xref: /freebsd/sys/dev/netmap/netmap_kern.h (revision b9f654b163bce26de79705e77b872427c9f2afa1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5  * Copyright (C) 2013-2016 Universita` di Pisa
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * $FreeBSD$
32  *
33  * The header contains the definitions of constants and function
34  * prototypes used only in kernelspace.
35  */
36 
37 #ifndef _NET_NETMAP_KERN_H_
38 #define _NET_NETMAP_KERN_H_
39 
40 #if defined(linux)
41 
42 #if defined(CONFIG_NETMAP_EXTMEM)
43 #define WITH_EXTMEM
44 #endif
45 #if  defined(CONFIG_NETMAP_VALE)
46 #define WITH_VALE
47 #endif
48 #if defined(CONFIG_NETMAP_PIPE)
49 #define WITH_PIPES
50 #endif
51 #if defined(CONFIG_NETMAP_MONITOR)
52 #define WITH_MONITOR
53 #endif
54 #if defined(CONFIG_NETMAP_GENERIC)
55 #define WITH_GENERIC
56 #endif
57 #if defined(CONFIG_NETMAP_PTNETMAP)
58 #define WITH_PTNETMAP
59 #endif
60 #if defined(CONFIG_NETMAP_SINK)
61 #define WITH_SINK
62 #endif
63 #if defined(CONFIG_NETMAP_NULL)
64 #define WITH_NMNULL
65 #endif
66 
67 #elif defined (_WIN32)
68 #define WITH_VALE	// comment out to disable VALE support
69 #define WITH_PIPES
70 #define WITH_MONITOR
71 #define WITH_GENERIC
72 #define WITH_NMNULL
73 
74 #else	/* neither linux nor windows */
75 #define WITH_VALE	// comment out to disable VALE support
76 #define WITH_PIPES
77 #define WITH_MONITOR
78 #define WITH_GENERIC
79 #define WITH_PTNETMAP	/* ptnetmap guest support */
80 #define WITH_EXTMEM
81 #define WITH_NMNULL
82 #endif
83 
84 #if defined(__FreeBSD__)
85 #include <sys/selinfo.h>
86 
87 #define likely(x)	__builtin_expect((long)!!(x), 1L)
88 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
89 #define __user
90 
91 #define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
92 
93 #define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
94 #define NM_MTX_INIT(m)		sx_init(&(m), #m)
95 #define NM_MTX_DESTROY(m)	sx_destroy(&(m))
96 #define NM_MTX_LOCK(m)		sx_xlock(&(m))
97 #define NM_MTX_SPINLOCK(m)	while (!sx_try_xlock(&(m))) ;
98 #define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
99 #define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
100 
101 #define	NM_SELINFO_T	struct nm_selinfo
102 #define NM_SELRECORD_T	struct thread
103 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
104 #define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
105 #define MBUF_TRANSMIT(na, ifp, m)	((na)->if_transmit(ifp, m))
106 #define	GEN_TX_MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
107 
108 #define NM_ATOMIC_T	volatile int /* required by atomic/bitops.h */
109 /* atomic operations */
110 #include <machine/atomic.h>
111 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
112 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
113 
114 #if __FreeBSD_version >= 1100030
115 #define	WNA(_ifp)	(_ifp)->if_netmap
116 #else /* older FreeBSD */
117 #define	WNA(_ifp)	(_ifp)->if_pspare[0]
118 #endif /* older FreeBSD */
119 
120 #if __FreeBSD_version >= 1100005
121 struct netmap_adapter *netmap_getna(if_t ifp);
122 #endif
123 
124 #if __FreeBSD_version >= 1100027
125 #define MBUF_REFCNT(m)		((m)->m_ext.ext_count)
126 #define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
127 #else
128 #define MBUF_REFCNT(m)		((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
129 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
130 #endif
131 
132 #define MBUF_QUEUED(m)		1
133 
134 struct nm_selinfo {
135 	/* Support for select(2) and poll(2). */
136 	struct selinfo si;
137 	/* Support for kqueue(9). See comments in netmap_freebsd.c */
138 	struct taskqueue *ntfytq;
139 	struct task ntfytask;
140 	struct mtx m;
141 	char mtxname[32];
142 	int kqueue_users;
143 };
144 
145 
146 struct hrtimer {
147     /* Not used in FreeBSD. */
148 };
149 
150 #define NM_BNS_GET(b)
151 #define NM_BNS_PUT(b)
152 
153 #elif defined (linux)
154 
155 #define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
156 #define	NM_SELINFO_T	wait_queue_head_t
157 #define	MBUF_LEN(m)	((m)->len)
158 #define MBUF_TRANSMIT(na, ifp, m)							\
159 	({										\
160 		/* Avoid infinite recursion with generic. */				\
161 		m->priority = NM_MAGIC_PRIORITY_TX;					\
162 		(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp));	\
163 		0;									\
164 	})
165 
166 /* See explanation in nm_os_generic_xmit_frame. */
167 #define	GEN_TX_MBUF_IFP(m)	((struct ifnet *)skb_shinfo(m)->destructor_arg)
168 
169 #define NM_ATOMIC_T	volatile long unsigned int
170 
171 #define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
172 #define NM_MTX_INIT(m)	mutex_init(&(m))
173 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
174 #define NM_MTX_LOCK(m)		mutex_lock(&(m))
175 #define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
176 #define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
177 
178 #ifndef DEV_NETMAP
179 #define DEV_NETMAP
180 #endif /* DEV_NETMAP */
181 
182 #elif defined (__APPLE__)
183 
184 #warning apple support is incomplete.
185 #define likely(x)	__builtin_expect(!!(x), 1)
186 #define unlikely(x)	__builtin_expect(!!(x), 0)
187 #define	NM_LOCK_T	IOLock *
188 #define	NM_SELINFO_T	struct selinfo
189 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
190 
191 #elif defined (_WIN32)
192 #include "../../../WINDOWS/win_glue.h"
193 
194 #define NM_SELRECORD_T		IO_STACK_LOCATION
195 #define NM_SELINFO_T		win_SELINFO		// see win_glue.h
196 #define NM_LOCK_T		win_spinlock_t	// see win_glue.h
197 #define NM_MTX_T		KGUARDED_MUTEX	/* OS-specific mutex (sleepable) */
198 
199 #define NM_MTX_INIT(m)		KeInitializeGuardedMutex(&m);
200 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
201 #define NM_MTX_LOCK(m)		KeAcquireGuardedMutex(&(m))
202 #define NM_MTX_UNLOCK(m)	KeReleaseGuardedMutex(&(m))
203 #define NM_MTX_ASSERT(m)	assert(&m.Count>0)
204 
205 //These linknames are for the NDIS driver
206 #define NETMAP_NDIS_LINKNAME_STRING             L"\\DosDevices\\NMAPNDIS"
207 #define NETMAP_NDIS_NTDEVICE_STRING             L"\\Device\\NMAPNDIS"
208 
209 //Definition of internal driver-to-driver ioctl codes
210 #define NETMAP_KERNEL_XCHANGE_POINTERS		_IO('i', 180)
211 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL	_IO_direct('i', 195)
212 
213 typedef struct hrtimer{
214 	KTIMER timer;
215 	BOOLEAN active;
216 	KDPC deferred_proc;
217 };
218 
219 /* MSVC does not have likely/unlikely support */
220 #ifdef _MSC_VER
221 #define likely(x)	(x)
222 #define unlikely(x)	(x)
223 #else
224 #define likely(x)	__builtin_expect((long)!!(x), 1L)
225 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
226 #endif //_MSC_VER
227 
228 #else
229 
230 #error unsupported platform
231 
232 #endif /* end - platform-specific code */
233 
234 #ifndef _WIN32 /* support for emulated sysctl */
235 #define SYSBEGIN(x)
236 #define SYSEND
237 #endif /* _WIN32 */
238 
239 #define NM_ACCESS_ONCE(x)	(*(volatile __typeof__(x) *)&(x))
240 
241 #define	NMG_LOCK_T		NM_MTX_T
242 #define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
243 #define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
244 #define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
245 #define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
246 #define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
247 
248 #if defined(__FreeBSD__)
249 #define nm_prerr_int	printf
250 #define nm_prinf_int	printf
251 #elif defined (_WIN32)
252 #define nm_prerr_int	DbgPrint
253 #define nm_prinf_int	DbgPrint
254 #elif defined(linux)
255 #define nm_prerr_int(fmt, arg...)    printk(KERN_ERR fmt, ##arg)
256 #define nm_prinf_int(fmt, arg...)    printk(KERN_INFO fmt, ##arg)
257 #endif
258 
259 #define nm_prinf(format, ...)					\
260 	do {							\
261 		struct timeval __xxts;				\
262 		microtime(&__xxts);				\
263 		nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
264 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
265 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
266 	} while (0)
267 
268 #define nm_prerr(format, ...)					\
269 	do {							\
270 		struct timeval __xxts;				\
271 		microtime(&__xxts);				\
272 		nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
273 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
274 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
275 	} while (0)
276 
277 /* Disabled printf (used to be nm_prdis). */
278 #define nm_prdis(format, ...)
279 
280 /* Rate limited, lps indicates how many per second. */
281 #define nm_prlim(lps, format, ...)				\
282 	do {							\
283 		static int t0, __cnt;				\
284 		if (t0 != time_second) {			\
285 			t0 = time_second;			\
286 			__cnt = 0;				\
287 		}						\
288 		if (__cnt++ < lps)				\
289 			nm_prinf(format, ##__VA_ARGS__);	\
290 	} while (0)
291 
292 struct netmap_adapter;
293 struct nm_bdg_fwd;
294 struct nm_bridge;
295 struct netmap_priv_d;
296 struct nm_bdg_args;
297 
298 /* os-specific NM_SELINFO_T initialzation/destruction functions */
299 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
300 void nm_os_selinfo_uninit(NM_SELINFO_T *);
301 
302 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
303 
304 void nm_os_selwakeup(NM_SELINFO_T *si);
305 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
306 
307 int nm_os_ifnet_init(void);
308 void nm_os_ifnet_fini(void);
309 void nm_os_ifnet_lock(void);
310 void nm_os_ifnet_unlock(void);
311 
312 unsigned nm_os_ifnet_mtu(struct ifnet *ifp);
313 
314 void nm_os_get_module(void);
315 void nm_os_put_module(void);
316 
317 void netmap_make_zombie(struct ifnet *);
318 void netmap_undo_zombie(struct ifnet *);
319 
320 /* os independent alloc/realloc/free */
321 void *nm_os_malloc(size_t);
322 void *nm_os_vmalloc(size_t);
323 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
324 void nm_os_free(void *);
325 void nm_os_vfree(void *);
326 
327 /* os specific attach/detach enter/exit-netmap-mode routines */
328 void nm_os_onattach(struct ifnet *);
329 void nm_os_ondetach(struct ifnet *);
330 void nm_os_onenter(struct ifnet *);
331 void nm_os_onexit(struct ifnet *);
332 
333 /* passes a packet up to the host stack.
