 1453 1454 int netmap_hw_krings_create(struct netmap_adapter *na); 1455 void netmap_hw_krings_delete(struct netmap_adapter *na); 1456 1457 /* set the stopped/enabled status of ring 1458 * When stopping, they also wait for all current activity on the ring to 1459 * terminate. The status change is then notified using the na nm_notify 1460 * callback. 1461 */ 1462 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1463 /* set the stopped/enabled status of all rings of the adapter. */ 1464 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1465 /* convenience wrappers for netmap_set_all_rings */ 1466 void netmap_disable_all_rings(struct ifnet *); 1467 void netmap_enable_all_rings(struct ifnet *); 1468 1469 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); 1470 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1471 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags); 1472 void netmap_do_unregif(struct netmap_priv_d *priv); 1473 1474 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1475 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1476 struct ifnet **ifp, struct netmap_mem_d *nmd, int create); 1477 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp); 1478 int netmap_get_hw_na(struct ifnet *ifp, 1479 struct netmap_mem_d *nmd, struct netmap_adapter **na); 1480 1481 #ifdef WITH_VALE 1482 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1483 struct netmap_vp_adapter *, void *private_data); 1484 1485 /* these are redefined in case of no VALE support */ 1486 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1487 struct netmap_mem_d *nmd, int create); 1488 void *netmap_vale_create(const char *bdg_name, int *return_status); 1489 int netmap_vale_destroy(const char *bdg_name, void *auth_token); 1490 1491 #else /* !WITH_VALE */ 1492 #define netmap_bdg_learning(_1, _2, _3, _4) 0 1493 #define netmap_get_vale_na(_1, _2, _3, _4) 0 1494 #define netmap_bdg_create(_1, _2) NULL 1495 #define netmap_bdg_destroy(_1, _2) 0 1496 #endif /* !WITH_VALE */ 1497 1498 #ifdef WITH_PIPES 1499 /* max number of pipes per device */ 1500 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ 1501 void netmap_pipe_dealloc(struct netmap_adapter *); 1502 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1503 struct netmap_mem_d *nmd, int create); 1504 #else /* !WITH_PIPES */ 1505 #define NM_MAXPIPES 0 1506 #define netmap_pipe_alloc(_1, _2) 0 1507 #define netmap_pipe_dealloc(_1) 1508 #define netmap_get_pipe_na(hdr, _2, _3, _4) \ 1509 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) 1510 #endif 1511 1512 #ifdef WITH_MONITOR 1513 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1514 struct netmap_mem_d *nmd, int create); 1515 void netmap_monitor_stop(struct netmap_adapter *na); 1516 #else 1517 #define netmap_get_monitor_na(hdr, _2, _3, _4) \ 1518 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1519 #endif 1520 1521 #ifdef WITH_NMNULL 1522 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1523 struct netmap_mem_d *nmd, int create); 1524 #else /* !WITH_NMNULL */ 1525 #define netmap_get_null_na(hdr, _2, _3, _4) \ 1526 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1527 #endif /* WITH_NMNULL */ 1528 1529 #ifdef CONFIG_NET_NS 1530 struct net *netmap_bns_get(void); 1531 void netmap_bns_put(struct net *); 1532 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1533 #else 1534 extern struct nm_bridge *nm_bridges; 1535 #define netmap_bns_get() 1536 #define netmap_bns_put(_1) 1537 #define netmap_bns_getbridges(b, n) \ 1538 do { *b = nm_bridges; *n = NM_BRIDGES; } while (0) 1539 #endif 1540 1541 /* Various prototypes */ 1542 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); 1543 int netmap_init(void); 1544 void netmap_fini(void); 1545 int netmap_get_memory(struct netmap_priv_d* p); 1546 void netmap_dtor(void *data); 1547 1548 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1549 struct thread *, int nr_body_is_user); 1550 