1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo 5 * Copyright (C) 2013-2016 Universita` di Pisa 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * 32 * The header contains the definitions of constants and function 33 * prototypes used only in kernelspace. 34 */ 35 36 #ifndef _NET_NETMAP_KERN_H_ 37 #define _NET_NETMAP_KERN_H_ 38 39 #if defined(linux) 40 41 #if defined(CONFIG_NETMAP_EXTMEM) 42 #define WITH_EXTMEM 43 #endif 44 #if defined(CONFIG_NETMAP_VALE) 45 #define WITH_VALE 46 #endif 47 #if defined(CONFIG_NETMAP_PIPE) 48 #define WITH_PIPES 49 #endif 50 #if defined(CONFIG_NETMAP_MONITOR) 51 #define WITH_MONITOR 52 #endif 53 #if defined(CONFIG_NETMAP_GENERIC) 54 #define WITH_GENERIC 55 #endif 56 #if defined(CONFIG_NETMAP_PTNETMAP) 57 #define WITH_PTNETMAP 58 #endif 59 #if defined(CONFIG_NETMAP_SINK) 60 #define WITH_SINK 61 #endif 62 #if defined(CONFIG_NETMAP_NULL) 63 #define WITH_NMNULL 64 #endif 65 66 #elif defined (_WIN32) 67 #define WITH_VALE // comment out to disable VALE support 68 #define WITH_PIPES 69 #define WITH_MONITOR 70 #define WITH_GENERIC 71 #define WITH_NMNULL 72 73 #else /* neither linux nor windows */ 74 #define WITH_VALE // comment out to disable VALE support 75 #define WITH_PIPES 76 #define WITH_MONITOR 77 #define WITH_GENERIC 78 #define WITH_EXTMEM 79 #define WITH_NMNULL 80 #endif 81 82 #if defined(__FreeBSD__) 83 #include <sys/selinfo.h> 84 #include <vm/vm.h> 85 86 #define likely(x) __builtin_expect((long)!!(x), 1L) 87 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 88 #define __user 89 90 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 91 92 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 93 #define NM_MTX_INIT(m) sx_init(&(m), #m) 94 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 95 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 96 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; 97 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 98 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 99 100 #define NM_SELINFO_T struct nm_selinfo 101 #define NM_SELRECORD_T struct thread 102 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 103 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 104 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) 105 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 106 #define GEN_TX_MBUF_NA(m) ((struct netmap_adapter *)(m)->m_ext.ext_arg1) 107 108 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ 109 /* atomic operations */ 110 #include <machine/atomic.h> 111 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 112 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 113 114 struct netmap_adapter *netmap_getna(if_t ifp); 115 116 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) 117 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x 118 119 #define MBUF_QUEUED(m) 1 120 121 struct nm_selinfo { 122 /* Support for select(2) and poll(2). */ 123 struct selinfo si; 124 /* Support for kqueue(9). See comments in netmap_freebsd.c */ 125 struct taskqueue *ntfytq; 126 struct task ntfytask; 127 struct mtx m; 128 char mtxname[32]; 129 int kqueue_users; 130 }; 131 132 133 struct hrtimer { 134 /* Not used in FreeBSD. */ 135 }; 136 137 #define NM_BNS_GET(b) 138 #define NM_BNS_PUT(b) 139 140 #elif defined (linux) 141 142 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 143 #define NM_SELINFO_T wait_queue_head_t 144 #define MBUF_LEN(m) ((m)->len) 145 #define MBUF_TRANSMIT(na, ifp, m) \ 146 ({ \ 147 /* Avoid infinite recursion with generic. */ \ 148 m->priority = NM_MAGIC_PRIORITY_TX; \ 149 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 150 0; \ 151 }) 152 153 /* See explanation in nm_os_generic_xmit_frame. */ 154 #define GEN_TX_MBUF_IFP(m) ((if_t)skb_shinfo(m)->destructor_arg) 155 156 #define NM_ATOMIC_T volatile long unsigned int 157 158 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 159 #define NM_MTX_INIT(m) mutex_init(&(m)) 160 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 161 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 162 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 163 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 164 165 #ifndef DEV_NETMAP 166 #define DEV_NETMAP 167 #endif /* DEV_NETMAP */ 168 169 #elif defined (__APPLE__) 170 171 #warning apple support is incomplete. 172 #define likely(x) __builtin_expect(!!(x), 1) 173 #define unlikely(x) __builtin_expect(!!(x), 0) 174 #define NM_LOCK_T IOLock * 175 #define NM_SELINFO_T struct selinfo 176 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 177 178 #elif defined (_WIN32) 179 #include "../../../WINDOWS/win_glue.h" 180 181 #define NM_SELRECORD_T IO_STACK_LOCATION 182 #define NM_SELINFO_T win_SELINFO // see win_glue.h 183 #define NM_LOCK_T win_spinlock_t // see win_glue.h 184 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ 185 186 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); 187 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 188 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) 189 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) 190 #define NM_MTX_ASSERT(m) assert(&m.Count>0) 191 192 //These linknames are for the NDIS driver 193 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" 194 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" 195 196 //Definition of internal driver-to-driver ioctl codes 197 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) 198 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) 199 200 typedef struct hrtimer{ 201 KTIMER timer; 202 BOOLEAN active; 203 KDPC deferred_proc; 204 }; 205 206 /* MSVC does not have likely/unlikely support */ 207 #ifdef _MSC_VER 208 #define likely(x) (x) 209 #define unlikely(x) (x) 210 #else 211 #define likely(x) __builtin_expect((long)!!(x), 1L) 212 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 213 #endif //_MSC_VER 214 215 #else 216 217 #error unsupported platform 218 219 #endif /* end - platform-specific code */ 220 221 #ifndef _WIN32 /* support for emulated sysctl */ 222 #define SYSBEGIN(x) 223 #define SYSEND 224 #endif /* _WIN32 */ 225 226 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) 227 228 #define NMG_LOCK_T NM_MTX_T 229 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 230 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 231 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 232 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 233 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 234 235 #if defined(__FreeBSD__) 236 #define nm_prerr_int printf 237 #define nm_prinf_int printf 238 #elif defined (_WIN32) 239 #define nm_prerr_int DbgPrint 240 #define nm_prinf_int DbgPrint 241 #elif defined(linux) 242 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) 243 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) 244 #endif 245 246 #define nm_prinf(format, ...) \ 247 do { \ 248 struct timeval __xxts; \ 249 microtime(&__xxts); \ 250 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ 251 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 252 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 253 } while (0) 254 255 #define nm_prerr(format, ...) \ 256 do { \ 257 struct timeval __xxts; \ 258 microtime(&__xxts); \ 259 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ 260 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 261 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 262 } while (0) 263 264 /* Disabled printf (used to be nm_prdis). */ 265 #define nm_prdis(format, ...) 