334  * If the packet is sent (or dropped) immediately it returns NULL,
335  * otherwise it links the packet to prev and returns m.
336  * In this case, a final call with m=NULL and prev != NULL will send up
337  * the entire chain to the host stack.
338  */
339 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev);
340 
341 int nm_os_mbuf_has_seg_offld(struct mbuf *m);
342 int nm_os_mbuf_has_csum_offld(struct mbuf *m);
343 
344 #include "netmap_mbq.h"
345 
346 extern NMG_LOCK_T	netmap_global_lock;
347 
348 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
349 
350 static __inline const char*
351 nm_txrx2str(enum txrx t)
352 {
353 	return (t== NR_RX ? "RX" : "TX");
354 }
355 
356 static __inline enum txrx
357 nm_txrx_swap(enum txrx t)
358 {
359 	return (t== NR_RX ? NR_TX : NR_RX);
360 }
361 
362 #define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
363 
364 #ifdef WITH_MONITOR
365 struct netmap_zmon_list {
366 	struct netmap_kring *next;
367 	struct netmap_kring *prev;
368 };
369 #endif /* WITH_MONITOR */
370 
371 /*
372  * private, kernel view of a ring. Keeps track of the status of
373  * a ring across system calls.
374  *
375  *	nr_hwcur	index of the next buffer to refill.
376  *			It corresponds to ring->head
377  *			at the time the system call returns.
378  *
379  *	nr_hwtail	index of the first buffer owned by the kernel.
380  *			On RX, hwcur->hwtail are receive buffers
381  *			not yet released. hwcur is advanced following
382  *			ring->head, hwtail is advanced on incoming packets,
383  *			and a wakeup is generated when hwtail passes ring->cur
384  *			    On TX, hwcur->rcur have been filled by the sender
385  *			but not sent yet to the NIC; rcur->hwtail are available
386  *			for new transmissions, and hwtail->hwcur-1 are pending
387  *			transmissions not yet acknowledged.
388  *
389  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
390  * This is so that, on a reset, buffers owned by userspace are not
391  * modified by the kernel. In particular:
392  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
393  * 	the next empty buffer as known by the hardware (next_to_check or so).
394  * TX rings: hwcur + hwofs coincides with next_to_send
395  *
396  * The following fields are used to implement lock-free copy of packets
397  * from input to output ports in VALE switch:
398  *	nkr_hwlease	buffer after the last one being copied.
399  *			A writer in nm_bdg_flush reserves N buffers
400  *			from nr_hwlease, advances it, then does the
401  *			copy outside the lock.
402  *			In RX rings (used for VALE ports),
403  *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
404  *			In TX rings (used for NIC or host stack ports)
405  *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
406  *	nkr_leases	array of nkr_num_slots where writers can report
407  *			completion of their block. NR_NOSLOT (~0) indicates
408  *			that the writer has not finished yet
409  *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
410  *
411  * The kring is manipulated by txsync/rxsync and generic netmap function.
412  *
413  * Concurrent rxsync or txsync on the same ring are prevented through
414  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
415  * for NIC rings, and for TX rings attached to the host stack.
416  *
417  * RX rings attached to the host stack use an mbq (rx_queue) on both
418  * rxsync_from_host() and netmap_transmit(). The mbq is protected
419  * by its internal lock.
420  *
421  * RX rings attached to the VALE switch are accessed by both senders
422  * and receiver. They are protected through the q_lock on the RX ring.
423  */
424 struct netmap_kring {
425 	struct netmap_ring	*ring;
426 
427 	uint32_t	nr_hwcur;  /* should be nr_hwhead */
428 	uint32_t	nr_hwtail;
429 
430 	/*
431 	 * Copies of values in user rings, so we do not need to look
432 	 * at the ring (which could be modified). These are set in the
433 	 * *sync_prologue()/finalize() routines.
434 	 */
435 	uint32_t	rhead;
436 	uint32_t	rcur;
437 	uint32_t	rtail;
438 
439 	uint32_t	nr_kflags;	/* private driver flags */
440 #define NKR_PENDINTR	0x1		// Pending interrupt.
441 #define NKR_EXCLUSIVE	0x2		/* exclusive binding */
442 #define NKR_FORWARD	0x4		/* (host ring only) there are
443 					   packets to forward
444 					 */
445 #define NKR_NEEDRING	0x8		/* ring needed even if users==0
446 					 * (used internally by pipes and
447 					 *  by ptnetmap host ports)
448 					 */
449 #define NKR_NOINTR      0x10            /* don't use interrupts on this ring */
450 #define NKR_FAKERING	0x20		/* don't allocate/free buffers */
451 
452 	uint32_t	nr_mode;
453 	uint32_t	nr_pending_mode;
454 #define NKR_NETMAP_OFF	0x0
455 #define NKR_NETMAP_ON	0x1
456 
457 	uint32_t	nkr_num_slots;
458 
459 	/*
460 	 * On a NIC reset, the NIC ring indexes may be reset but the
461 	 * indexes in the netmap rings remain the same. nkr_hwofs
462 	 * keeps track of the offset between the two.
463 	 */
464 	int32_t		nkr_hwofs;
465 
466 	/* last_reclaim is opaque marker to help reduce the frequency
467 	 * of operations such as reclaiming tx buffers. A possible use
468 	 * is set it to ticks and do the reclaim only once per tick.
469 	 */
470 	uint64_t	last_reclaim;
471 
472 
473 	NM_SELINFO_T	si;		/* poll/select wait queue */
474 	NM_LOCK_T	q_lock;		/* protects kring and ring. */
475 	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
476 
477 	/* the adapter the owns this kring */
478 	struct netmap_adapter *na;
479 
480 	/* the adapter that wants to be notified when this kring has
481 	 * new slots avaialable. This is usually the same as the above,
482 	 * but wrappers may let it point to themselves
483 	 */
484 	struct netmap_adapter *notify_na;
485 
486 	/* The following fields are for VALE switch support */
487 	struct nm_bdg_fwd *nkr_ft;
488 	uint32_t	*nkr_leases;
489 #define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
490 	uint32_t	nkr_hwlease;
491 	uint32_t	nkr_lease_idx;
492 
493 	/* while nkr_stopped is set, no new [tr]xsync operations can
494 	 * be started on this kring.
495 	 * This is used by netmap_disable_all_rings()
496 	 * to find a synchronization point where critical data
497 	 * structures pointed to by the kring can be added or removed
498 	 */
499 	volatile int nkr_stopped;
500 
501 	/* Support for adapters without native netmap support.
502 	 * On tx rings we preallocate an array of tx buffers
503 	 * (same size as the netmap ring), on rx rings we
504 	 * store incoming mbufs in a queue that is drained by
505 	 * a rxsync.
506 	 */
507 	struct mbuf	**tx_pool;
508 	struct mbuf	*tx_event;	/* TX event used as a notification */
509 	NM_LOCK_T	tx_event_lock;	/* protects the tx_event mbuf */
510 	struct mbq	rx_queue;       /* intercepted rx mbufs. */
511 
512 	uint32_t	users;		/* existing bindings for this ring */
513 
514 	uint32_t	ring_id;	/* kring identifier */
515 	enum txrx	tx;		/* kind of ring (tx or rx) */
516 	char name[64];			/* diagnostic */
517 
518 	/* [tx]sync callback for this kring.
519 	 * The default nm_kring_create callback (netmap_krings_create)
520 	 * sets the nm_sync callback of each hardware tx(rx) kring to
521 	 * the corresponding nm_txsync(nm_rxsync) taken from the
522 	 * netmap_adapter; moreover, it sets the sync callback
523 	 * of the host tx(rx) ring to netmap_txsync_to_host
524 	 * (netmap_rxsync_from_host).
525 	 *
526 	 * Overrides: the above configuration is not changed by
527 	 * any of the nm_krings_create callbacks.
528 	 */
529 	int (*nm_sync)(struct netmap_kring *kring, int flags);
530 	int (*nm_notify)(struct netmap_kring *kring, int flags);
531 
532 #ifdef WITH_PIPES
533 	struct netmap_kring *pipe;	/* if this is a pipe ring,
534 					 * pointer to the other end
535 					 */
536 	uint32_t pipe_tail;		/* hwtail updated by the other end */
537 #endif /* WITH_PIPES */
538 
539 	int (*save_notify)(struct netmap_kring *kring, int flags);
540 
541 #ifdef WITH_MONITOR
542 	/* array of krings that are monitoring this kring */
543 	struct netmap_kring **monitors;
544 	uint32_t max_monitors; /* current size of the monitors array */
545 	uint32_t n_monitors;	/* next unused entry in the monitor array */
546 	uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
547 	uint32_t mon_tail;  /* last seen slot on rx */
548 
549 	/* circular list of zero-copy monitors */
550 	struct netmap_zmon_list zmon_list[NR_TXRX];
551 
552 	/*
553 	 * Monitors work by intercepting the sync and notify callbacks of the
554 	 * monitored krings. This is implemented by replacing the pointers
555 	 * above and saving the previous ones in mon_* pointers below
556 	 */
557 	int (*mon_sync)(struct netmap_kring *kring, int flags);
558 	int (*mon_notify)(struct netmap_kring *kring, int flags);
559 
560 #endif
561 }
562 #ifdef _WIN32
563 __declspec(align(64));
564 #else
565 __attribute__((__aligned__(64)));
566 #endif
567 
568 /* return 1 iff the kring needs to be turned on */
569 static inline int
570 nm_kring_pending_on(struct netmap_kring *kring)
571 {
572 	return kring->nr_pending_mode == NKR_NETMAP_ON &&
573 	       kring->nr_mode == NKR_NETMAP_OFF;
574 }
575 
576 /* return 1 iff the kring needs to be turned off */
577 static inline int
578 nm_kring_pending_off(struct netmap_kring *kring)
579 {
580 	return kring->nr_pending_mode == NKR_NETMAP_OFF &&
581 	       kring->nr_mode == NKR_NETMAP_ON;
582 }
583 
584 /* return the next index, with wraparound */
585 static inline uint32_t
586 nm_next(uint32_t i, uint32_t lim)
587 {
588 	return unlikely (i == lim) ? 0 : i + 1;
589 }
590 
591 
592 /* return the previous index, with wraparound */
593 static inline uint32_t
594 nm_prev(uint32_t i, uint32_t lim)
595 {
596 	return unlikely (i == 0) ? lim : i - 1;
597 }
598 
599 
600 /*
601  *
602  * Here is the layout for the Rx and Tx rings.