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1551 struct thread *td); 1552 size_t nmreq_size_by_type(uint16_t nr_reqtype); 1553 1554 /* netmap_adapter creation/destruction */ 1555 1556 // #define NM_DEBUG_PUTGET 1 1557 1558 #ifdef NM_DEBUG_PUTGET 1559 1560 #define NM_DBG(f) __##f 1561 1562 void __netmap_adapter_get(struct netmap_adapter *na); 1563 1564 #define netmap_adapter_get(na) \ 1565 do { \ 1566 struct netmap_adapter *__na = na; \ 1567 nm_prinf("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1568 __netmap_adapter_get(__na); \ 1569 } while (0) 1570 1571 int __netmap_adapter_put(struct netmap_adapter *na); 1572 1573 #define netmap_adapter_put(na) \ 1574 ({ \ 1575 struct netmap_adapter *__na = na; \ 1576 nm_prinf("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1577 __netmap_adapter_put(__na); \ 1578 }) 1579 1580 #else /* !NM_DEBUG_PUTGET */ 1581 1582 #define NM_DBG(f) f 1583 void netmap_adapter_get(struct netmap_adapter *na); 1584 int netmap_adapter_put(struct netmap_adapter *na); 1585 1586 #endif /* !NM_DEBUG_PUTGET */ 1587 1588 1589 /* 1590 * module variables 1591 */ 1592 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) 1593 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) 1594 extern int netmap_no_pendintr; 1595 extern int netmap_mitigate; 1596 extern int netmap_verbose; 1597 #ifdef CONFIG_NETMAP_DEBUG 1598 extern int netmap_debug; /* for debugging */ 1599 #else /* !CONFIG_NETMAP_DEBUG */ 1600 #define netmap_debug (0) 1601 #endif /* !CONFIG_NETMAP_DEBUG */ 1602 enum { /* debug flags */ 1603 NM_DEBUG_ON = 1, /* generic debug messsages */ 1604 NM_DEBUG_HOST = 0x2, /* debug host stack */ 1605 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ 1606 NM_DEBUG_TXSYNC = 0x20, 1607 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ 1608 NM_DEBUG_TXINTR = 0x200, 1609 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ 1610 NM_DEBUG_NIC_TXSYNC = 0x2000, 1611 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ 1612 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ 1613 NM_DEBUG_BDG = NM_DEBUG_VALE, 1614 }; 1615 1616 extern int netmap_txsync_retry; 1617 extern int netmap_flags; 1618 extern int netmap_generic_hwcsum; 1619 extern int netmap_generic_mit; 1620 extern int netmap_generic_ringsize; 1621 extern int netmap_generic_rings; 1622 #ifdef linux 1623 extern int netmap_generic_txqdisc; 1624 #endif 1625 1626 /* 1627 * NA returns a pointer to the struct netmap adapter from the ifp. 1628 * WNA is os-specific and must be defined in glue code. 1629 */ 1630 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 1631 1632 /* 1633 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA 1634 * based on the WNA field. 1635 * Glue code may override this by defining its own NM_ATTACH_NA 1636 */ 1637 #ifndef NM_ATTACH_NA 1638 /* 1639 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we 1640 * overload another pointer in the netdev. 1641 * 1642 * We check if NA(ifp) is set and its first element has a related 1643 * magic value. The capenable is within the struct netmap_adapter. 1644 */ 1645 #define NETMAP_MAGIC 0x52697a7a 1646 1647 #define NM_NA_VALID(ifp) (NA(ifp) && \ 1648 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1649 1650 #define NM_ATTACH_NA(ifp, na) do { \ 1651 WNA(ifp) = na; \ 1652 if (NA(ifp)) \ 1653 NA(ifp)->magic = \ 1654 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ 1655 } while(0) 1656 #define NM_RESTORE_NA(ifp, na) WNA(ifp) = na; 1657 1658 #define NM_DETACH_NA(ifp) do { WNA(ifp) = NULL; } while (0) 1659 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) 1660 #endif /* !NM_ATTACH_NA */ 1661 1662 1663 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) 1664 1665 #if defined(__FreeBSD__) 1666 1667 /* Assigns the device IOMMU domain to an allocator. 