266 267 /* Rate limited, lps indicates how many per second. */ 268 #define nm_prlim(lps, format, ...) \ 269 do { \ 270 static int t0, __cnt; \ 271 if (t0 != time_second) { \ 272 t0 = time_second; \ 273 __cnt = 0; \ 274 } \ 275 if (__cnt++ < lps) \ 276 nm_prinf(format, ##__VA_ARGS__); \ 277 } while (0) 278 279 struct netmap_adapter; 280 struct nm_bdg_fwd; 281 struct nm_bridge; 282 struct netmap_priv_d; 283 struct nm_bdg_args; 284 285 /* os-specific NM_SELINFO_T initialization/destruction functions */ 286 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); 287 void nm_os_selinfo_uninit(NM_SELINFO_T *); 288 289 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 290 291 void nm_os_selwakeup(NM_SELINFO_T *si); 292 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); 293 294 int nm_os_ifnet_init(void); 295 void nm_os_ifnet_fini(void); 296 void nm_os_ifnet_lock(void); 297 void nm_os_ifnet_unlock(void); 298 299 unsigned nm_os_ifnet_mtu(if_t ifp); 300 301 void nm_os_get_module(void); 302 void nm_os_put_module(void); 303 304 void netmap_make_zombie(if_t); 305 void netmap_undo_zombie(if_t); 306 307 /* os independent alloc/realloc/free */ 308 void *nm_os_malloc(size_t); 309 void *nm_os_vmalloc(size_t); 310 void *nm_os_realloc(void *, size_t new_size, size_t old_size); 311 void nm_os_free(void *); 312 void nm_os_vfree(void *); 313 314 /* os specific attach/detach enter/exit-netmap-mode routines */ 315 void nm_os_onattach(if_t); 316 void nm_os_ondetach(if_t); 317 void nm_os_onenter(if_t); 318 void nm_os_onexit(if_t); 319 320 /* passes a packet up to the host stack. 321 * If the packet is sent (or dropped) immediately it returns NULL, 322 * otherwise it links the packet to prev and returns m. 323 * In this case, a final call with m=NULL and prev != NULL will send up 324 * the entire chain to the host stack. 325 */ 326 void *nm_os_send_up(if_t, struct mbuf *m, struct mbuf *prev); 327 328 int nm_os_mbuf_has_seg_offld(struct mbuf *m); 329 int nm_os_mbuf_has_csum_offld(struct mbuf *m); 330 331 #include "netmap_mbq.h" 332 333 extern NMG_LOCK_T netmap_global_lock; 334 335 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 336 337 static __inline const char* 338 nm_txrx2str(enum txrx t) 339 { 340 return (t== NR_RX ? "RX" : "TX"); 341 } 342 343 static __inline enum txrx 344 nm_txrx_swap(enum txrx t) 345 { 346 return (t== NR_RX ? NR_TX : NR_RX); 347 } 348 349 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 350 351 #ifdef WITH_MONITOR 352 struct netmap_zmon_list { 353 struct netmap_kring *next; 354 struct netmap_kring *prev; 355 }; 356 #endif /* WITH_MONITOR */ 357 358 /* 359 * private, kernel view of a ring. Keeps track of the status of 360 * a ring across system calls. 361 * 362 * nr_hwcur index of the next buffer to refill. 363 * It corresponds to ring->head 364 * at the time the system call returns. 365 * 366 * nr_hwtail index of the first buffer owned by the kernel. 367 * On RX, hwcur->hwtail are receive buffers 368 * not yet released. hwcur is advanced following 369 * ring->head, hwtail is advanced on incoming packets, 370 * and a wakeup is generated when hwtail passes ring->cur 371 * On TX, hwcur->rcur have been filled by the sender 372 * but not sent yet to the NIC; rcur->hwtail are available 373 * for new transmissions, and hwtail->hwcur-1 are pending 374 * transmissions not yet acknowledged. 375 * 376 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 377 * This is so that, on a reset, buffers owned by userspace are not 378 * modified by the kernel. In particular: 379 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 380 * the next empty buffer as known by the hardware (next_to_check or so). 381 * TX rings: hwcur + hwofs coincides with next_to_send 382 * 383 * The following fields are used to implement lock-free copy of packets 384 * from input to output ports in VALE switch: 385 * nkr_hwlease buffer after the last one being copied. 386 * A writer in nm_bdg_flush reserves N buffers 387 * from nr_hwlease, advances it, then does the 388 * copy outside the lock. 389 * In RX rings (used for VALE ports), 390 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 391 * In TX rings (used for NIC or host stack ports) 392 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 393 * nkr_leases array of nkr_num_slots where writers can report 394 * completion of their block. NR_NOSLOT (~0) indicates 395 * that the writer has not finished yet 396 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 397 * 398 * The kring is manipulated by txsync/rxsync and generic netmap function. 399 * 400 * Concurrent rxsync or txsync on the same ring are prevented through 401 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 402 * for NIC rings, and for TX rings attached to the host stack. 403 * 404 * RX rings attached to the host stack use an mbq (rx_queue) on both 405 * rxsync_from_host() and netmap_transmit(). The mbq is protected 406 * by its internal lock. 407 * 408 * RX rings attached to the VALE switch are accessed by both senders 409 * and receiver. They are protected through the q_lock on the RX ring. 410 */ 411 struct netmap_kring { 412 struct netmap_ring *ring; 413 414 uint32_t nr_hwcur; /* should be nr_hwhead */ 415 uint32_t nr_hwtail; 416 417 /* 418 * Copies of values in user rings, so we do not need to look 419 * at the ring (which could be modified). These are set in the 420 * *sync_prologue()/finalize() routines. 421 */ 422 uint32_t rhead; 423 uint32_t rcur; 424 uint32_t rtail; 425 426 uint32_t nr_kflags; /* private driver flags */ 427 #define NKR_PENDINTR 0x1 // Pending interrupt. 428 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 429 #define NKR_FORWARD 0x4 /* (host ring only) there are 430 packets to forward 431 */ 432 #define NKR_NEEDRING 0x8 /* ring needed even if users==0 433 * (used internally by pipes and 434 * by ptnetmap host ports) 435 */ 436 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ 437 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ 438 439 uint32_t nr_mode; 440 uint32_t nr_pending_mode; 441 #define NKR_NETMAP_OFF 0x0 442 #define NKR_NETMAP_ON 0x1 443 444 uint32_t nkr_num_slots; 445 446 /* 447 * On a NIC reset, the NIC ring indexes may be reset but the 448 * indexes in the netmap rings remain the same. nkr_hwofs 449 * keeps track of the offset between the two. 450 * 451 * Moreover, during reset, we can restore only the subset of 452 * the NIC ring that corresponds to the kernel-owned part of 453 * the netmap ring. The rest of the slots must be restored 454 * by the *sync routines when the user releases more slots. 455 * The nkr_to_refill field keeps track of the number of slots 456 * that still need to be restored. 457 */ 458 int32_t nkr_hwofs; 459 int32_t nkr_to_refill; 460 461 /* last_reclaim is opaque marker to help reduce the frequency 462 * of operations such as reclaiming tx buffers. A possible use 463 * is set it to ticks and do the reclaim only once per tick. 464 */ 465 uint64_t last_reclaim; 466 467 468 NM_SELINFO_T si; /* poll/select wait queue */ 469 NM_LOCK_T q_lock; /* protects kring and ring. */ 470 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 471 472 /* the adapter the owns this kring */ 473 struct netmap_adapter *na; 474 475 /* the adapter that wants to be notified when this kring has 476 * new slots available. This is usually the same as the above, 477 * but wrappers may let it point to themselves 478 */ 479 struct netmap_adapter *notify_na; 480 481 /* The following fields are for VALE switch support */ 482 struct nm_bdg_fwd *nkr_ft; 483 uint32_t *nkr_leases; 484 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 485 uint32_t nkr_hwlease; 486 uint32_t nkr_lease_idx; 487 488 /* while nkr_stopped is set, no new [tr]xsync operations can 489 * be started on this kring. 490 * This is used by netmap_disable_all_rings() 491 * to find a synchronization point where critical data 492 * structures pointed to by the kring can be added or removed 493 */ 494 volatile int nkr_stopped; 495 496 /* Support for adapters without native netmap support. 497 * On tx rings we preallocate an array of tx buffers 498 * (same size as the netmap ring), on rx rings we 499 * store incoming mbufs in a queue that is drained by 500 * a rxsync. 