603 
604        RxRING                            TxRING
605 
606       +-----------------+            +-----------------+
607       |                 |            |                 |
608       |      free       |            |      free       |
609       +-----------------+            +-----------------+
610 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
611       |                 |            | yet             |
612       +-----------------+            |                 |
613  cur->| available to    |            |                 |
614       | user, not read  |            +-----------------+
615       | yet             |       cur->| (being          |
616       |                 |            |  prepared)      |
617       |                 |            |                 |
618       +-----------------+            +     ------      +
619 tail->|                 |<-hwtail    |                 |<-hwlease
620       | (being          | ...        |                 | ...
621       |  prepared)      | ...        |                 | ...
622       +-----------------+ ...        |                 | ...
623       |                 |<-hwlease   +-----------------+
624       |                 |      tail->|                 |<-hwtail
625       |                 |            |                 |
626       |                 |            |                 |
627       |                 |            |                 |
628       +-----------------+            +-----------------+
629 
630  * The cur/tail (user view) and hwcur/hwtail (kernel view)
631  * are used in the normal operation of the card.
632  *
633  * When a ring is the output of a switch port (Rx ring for
634  * a VALE port, Tx ring for the host stack or NIC), slots
635  * are reserved in blocks through 'hwlease' which points
636  * to the next unused slot.
637  * On an Rx ring, hwlease is always after hwtail,
638  * and completions cause hwtail to advance.
639  * On a Tx ring, hwlease is always between cur and hwtail,
640  * and completions cause cur to advance.
641  *
642  * nm_kr_space() returns the maximum number of slots that
643  * can be assigned.
644  * nm_kr_lease() reserves the required number of buffers,
645  *    advances nkr_hwlease and also returns an entry in
646  *    a circular array where completions should be reported.
647  */
648 
649 struct lut_entry;
650 #ifdef __FreeBSD__
651 #define plut_entry lut_entry
652 #endif
653 
654 struct netmap_lut {
655 	struct lut_entry *lut;
656 	struct plut_entry *plut;
657 	uint32_t objtotal;	/* max buffer index */
658 	uint32_t objsize;	/* buffer size */
659 };
660 
661 struct netmap_vp_adapter; // forward
662 struct nm_bridge;
663 
664 /* Struct to be filled by nm_config callbacks. */
665 struct nm_config_info {
666 	unsigned num_tx_rings;
667 	unsigned num_rx_rings;
668 	unsigned num_tx_descs;
669 	unsigned num_rx_descs;
670 	unsigned rx_buf_maxsize;
671 };
672 
673 /*
674  * default type for the magic field.
675  * May be overriden in glue code.
676  */
677 #ifndef NM_OS_MAGIC
678 #define NM_OS_MAGIC uint32_t
679 #endif /* !NM_OS_MAGIC */
680 
681 /*
682  * The "struct netmap_adapter" extends the "struct adapter"
683  * (or equivalent) device descriptor.
684  * It contains all base fields needed to support netmap operation.
685  * There are in fact different types of netmap adapters
686  * (native, generic, VALE switch...) so a netmap_adapter is
687  * just the first field in the derived type.
688  */
689 struct netmap_adapter {
690 	/*
691 	 * On linux we do not have a good way to tell if an interface
692 	 * is netmap-capable. So we always use the following trick:
693 	 * NA(ifp) points here, and the first entry (which hopefully
694 	 * always exists and is at least 32 bits) contains a magic
695 	 * value which we can use to detect that the interface is good.
696 	 */
697 	NM_OS_MAGIC magic;
698 	uint32_t na_flags;	/* enabled, and other flags */
699 #define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
700 				 * useful during initialization
701 				 */
702 #define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
703 #define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
704 				 * forwarding packets coming from this
705 				 * interface
706 				 */
707 #define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
708 				 * that cannot be changed
709 				 */
710 #define NAF_NATIVE      16      /* the adapter is native.
711 				 * Virtual ports (non persistent vale ports,
712 				 * pipes, monitors...) should never use
713 				 * this flag.
714 				 */
715 #define	NAF_NETMAP_ON	32	/* netmap is active (either native or
716 				 * emulated). Where possible (e.g. FreeBSD)
717 				 * IFCAP_NETMAP also mirrors this flag.
718 				 */
719 #define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
720 #define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
721 /* free */
722 #define NAF_MOREFRAG	512	/* the adapter supports NS_MOREFRAG */
723 #define NAF_ZOMBIE	(1U<<30) /* the nic driver has been unloaded */
724 #define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
725 				  * cannot be registered from userspace
726 				  */
727 	int active_fds; /* number of user-space descriptors using this
728 			 interface, which is equal to the number of
729 			 struct netmap_if objs in the mapped region. */
730 
731 	u_int num_rx_rings; /* number of adapter receive rings */
732 	u_int num_tx_rings; /* number of adapter transmit rings */
733 	u_int num_host_rx_rings; /* number of host receive rings */
734 	u_int num_host_tx_rings; /* number of host transmit rings */
735 
736 	u_int num_tx_desc;  /* number of descriptor in each queue */
737 	u_int num_rx_desc;
738 
739 	/* tx_rings and rx_rings are private but allocated as a
740 	 * contiguous chunk of memory. Each array has N+K entries,
741 	 * N for the hardware rings and K for the host rings.
742 	 */
743 	struct netmap_kring **tx_rings; /* array of TX rings. */
744 	struct netmap_kring **rx_rings; /* array of RX rings. */
745 
746 	void *tailroom;		       /* space below the rings array */
747 				       /* (used for leases) */
748 
749 
750 	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
751 
752 	/* count users of the global wait queues */
753 	int si_users[NR_TXRX];
754 
755 	void *pdev; /* used to store pci device */
756 
757 	/* copy of if_qflush and if_transmit pointers, to intercept
758 	 * packets from the network stack when netmap is active.
759 	 */
760 	int     (*if_transmit)(struct ifnet *, struct mbuf *);
761 
762 	/* copy of if_input for netmap_send_up() */
763 	void     (*if_input)(struct ifnet *, struct mbuf *);
764 
765 	/* Back reference to the parent ifnet struct. Used for
766 	 * hardware ports (emulated netmap included). */
767 	struct ifnet *ifp; /* adapter is ifp->if_softc */
768 
769 	/*---- callbacks for this netmap adapter -----*/
770 	/*
771 	 * nm_dtor() is the cleanup routine called when destroying
772 	 *	the adapter.
773 	 *	Called with NMG_LOCK held.
774 	 *
775 	 * nm_register() is called on NIOCREGIF and close() to enter
776 	 *	or exit netmap mode on the NIC
777 	 *	Called with NNG_LOCK held.
778 	 *
779 	 * nm_txsync() pushes packets to the underlying hw/switch
780 	 *
781 	 * nm_rxsync() collects packets from the underlying hw/switch
782 	 *
783 	 * nm_config() returns configuration information from the OS
784 	 *	Called with NMG_LOCK held.
785 	 *
786 	 * nm_krings_create() create and init the tx_rings and
787 	 * 	rx_rings arrays of kring structures. In particular,
788 	 * 	set the nm_sync callbacks for each ring.
789 	 * 	There is no need to also allocate the corresponding
790 	 * 	netmap_rings, since netmap_mem_rings_create() will always
791 	 * 	be called to provide the missing ones.
792 	 *	Called with NNG_LOCK held.
793 	 *
794 	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
795 	 * 	arrays
796 	 *	Called with NMG_LOCK held.
797 	 *
798 	 * nm_notify() is used to act after data have become available
799 	 * 	(or the stopped state of the ring has changed)
800 	 *	For hw devices this is typically a selwakeup(),
801 	 *	but for NIC/host ports attached to a switch (or vice-versa)
802 	 *	we also need to invoke the 'txsync' code downstream.
803 	 *      This callback pointer is actually used only to initialize
804 	 *      kring->nm_notify.
805 	 *      Return values are the same as for netmap_rx_irq().
806 	 */
807 	void (*nm_dtor)(struct netmap_adapter *);
808 
809 	int (*nm_register)(struct netmap_adapter *, int onoff);
810 	void (*nm_intr)(struct netmap_adapter *, int onoff);
811 
812 	int (*nm_txsync)(struct netmap_kring *kring, int flags);
813 	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
814 	int (*nm_notify)(struct netmap_kring *kring, int flags);
815 #define NAF_FORCE_READ      1
816 #define NAF_FORCE_RECLAIM   2
817 #define NAF_CAN_FORWARD_DOWN 4
818 	/* return configuration information */
819 	int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
820 	int (*nm_krings_create)(struct netmap_adapter *);
821 	void (*nm_krings_delete)(struct netmap_adapter *);
822 	/*
823 	 * nm_bdg_attach() initializes the na_vp field to point
824 	 *      to an adapter that can be attached to a VALE switch. If the
825 	 *      current adapter is already a VALE port, na_vp is simply a cast;
826 	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
827 	 *      If applicable, this callback also initializes na_hostvp,
828 	 *      that can be used to connect the adapter host rings to the
829 	 *      switch.
830 	 *      Called with NMG_LOCK held.
831 	 *
832 	 * nm_bdg_ctl() is called on the actual attach/detach to/from
833 	 *      to/from the switch, to perform adapter-specific
834 	 *      initializations
835 	 *      Called with NMG_LOCK held.
836 	 */
837 	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
838 			struct nm_bridge *);
839 	int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
840 
841 	/* adapter used to attach this adapter to a VALE switch (if any) */
842 	struct netmap_vp_adapter *na_vp;
843 	/* adapter used to attach the host rings of this adapter
844 	 * to a VALE switch (if any) */
845 	struct netmap_vp_adapter *na_hostvp;
846 
847 	/* standard refcount to control the lifetime of the adapter
848 	 * (it should be equal to the lifetime of the corresponding ifp)
849 	 */
850 	int na_refcount;
851 
852 	/* memory allocator (opaque)
853 	 * We also cache a pointer to the lut_entry for translating
854 	 * buffer addresses, the total number of buffers and the buffer size.