1668 * Returns -ENOMEM in case the domain is different */ 1669 #define nm_iommu_group_id(dev) (0) 1670 1671 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1672 static void netmap_dmamap_cb(__unused void *arg, 1673 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1674 { 1675 } 1676 1677 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1678 * XXX can we do it without a callback ? 1679 */ 1680 static inline int 1681 netmap_load_map(struct netmap_adapter *na, 1682 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1683 { 1684 if (map) 1685 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1686 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1687 return 0; 1688 } 1689 1690 static inline void 1691 netmap_unload_map(struct netmap_adapter *na, 1692 bus_dma_tag_t tag, bus_dmamap_t map) 1693 { 1694 if (map) 1695 bus_dmamap_unload(tag, map); 1696 } 1697 1698 #define netmap_sync_map(na, tag, map, sz, t) 1699 1700 /* update the map when a buffer changes. */ 1701 static inline void 1702 netmap_reload_map(struct netmap_adapter *na, 1703 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1704 { 1705 if (map) { 1706 bus_dmamap_unload(tag, map); 1707 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1708 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1709 } 1710 } 1711 1712 #elif defined(_WIN32) 1713 1714 #else /* linux */ 1715 1716 int nm_iommu_group_id(bus_dma_tag_t dev); 1717 #include <linux/dma-mapping.h> 1718 1719 /* 1720 * on linux we need 1721 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1722 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) 1723 */ 1724 #if 0 1725 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1726 /* set time_stamp *before* dma to help avoid a possible race */ 1727 buffer_info->time_stamp = jiffies; 1728 buffer_info->mapped_as_page = false; 1729 buffer_info->length = len; 1730 //buffer_info->next_to_watch = l; 1731 /* reload dma map */ 1732 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1733 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1734 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1735 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1736 1737 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1738 nm_prerr("dma mapping error"); 1739 /* goto dma_error; See e1000_put_txbuf() */ 1740 /* XXX reset */ 1741 } 1742 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1743 1744 #endif 1745 1746 static inline int 1747 netmap_load_map(struct netmap_adapter *na, 1748 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) 1749 { 1750 if (map) { 1751 *map = dma_map_single(na->pdev, buf, size, 1752 DMA_BIDIRECTIONAL); 1753 if (dma_mapping_error(na->pdev, *map)) { 1754 *map = 0; 1755 return ENOMEM; 1756 } 1757 } 1758 return 0; 1759 } 1760 1761 static inline void 1762 netmap_unload_map(struct netmap_adapter *na, 1763 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) 1764 { 1765 if (*map) { 1766 dma_unmap_single(na->pdev, *map, sz, 1767 DMA_BIDIRECTIONAL); 1768 } 1769 } 1770 1771 #ifdef NETMAP_LINUX_HAVE_DMASYNC 1772 static inline void 1773 netmap_sync_map_cpu(struct netmap_adapter *na, 1774 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1775 { 1776 if (*map) { 1777 dma_sync_single_for_cpu(na->pdev, *map, sz, 1778 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1779 } 1780 } 1781 1782 static inline void 1783 netmap_sync_map_dev(struct netmap_adapter *na, 1784 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1785 { 1786 if (*map) { 1787 dma_sync_single_for_device(na->pdev, *map, sz, 1788 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1789 } 1790 } 1791 1792 static inline void 1793 netmap_reload_map(struct netmap_adapter *na, 1794 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1795 { 1796 u_int sz = NETMAP_BUF_SIZE(na); 1797 1798 if (*map) { 1799 dma_unmap_single(na->pdev, *map, sz, 1800 DMA_BIDIRECTIONAL); 1801 } 1802 1803 *map = dma_map_single(na->pdev, buf, sz, 1804 DMA_BIDIRECTIONAL); 1805 } 1806 #else /* !NETMAP_LINUX_HAVE_DMASYNC */ 1807 #define netmap_sync_map_cpu(na, tag, map, sz, t) 1808 #define