501 */ 502 struct mbuf **tx_pool; 503 struct mbuf *tx_event; /* TX event used as a notification */ 504 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ 505 #ifdef __FreeBSD__ 506 struct callout tx_event_callout; 507 #endif 508 struct mbq rx_queue; /* intercepted rx mbufs. */ 509 510 uint32_t users; /* existing bindings for this ring */ 511 512 uint32_t ring_id; /* kring identifier */ 513 enum txrx tx; /* kind of ring (tx or rx) */ 514 char name[64]; /* diagnostic */ 515 516 /* [tx]sync callback for this kring. 517 * The default nm_kring_create callback (netmap_krings_create) 518 * sets the nm_sync callback of each hardware tx(rx) kring to 519 * the corresponding nm_txsync(nm_rxsync) taken from the 520 * netmap_adapter; moreover, it sets the sync callback 521 * of the host tx(rx) ring to netmap_txsync_to_host 522 * (netmap_rxsync_from_host). 523 * 524 * Overrides: the above configuration is not changed by 525 * any of the nm_krings_create callbacks. 526 */ 527 int (*nm_sync)(struct netmap_kring *kring, int flags); 528 int (*nm_notify)(struct netmap_kring *kring, int flags); 529 530 #ifdef WITH_PIPES 531 struct netmap_kring *pipe; /* if this is a pipe ring, 532 * pointer to the other end 533 */ 534 uint32_t pipe_tail; /* hwtail updated by the other end */ 535 #endif /* WITH_PIPES */ 536 537 /* mask for the offset-related part of the ptr field in the slots */ 538 uint64_t offset_mask; 539 /* maximum user-specified offset, as stipulated at bind time. 540 * Larger offset requests will be silently capped to offset_max. 541 */ 542 uint64_t offset_max; 543 /* minimum gap between two consecutive offsets into the same 544 * buffer, as stipulated at bind time. This is used to choose 545 * the hwbuf_len, but is not otherwise checked for compliance 546 * at runtime. 547 */ 548 uint64_t offset_gap; 549 550 /* size of hardware buffer. This may be less than the size of 551 * the netmap buffers because of non-zero offsets, or because 552 * the netmap buffer size exceeds the capability of the hardware. 553 */ 554 uint64_t hwbuf_len; 555 556 /* required alignment (in bytes) for the buffers used by this ring. 557 * Netmap buffers are aligned to cachelines, which should suffice 558 * for most NICs. If the user is passing offsets, though, we need 559 * to check that the resulting buf address complies with any 560 * alignment restriction. 561 */ 562 uint64_t buf_align; 563 564 /* hardware specific logic for the selection of the hwbuf_len */ 565 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); 566 567 int (*save_notify)(struct netmap_kring *kring, int flags); 568 569 #ifdef WITH_MONITOR 570 /* array of krings that are monitoring this kring */ 571 struct netmap_kring **monitors; 572 uint32_t max_monitors; /* current size of the monitors array */ 573 uint32_t n_monitors; /* next unused entry in the monitor array */ 574 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ 575 uint32_t mon_tail; /* last seen slot on rx */ 576 577 /* circular list of zero-copy monitors */ 578 struct netmap_zmon_list zmon_list[NR_TXRX]; 579 580 /* 581 * Monitors work by intercepting the sync and notify callbacks of the 582 * monitored krings. This is implemented by replacing the pointers 583 * above and saving the previous ones in mon_* pointers below 584 */ 585 int (*mon_sync)(struct netmap_kring *kring, int flags); 586 int (*mon_notify)(struct netmap_kring *kring, int flags); 587 588 #endif 589 } 590 #ifdef _WIN32 591 __declspec(align(64)); 592 #else 593 __attribute__((__aligned__(64))); 594 #endif 595 596 /* return 1 iff the kring needs to be turned on */ 597 static inline int 598 nm_kring_pending_on(struct netmap_kring *kring) 599 { 600 return kring->nr_pending_mode == NKR_NETMAP_ON && 601 kring->nr_mode == NKR_NETMAP_OFF; 602 } 603 604 /* return 1 iff the kring needs to be turned off */ 605 static inline int 606 nm_kring_pending_off(struct netmap_kring *kring) 607 { 608 return kring->nr_pending_mode == NKR_NETMAP_OFF && 609 kring->nr_mode == NKR_NETMAP_ON; 610 } 611 612 /* return the next index, with wraparound */ 613 static inline uint32_t 614 nm_next(uint32_t i, uint32_t lim) 615 { 616 return unlikely (i == lim) ? 0 : i + 1; 617 } 618 619 620 /* return the previous index, with wraparound */ 621 static inline uint32_t 622 nm_prev(uint32_t i, uint32_t lim) 623 { 624 return unlikely (i == 0) ? lim : i - 1; 625 } 626 627 628 /* 629 * 630 * Here is the layout for the Rx and Tx rings. 631 632 RxRING TxRING 633 634 +-----------------+ +-----------------+ 635 | | | | 636 | free | | free | 637 +-----------------+ +-----------------+ 638 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 639 | | | yet | 640 +-----------------+ | | 641 cur->| available to | | | 642 | user, not read | +-----------------+ 643 | yet | cur->| (being | 644 | | | prepared) | 645 | | | | 646 +-----------------+ + ------ + 647 tail->| |<-hwtail | |<-hwlease 648 | (being | ... | | ... 649 | prepared) | ... | | ... 650 +-----------------+ ... | | ... 651 | |<-hwlease +-----------------+ 652 | | tail->| |<-hwtail 653 | | | | 654 | | | | 655 | | | | 656 +-----------------+ +-----------------+ 657 658 * The cur/tail (user view) and hwcur/hwtail (kernel view) 659 * are used in the normal operation of the card. 660 * 661 * When a ring is the output of a switch port (Rx ring for 662 * a VALE port, Tx ring for the host stack or NIC), slots 663 * are reserved in blocks through 'hwlease' which points 664 * to the next unused slot. 665 * On an Rx ring, hwlease is always after hwtail, 666 * and completions cause hwtail to advance. 667 * On a Tx ring, hwlease is always between cur and hwtail, 668 * and completions cause cur to advance. 669 * 670 * nm_kr_space() returns the maximum number of slots that 671 * can be assigned. 672 * nm_kr_lease() reserves the required number of buffers, 673 * advances nkr_hwlease and also returns an entry in 674 * a circular array where completions should be reported. 675 */ 676 677 struct lut_entry; 678 #ifdef __FreeBSD__ 679 #define plut_entry lut_entry 680 #endif 681 682 struct netmap_lut { 683 struct lut_entry *lut; 684 struct plut_entry *plut; 685 uint32_t objtotal; /* max buffer index */ 686 uint32_t objsize; /* buffer size */ 687 }; 688 689 struct netmap_vp_adapter; // forward 690 struct nm_bridge; 691 692 /* Struct to be filled by nm_config callbacks. */ 693 struct nm_config_info { 694 unsigned num_tx_rings; 695 unsigned num_rx_rings; 696 unsigned num_tx_descs; 697 unsigned num_rx_descs; 698 unsigned rx_buf_maxsize; 699 }; 700 701 /* 702 * default type for the magic field. 703 * May be overridden in glue code. 704 */ 705 #ifndef NM_OS_MAGIC 706 #define NM_OS_MAGIC uint32_t 707 #endif /* !NM_OS_MAGIC */ 708 709 /* 710 * The "struct netmap_adapter" extends the "struct adapter" 711 * (or equivalent) device descriptor. 712 * It contains all base fields needed to support netmap operation. 713 * There are in fact different types of netmap adapters 714 * (native, generic, VALE switch...) so a netmap_adapter is 715 * just the first field in the derived type. 716 */ 717 struct netmap_adapter { 718 /* 719 * On linux we do not have a good way to tell if an interface 720 * is netmap-capable. So we always use the following trick: 721 * NA(ifp) points here, and the first entry (which hopefully 722 * always exists and is at least 32 bits) contains a magic 723 * value which we can use to detect that the interface is good. 724 */ 725 NM_OS_MAGIC magic; 726 uint32_t na_flags; /* enabled, and other flags */ 727 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 728 * useful during initialization 729 */ 730 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 731 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 732 * forwarding packets coming from this 733 * interface 734 */ 735 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 736 * that cannot be changed 737 */ 738 #define NAF_NATIVE 16 /* the adapter is native. 