855 	 */
856  	struct netmap_mem_d *nm_mem;
857 	struct netmap_mem_d *nm_mem_prev;
858 	struct netmap_lut na_lut;
859 
860 	/* additional information attached to this adapter
861 	 * by other netmap subsystems. Currently used by
862 	 * bwrap, LINUX/v1000 and ptnetmap
863 	 */
864 	void *na_private;
865 
866 	/* array of pipes that have this adapter as a parent */
867 	struct netmap_pipe_adapter **na_pipes;
868 	int na_next_pipe;	/* next free slot in the array */
869 	int na_max_pipes;	/* size of the array */
870 
871 	/* Offset of ethernet header for each packet. */
872 	u_int virt_hdr_len;
873 
874 	/* Max number of bytes that the NIC can store in the buffer
875 	 * referenced by each RX descriptor. This translates to the maximum
876 	 * bytes that a single netmap slot can reference. Larger packets
877 	 * require NS_MOREFRAG support. */
878 	unsigned rx_buf_maxsize;
879 
880 	char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
881 
882 #ifdef WITH_MONITOR
883 	unsigned long	monitor_id;	/* debugging */
884 #endif
885 };
886 
887 static __inline u_int
888 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
889 {
890 	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
891 }
892 
893 static __inline void
894 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
895 {
896 	if (t == NR_TX)
897 		na->num_tx_desc = v;
898 	else
899 		na->num_rx_desc = v;
900 }
901 
902 static __inline u_int
903 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
904 {
905 	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
906 }
907 
908 static __inline u_int
909 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
910 {
911 	return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
912 }
913 
914 static __inline void
915 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
916 {
917 	if (t == NR_TX)
918 		na->num_tx_rings = v;
919 	else
920 		na->num_rx_rings = v;
921 }
922 
923 static __inline void
924 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
925 {
926 	if (t == NR_TX)
927 		na->num_host_tx_rings = v;
928 	else
929 		na->num_host_rx_rings = v;
930 }
931 
932 static __inline struct netmap_kring**
933 NMR(struct netmap_adapter *na, enum txrx t)
934 {
935 	return (t == NR_TX ? na->tx_rings : na->rx_rings);
936 }
937 
938 int nma_intr_enable(struct netmap_adapter *na, int onoff);
939 
940 /*
941  * If the NIC is owned by the kernel
942  * (i.e., bridge), neither another bridge nor user can use it;
943  * if the NIC is owned by a user, only users can share it.
944  * Evaluation must be done under NMG_LOCK().
945  */
946 #define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
947 #define NETMAP_OWNED_BY_ANY(na) \
948 	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
949 
950 /*
951  * derived netmap adapters for various types of ports
952  */
953 struct netmap_vp_adapter {	/* VALE software port */
954 	struct netmap_adapter up;
955 
956 	/*
957 	 * Bridge support:
958 	 *
959 	 * bdg_port is the port number used in the bridge;
960 	 * na_bdg points to the bridge this NA is attached to.
961 	 */
962 	int bdg_port;
963 	struct nm_bridge *na_bdg;
964 	int retry;
965 	int autodelete; /* remove the ifp on last reference */
966 
967 	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
968 	u_int mfs;
969 	/* Last source MAC on this port */
970 	uint64_t last_smac;
971 };
972 
973 
974 struct netmap_hw_adapter {	/* physical device */
975 	struct netmap_adapter up;
976 
977 #ifdef linux
978 	struct net_device_ops nm_ndo;
979 	struct ethtool_ops    nm_eto;
980 #endif
981 	const struct ethtool_ops*   save_ethtool;
982 
983 	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
984 };
985 
986 #ifdef WITH_GENERIC
987 /* Mitigation support. */
988 struct nm_generic_mit {
989 	struct hrtimer mit_timer;
990 	int mit_pending;
991 	int mit_ring_idx;  /* index of the ring being mitigated */
992 	struct netmap_adapter *mit_na;  /* backpointer */
993 };
994 
995 struct netmap_generic_adapter {	/* emulated device */
996 	struct netmap_hw_adapter up;
997 
998 	/* Pointer to a previously used netmap adapter. */
999 	struct netmap_adapter *prev;
1000 
1001 	/* Emulated netmap adapters support:
1002 	 *  - save_if_input saves the if_input hook (FreeBSD);
1003 	 *  - mit implements rx interrupt mitigation;
1004 	 */
1005 	void (*save_if_input)(struct ifnet *, struct mbuf *);
1006 
1007 	struct nm_generic_mit *mit;
1008 #ifdef linux
1009         netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
1010 #endif
1011 	/* Is the adapter able to use multiple RX slots to scatter
1012 	 * each packet pushed up by the driver? */
1013 	int rxsg;
1014 
1015 	/* Is the transmission path controlled by a netmap-aware
1016 	 * device queue (i.e. qdisc on linux)? */
1017 	int txqdisc;
1018 };
1019 #endif  /* WITH_GENERIC */
1020 
1021 static __inline u_int
1022 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
1023 {
1024 	return nma_get_nrings(na, t) +
1025 		!!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
1026 }
1027 
1028 /* account for fake rings */
1029 static __inline u_int
1030 netmap_all_rings(struct netmap_adapter *na, enum txrx t)
1031 {
1032 	return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
1033 }
1034 
1035 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
1036 		struct nm_bridge *);
1037 struct nm_bdg_polling_state;
1038 /*
1039  * Bridge wrapper for non VALE ports attached to a VALE switch.
1040  *
1041  * The real device must already have its own netmap adapter (hwna).
1042  * The bridge wrapper and the hwna adapter share the same set of
1043  * netmap rings and buffers, but they have two separate sets of
1044  * krings descriptors, with tx/rx meanings swapped:
1045  *
1046  *                                  netmap
1047  *           bwrap     krings       rings      krings      hwna
1048  *         +------+   +------+     +-----+    +------+   +------+
1049  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
1050  *         |      |   +------+ \ / +-----+    +------+   |      |
1051  *         |      |             X                        |      |
1052  *         |      |            / \                       |      |
1053  *         |      |   +------+/   \+-----+    +------+   |      |
1054  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
1055  *         |      |   +------+     +-----+    +------+   |      |
1056  *         +------+                                      +------+
1057  *
1058  * - packets coming from the bridge go to the brwap rx rings,
1059  *   which are also the hwna tx rings.  The bwrap notify callback
1060  *   will then complete the hwna tx (see netmap_bwrap_notify).
1061  *
1062  * - packets coming from the outside go to the hwna rx rings,
1063  *   which are also the bwrap tx rings.  The (overwritten) hwna
1064  *   notify method will then complete the bridge tx
1065  *   (see netmap_bwrap_intr_notify).
1066  *
1067  *   The bridge wrapper may optionally connect the hwna 'host' rings
1068  *   to the bridge. This is done by using a second port in the
1069  *   bridge and connecting it to the 'host' netmap_vp_adapter
1070  *   contained in the netmap_bwrap_adapter. The brwap host adapter
1071  *   cross-links the hwna host rings in the same way as shown above.
1072  *
1073  * - packets coming from the bridge and directed to the host stack
1074  *   are handled by the bwrap host notify callback
1075  *   (see netmap_bwrap_host_notify)
1076  *
1077  * - packets coming from the host stack are still handled by the
1078  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
1079  *   but are diverted to the host adapter depending on the ring number.
1080  *
1081  */
1082 struct netmap_bwrap_adapter {
1083 	struct netmap_vp_adapter up;
1084 	struct netmap_vp_adapter host;  /* for host rings */
1085 	struct netmap_adapter *hwna;	/* the underlying device */
1086 
1087 	/*
1088 	 * When we attach a physical interface to the bridge, we
1089 	 * allow the controlling process to terminate, so we need
1090 	 * a place to store the n_detmap_priv_d data structure.
1091 	 * This is only done when physical interfaces
1092 	 * are attached to a bridge.
1093 	 */
1094 	struct netmap_priv_d *na_kpriv;
1095 	struct nm_bdg_polling_state *na_polling_state;
1096 	/* we overwrite the hwna->na_vp pointer, so we save
1097 	 * here its original value, to be restored at detach
1098 	 */
1099 	struct netmap_vp_adapter *saved_na_vp;
1100 };
1101 int nm_bdg_polling(struct nmreq_header *hdr);
1102 
1103 #ifdef WITH_VALE
1104 int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token);
1105 int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token);
1106 int netmap_vale_list(struct nmreq_header *hdr);
1107 int netmap_vi_create(struct nmreq_header *hdr, int);
1108 int nm_vi_create(struct nmreq_header *);
1109 int nm_vi_destroy(const char *name);
1110 #else /* !WITH_VALE */
1111 #define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1112 #endif /* WITH_VALE */
1113 
1114 #ifdef WITH_PIPES
1115 
1116 #define NM_MAXPIPES 	64	/* max number of pipes per adapter */
1117 
1118 struct netmap_pipe_adapter {
1119 	/* pipe identifier is up.name */
1120 	struct netmap_adapter up;
1121 
1122 #define NM_PIPE_ROLE_MASTER	0x1
1123 #define NM_PIPE_ROLE_SLAVE	0x2
1124 	int role;	/* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1125 
1126 	struct netmap_adapter *parent; /* adapter that owns the memory */
1127 	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1128 	int peer_ref;		/* 1 iff we are holding a ref to the peer */
1129 	struct ifnet *parent_ifp;	/* maybe null */
1130 
1131 	u_int parent_slot; /* index in the parent pipe array */
1132 };
1133 
1134 #endif /* WITH_PIPES */
1135 
1136 #ifdef WITH_NMNULL
1137 struct netmap_null_adapter {
1138 	struct netmap_adapter up;
1139 };
1140 #endif /* WITH_NMNULL */
1141 
1142 
1143 /* return slots reserved to rx clients; used in drivers */
1144 static inline uint32_t
1145 nm_kr_rxspace(struct netmap_kring *k)
1146 {
1147 	int space = k->nr_hwtail - k->nr_hwcur;
1148 	if (space < 0)
1149 		space += k->nkr_num_slots;
1150 	nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1151 
1152 	return space;
1153 }
1154 
1155 /* return slots reserved to tx clients */
1156 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1157 
1158 
1159 /* True if no space in the tx ring, only valid after txsync_prologue */
1160 static inline int
1161 nm_kr_txempty(struct netmap_kring *kring)
1162 {
1163 	return kring->rhead == kring->nr_hwtail;
1164 }
1165 
1166 /* True if no more completed slots in the rx ring, only valid after
1167  * rxsync_prologue */
1168 #define nm_kr_rxempty(_k)	nm_kr_txempty(_k)
1169 
1170 /* True if the application needs to wait for more space on the ring
1171  * (more received packets or more free tx slots).
1172  * Only valid after *xsync_prologue. */
1173 static inline int
1174 nm_kr_wouldblock(struct netmap_kring *kring)
1175 {
1176 	return kring->rcur == kring->nr_hwtail;
1177 }
1178 
1179 /*
1180  * protect against multiple threads using the same ring.