netmap_sync_map_dev(na, tag, map, sz, t) 1809 #endif /* NETMAP_LINUX_HAVE_DMASYNC */ 1810 1811 #endif /* linux */ 1812 1813 1814 /* 1815 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1816 */ 1817 static inline int 1818 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1819 { 1820 int n = kr->nkr_num_slots; 1821 1822 if (likely(kr->nkr_hwofs == 0)) { 1823 return idx; 1824 } 1825 1826 idx += kr->nkr_hwofs; 1827 if (idx < 0) 1828 return idx + n; 1829 else if (idx < n) 1830 return idx; 1831 else 1832 return idx - n; 1833 } 1834 1835 1836 static inline int 1837 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1838 { 1839 int n = kr->nkr_num_slots; 1840 1841 if (likely(kr->nkr_hwofs == 0)) { 1842 return idx; 1843 } 1844 1845 idx -= kr->nkr_hwofs; 1846 if (idx < 0) 1847 return idx + n; 1848 else if (idx < n) 1849 return idx; 1850 else 1851 return idx - n; 1852 } 1853 1854 1855 /* Entries of the look-up table. */ 1856 #ifdef __FreeBSD__ 1857 struct lut_entry { 1858 void *vaddr; /* virtual address. */ 1859 vm_paddr_t paddr; /* physical address. */ 1860 }; 1861 #else /* linux & _WIN32 */ 1862 /* dma-mapping in linux can assign a buffer a different address 1863 * depending on the device, so we need to have a separate 1864 * physical-address look-up table for each na. 1865 * We can still share the vaddrs, though, therefore we split 1866 * the lut_entry structure. 1867 */ 1868 struct lut_entry { 1869 void *vaddr; /* virtual address. */ 1870 }; 1871 1872 struct plut_entry { 1873 vm_paddr_t paddr; /* physical address. */ 1874 }; 1875 #endif /* linux & _WIN32 */ 1876 1877 struct netmap_obj_pool; 1878 1879 /* 1880 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1881 * PNMB also fills the physical address 1882 */ 1883 static inline void * 1884 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1885 { 1886 struct lut_entry *lut = na->na_lut.lut; 1887 uint32_t i = slot->buf_idx; 1888 return (unlikely(i >= na->na_lut.objtotal)) ? 1889 lut[0].vaddr : lut[i].vaddr; 1890 } 1891 1892 static inline void * 1893 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1894 { 1895 uint32_t i = slot->buf_idx; 1896 struct lut_entry *lut = na->na_lut.lut; 1897 struct plut_entry *plut = na->na_lut.plut; 1898 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1899 1900 #ifdef _WIN32 1901 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; 1902 #else 1903 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; 1904 #endif 1905 return ret; 1906 } 1907 1908 1909 /* 1910 * Structure associated to each netmap file descriptor. 1911 * It is created on open and left unbound (np_nifp == NULL). 1912 * A successful NIOCREGIF will set np_nifp and the first few fields; 1913 * this is protected by a global lock (NMG_LOCK) due to low contention. 1914 * 1915 * np_refs counts the number of references to the structure: one for the fd, 1916 * plus (on FreeBSD) one for each active mmap which we track ourselves 1917 * (linux automatically tracks them, but FreeBSD does not). 1918 * np_refs is protected by NMG_LOCK. 1919 * 1920 * Read access to the structure is lock free, because ni_nifp once set 1921 * can only go to 0 when nobody is using the entry anymore. Readers 1922 * must check that np_nifp != NULL before using the other fields. 1923 */ 1924 struct netmap_priv_d { 1925 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 1926 1927 struct netmap_adapter *np_na; 1928 struct ifnet *np_ifp; 1929 uint32_t np_flags; /* from the ioctl */ 1930 u_int np_qfirst[NR_TXRX], 1931 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 1932 uint16_t np_txpoll; 1933 uint16_t np_kloop_state; /* use with NMG_LOCK held */ 1934 #define NM_SYNC_KLOOP_RUNNING (1 << 0) 1935 #define NM_SYNC_KLOOP_STOPPING (1 << 1) 1936 int np_sync_flags; /* to be passed to nm_sync */ 1937 1938 int np_refs; /* use with NMG_LOCK held */ 1939 1940 /* pointers to the selinfo to be used for selrecord. 