739 * Virtual ports (non persistent vale ports, 740 * pipes, monitors...) should never use 741 * this flag. 742 */ 743 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 744 * emulated). Where possible (e.g. FreeBSD) 745 * IFCAP_NETMAP also mirrors this flag. 746 */ 747 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 748 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 749 /* free */ 750 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ 751 #define NAF_OFFSETS 1024 /* the adapter supports the slot offsets */ 752 #define NAF_HOST_ALL 2048 /* the adapter wants as many host rings as hw */ 753 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ 754 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 755 * cannot be registered from userspace 756 */ 757 int active_fds; /* number of user-space descriptors using this 758 interface, which is equal to the number of 759 struct netmap_if objs in the mapped region. */ 760 761 u_int num_rx_rings; /* number of adapter receive rings */ 762 u_int num_tx_rings; /* number of adapter transmit rings */ 763 u_int num_host_rx_rings; /* number of host receive rings */ 764 u_int num_host_tx_rings; /* number of host transmit rings */ 765 766 u_int num_tx_desc; /* number of descriptor in each queue */ 767 u_int num_rx_desc; 768 769 /* tx_rings and rx_rings are private but allocated as a 770 * contiguous chunk of memory. Each array has N+K entries, 771 * N for the hardware rings and K for the host rings. 772 */ 773 struct netmap_kring **tx_rings; /* array of TX rings. */ 774 struct netmap_kring **rx_rings; /* array of RX rings. */ 775 776 void *tailroom; /* space below the rings array */ 777 /* (used for leases) */ 778 779 780 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 781 782 /* count users of the global wait queues */ 783 int si_users[NR_TXRX]; 784 785 void *pdev; /* used to store pci device */ 786 787 /* copy of if_qflush and if_transmit pointers, to intercept 788 * packets from the network stack when netmap is active. 789 */ 790 int (*if_transmit)(if_t, struct mbuf *); 791 792 /* copy of if_input for netmap_send_up() */ 793 void (*if_input)(if_t, struct mbuf *); 794 795 /* Back reference to the parent ifnet struct. Used for 796 * hardware ports (emulated netmap included). */ 797 if_t ifp; /* adapter is if_getsoftc(ifp) */ 798 799 /*---- callbacks for this netmap adapter -----*/ 800 /* 801 * nm_dtor() is the cleanup routine called when destroying 802 * the adapter. 803 * Called with NMG_LOCK held. 804 * 805 * nm_register() is called on NIOCREGIF and close() to enter 806 * or exit netmap mode on the NIC 807 * Called with NNG_LOCK held. 808 * 809 * nm_txsync() pushes packets to the underlying hw/switch 810 * 811 * nm_rxsync() collects packets from the underlying hw/switch 812 * 813 * nm_config() returns configuration information from the OS 814 * Called with NMG_LOCK held. 815 * 816 * nm_bufcfg() 817 * the purpose of this callback is to fill the kring->hwbuf_len 818 * (l) and kring->buf_align fields. The l value is most important 819 * for RX rings, where we want to disallow writes outside of the 820 * netmap buffer. The l value must be computed taking into account 821 * the stipulated max_offset (o), possibly increased if there are 822 * alignment constraints, the maxframe (m), if known, and the 823 * current NETMAP_BUF_SIZE (b) of the memory region used by the 824 * adapter. We want the largest supported l such that o + l <= b. 825 * If m is known to be <= b - o, the callback may also choose the 826 * largest l <= m, ignoring the offset. The buf_align field is 827 * most important for TX rings when there are offsets. The user 828 * will see this value in the ring->buf_align field. Misaligned 829 * offsets will cause the corresponding packets to be silently 830 * dropped. 831 * 832 * nm_krings_create() create and init the tx_rings and 833 * rx_rings arrays of kring structures. In particular, 834 * set the nm_sync callbacks for each ring. 835 * There is no need to also allocate the corresponding 836 * netmap_rings, since netmap_mem_rings_create() will always 837 * be called to provide the missing ones. 838 * Called with NNG_LOCK held. 839 * 840 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 841 * arrays 842 * Called with NMG_LOCK held. 843 * 844 * nm_notify() is used to act after data have become available 845 * (or the stopped state of the ring has changed) 846 * For hw devices this is typically a selwakeup(), 847 * but for NIC/host ports attached to a switch (or vice-versa) 848 * we also need to invoke the 'txsync' code downstream. 849 * This callback pointer is actually used only to initialize 850 * kring->nm_notify. 851 * Return values are the same as for netmap_rx_irq(). 852 */ 853 void (*nm_dtor)(struct netmap_adapter *); 854 855 int (*nm_register)(struct netmap_adapter *, int onoff); 856 void (*nm_intr)(struct netmap_adapter *, int onoff); 857 858 int (*nm_txsync)(struct netmap_kring *kring, int flags); 859 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 860 int (*nm_notify)(struct netmap_kring *kring, int flags); 861 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); 862 #define NAF_FORCE_READ 1 863 #define NAF_FORCE_RECLAIM 2 864 #define NAF_CAN_FORWARD_DOWN 4 865 /* return configuration information */ 866 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); 867 int (*nm_krings_create)(struct netmap_adapter *); 868 void (*nm_krings_delete)(struct netmap_adapter *); 869 /* 870 * nm_bdg_attach() initializes the na_vp field to point 871 * to an adapter that can be attached to a VALE switch. If the 872 * current adapter is already a VALE port, na_vp is simply a cast; 873 * otherwise, na_vp points to a netmap_bwrap_adapter. 874 * If applicable, this callback also initializes na_hostvp, 875 * that can be used to connect the adapter host rings to the 876 * switch. 877 * Called with NMG_LOCK held. 878 * 879 * nm_bdg_ctl() is called on the actual attach/detach to/from 880 * to/from the switch, to perform adapter-specific 881 * initializations 882 * Called with NMG_LOCK held. 883 */ 884 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, 885 struct nm_bridge *); 886 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); 887 888 /* adapter used to attach this adapter to a VALE switch (if any) */ 889 struct netmap_vp_adapter *na_vp; 890 /* adapter used to attach the host rings of this adapter 891 * to a VALE switch (if any) */ 892 struct netmap_vp_adapter *na_hostvp; 893 894 /* standard refcount to control the lifetime of the adapter 895 * (it should be equal to the lifetime of the corresponding ifp) 896 */ 897 int na_refcount; 898 899 /* memory allocator (opaque) 900 * We also cache a pointer to the lut_entry for translating 901 * buffer addresses, the total number of buffers and the buffer size. 902 */ 903 struct netmap_mem_d *nm_mem; 904 struct netmap_mem_d *nm_mem_prev; 905 struct netmap_lut na_lut; 906 907 /* additional information attached to this adapter 908 * by other netmap subsystems. Currently used by 909 * bwrap, LINUX/v1000 and ptnetmap 910 */ 911 void *na_private; 912 913 /* array of pipes that have this adapter as a parent */ 914 struct netmap_pipe_adapter **na_pipes; 915 int na_next_pipe; /* next free slot in the array */ 916 int na_max_pipes; /* size of the array */ 917 918 /* Offset of ethernet header for each packet. */ 919 u_int virt_hdr_len; 920 921 /* Max number of bytes that the NIC can store in the buffer 922 * referenced by each RX descriptor. This translates to the maximum 923 * bytes that a single netmap slot can reference. Larger packets 924 * require NS_MOREFRAG support. */ 925 unsigned rx_buf_maxsize; 926 927 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ 928 929 #ifdef WITH_MONITOR 930 unsigned long monitor_id; /* debugging */ 931 #endif 932 }; 933 934 static __inline u_int 935 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 936 { 937 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 938 } 939 940 static __inline void 941 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 942 { 943 if (t == NR_TX) 944 na->num_tx_desc = v; 945 else 946 na->num_rx_desc = v; 947 } 948 949 static __inline u_int 950 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 951 { 952 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 953 } 954 955 static __inline u_int 956 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) 957 { 958 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); 959 } 960 961 static __inline void 962 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 963 { 964 if (t == NR_TX) 965 na->num_tx_rings = v; 966 else 967 na->num_rx_rings = v; 968 } 969 970 static __inline void 971 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 972 { 973 if (t == NR_TX) 974 na->num_host_tx_rings = v; 975 else 976 na->num_host_rx_rings = v; 977 } 978 979 static __inline struct netmap_kring** 980 NMR(struct netmap_adapter *na, enum txrx t) 981 { 982 return (t == NR_TX ? na->tx_rings : na->rx_rings); 983 } 984 985 int nma_intr_enable(struct netmap_adapter *na, int onoff); 986 987 /* 988 * If the NIC is owned by the kernel 989 * (i.e., bridge), neither another bridge nor user can use it; 990 * if the NIC is owned by a user, only users can share it. 991 * Evaluation must be done under NMG_LOCK(). 