1181  * also check that the ring has not been stopped or locked
1182  */
1183 #define NM_KR_BUSY	1	/* some other thread is syncing the ring */
1184 #define NM_KR_STOPPED	2	/* unbounded stop (ifconfig down or driver unload) */
1185 #define NM_KR_LOCKED	3	/* bounded, brief stop for mutual exclusion */
1186 
1187 
1188 /* release the previously acquired right to use the *sync() methods of the ring */
1189 static __inline void nm_kr_put(struct netmap_kring *kr)
1190 {
1191 	NM_ATOMIC_CLEAR(&kr->nr_busy);
1192 }
1193 
1194 
1195 /* true if the ifp that backed the adapter has disappeared (e.g., the
1196  * driver has been unloaded)
1197  */
1198 static inline int nm_iszombie(struct netmap_adapter *na);
1199 
1200 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1201  * The right is obtained and must be later relinquished via nm_kr_put() if and
1202  * only if nm_kr_tryget() returns 0.
1203  * If can_sleep is 1 there are only two other possible outcomes:
1204  * - the function returns NM_KR_BUSY
1205  * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1206  *   (if non-null)
1207  * In both cases the caller will typically skip the ring, possibly collecting
1208  * errors along the way.
1209  * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1210  * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1211  * untouched: ideally, the caller should try again at a later time.
1212  */
1213 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1214 {
1215 	int busy = 1, stopped;
1216 	/* check a first time without taking the lock
1217 	 * to avoid starvation for nm_kr_get()
1218 	 */
1219 retry:
1220 	stopped = kr->nkr_stopped;
1221 	if (unlikely(stopped)) {
1222 		goto stop;
1223 	}
1224 	busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1225 	/* we should not return NM_KR_BUSY if the ring was
1226 	 * actually stopped, so check another time after
1227 	 * the barrier provided by the atomic operation
1228 	 */
1229 	stopped = kr->nkr_stopped;
1230 	if (unlikely(stopped)) {
1231 		goto stop;
1232 	}
1233 
1234 	if (unlikely(nm_iszombie(kr->na))) {
1235 		stopped = NM_KR_STOPPED;
1236 		goto stop;
1237 	}
1238 
1239 	return unlikely(busy) ? NM_KR_BUSY : 0;
1240 
1241 stop:
1242 	if (!busy)
1243 		nm_kr_put(kr);
1244 	if (stopped == NM_KR_STOPPED) {
1245 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1246  * Otherwise, any non-zero value will do.
1247  */
1248 #ifdef POLLERR
1249 #define NM_POLLERR POLLERR
1250 #else
1251 #define NM_POLLERR 1
1252 #endif /* POLLERR */
1253 		if (perr)
1254 			*perr |= NM_POLLERR;
1255 #undef NM_POLLERR
1256 	} else if (can_sleep) {
1257 		tsleep(kr, 0, "NM_KR_TRYGET", 4);
1258 		goto retry;
1259 	}
1260 	return stopped;
1261 }
1262 
1263 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1264  * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1265  */
1266 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1267 {
1268 	kr->nkr_stopped = stopped;
1269 	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1270 		tsleep(kr, 0, "NM_KR_GET", 4);
1271 }
1272 
1273 /* restart a ring after a stop */
1274 static __inline void nm_kr_start(struct netmap_kring *kr)
1275 {
1276 	kr->nkr_stopped = 0;
1277 	nm_kr_put(kr);
1278 }
1279 
1280 
1281 /*
1282  * The following functions are used by individual drivers to
1283  * support netmap operation.
1284  *
1285  * netmap_attach() initializes a struct netmap_adapter, allocating the
1286  * 	struct netmap_ring's and the struct selinfo.
1287  *
1288  * netmap_detach() frees the memory allocated by netmap_attach().
1289  *
1290  * netmap_transmit() replaces the if_transmit routine of the interface,
1291  *	and is used to intercept packets coming from the stack.
1292  *
1293  * netmap_load_map/netmap_reload_map are helper routines to set/reset
1294  *	the dmamap for a packet buffer
1295  *
1296  * netmap_reset() is a helper routine to be called in the hw driver
1297  *	when reinitializing a ring. It should not be called by
1298  *	virtual ports (vale, pipes, monitor)
1299  */
1300 int netmap_attach(struct netmap_adapter *);
1301 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1302 void netmap_detach(struct ifnet *);
1303 int netmap_transmit(struct ifnet *, struct mbuf *);
1304 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1305 	enum txrx tx, u_int n, u_int new_cur);
1306 int netmap_ring_reinit(struct netmap_kring *);
1307 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1308 
1309 /* Return codes for netmap_*x_irq. */
1310 enum {
1311 	/* Driver should do normal interrupt processing, e.g. because
1312 	 * the interface is not in netmap mode. */
1313 	NM_IRQ_PASS = 0,
1314 	/* Port is in netmap mode, and the interrupt work has been
1315 	 * completed. The driver does not have to notify netmap
1316 	 * again before the next interrupt. */
1317 	NM_IRQ_COMPLETED = -1,
1318 	/* Port is in netmap mode, but the interrupt work has not been
1319 	 * completed. The driver has to make sure netmap will be
1320 	 * notified again soon, even if no more interrupts come (e.g.
1321 	 * on Linux the driver should not call napi_complete()). */
1322 	NM_IRQ_RESCHED = -2,
1323 };
1324 
1325 /* default functions to handle rx/tx interrupts */
1326 int netmap_rx_irq(struct ifnet *, u_int, u_int *);
1327 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1328 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1329 
1330 
1331 #ifdef WITH_VALE
1332 /* functions used by external modules to interface with VALE */
1333 #define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
1334 #define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
1335 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1336 #define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
1337 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1338 #else /* !WITH_VALE */
1339 #define netmap_vp_to_ifp(_vp)	NULL
1340 #define netmap_ifp_to_vp(_ifp)	NULL
1341 #define netmap_ifp_to_host_vp(_ifp) NULL
1342 #define netmap_bdg_idx(_vp)	-1
1343 #endif /* WITH_VALE */
1344 
1345 static inline int
1346 nm_netmap_on(struct netmap_adapter *na)
1347 {
1348 	return na && na->na_flags & NAF_NETMAP_ON;
1349 }
1350 
1351 static inline int
1352 nm_native_on(struct netmap_adapter *na)
1353 {
1354 	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1355 }
1356 
1357 static inline int
1358 nm_iszombie(struct netmap_adapter *na)
1359 {
1360 	return na == NULL || (na->na_flags & NAF_ZOMBIE);
1361 }
1362 
1363 static inline void
1364 nm_update_hostrings_mode(struct netmap_adapter *na)
1365 {
1366 	/* Process nr_mode and nr_pending_mode for host rings. */
1367 	na->tx_rings[na->num_tx_rings]->nr_mode =
1368 		na->tx_rings[na->num_tx_rings]->nr_pending_mode;
1369 	na->rx_rings[na->num_rx_rings]->nr_mode =
1370 		na->rx_rings[na->num_rx_rings]->nr_pending_mode;
1371 }
1372 
1373 void nm_set_native_flags(struct netmap_adapter *);
1374 void nm_clear_native_flags(struct netmap_adapter *);
1375 
1376 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff);
1377 
1378 /*
1379  * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1380  * kthreads.
1381  * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1382  * from host kring.
1383  * The user-space ring pointers (head/cur/tail) are shared through
1384  * CSB between host and guest.
1385  */
1386 
1387 /*
1388  * validates parameters in the ring/kring, returns a value for head
1389  * If any error, returns ring_size to force a reinit.
1390  */
1391 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1392 
1393 
1394 /*
1395  * validates parameters in the ring/kring, returns a value for head
1396  * If any error, returns ring_size lim to force a reinit.
1397  */
1398 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1399 
1400 
1401 /* check/fix address and len in tx rings */
1402 #if 1 /* debug version */
1403 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1404 	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1405 		nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1406 			kring->ring_id, nm_i, slot->buf_idx, len);	\
1407 		if (_l > NETMAP_BUF_SIZE(_na))				\
1408 			_l = NETMAP_BUF_SIZE(_na);			\
1409 	} } while (0)
1410 #else /* no debug version */
1411 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1412 		if (_l > NETMAP_BUF_SIZE(_na))				\
1413 			_l = NETMAP_BUF_SIZE(_na);			\
1414 	} while (0)
1415 #endif
1416 
1417 
1418 /*---------------------------------------------------------------*/
1419 /*
1420  * Support routines used by netmap subsystems
1421  * (native drivers, VALE, generic, pipes, monitors, ...)
1422  */
1423 
1424 
1425 /* common routine for all functions that create a netmap adapter. It performs
1426  * two main tasks:
1427  * - if the na points to an ifp, mark the ifp as netmap capable
1428  *   using na as its native adapter;
1429  * - provide defaults for the setup callbacks and the memory allocator
1430  */
1431 int netmap_attach_common(struct netmap_adapter *);
1432 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1433  * coming from a struct nmreq_register
1434  */
1435 int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1436 			uint16_t nr_ringid, uint64_t nr_flags);
1437 /* update the ring parameters (number and size of tx and rx rings).
1438  * It calls the nm_config callback, if available.
1439  */
1440 int netmap_update_config(struct netmap_adapter *na);
1441 /* create and initialize the common fields of the krings array.
1442  * using the information that must be already available in the na.
1443  * tailroom can be used to request the allocation of additional
1444  * tailroom bytes after the krings array. This is used by
1445  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1446  * leasing-related data structures
1447  */
1448 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1449 /* deletes the kring array of the adapter. The array must have
1450  * been created using netmap_krings_create
1451  */
1452 void netmap_krings_delete(struct netmap_adapter *na);
1453 
1454 int netmap_hw_krings_create(struct netmap_adapter *na);
1455 void netmap_hw_krings_delete(struct netmap_adapter *na);
1456 
1457 /* set the stopped/enabled status of ring
1458  * When stopping, they also wait for all current activity on the ring to
1459  * terminate. The status change is then notified using the na nm_notify
1460  * callback.