1941 * Either the local or the global one depending on the 1942 * number of rings. 1943 */ 1944 NM_SELINFO_T *np_si[NR_TXRX]; 1945 1946 /* In the optional CSB mode, the user must specify the start address 1947 * of two arrays of Communication Status Block (CSB) entries, for the 1948 * two directions (kernel read application write, and kernel write 1949 * application read). 1950 * The number of entries must agree with the number of rings bound to 1951 * the netmap file descriptor. The entries corresponding to the TX 1952 * rings are laid out before the ones corresponding to the RX rings. 1953 * 1954 * Array of CSB entries for application --> kernel communication 1955 * (N entries). */ 1956 struct nm_csb_atok *np_csb_atok_base; 1957 /* Array of CSB entries for kernel --> application communication 1958 * (N entries). */ 1959 struct nm_csb_ktoa *np_csb_ktoa_base; 1960 1961 #ifdef linux 1962 struct file *np_filp; /* used by sync kloop */ 1963 #endif /* linux */ 1964 }; 1965 1966 struct netmap_priv_d *netmap_priv_new(void); 1967 void netmap_priv_delete(struct netmap_priv_d *); 1968 1969 static inline int nm_kring_pending(struct netmap_priv_d *np) 1970 { 1971 struct netmap_adapter *na = np->np_na; 1972 enum txrx t; 1973 int i; 1974 1975 for_rx_tx(t) { 1976 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { 1977 struct netmap_kring *kring = NMR(na, t)[i]; 1978 if (kring->nr_mode != kring->nr_pending_mode) { 1979 return 1; 1980 } 1981 } 1982 } 1983 return 0; 1984 } 1985 1986 /* call with NMG_LOCK held */ 1987 static __inline int 1988 nm_si_user(struct netmap_priv_d *priv, enum txrx t) 1989 { 1990 return (priv->np_na != NULL && 1991 (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); 1992 } 1993 1994 #ifdef WITH_PIPES 1995 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); 1996 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); 1997 int netmap_pipe_krings_create_both(struct netmap_adapter *na, 1998 struct netmap_adapter *ona); 1999 void netmap_pipe_krings_delete_both(struct netmap_adapter *na, 2000 struct netmap_adapter *ona); 2001 int netmap_pipe_reg_both(struct netmap_adapter *na, 2002 struct netmap_adapter *ona); 2003 #endif /* WITH_PIPES */ 2004 2005 #ifdef WITH_MONITOR 2006 2007 struct netmap_monitor_adapter { 2008 struct netmap_adapter up; 2009 2010 struct netmap_priv_d priv; 2011 uint32_t flags; 2012 }; 2013 2014 #endif /* WITH_MONITOR */ 2015 2016 2017 #ifdef WITH_GENERIC 2018 /* 2019 * generic netmap emulation for devices that do not have 2020 * native netmap support. 2021 */ 2022 int generic_netmap_attach(struct ifnet *ifp); 2023 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; 2024 2025 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); 2026 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); 2027 2028 int na_is_generic(struct netmap_adapter *na); 2029 2030 /* 2031 * the generic transmit routine is passed a structure to optionally 2032 * build a queue of descriptors, in an OS-specific way. 2033 * The payload is at addr, if non-null, and the routine should send or queue 2034 * the packet, returning 0 if successful, 1 on failure. 2035 * 2036 * At the end, if head is non-null, there will be an additional call 2037 * to the function with addr = NULL; this should tell the OS-specific 2038 * routine to send the queue and free any resources. Failure is ignored. 2039 */ 2040 struct nm_os_gen_arg { 2041 struct ifnet *ifp; 2042 void *m; /* os-specific mbuf-like object */ 2043 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ 2044 void *addr; /* payload of current packet */ 2045 u_int len; /* packet length */ 2046 u_int ring_nr; /* packet length */ 2047 u_int qevent; /* in txqdisc mode, place an event on this mbuf */ 2048 }; 2049 2050 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); 2051 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); 2052 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); 2053 void nm_os_generic_set_features(struct