992 */ 993 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 994 #define NETMAP_OWNED_BY_ANY(na) \ 995 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 996 997 /* 998 * derived netmap adapters for various types of ports 999 */ 1000 struct netmap_vp_adapter { /* VALE software port */ 1001 struct netmap_adapter up; 1002 1003 /* 1004 * Bridge support: 1005 * 1006 * bdg_port is the port number used in the bridge; 1007 * na_bdg points to the bridge this NA is attached to. 1008 */ 1009 int bdg_port; 1010 struct nm_bridge *na_bdg; 1011 int retry; 1012 int autodelete; /* remove the ifp on last reference */ 1013 1014 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 1015 u_int mfs; 1016 /* Last source MAC on this port */ 1017 uint64_t last_smac; 1018 }; 1019 1020 1021 struct netmap_hw_adapter { /* physical device */ 1022 struct netmap_adapter up; 1023 1024 #ifdef linux 1025 struct net_device_ops nm_ndo; 1026 struct ethtool_ops nm_eto; 1027 #endif 1028 const struct ethtool_ops* save_ethtool; 1029 1030 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 1031 }; 1032 1033 #ifdef WITH_GENERIC 1034 /* Mitigation support. */ 1035 struct nm_generic_mit { 1036 struct hrtimer mit_timer; 1037 int mit_pending; 1038 int mit_ring_idx; /* index of the ring being mitigated */ 1039 struct netmap_adapter *mit_na; /* backpointer */ 1040 }; 1041 1042 struct netmap_generic_adapter { /* emulated device */ 1043 struct netmap_hw_adapter up; 1044 1045 /* Pointer to a previously used netmap adapter. */ 1046 struct netmap_adapter *prev; 1047 1048 /* Emulated netmap adapters support: 1049 * - mit implements rx interrupt mitigation; 1050 */ 1051 struct nm_generic_mit *mit; 1052 #ifdef linux 1053 netdev_tx_t (*save_start_xmit)(struct mbuf *, if_t); 1054 #endif 1055 /* Is the adapter able to use multiple RX slots to scatter 1056 * each packet pushed up by the driver? */ 1057 int rxsg; 1058 1059 /* Is the transmission path controlled by a netmap-aware 1060 * device queue (i.e. qdisc on linux)? */ 1061 int txqdisc; 1062 }; 1063 #endif /* WITH_GENERIC */ 1064 1065 static __inline u_int 1066 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 1067 { 1068 return nma_get_nrings(na, t) + 1069 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); 1070 } 1071 1072 /* account for fake rings */ 1073 static __inline u_int 1074 netmap_all_rings(struct netmap_adapter *na, enum txrx t) 1075 { 1076 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); 1077 } 1078 1079 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, 1080 struct nm_bridge *); 1081 struct nm_bdg_polling_state; 1082 /* 1083 * Bridge wrapper for non VALE ports attached to a VALE switch. 1084 * 1085 * The real device must already have its own netmap adapter (hwna). 1086 * The bridge wrapper and the hwna adapter share the same set of 1087 * netmap rings and buffers, but they have two separate sets of 1088 * krings descriptors, with tx/rx meanings swapped: 1089 * 1090 * netmap 1091 * bwrap krings rings krings hwna 1092 * +------+ +------+ +-----+ +------+ +------+ 1093 * |tx_rings->| |\ /| |----| |<-tx_rings| 1094 * | | +------+ \ / +-----+ +------+ | | 1095 * | | X | | 1096 * | | / \ | | 1097 * | | +------+/ \+-----+ +------+ | | 1098 * |rx_rings->| | | |----| |<-rx_rings| 1099 * | | +------+ +-----+ +------+ | | 1100 * +------+ +------+ 1101 * 1102 * - packets coming from the bridge go to the brwap rx rings, 1103 * which are also the hwna tx rings. The bwrap notify callback 1104 * will then complete the hwna tx (see netmap_bwrap_notify). 1105 * 1106 * - packets coming from the outside go to the hwna rx rings, 1107 * which are also the bwrap tx rings. The (overwritten) hwna 1108 * notify method will then complete the bridge tx 1109 * (see netmap_bwrap_intr_notify). 1110 * 1111 * The bridge wrapper may optionally connect the hwna 'host' rings 1112 * to the bridge. This is done by using a second port in the 1113 * bridge and connecting it to the 'host' netmap_vp_adapter 1114 * contained in the netmap_bwrap_adapter. The brwap host adapter 1115 * cross-links the hwna host rings in the same way as shown above. 1116 * 1117 * - packets coming from the bridge and directed to the host stack 1118 * are handled by the bwrap host notify callback 1119 * (see netmap_bwrap_host_notify) 1120 * 1121 * - packets coming from the host stack are still handled by the 1122 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 1123 * but are diverted to the host adapter depending on the ring number. 1124 * 1125 */ 1126 struct netmap_bwrap_adapter { 1127 struct netmap_vp_adapter up; 1128 struct netmap_vp_adapter host; /* for host rings */ 1129 struct netmap_adapter *hwna; /* the underlying device */ 1130 1131 /* 1132 * When we attach a physical interface to the bridge, we 1133 * allow the controlling process to terminate, so we need 1134 * a place to store the n_detmap_priv_d data structure. 1135 * This is only done when physical interfaces 1136 * are attached to a bridge. 1137 */ 1138 struct netmap_priv_d *na_kpriv; 1139 struct nm_bdg_polling_state *na_polling_state; 1140 /* we overwrite the hwna->na_vp pointer, so we save 1141 * here its original value, to be restored at detach 1142 */ 1143 struct netmap_vp_adapter *saved_na_vp; 1144 int (*nm_intr_notify)(struct netmap_kring *kring, int flags); 1145 }; 1146 int nm_is_bwrap(struct netmap_adapter *na); 1147 int nm_bdg_polling(struct nmreq_header *hdr); 1148 1149 int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token); 1150 int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token); 1151 #ifdef WITH_VALE 1152 int netmap_vale_list(struct nmreq_header *hdr); 1153 int netmap_vi_create(struct nmreq_header *hdr, int); 1154 int nm_vi_create(struct nmreq_header *); 1155 int nm_vi_destroy(const char *name); 1156 #else /* !WITH_VALE */ 1157 #define netmap_vi_create(hdr, a) (EOPNOTSUPP) 1158 #endif /* WITH_VALE */ 1159 1160 #ifdef WITH_PIPES 1161 1162 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 1163 1164 struct netmap_pipe_adapter { 1165 /* pipe identifier is up.name */ 1166 struct netmap_adapter up; 1167 1168 #define NM_PIPE_ROLE_MASTER 0x1 1169 #define NM_PIPE_ROLE_SLAVE 0x2 1170 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ 1171 1172 struct netmap_adapter *parent; /* adapter that owns the memory */ 1173 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 1174 int peer_ref; /* 1 iff we are holding a ref to the peer */ 1175 if_t parent_ifp; /* maybe null */ 1176 1177 u_int parent_slot; /* index in the parent pipe array */ 1178 }; 1179 1180 #endif /* WITH_PIPES */ 1181 1182 #ifdef WITH_NMNULL 1183 struct netmap_null_adapter { 1184 struct netmap_adapter up; 1185 }; 1186 #endif /* WITH_NMNULL */ 1187 1188 1189 /* return slots reserved to rx clients; used in drivers */ 1190 static inline uint32_t 1191 nm_kr_rxspace(struct netmap_kring *k) 1192 { 1193 int space = k->nr_hwtail - k->nr_hwcur; 1194 if (space < 0) 1195 space += k->nkr_num_slots; 1196 nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 1197 1198 return space; 1199 } 1200 1201 /* return slots reserved to tx clients */ 1202 #define nm_kr_txspace(_k) nm_kr_rxspace(_k) 1203 1204 1205 /* True if no space in the tx ring, only valid after txsync_prologue */ 1206 static inline int 1207 nm_kr_txempty(struct netmap_kring *kring) 1208 { 1209 return kring->rhead == kring->nr_hwtail; 1210 } 1211 1212 /* True if no more completed slots in the rx ring, only valid after 1213 * rxsync_prologue */ 1214 #define nm_kr_rxempty(_k) nm_kr_txempty(_k) 1215 1216 /* True if the application needs to wait for more space on the ring 1217 * (more received packets or more free tx slots). 