1461  */
1462 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1463 /* set the stopped/enabled status of all rings of the adapter. */
1464 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1465 /* convenience wrappers for netmap_set_all_rings */
1466 void netmap_disable_all_rings(struct ifnet *);
1467 void netmap_enable_all_rings(struct ifnet *);
1468 
1469 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
1470 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1471 		uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags);
1472 void netmap_do_unregif(struct netmap_priv_d *priv);
1473 
1474 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1475 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1476 		struct ifnet **ifp, struct netmap_mem_d *nmd, int create);
1477 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp);
1478 int netmap_get_hw_na(struct ifnet *ifp,
1479 		struct netmap_mem_d *nmd, struct netmap_adapter **na);
1480 
1481 #ifdef WITH_VALE
1482 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1483 		struct netmap_vp_adapter *, void *private_data);
1484 
1485 /* these are redefined in case of no VALE support */
1486 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1487 		struct netmap_mem_d *nmd, int create);
1488 void *netmap_vale_create(const char *bdg_name, int *return_status);
1489 int netmap_vale_destroy(const char *bdg_name, void *auth_token);
1490 
1491 #else /* !WITH_VALE */
1492 #define netmap_bdg_learning(_1, _2, _3, _4)	0
1493 #define	netmap_get_vale_na(_1, _2, _3, _4)	0
1494 #define netmap_bdg_create(_1, _2)	NULL
1495 #define netmap_bdg_destroy(_1, _2)	0
1496 #endif /* !WITH_VALE */
1497 
1498 #ifdef WITH_PIPES
1499 /* max number of pipes per device */
1500 #define NM_MAXPIPES	64	/* XXX this should probably be a sysctl */
1501 void netmap_pipe_dealloc(struct netmap_adapter *);
1502 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1503 			struct netmap_mem_d *nmd, int create);
1504 #else /* !WITH_PIPES */
1505 #define NM_MAXPIPES	0
1506 #define netmap_pipe_alloc(_1, _2) 	0
1507 #define netmap_pipe_dealloc(_1)
1508 #define netmap_get_pipe_na(hdr, _2, _3, _4)	\
1509 	((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1510 #endif
1511 
1512 #ifdef WITH_MONITOR
1513 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1514 		struct netmap_mem_d *nmd, int create);
1515 void netmap_monitor_stop(struct netmap_adapter *na);
1516 #else
1517 #define netmap_get_monitor_na(hdr, _2, _3, _4) \
1518 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1519 #endif
1520 
1521 #ifdef WITH_NMNULL
1522 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1523 		struct netmap_mem_d *nmd, int create);
1524 #else /* !WITH_NMNULL */
1525 #define netmap_get_null_na(hdr, _2, _3, _4) \
1526 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1527 #endif /* WITH_NMNULL */
1528 
1529 #ifdef CONFIG_NET_NS
1530 struct net *netmap_bns_get(void);
1531 void netmap_bns_put(struct net *);
1532 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1533 #else
1534 extern struct nm_bridge *nm_bridges;
1535 #define netmap_bns_get()
1536 #define netmap_bns_put(_1)
1537 #define netmap_bns_getbridges(b, n) \
1538 	do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
1539 #endif
1540 
1541 /* Various prototypes */
1542 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1543 int netmap_init(void);
1544 void netmap_fini(void);
1545 int netmap_get_memory(struct netmap_priv_d* p);
1546 void netmap_dtor(void *data);
1547 
1548 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1549 		struct thread *, int nr_body_is_user);
1550 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1551 			struct thread *td);
1552 size_t nmreq_size_by_type(uint16_t nr_reqtype);
1553 
1554 /* netmap_adapter creation/destruction */
1555 
1556 // #define NM_DEBUG_PUTGET 1
1557 
1558 #ifdef NM_DEBUG_PUTGET
1559 
1560 #define NM_DBG(f) __##f
1561 
1562 void __netmap_adapter_get(struct netmap_adapter *na);
1563 
1564 #define netmap_adapter_get(na) 				\
1565 	do {						\
1566 		struct netmap_adapter *__na = na;	\
1567 		nm_prinf("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1568 		__netmap_adapter_get(__na);		\
1569 	} while (0)
1570 
1571 int __netmap_adapter_put(struct netmap_adapter *na);
1572 
1573 #define netmap_adapter_put(na)				\
1574 	({						\
1575 		struct netmap_adapter *__na = na;	\
1576 		nm_prinf("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1577 		__netmap_adapter_put(__na);		\
1578 	})
1579 
1580 #else /* !NM_DEBUG_PUTGET */
1581 
1582 #define NM_DBG(f) f
1583 void netmap_adapter_get(struct netmap_adapter *na);
1584 int netmap_adapter_put(struct netmap_adapter *na);
1585 
1586 #endif /* !NM_DEBUG_PUTGET */
1587 
1588 
1589 /*
1590  * module variables
1591  */
1592 #define NETMAP_BUF_BASE(_na)	((_na)->na_lut.lut[0].vaddr)
1593 #define NETMAP_BUF_SIZE(_na)	((_na)->na_lut.objsize)
1594 extern int netmap_no_pendintr;
1595 extern int netmap_mitigate;
1596 extern int netmap_verbose;
1597 #ifdef CONFIG_NETMAP_DEBUG
1598 extern int netmap_debug;		/* for debugging */
1599 #else /* !CONFIG_NETMAP_DEBUG */
1600 #define netmap_debug (0)
1601 #endif /* !CONFIG_NETMAP_DEBUG */
1602 enum {                                  /* debug flags */
1603 	NM_DEBUG_ON = 1,		/* generic debug messsages */
1604 	NM_DEBUG_HOST = 0x2,            /* debug host stack */
1605 	NM_DEBUG_RXSYNC = 0x10,         /* debug on rxsync/txsync */
1606 	NM_DEBUG_TXSYNC = 0x20,
1607 	NM_DEBUG_RXINTR = 0x100,        /* debug on rx/tx intr (driver) */
1608 	NM_DEBUG_TXINTR = 0x200,
1609 	NM_DEBUG_NIC_RXSYNC = 0x1000,   /* debug on rx/tx intr (driver) */
1610 	NM_DEBUG_NIC_TXSYNC = 0x2000,
1611 	NM_DEBUG_MEM = 0x4000,		/* verbose memory allocations/deallocations */
1612 	NM_DEBUG_VALE = 0x8000,		/* debug messages from memory allocators */
1613 	NM_DEBUG_BDG = NM_DEBUG_VALE,
1614 };
1615 
1616 extern int netmap_txsync_retry;
1617 extern int netmap_flags;
1618 extern int netmap_generic_hwcsum;
1619 extern int netmap_generic_mit;
1620 extern int netmap_generic_ringsize;
1621 extern int netmap_generic_rings;
1622 #ifdef linux
1623 extern int netmap_generic_txqdisc;
1624 #endif
1625 
1626 /*
1627  * NA returns a pointer to the struct netmap adapter from the ifp.
1628  * WNA is os-specific and must be defined in glue code.
1629  */
1630 #define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1631 
1632 /*
1633  * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
1634  * based on the WNA field.
1635  * Glue code may override this by defining its own NM_ATTACH_NA
1636  */
1637 #ifndef NM_ATTACH_NA
1638 /*
1639  * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1640  * overload another pointer in the netdev.
1641  *
1642  * We check if NA(ifp) is set and its first element has a related
1643  * magic value. The capenable is within the struct netmap_adapter.
1644  */
1645 #define	NETMAP_MAGIC	0x52697a7a
1646 
1647 #define NM_NA_VALID(ifp)	(NA(ifp) &&		\
1648 	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1649 
1650 #define	NM_ATTACH_NA(ifp, na) do {					\
1651 	WNA(ifp) = na;							\
1652 	if (NA(ifp))							\
1653 		NA(ifp)->magic = 					\
1654 			((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC;	\
1655 } while(0)
1656 #define NM_RESTORE_NA(ifp, na) 	WNA(ifp) = na;
1657 
1658 #define NM_DETACH_NA(ifp)	do { WNA(ifp) = NULL; } while (0)
1659 #define NM_NA_CLASH(ifp)	(NA(ifp) && !NM_NA_VALID(ifp))
1660 #endif /* !NM_ATTACH_NA */
1661 
1662 
1663 #define NM_IS_NATIVE(ifp)	(NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1664 
1665 #if defined(__FreeBSD__)
1666 
1667 /* Assigns the device IOMMU domain to an allocator.
1668  * Returns -ENOMEM in case the domain is different */
1669 #define nm_iommu_group_id(dev) (0)
1670 
1671 /* Callback invoked by the dma machinery after a successful dmamap_load */
1672 static void netmap_dmamap_cb(__unused void *arg,
1673     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1674 {
1675 }
1676 
1677 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1678  * XXX can we do it without a callback ?
1679  */
1680 static inline int
1681 netmap_load_map(struct netmap_adapter *na,
1682 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1683 {
1684 	if (map)
1685 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1686 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1687 	return 0;
1688 }
1689 
1690 static inline void
1691 netmap_unload_map(struct netmap_adapter *na,
1692         bus_dma_tag_t tag, bus_dmamap_t map)
1693 {
1694 	if (map)
1695 		bus_dmamap_unload(tag, map);
1696 }
1697 
1698 #define netmap_sync_map(na, tag, map, sz, t)
1699 
1700 /* update the map when a buffer changes. */
1701 static inline void
1702 netmap_reload_map(struct netmap_adapter *na,
1703 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1704 {
1705 	if (map) {
1706 		bus_dmamap_unload(tag, map);
1707 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1708 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1709 	}
1710 }
1711 
1712 #elif defined(_WIN32)
1713 
1714 #else /* linux */
1715 
1716 int nm_iommu_group_id(bus_dma_tag_t dev);
1717 #include <linux/dma-mapping.h>
1718 
1719 /*
1720  * on linux we need
1721  *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1722  *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1723  */
1724 #if 0
1725 	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1726 	/* set time_stamp *before* dma to help avoid a possible race */
1727 	buffer_info->time_stamp = jiffies;
1728 	buffer_info->mapped_as_page = false;
1729 	buffer_info->length = len;
1730 	//buffer_info->next_to_watch = l;
1731 	/* reload dma map */
1732 	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1733 			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1734 	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1735 			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1736 
1737 	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1738 		nm_prerr("dma mapping error");
1739 		/* goto dma_error; See e1000_put_txbuf() */
1740 		/* XXX reset */
1741 	}
1742 	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1743 
1744 #endif
1745 
1746 static inline int
1747 netmap_load_map(struct netmap_adapter *na,
1748 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1749 {
1750 	if (map) {
1751 		*map = dma_map_single(na->pdev, buf, size,
1752 				      DMA_BIDIRECTIONAL);
1753 		if (dma_mapping_error(na->pdev, *map)) {
1754 			*map = 0;
1755 			return ENOMEM;
1756 		}
1757 	}
1758 	return 0;
1759 }
1760 
1761 static inline void
1762 netmap_unload_map(struct netmap_adapter *na,
1763 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1764 {
1765 	if (*map) {
1766 		dma_unmap_single(na->pdev, *map, sz,
1767 				 DMA_BIDIRECTIONAL);
1768 	}
1769 }
1770 
1771 #ifdef NETMAP_LINUX_HAVE_DMASYNC
1772 static inline void
1773 netmap_sync_map_cpu(struct netmap_adapter *na,
1774 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1775 {
1776 	if (*map) {
1777 		dma_sync_single_for_cpu(na->pdev, *map, sz,
1778 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1779 	}
1780 }
1781 
1782 static inline void
1783 netmap_sync_map_dev(struct netmap_adapter *na,
1784 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1785 {
1786 	if (*map) {
1787 		dma_sync_single_for_device(na->pdev, *map, sz,
1788 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1789 	}
1790 }
1791 
1792 static inline void
1793 netmap_reload_map(struct netmap_adapter *na,
1794 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1795 {
1796 	u_int sz = NETMAP_BUF_SIZE(na);
1797 
1798 	if (*map) {
1799 		dma_unmap_single(na->pdev, *map, sz,
1800 				DMA_BIDIRECTIONAL);
1801 	}
1802 
1803 	*map = dma_map_single(na->pdev, buf, sz,
1804 				DMA_BIDIRECTIONAL);
1805 }
1806 #else /* !NETMAP_LINUX_HAVE_DMASYNC */
1807 #define netmap_sync_map_cpu(na, tag, map, sz, t)
1808 #define netmap_sync_map_dev(na, tag, map, sz, t)
1809 #endif /* NETMAP_LINUX_HAVE_DMASYNC */
1810 
1811 #endif /* linux */
1812 
1813 
1814 /*
1815  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1816  */
1817 static inline int
1818 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1819 {
1820 	int n = kr->nkr_num_slots;
1821 
1822 	if (likely(kr->nkr_hwofs == 0)) {
1823 		return idx;
1824 	}
1825 
1826 	idx += kr->nkr_hwofs;
1827 	if (idx < 0)
1828 		return idx + n;
1829 	else if (idx < n)
1830 		return idx;
1831 	else
1832 		return idx - n;
1833 }
1834 
1835 
1836 static inline int
1837 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1838 {
1839 	int n = kr->nkr_num_slots;
1840 
1841 	if (likely(kr->nkr_hwofs == 0)) {
1842 		return idx;
1843 	}
1844 
1845 	idx -= kr->nkr_hwofs;
1846 	if (idx < 0)
1847 		return idx + n;
1848 	else if (idx < n)
1849 		return idx;
1850 	else
1851 		return idx - n;
1852 }
1853 
1854 
1855 /* Entries of the look-up table. */
1856 #ifdef __FreeBSD__
1857 struct lut_entry {
1858 	void *vaddr;		/* virtual address. */
1859 	vm_paddr_t paddr;	/* physical address. */
1860 };
1861 #else /* linux & _WIN32 */
1862 /* dma-mapping in linux can assign a buffer a different address
1863  * depending on the device, so we need to have a separate
1864  * physical-address look-up table for each na.