netmap_generic_adapter *gna); 2054 2055 static inline struct ifnet* 2056 netmap_generic_getifp(struct netmap_generic_adapter *gna) 2057 { 2058 if (gna->prev) 2059 return gna->prev->ifp; 2060 2061 return gna->up.up.ifp; 2062 } 2063 2064 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); 2065 2066 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 2067 #ifdef RATE_GENERIC 2068 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 2069 #else 2070 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 2071 #endif 2072 2073 /* 2074 * netmap_mitigation API. This is used by the generic adapter 2075 * to reduce the number of interrupt requests/selwakeup 2076 * to clients on incoming packets. 2077 */ 2078 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, 2079 struct netmap_adapter *na); 2080 void nm_os_mitigation_start(struct nm_generic_mit *mit); 2081 void nm_os_mitigation_restart(struct nm_generic_mit *mit); 2082 int nm_os_mitigation_active(struct nm_generic_mit *mit); 2083 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); 2084 #else /* !WITH_GENERIC */ 2085 #define generic_netmap_attach(ifp) (EOPNOTSUPP) 2086 #define na_is_generic(na) (0) 2087 #endif /* WITH_GENERIC */ 2088 2089 /* Shared declarations for the VALE switch. */ 2090 2091 /* 2092 * Each transmit queue accumulates a batch of packets into 2093 * a structure before forwarding. Packets to the same 2094 * destination are put in a list using ft_next as a link field. 2095 * ft_frags and ft_next are valid only on the first fragment. 2096 */ 2097 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 2098 void *ft_buf; /* netmap or indirect buffer */ 2099 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 2100 uint16_t ft_offset; /* dst port (unused) */ 2101 uint16_t ft_flags; /* flags, e.g. indirect */ 2102 uint16_t ft_len; /* src fragment len */ 2103 uint16_t ft_next; /* next packet to same destination */ 2104 }; 2105 2106 /* struct 'virtio_net_hdr' from linux. */ 2107 struct nm_vnet_hdr { 2108 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 2109 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 2110 uint8_t flags; 2111 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 2112 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 2113 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 2114 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 2115 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 2116 uint8_t gso_type; 2117 uint16_t hdr_len; 2118 uint16_t gso_size; 2119 uint16_t csum_start; 2120 uint16_t csum_offset; 2121 }; 2122 2123 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 2124 2125 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 2126 2127 struct nm_iphdr { 2128 uint8_t version_ihl; 2129 uint8_t tos; 2130 uint16_t tot_len; 2131 uint16_t id; 2132 uint16_t frag_off; 2133 uint8_t ttl; 2134 uint8_t protocol; 2135 uint16_t check; 2136 uint32_t saddr; 2137 uint32_t daddr; 2138 /*The options start here. */ 2139 }; 2140 2141 struct nm_tcphdr { 2142 uint16_t source; 2143 uint16_t dest; 2144 uint32_t seq; 2145 uint32_t ack_seq; 2146 uint8_t doff; /* Data offset + Reserved */ 2147 uint8_t flags; 2148 uint16_t window; 2149 uint16_t check; 2150 uint16_t urg_ptr; 2151 }; 2152 2153 struct nm_udphdr { 2154 uint16_t source; 2155 uint16_t dest; 2156 uint16_t len; 2157 uint16_t check; 2158 }; 2159 2160 struct nm_ipv6hdr { 2161 uint8_t priority_version; 2162 uint8_t flow_lbl[3]; 2163 2164 uint16_t payload_len; 2165 uint8_t nexthdr; 2166 uint8_t hop_limit; 2167 2168 uint8_t saddr[16]; 2169 uint8_t daddr[16]; 2170 }; 2171 2172 /* Type used to store a checksum (in host byte order) that hasn't been 2173 * folded yet. 2174 */ 2175 #define rawsum_t uint32_t 2176 2177 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 2178 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); 2179 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 2180 size_t datalen, uint16_t *check); 