1218 * Only valid after *xsync_prologue. */ 1219 static inline int 1220 nm_kr_wouldblock(struct netmap_kring *kring) 1221 { 1222 return kring->rcur == kring->nr_hwtail; 1223 } 1224 1225 /* 1226 * protect against multiple threads using the same ring. 1227 * also check that the ring has not been stopped or locked 1228 */ 1229 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ 1230 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ 1231 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ 1232 1233 1234 /* release the previously acquired right to use the *sync() methods of the ring */ 1235 static __inline void nm_kr_put(struct netmap_kring *kr) 1236 { 1237 NM_ATOMIC_CLEAR(&kr->nr_busy); 1238 } 1239 1240 1241 /* true if the ifp that backed the adapter has disappeared (e.g., the 1242 * driver has been unloaded) 1243 */ 1244 static inline int nm_iszombie(struct netmap_adapter *na); 1245 1246 /* try to obtain exclusive right to issue the *sync() operations on the ring. 1247 * The right is obtained and must be later relinquished via nm_kr_put() if and 1248 * only if nm_kr_tryget() returns 0. 1249 * If can_sleep is 1 there are only two other possible outcomes: 1250 * - the function returns NM_KR_BUSY 1251 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr 1252 * (if non-null) 1253 * In both cases the caller will typically skip the ring, possibly collecting 1254 * errors along the way. 1255 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. 1256 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr 1257 * untouched: ideally, the caller should try again at a later time. 1258 */ 1259 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) 1260 { 1261 int busy = 1, stopped; 1262 /* check a first time without taking the lock 1263 * to avoid starvation for nm_kr_get() 1264 */ 1265 retry: 1266 stopped = kr->nkr_stopped; 1267 if (unlikely(stopped)) { 1268 goto stop; 1269 } 1270 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); 1271 /* we should not return NM_KR_BUSY if the ring was 1272 * actually stopped, so check another time after 1273 * the barrier provided by the atomic operation 1274 */ 1275 stopped = kr->nkr_stopped; 1276 if (unlikely(stopped)) { 1277 goto stop; 1278 } 1279 1280 if (unlikely(nm_iszombie(kr->na))) { 1281 stopped = NM_KR_STOPPED; 1282 goto stop; 1283 } 1284 1285 return unlikely(busy) ? NM_KR_BUSY : 0; 1286 1287 stop: 1288 if (!busy) 1289 nm_kr_put(kr); 1290 if (stopped == NM_KR_STOPPED) { 1291 /* if POLLERR is defined we want to use it to simplify netmap_poll(). 1292 * Otherwise, any non-zero value will do. 1293 */ 1294 #ifdef POLLERR 1295 #define NM_POLLERR POLLERR 1296 #else 1297 #define NM_POLLERR 1 1298 #endif /* POLLERR */ 1299 if (perr) 1300 *perr |= NM_POLLERR; 1301 #undef NM_POLLERR 1302 } else if (can_sleep) { 1303 tsleep(kr, 0, "NM_KR_TRYGET", 4); 1304 goto retry; 1305 } 1306 return stopped; 1307 } 1308 1309 /* put the ring in the 'stopped' state and wait for the current user (if any) to 1310 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED 1311 */ 1312 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) 1313 { 1314 kr->nkr_stopped = stopped; 1315 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 1316 tsleep(kr, 0, "NM_KR_GET", 4); 1317 } 1318 1319 /* restart a ring after a stop */ 1320 static __inline void nm_kr_start(struct netmap_kring *kr) 1321 { 1322 kr->nkr_stopped = 0; 1323 nm_kr_put(kr); 1324 } 1325 1326 1327 /* 1328 * The following functions are used by individual drivers to 1329 * support netmap operation. 1330 * 1331 * netmap_attach() initializes a struct netmap_adapter, allocating the 1332 * struct netmap_ring's and the struct selinfo. 1333 * 1334 * netmap_detach() frees the memory allocated by netmap_attach(). 1335 * 1336 * netmap_transmit() replaces the if_transmit routine of the interface, 1337 * and is used to intercept packets coming from the stack. 1338 * 1339 * netmap_load_map/netmap_reload_map are helper routines to set/reset 1340 * the dmamap for a packet buffer 1341 * 1342 * netmap_reset() is a helper routine to be called in the hw driver 1343 * when reinitializing a ring. It should not be called by 1344 * virtual ports (vale, pipes, monitor) 1345 */ 1346 int netmap_attach(struct netmap_adapter *); 1347 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); 1348 void netmap_detach(if_t); 1349 int netmap_transmit(if_t, struct mbuf *); 1350 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 1351 enum txrx tx, u_int n, u_int new_cur); 1352 int netmap_ring_reinit(struct netmap_kring *); 1353 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); 1354 1355 /* Return codes for netmap_*x_irq. */ 1356 enum { 1357 /* Driver should do normal interrupt processing, e.g. because 1358 * the interface is not in netmap mode. */ 1359 NM_IRQ_PASS = 0, 1360 /* Port is in netmap mode, and the interrupt work has been 1361 * completed. The driver does not have to notify netmap 1362 * again before the next interrupt. */ 1363 NM_IRQ_COMPLETED = -1, 1364 /* Port is in netmap mode, but the interrupt work has not been 1365 * completed. The driver has to make sure netmap will be 1366 * notified again soon, even if no more interrupts come (e.g. 1367 * on Linux the driver should not call napi_complete()). */ 1368 NM_IRQ_RESCHED = -2, 1369 }; 1370 1371 /* default functions to handle rx/tx interrupts */ 1372 int netmap_rx_irq(if_t, u_int, u_int *); 1373 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 1374 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); 1375 1376 1377 #ifdef WITH_VALE 1378 /* functions used by external modules to interface with VALE */ 1379 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 1380 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 1381 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 1382 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 1383 const char *netmap_bdg_name(struct netmap_vp_adapter *); 1384 #else /* !WITH_VALE */ 1385 #define netmap_vp_to_ifp(_vp) NULL 1386 #define netmap_ifp_to_vp(_ifp) NULL 1387 #define netmap_ifp_to_host_vp(_ifp) NULL 1388 #define netmap_bdg_idx(_vp) -1 1389 #endif /* WITH_VALE */ 1390 1391 static inline int 1392 nm_netmap_on(struct netmap_adapter *na) 1393 { 1394 return na && na->na_flags & NAF_NETMAP_ON; 1395 } 1396 1397 static inline int 1398 nm_native_on(struct netmap_adapter *na) 1399 { 1400 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 1401 } 1402 1403 static inline struct netmap_kring * 1404 netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t) 1405 { 1406 struct netmap_kring *kring = NULL; 1407 1408 if (!nm_native_on(na)) 1409 return NULL; 1410 1411 if (t == NR_RX && q < na->num_rx_rings) 1412 kring = na->rx_rings[q]; 1413 else if (t == NR_TX && q < na->num_tx_rings) 1414 kring = na->tx_rings[q]; 1415 else 1416 return NULL; 1417 1418 return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL; 1419 } 1420 1421 static inline int 1422 nm_iszombie(struct netmap_adapter *na) 1423 { 1424 return na == NULL || (na->na_flags & NAF_ZOMBIE); 1425 } 1426 1427 void nm_set_native_flags(struct netmap_adapter *); 1428 void nm_clear_native_flags(struct netmap_adapter *); 1429 1430 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff); 1431 1432 /* 1433 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap 1434 * kthreads. 