1865  * We can still share the vaddrs, though, therefore we split
1866  * the lut_entry structure.
1867  */
1868 struct lut_entry {
1869 	void *vaddr;		/* virtual address. */
1870 };
1871 
1872 struct plut_entry {
1873 	vm_paddr_t paddr;	/* physical address. */
1874 };
1875 #endif /* linux & _WIN32 */
1876 
1877 struct netmap_obj_pool;
1878 
1879 /*
1880  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1881  * PNMB also fills the physical address
1882  */
1883 static inline void *
1884 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1885 {
1886 	struct lut_entry *lut = na->na_lut.lut;
1887 	uint32_t i = slot->buf_idx;
1888 	return (unlikely(i >= na->na_lut.objtotal)) ?
1889 		lut[0].vaddr : lut[i].vaddr;
1890 }
1891 
1892 static inline void *
1893 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1894 {
1895 	uint32_t i = slot->buf_idx;
1896 	struct lut_entry *lut = na->na_lut.lut;
1897 	struct plut_entry *plut = na->na_lut.plut;
1898 	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1899 
1900 #ifdef _WIN32
1901 	*pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1902 #else
1903 	*pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1904 #endif
1905 	return ret;
1906 }
1907 
1908 
1909 /*
1910  * Structure associated to each netmap file descriptor.
1911  * It is created on open and left unbound (np_nifp == NULL).
1912  * A successful NIOCREGIF will set np_nifp and the first few fields;
1913  * this is protected by a global lock (NMG_LOCK) due to low contention.
1914  *
1915  * np_refs counts the number of references to the structure: one for the fd,
1916  * plus (on FreeBSD) one for each active mmap which we track ourselves
1917  * (linux automatically tracks them, but FreeBSD does not).
1918  * np_refs is protected by NMG_LOCK.
1919  *
1920  * Read access to the structure is lock free, because ni_nifp once set
1921  * can only go to 0 when nobody is using the entry anymore. Readers
1922  * must check that np_nifp != NULL before using the other fields.
1923  */
1924 struct netmap_priv_d {
1925 	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
1926 
1927 	struct netmap_adapter	*np_na;
1928 	struct ifnet	*np_ifp;
1929 	uint32_t	np_flags;	/* from the ioctl */
1930 	u_int		np_qfirst[NR_TXRX],
1931 			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
1932 	uint16_t	np_txpoll;
1933 	uint16_t        np_kloop_state;	/* use with NMG_LOCK held */
1934 #define NM_SYNC_KLOOP_RUNNING	(1 << 0)
1935 #define NM_SYNC_KLOOP_STOPPING	(1 << 1)
1936 	int             np_sync_flags; /* to be passed to nm_sync */
1937 
1938 	int		np_refs;	/* use with NMG_LOCK held */
1939 
1940 	/* pointers to the selinfo to be used for selrecord.
1941 	 * Either the local or the global one depending on the
1942 	 * number of rings.
1943 	 */
1944 	NM_SELINFO_T *np_si[NR_TXRX];
1945 
1946 	/* In the optional CSB mode, the user must specify the start address
1947 	 * of two arrays of Communication Status Block (CSB) entries, for the
1948 	 * two directions (kernel read application write, and kernel write
1949 	 * application read).
1950 	 * The number of entries must agree with the number of rings bound to
1951 	 * the netmap file descriptor. The entries corresponding to the TX
1952 	 * rings are laid out before the ones corresponding to the RX rings.
1953 	 *
1954 	 * Array of CSB entries for application --> kernel communication
1955 	 * (N entries). */
1956 	struct nm_csb_atok	*np_csb_atok_base;
1957 	/* Array of CSB entries for kernel --> application communication
1958 	 * (N entries). */
1959 	struct nm_csb_ktoa	*np_csb_ktoa_base;
1960 
1961 #ifdef linux
1962 	struct file	*np_filp;  /* used by sync kloop */
1963 #endif /* linux */
1964 };
1965 
1966 struct netmap_priv_d *netmap_priv_new(void);
1967 void netmap_priv_delete(struct netmap_priv_d *);
1968 
1969 static inline int nm_kring_pending(struct netmap_priv_d *np)
1970 {
1971 	struct netmap_adapter *na = np->np_na;
1972 	enum txrx t;
1973 	int i;
1974 
1975 	for_rx_tx(t) {
1976 		for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
1977 			struct netmap_kring *kring = NMR(na, t)[i];
1978 			if (kring->nr_mode != kring->nr_pending_mode) {
1979 				return 1;
1980 			}
1981 		}
1982 	}
1983 	return 0;
1984 }
1985 
1986 /* call with NMG_LOCK held */
1987 static __inline int
1988 nm_si_user(struct netmap_priv_d *priv, enum txrx t)
1989 {
1990 	return (priv->np_na != NULL &&
1991 		(priv->np_qlast[t] - priv->np_qfirst[t] > 1));
1992 }
1993 
1994 #ifdef WITH_PIPES
1995 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
1996 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
1997 int netmap_pipe_krings_create_both(struct netmap_adapter *na,
1998 				  struct netmap_adapter *ona);
1999 void netmap_pipe_krings_delete_both(struct netmap_adapter *na,
2000 				    struct netmap_adapter *ona);
2001 int netmap_pipe_reg_both(struct netmap_adapter *na,
2002 			 struct netmap_adapter *ona);
2003 #endif /* WITH_PIPES */
2004 
2005 #ifdef WITH_MONITOR
2006 
2007 struct netmap_monitor_adapter {
2008 	struct netmap_adapter up;
2009 
2010 	struct netmap_priv_d priv;
2011 	uint32_t flags;
2012 };
2013 
2014 #endif /* WITH_MONITOR */
2015 
2016 
2017 #ifdef WITH_GENERIC
2018 /*
2019  * generic netmap emulation for devices that do not have
2020  * native netmap support.
2021  */
2022 int generic_netmap_attach(struct ifnet *ifp);
2023 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
2024 
2025 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
2026 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
2027 
2028 int na_is_generic(struct netmap_adapter *na);
2029 
2030 /*
2031  * the generic transmit routine is passed a structure to optionally
2032  * build a queue of descriptors, in an OS-specific way.
2033  * The payload is at addr, if non-null, and the routine should send or queue
2034  * the packet, returning 0 if successful, 1 on failure.
2035  *
2036  * At the end, if head is non-null, there will be an additional call
2037  * to the function with addr = NULL; this should tell the OS-specific
2038  * routine to send the queue and free any resources. Failure is ignored.
2039  */
2040 struct nm_os_gen_arg {
2041 	struct ifnet *ifp;
2042 	void *m;	/* os-specific mbuf-like object */
2043 	void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
2044 	void *addr;	/* payload of current packet */
2045 	u_int len;	/* packet length */
2046 	u_int ring_nr;	/* packet length */
2047 	u_int qevent;   /* in txqdisc mode, place an event on this mbuf */
2048 };
2049 
2050 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
2051 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
2052 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
2053 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
2054 
2055 static inline struct ifnet*
2056 netmap_generic_getifp(struct netmap_generic_adapter *gna)
2057 {
2058         if (gna->prev)
2059             return gna->prev->ifp;
2060 
2061         return gna->up.up.ifp;
2062 }
2063 
2064 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
2065 
2066 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
2067 #ifdef RATE_GENERIC
2068 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
2069 #else
2070 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
2071 #endif
2072 
2073 /*
2074  * netmap_mitigation API. This is used by the generic adapter
2075  * to reduce the number of interrupt requests/selwakeup
2076  * to clients on incoming packets.
2077  */
2078 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2079                                 struct netmap_adapter *na);
2080 void nm_os_mitigation_start(struct nm_generic_mit *mit);
2081 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2082 int nm_os_mitigation_active(struct nm_generic_mit *mit);
2083 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2084 #else /* !WITH_GENERIC */
2085 #define generic_netmap_attach(ifp)	(EOPNOTSUPP)
2086 #define na_is_generic(na)		(0)
2087 #endif /* WITH_GENERIC */
2088 
2089 /* Shared declarations for the VALE switch. */
2090 
2091 /*
2092  * Each transmit queue accumulates a batch of packets into
2093  * a structure before forwarding. Packets to the same
2094  * destination are put in a list using ft_next as a link field.
2095  * ft_frags and ft_next are valid only on the first fragment.