2181 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 2182 size_t datalen, uint16_t *check); 2183 uint16_t nm_os_csum_fold(rawsum_t cur_sum); 2184 2185 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 2186 struct netmap_vp_adapter *dst_na, 2187 const struct nm_bdg_fwd *ft_p, 2188 struct netmap_ring *dst_ring, 2189 u_int *j, u_int lim, u_int *howmany); 2190 2191 /* persistent virtual port routines */ 2192 int nm_os_vi_persist(const char *, struct ifnet **); 2193 void nm_os_vi_detach(struct ifnet *); 2194 void nm_os_vi_init_index(void); 2195 2196 /* 2197 * kernel thread routines 2198 */ 2199 struct nm_kctx; /* OS-specific kernel context - opaque */ 2200 typedef void (*nm_kctx_worker_fn_t)(void *data); 2201 2202 /* kthread configuration */ 2203 struct nm_kctx_cfg { 2204 long type; /* kthread type/identifier */ 2205 nm_kctx_worker_fn_t worker_fn; /* worker function */ 2206 void *worker_private;/* worker parameter */ 2207 int attach_user; /* attach kthread to user process */ 2208 }; 2209 /* kthread configuration */ 2210 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, 2211 void *opaque); 2212 int nm_os_kctx_worker_start(struct nm_kctx *); 2213 void nm_os_kctx_worker_stop(struct nm_kctx *); 2214 void nm_os_kctx_destroy(struct nm_kctx *); 2215 void nm_os_kctx_worker_setaff(struct nm_kctx *, int); 2216 u_int nm_os_ncpus(void); 2217 2218 int netmap_sync_kloop(struct netmap_priv_d *priv, 2219 struct nmreq_header *hdr); 2220 int netmap_sync_kloop_stop(struct netmap_priv_d *priv); 2221 2222 #ifdef WITH_PTNETMAP 2223 /* ptnetmap guest routines */ 2224 2225 /* 2226 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver 2227 */ 2228 struct ptnetmap_memdev; 2229 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, 2230 uint64_t *); 2231 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); 2232 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); 2233 2234 /* 2235 * netmap adapter for guest ptnetmap ports 2236 */ 2237 struct netmap_pt_guest_adapter { 2238 /* The netmap adapter to be used by netmap applications. 2239 * This field must be the first, to allow upcast. */ 2240 struct netmap_hw_adapter hwup; 2241 2242 /* The netmap adapter to be used by the driver. */ 2243 struct netmap_hw_adapter dr; 2244 2245 /* Reference counter to track users of backend netmap port: the 2246 * network stack and netmap clients. 2247 * Used to decide when we need (de)allocate krings/rings and 2248 * start (stop) ptnetmap kthreads. */ 2249 int backend_users; 2250 2251 }; 2252 2253 int netmap_pt_guest_attach(struct netmap_adapter *na, 2254 unsigned int nifp_offset, 2255 unsigned int memid); 2256 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, 2257 struct nm_csb_ktoa *ktoa, 2258 struct netmap_kring *kring, int flags); 2259 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, 2260 struct nm_csb_ktoa *ktoa, 2261 struct netmap_kring *kring, int flags); 2262 int ptnet_nm_krings_create(struct netmap_adapter *na); 2263 void ptnet_nm_krings_delete(struct netmap_adapter *na); 2264 void ptnet_nm_dtor(struct netmap_adapter *na); 2265 2266 /* Helper function wrapping nm_sync_kloop_appl_read(). */ 2267 static inline void 2268 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) 2269 { 2270 struct netmap_ring *ring = kring->ring; 2271 2272 /* Update hwcur and hwtail as known by the host. */ 2273 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); 2274 2275 /* nm_sync_finalize */ 2276 ring->tail = kring->rtail = kring->nr_hwtail; 2277 } 2278 #endif /* WITH_PTNETMAP */ 2279 2280 #ifdef __FreeBSD__ 2281 /* 2282 * FreeBSD mbuf allocator/deallocator in emulation mode: 2283 */ 2284 #if __FreeBSD_version < 1100000 2285 2286 /* 2287 * For older versions of FreeBSD: 2288 * 2289 * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE 2290 * so that the destructor, if invoked, will not free the packet. 2291 * In principle we should set the destructor only on demand, 2292 * but since there might be a race we better do it on allocation. 2293 * As a consequence, we also need to set the destructor or we 2294 * would leak buffers. 2295 */ 2296 2297 /* mbuf destructor, also need to change the type to EXT_EXTREF, 2298 * add an M_NOFREE flag, and then clear the flag and 2299 * chain into uma_zfree(zone_pack, mf) 2300 * (or reinstall the buffer ?) 2301 */ 2302 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2303 (m)->m_ext.ext_free = (void *)fn; \ 2304 (m)->m_ext.ext_type = EXT_EXTREF; \ 2305 } while (0) 2306 2307 static int 2308 void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) 2309 { 2310 /* restore original mbuf */ 2311 m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1; 2312 m->m_ext.ext_arg1 = NULL; 2313 m->m_ext.ext_type = EXT_PACKET; 2314 m->m_ext.ext_free = NULL; 2315 if (MBUF_REFCNT(m) == 0) 2316 SET_MBUF_REFCNT(m, 1); 2317 uma_zfree(zone_pack, m); 2318 2319 return 0; 2320 } 2321 2322 static inline struct mbuf * 2323 nm_os_get_mbuf(struct ifnet *ifp, int len) 2324 { 2325 struct mbuf *m; 2326 2327 (void)ifp; 2328 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2329 if (m) { 2330 /* m_getcl() (mb_ctor_mbuf) has an assert that checks that 2331 * M_NOFREE flag is not specified as third argument, 2332 * so we have to set M_NOFREE after m_getcl(). */ 2333 m->m_flags |= M_NOFREE; 2334 m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save 2335 m->m_ext.ext_free = (void *)void_mbuf_dtor; 2336 m->m_ext.ext_type = EXT_EXTREF; 2337 nm_prdis(5, "create m %p refcnt %d", m, MBUF_REFCNT(m)); 2338 } 2339 return m; 2340 } 2341 2342 #else /* __FreeBSD_version >= 1100000 */ 2343 2344 /* 2345 * Newer versions of FreeBSD, using a straightforward scheme. 2346 * 2347 * We allocate mbufs with m_gethdr(), since the mbuf header is needed 2348 * by the driver. We also attach a customly-provided external storage, 2349 * which in this case is a netmap buffer. When calling m_extadd(), however 2350 * we pass a NULL address, since the real address (and length) will be 2351 * filled in by nm_os_generic_xmit_frame() right before calling 2352 * if_transmit(). 2353 * 2354 * The dtor function does nothing, however we need it since mb_free_ext() 2355 * has a KASSERT(), checking that the mbuf dtor function is not NULL. 2356 */ 2357 2358 #if __FreeBSD_version <= 1200050 2359 static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { } 2360 #else /* __FreeBSD_version >= 1200051 */ 2361 /* The arg1 and arg2 pointers argument were removed by r324446, which 2362 * in included since version 1200051. */ 2363 static void void_mbuf_dtor(struct mbuf *m) { } 2364 #endif /* __FreeBSD_version >= 1200051 */ 2365 2366 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2367 (m)->m_ext.ext_free = (fn != NULL) ? \ 2368 (void *)fn : (void *)void_mbuf_dtor; \ 2369 } while (0) 2370 2371 static inline struct mbuf * 2372 nm_os_get_mbuf(struct ifnet *ifp, int len) 2373 { 2374 struct mbuf *m; 2375 2376 (void)ifp; 2377 (void)len; 2378 2379 m = m_gethdr(M_NOWAIT, MT_DATA); 2380 if (m == NULL) { 2381 return m; 2382 } 2383 2384 m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor, 2385 NULL, NULL, 0, EXT_NET_DRV); 2386 2387 return m; 2388 } 2389 2390 #endif /* __FreeBSD_version >= 1100000 */ 2391 #endif /* __FreeBSD__ */ 2392 2393 struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t); 2394 int nmreq_checkduplicate(struct nmreq_option *); 2395 2396 int netmap_init_bridges(void); 2397 void netmap_uninit_bridges(void); 2398 2399 /* Functions to read and write CSB fields from the kernel. */ 2400 #if defined (linux) 2401 #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) 2402 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) 2403 #else /* ! linux */ 2404 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field)) 2405 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v)) 2406 #endif /* ! linux */ 2407 2408 #endif /* _NET_NETMAP_KERN_H_ */ 2409