2096  */
2097 struct nm_bdg_fwd {	/* forwarding entry for a bridge */
2098 	void *ft_buf;		/* netmap or indirect buffer */
2099 	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
2100 	uint16_t ft_offset;	/* dst port (unused) */
2101 	uint16_t ft_flags;	/* flags, e.g. indirect */
2102 	uint16_t ft_len;	/* src fragment len */
2103 	uint16_t ft_next;	/* next packet to same destination */
2104 };
2105 
2106 /* struct 'virtio_net_hdr' from linux. */
2107 struct nm_vnet_hdr {
2108 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
2109 #define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
2110     uint8_t flags;
2111 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
2112 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
2113 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
2114 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
2115 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
2116     uint8_t gso_type;
2117     uint16_t hdr_len;
2118     uint16_t gso_size;
2119     uint16_t csum_start;
2120     uint16_t csum_offset;
2121 };
2122 
2123 #define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
2124 
2125 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2126 
2127 struct nm_iphdr {
2128 	uint8_t		version_ihl;
2129 	uint8_t		tos;
2130 	uint16_t	tot_len;
2131 	uint16_t	id;
2132 	uint16_t	frag_off;
2133 	uint8_t		ttl;
2134 	uint8_t		protocol;
2135 	uint16_t	check;
2136 	uint32_t	saddr;
2137 	uint32_t	daddr;
2138 	/*The options start here. */
2139 };
2140 
2141 struct nm_tcphdr {
2142 	uint16_t	source;
2143 	uint16_t	dest;
2144 	uint32_t	seq;
2145 	uint32_t	ack_seq;
2146 	uint8_t		doff;  /* Data offset + Reserved */
2147 	uint8_t		flags;
2148 	uint16_t	window;
2149 	uint16_t	check;
2150 	uint16_t	urg_ptr;
2151 };
2152 
2153 struct nm_udphdr {
2154 	uint16_t	source;
2155 	uint16_t	dest;
2156 	uint16_t	len;
2157 	uint16_t	check;
2158 };
2159 
2160 struct nm_ipv6hdr {
2161 	uint8_t		priority_version;
2162 	uint8_t		flow_lbl[3];
2163 
2164 	uint16_t	payload_len;
2165 	uint8_t		nexthdr;
2166 	uint8_t		hop_limit;
2167 
2168 	uint8_t		saddr[16];
2169 	uint8_t		daddr[16];
2170 };
2171 
2172 /* Type used to store a checksum (in host byte order) that hasn't been
2173  * folded yet.
2174  */
2175 #define rawsum_t uint32_t
2176 
2177 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2178 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2179 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2180 		      size_t datalen, uint16_t *check);
2181 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2182 		      size_t datalen, uint16_t *check);
2183 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2184 
2185 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2186 			   struct netmap_vp_adapter *dst_na,
2187 			   const struct nm_bdg_fwd *ft_p,
2188 			   struct netmap_ring *dst_ring,
2189 			   u_int *j, u_int lim, u_int *howmany);
2190 
2191 /* persistent virtual port routines */
2192 int nm_os_vi_persist(const char *, struct ifnet **);
2193 void nm_os_vi_detach(struct ifnet *);
2194 void nm_os_vi_init_index(void);
2195 
2196 /*
2197  * kernel thread routines
2198  */
2199 struct nm_kctx; /* OS-specific kernel context - opaque */
2200 typedef void (*nm_kctx_worker_fn_t)(void *data);
2201 
2202 /* kthread configuration */
2203 struct nm_kctx_cfg {
2204 	long			type;		/* kthread type/identifier */
2205 	nm_kctx_worker_fn_t	worker_fn;	/* worker function */
2206 	void			*worker_private;/* worker parameter */
2207 	int			attach_user;	/* attach kthread to user process */
2208 };
2209 /* kthread configuration */
2210 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2211 					void *opaque);
2212 int nm_os_kctx_worker_start(struct nm_kctx *);
2213 void nm_os_kctx_worker_stop(struct nm_kctx *);
2214 void nm_os_kctx_destroy(struct nm_kctx *);
2215 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2216 u_int nm_os_ncpus(void);
2217 
2218 int netmap_sync_kloop(struct netmap_priv_d *priv,
2219 		      struct nmreq_header *hdr);
2220 int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
2221 
2222 #ifdef WITH_PTNETMAP
2223 /* ptnetmap guest routines */
2224 
2225 /*
2226  * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
2227  */
2228 struct ptnetmap_memdev;
2229 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
2230                           uint64_t *);
2231 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
2232 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
2233 
2234 /*
2235  * netmap adapter for guest ptnetmap ports
2236  */
2237 struct netmap_pt_guest_adapter {
2238         /* The netmap adapter to be used by netmap applications.
2239 	 * This field must be the first, to allow upcast. */
2240 	struct netmap_hw_adapter hwup;
2241 
2242         /* The netmap adapter to be used by the driver. */
2243         struct netmap_hw_adapter dr;
2244 
2245 	/* Reference counter to track users of backend netmap port: the
2246 	 * network stack and netmap clients.
2247 	 * Used to decide when we need (de)allocate krings/rings and
2248 	 * start (stop) ptnetmap kthreads. */
2249 	int backend_users;
2250 
2251 };
2252 
2253 int netmap_pt_guest_attach(struct netmap_adapter *na,
2254 			unsigned int nifp_offset,
2255 			unsigned int memid);
2256 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
2257 			struct nm_csb_ktoa *ktoa,
2258 			struct netmap_kring *kring, int flags);
2259 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
2260 			struct nm_csb_ktoa *ktoa,
2261 			struct netmap_kring *kring, int flags);
2262 int ptnet_nm_krings_create(struct netmap_adapter *na);
2263 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2264 void ptnet_nm_dtor(struct netmap_adapter *na);
2265 
2266 /* Helper function wrapping nm_sync_kloop_appl_read(). */
2267 static inline void
2268 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
2269 {
2270 	struct netmap_ring *ring = kring->ring;
2271 
2272 	/* Update hwcur and hwtail as known by the host. */
2273         nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
2274 
2275 	/* nm_sync_finalize */
2276 	ring->tail = kring->rtail = kring->nr_hwtail;
2277 }
2278 #endif /* WITH_PTNETMAP */
2279 
2280 #ifdef __FreeBSD__
2281 /*
2282  * FreeBSD mbuf allocator/deallocator in emulation mode:
2283  */
2284 #if __FreeBSD_version < 1100000
2285 
2286 /*
2287  * For older versions of FreeBSD:
2288  *
2289  * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE
2290  * so that the destructor, if invoked, will not free the packet.
2291  * In principle we should set the destructor only on demand,
2292  * but since there might be a race we better do it on allocation.
2293  * As a consequence, we also need to set the destructor or we
2294  * would leak buffers.
2295  */
2296 
2297 /* mbuf destructor, also need to change the type to EXT_EXTREF,
2298  * add an M_NOFREE flag, and then clear the flag and
2299  * chain into uma_zfree(zone_pack, mf)
2300  * (or reinstall the buffer ?)
2301  */
2302 #define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
2303 	(m)->m_ext.ext_free = (void *)fn;	\
2304 	(m)->m_ext.ext_type = EXT_EXTREF;	\
2305 } while (0)
2306 
2307 static int
2308 void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2)
2309 {
2310 	/* restore original mbuf */
2311 	m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1;
2312 	m->m_ext.ext_arg1 = NULL;
2313 	m->m_ext.ext_type = EXT_PACKET;
2314 	m->m_ext.ext_free = NULL;
2315 	if (MBUF_REFCNT(m) == 0)
2316 		SET_MBUF_REFCNT(m, 1);
2317 	uma_zfree(zone_pack, m);
2318 
2319 	return 0;
2320 }
2321 
2322 static inline struct mbuf *
2323 nm_os_get_mbuf(struct ifnet *ifp, int len)
2324 {
2325 	struct mbuf *m;
2326 
2327 	(void)ifp;
2328 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2329 	if (m) {
2330 		/* m_getcl() (mb_ctor_mbuf) has an assert that checks that
2331 		 * M_NOFREE flag is not specified as third argument,
2332 		 * so we have to set M_NOFREE after m_getcl(). */
2333 		m->m_flags |= M_NOFREE;
2334 		m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save
2335 		m->m_ext.ext_free = (void *)void_mbuf_dtor;
2336 		m->m_ext.ext_type = EXT_EXTREF;
2337 		nm_prdis(5, "create m %p refcnt %d", m, MBUF_REFCNT(m));
2338 	}
2339 	return m;
2340 }
2341 
2342 #else /* __FreeBSD_version >= 1100000 */
2343 
2344 /*
2345  * Newer versions of FreeBSD, using a straightforward scheme.
2346  *
2347  * We allocate mbufs with m_gethdr(), since the mbuf header is needed
2348  * by the driver. We also attach a customly-provided external storage,
2349  * which in this case is a netmap buffer. When calling m_extadd(), however
2350  * we pass a NULL address, since the real address (and length) will be
2351  * filled in by nm_os_generic_xmit_frame() right before calling
2352  * if_transmit().
2353  *
2354  * The dtor function does nothing, however we need it since mb_free_ext()
2355  * has a KASSERT(), checking that the mbuf dtor function is not NULL.
2356  */
2357 
2358 #if __FreeBSD_version <= 1200050
2359 static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { }
2360 #else  /* __FreeBSD_version >= 1200051 */
2361 /* The arg1 and arg2 pointers argument were removed by r324446, which
2362  * in included since version 1200051. */
2363 static void void_mbuf_dtor(struct mbuf *m) { }
2364 #endif /* __FreeBSD_version >= 1200051 */
2365 
2366 #define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
2367 	(m)->m_ext.ext_free = (fn != NULL) ?		\
2368 	    (void *)fn : (void *)void_mbuf_dtor;	\
2369 } while (0)
2370 
2371 static inline struct mbuf *
2372 nm_os_get_mbuf(struct ifnet *ifp, int len)
2373 {
2374 	struct mbuf *m;
2375 
2376 	(void)ifp;
2377 	(void)len;
2378 
2379 	m = m_gethdr(M_NOWAIT, MT_DATA);
2380 	if (m == NULL) {
2381 		return m;
2382 	}
2383 
2384 	m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor,
2385 		 NULL, NULL, 0, EXT_NET_DRV);
2386 
2387 	return m;
2388 }
2389 
2390 #endif /* __FreeBSD_version >= 1100000 */
2391 #endif /* __FreeBSD__ */
2392 
2393 struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t);
2394 int nmreq_checkduplicate(struct nmreq_option *);
2395 
2396 int netmap_init_bridges(void);
2397 void netmap_uninit_bridges(void);
2398 
2399 /* Functions to read and write CSB fields from the kernel. */
2400 #if defined (linux)
2401 #define CSB_READ(csb, field, r) (get_user(r, &csb->field))
2402 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
2403 #else  /* ! linux */
2404 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field))
2405 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v))
2406 #endif /* ! linux */
2407 
2408 #endif /* _NET_NETMAP_KERN_H_ */
2409