1435 * We need netmap_ring* parameter, because in ptnetmap it is decoupled 1436 * from host kring. 1437 * The user-space ring pointers (head/cur/tail) are shared through 1438 * CSB between host and guest. 1439 */ 1440 1441 /* 1442 * validates parameters in the ring/kring, returns a value for head 1443 * If any error, returns ring_size to force a reinit. 1444 */ 1445 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); 1446 1447 1448 /* 1449 * validates parameters in the ring/kring, returns a value for head 1450 * If any error, returns ring_size lim to force a reinit. 1451 */ 1452 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); 1453 1454 1455 /* check/fix address and len in tx rings */ 1456 #if 1 /* debug version */ 1457 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1458 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1459 nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1460 kring->ring_id, nm_i, slot->buf_idx, len); \ 1461 if (_l > NETMAP_BUF_SIZE(_na)) \ 1462 _l = NETMAP_BUF_SIZE(_na); \ 1463 } } while (0) 1464 #else /* no debug version */ 1465 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1466 if (_l > NETMAP_BUF_SIZE(_na)) \ 1467 _l = NETMAP_BUF_SIZE(_na); \ 1468 } while (0) 1469 #endif 1470 1471 #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do { \ 1472 if ((l_) + (o_) < (l_) || \ 1473 (l_) + (o_) > NETMAP_BUF_SIZE(na_)) { \ 1474 (l_) = NETMAP_BUF_SIZE(na_) - (o_); \ 1475 } } while (0) 1476 1477 1478 /*---------------------------------------------------------------*/ 1479 /* 1480 * Support routines used by netmap subsystems 1481 * (native drivers, VALE, generic, pipes, monitors, ...) 1482 */ 1483 1484 1485 /* common routine for all functions that create a netmap adapter. It performs 1486 * two main tasks: 1487 * - if the na points to an ifp, mark the ifp as netmap capable 1488 * using na as its native adapter; 1489 * - provide defaults for the setup callbacks and the memory allocator 1490 */ 1491 int netmap_attach_common(struct netmap_adapter *); 1492 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1493 * coming from a struct nmreq_register 1494 */ 1495 int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr); 1496 /* update the ring parameters (number and size of tx and rx rings). 1497 * It calls the nm_config callback, if available. 1498 */ 1499 int netmap_update_config(struct netmap_adapter *na); 1500 /* create and initialize the common fields of the krings array. 1501 * using the information that must be already available in the na. 1502 * tailroom can be used to request the allocation of additional 1503 * tailroom bytes after the krings array. This is used by 1504 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1505 * leasing-related data structures 1506 */ 1507 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1508 /* deletes the kring array of the adapter. The array must have 1509 * been created using netmap_krings_create 1510 */ 1511 void netmap_krings_delete(struct netmap_adapter *na); 1512 1513 int netmap_hw_krings_create(struct netmap_adapter *na); 1514 void netmap_hw_krings_delete(struct netmap_adapter *na); 1515 1516 /* set the stopped/enabled status of ring 1517 * When stopping, they also wait for all current activity on the ring to 1518 * terminate. The status change is then notified using the na nm_notify 1519 * callback. 1520 */ 1521 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1522 /* set the stopped/enabled status of all rings of the adapter. */ 1523 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1524 /* convenience wrappers for netmap_set_all_rings */ 1525 void netmap_disable_all_rings(if_t); 1526 void netmap_enable_all_rings(if_t); 1527 1528 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); 1529 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1530 struct nmreq_header *); 1531 void netmap_do_unregif(struct netmap_priv_d *priv); 1532 1533 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1534 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1535 if_t *ifp, struct netmap_mem_d *nmd, int create); 1536 void netmap_unget_na(struct netmap_adapter *na, if_t ifp); 1537 int netmap_get_hw_na(if_t ifp, 1538 struct netmap_mem_d *nmd, struct netmap_adapter **na); 1539 void netmap_mem_restore(struct netmap_adapter *na); 1540 1541 #ifdef WITH_VALE 1542 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1543 struct netmap_vp_adapter *, void *private_data); 1544 1545 /* these are redefined in case of no VALE support */ 1546 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1547 struct netmap_mem_d *nmd, int create); 1548 void *netmap_vale_create(const char *bdg_name, int *return_status); 1549 int netmap_vale_destroy(const char *bdg_name, void *auth_token); 1550 1551 extern unsigned int vale_max_bridges; 1552 1553 #else /* !WITH_VALE */ 1554 #define netmap_bdg_learning(_1, _2, _3, _4) 0 1555 #define netmap_get_vale_na(_1, _2, _3, _4) 0 1556 #define netmap_bdg_create(_1, _2) NULL 1557 #define netmap_bdg_destroy(_1, _2) 0 1558 #define vale_max_bridges 1 1559 #endif /* !WITH_VALE */ 1560 1561 #ifdef WITH_PIPES 1562 /* max number of pipes per device */ 1563 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ 1564 void netmap_pipe_dealloc(struct netmap_adapter *); 1565 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1566 struct netmap_mem_d *nmd, int create); 1567 #else /* !WITH_PIPES */ 1568 #define NM_MAXPIPES 0 1569 #define netmap_pipe_alloc(_1, _2) 0 1570 #define netmap_pipe_dealloc(_1) 1571 #define netmap_get_pipe_na(hdr, _2, _3, _4) \ 1572 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) 1573 #endif 1574 1575 #ifdef WITH_MONITOR 1576 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1577 struct netmap_mem_d *nmd, int create); 1578 void netmap_monitor_stop(struct netmap_adapter *na); 1579 #else 1580 #define netmap_get_monitor_na(hdr, _2, _3, _4) \ 1581 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1582 #endif 1583 1584 #ifdef WITH_NMNULL 1585 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1586 struct netmap_mem_d *nmd, int create); 1587 #else /* !WITH_NMNULL */ 1588 #define netmap_get_null_na(hdr, _2, _3, _4) \ 1589 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1590 #endif /* WITH_NMNULL */ 1591 1592 #ifdef CONFIG_NET_NS 1593 struct net *netmap_bns_get(void); 1594 void netmap_bns_put(struct net *); 1595 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1596 #else 1597 extern struct nm_bridge *nm_bridges; 1598 #define netmap_bns_get() 1599 #define netmap_bns_put(_1) 1600 #define netmap_bns_getbridges(b, n) \ 1601 do { *b = nm_bridges; *n = vale_max_bridges; } while (0) 1602 #endif 1603 1604 /* Various prototypes */ 1605 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); 1606 int netmap_init(void); 1607 void netmap_fini(void); 1608 int netmap_get_memory(struct netmap_priv_d* p); 1609 void netmap_dtor(void *data); 1610 1611 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1612 struct thread *, int nr_body_is_user); 1613 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1614 struct thread *td); 1615 size_t nmreq_size_by_type(uint16_t nr_reqtype); 1616 1617 /* netmap_adapter creation/destruction */ 1618 1619 // #define NM_DEBUG_PUTGET 1 1620 1621 #ifdef NM_DEBUG_PUTGET 1622 1623 #define NM_DBG(f) __##f 1624 1625 void __netmap_adapter_get(struct netmap_adapter *na); 1626 1627 #define netmap_adapter_get(na) \ 1628 do { \ 1629 struct netmap_adapter *__na = na; \ 1630 __netmap_adapter_get(__na); \ 1631 nm_prinf("getting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount); \ 1632 } while (0) 1633 1634 int __netmap_adapter_put(struct netmap_adapter *na); 1635 1636 #define netmap_adapter_put(na) \ 1637 ({ \ 1638 struct netmap_adapter *__na = na; \ 1639 if (__na == NULL) \ 1640 nm_prinf("putting NULL"); \ 1641 else \ 1642 nm_prinf("putting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount - 1); \ 1643 __netmap_adapter_put(__na); \ 1644 }) 1645 1646 #else /* !NM_DEBUG_PUTGET */ 1647 1648 #define NM_DBG(f) f 1649 void netmap_adapter_get(struct netmap_adapter *na); 1650 int netmap_adapter_put(struct netmap_adapter *na); 1651 1652 #endif /* !NM_DEBUG_PUTGET */ 1653 1654 1655 /* 1656 * module variables 1657 */ 1658 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) 1659 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) 1660 extern int netmap_no_pendintr; 1661 extern int netmap_verbose; 1662 #ifdef CONFIG_NETMAP_DEBUG 1663 extern int netmap_debug; /* for debugging */ 1664 #else /* !CONFIG_NETMAP_DEBUG */ 1665 #define netmap_debug (0) 1666 #endif /* !CONFIG_NETMAP_DEBUG */ 1667 enum { /* debug flags */ 1668 NM_DEBUG_ON = 1, /* generic debug messages */ 1669 NM_DEBUG_HOST = 0x2, /* debug host stack */ 1670 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ 1671 NM_DEBUG_TXSYNC = 0x20, 1672 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ 1673 NM_DEBUG_TXINTR = 0x200, 1674 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ 1675 NM_DEBUG_NIC_TXSYNC = 0x2000, 1676 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ 1677 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ 1678 NM_DEBUG_BDG = NM_DEBUG_VALE, 1679 }; 1680 1681 extern int netmap_txsync_retry; 1682 extern int netmap_generic_hwcsum; 1683 extern int netmap_generic_mit; 1684 extern int netmap_generic_ringsize; 1685 extern int netmap_generic_rings; 1686 #ifdef linux 1687 extern int netmap_generic_txqdisc; 1688 #endif 1689 1690 /* 1691 * NA returns a pointer to the struct netmap adapter from the ifp. 1692 * The if_getnetmapadapter() and if_setnetmapadapter() helpers are 1693 * os-specific and must be defined in glue code. 1694 */ 1695 #define NA(_ifp) (if_getnetmapadapter(_ifp)) 1696 1697 /* 1698 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA 1699 * based on the if_setnetmapadapter() setter function. 1700 * Glue code may override this by defining its own NM_ATTACH_NA 1701 */ 1702 #ifndef NM_ATTACH_NA 1703 /* 1704 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we 1705 * overload another pointer in the netdev. 1706 * 1707 * We check if NA(ifp) is set and its first element has a related 1708 * magic value. The capenable is within the struct netmap_adapter. 1709 */ 1710 #define NETMAP_MAGIC 0x52697a7a 1711 1712 #define NM_NA_VALID(ifp) (NA(ifp) && \ 1713 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1714 1715 #define NM_ATTACH_NA(ifp, na) do { \ 1716 if_setnetmapadapter(ifp, na); \ 1717 if (NA(ifp)) \ 1718 NA(ifp)->magic = \ 1719 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ 1720 } while(0) 1721 #define NM_RESTORE_NA(ifp, na) if_setnetmapadapter(ifp, na); 1722 1723 #define NM_DETACH_NA(ifp) do { if_setnetmapadapter(ifp, NULL); } while (0) 1724 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) 1725 #endif /* !NM_ATTACH_NA */ 1726 1727 1728 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) 1729 1730 #if defined(__FreeBSD__) 1731 extern int netmap_port_numa_affinity; 1732 1733 static inline int 1734 nm_iommu_group_id(struct netmap_adapter *na) 1735 { 1736 return (-1); 1737 } 1738 1739 static inline int 1740 nm_numa_domain(struct netmap_adapter *na) 1741 { 1742 int domain; 1743 1744 /* 1745 * If the system has only one NUMA domain, don't bother distinguishing 1746 * between IF_NODOM and domain 0. 1747 */ 1748 if (vm_ndomains == 1 || netmap_port_numa_affinity == 0) 1749 return (-1); 1750 domain = if_getnumadomain(na->ifp); 1751 if (domain == IF_NODOM) 1752 domain = -1; 1753 return (domain); 1754 } 1755 1756 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1757 static void netmap_dmamap_cb(__unused void *arg, 1758 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1759 { 1760 } 1761 1762 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1763 * XXX can we do it without a callback ? 1764 */ 1765 static inline int 1766 netmap_load_map(struct netmap_adapter *na, 1767 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1768 { 1769 if (map) 1770 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1771 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1772 return 0; 1773 } 1774 1775 static inline void 1776 netmap_unload_map(struct netmap_adapter *na, 1777 bus_dma_tag_t tag, bus_dmamap_t map) 1778 { 1779 if (map) 1780 bus_dmamap_unload(tag, map); 1781 } 1782 1783 #define netmap_sync_map(na, tag, map, sz, t) 1784 1785 /* update the map when a buffer changes. */ 1786 static inline void 1787 netmap_reload_map(struct netmap_adapter *na, 1788 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1789 { 1790 if (map) { 1791 bus_dmamap_unload(tag, map); 1792 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1793 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1794 } 1795 } 1796 1797 #elif defined(_WIN32) 1798 1799 #else /* linux */ 1800 1801 int nm_iommu_group_id(bus_dma_tag_t dev); 1802 #include <linux/dma-mapping.h> 1803 1804 /* 1805 * on linux we need 1806 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1807 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) 1808 */ 1809 #if 0 1810 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1811 /* set time_stamp *before* dma to help avoid a possible race */ 1812 buffer_info->time_stamp = jiffies; 1813 buffer_info->mapped_as_page = false; 1814 buffer_info->length = len; 1815 //buffer_info->next_to_watch = l; 1816 /* reload dma map */ 1817 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1818 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1819 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1820 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1821 1822 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1823 nm_prerr("dma mapping error"); 1824 /* goto dma_error; See e1000_put_txbuf() */ 1825 /* XXX reset */ 1826 } 1827 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1828 1829 #endif 1830 1831 static inline int 1832 netmap_load_map(struct netmap_adapter *na, 1833 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) 1834 { 1835 if (map) { 1836 *map = dma_map_single(na->pdev, buf, size, 1837 DMA_BIDIRECTIONAL); 1838 if (dma_mapping_error(na->pdev, *map)) { 1839 *map = 0; 1840 return ENOMEM; 1841 } 1842 } 1843 return 0; 1844 } 1845 1846 static inline void 1847 netmap_unload_map(struct netmap_adapter *na, 1848 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) 1849 { 1850 if (*map) { 1851 dma_unmap_single(na->pdev, *map, sz, 1852 DMA_BIDIRECTIONAL); 1853 } 1854 } 1855 1856 #ifdef NETMAP_LINUX_HAVE_DMASYNC 1857 static inline void 1858 netmap_sync_map_cpu(struct netmap_adapter *na, 1859 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1860 { 1861 if (*map) { 1862 dma_sync_single_for_cpu(na->pdev, *map, sz, 1863 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1864 } 1865 } 1866 1867 static inline void 1868 netmap_sync_map_dev(struct netmap_adapter *na, 1869 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1870 { 1871 if (*map) { 1872 dma_sync_single_for_device(na->pdev, *map, sz, 1873 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1874 } 1875 } 1876 1877 static inline void 1878 netmap_reload_map(struct netmap_adapter *na, 1879 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1880 { 1881 u_int sz = NETMAP_BUF_SIZE(na); 1882 1883 if (*map) { 1884 dma_unmap_single(na->pdev, *map, sz, 1885 DMA_BIDIRECTIONAL); 1886 } 1887 1888 *map = dma_map_single(na->pdev, buf, sz, 1889 DMA_BIDIRECTIONAL); 1890 } 1891 #else /* !NETMAP_LINUX_HAVE_DMASYNC */ 1892 #define netmap_sync_map_cpu(na, tag, map, sz, t) 1893 #define netmap_sync_map_dev(na, tag, map, sz, t) 1894 #endif /* NETMAP_LINUX_HAVE_DMASYNC */ 1895 1896 #endif /* linux */ 1897 1898 1899 /* 1900 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1901 */ 1902 static inline int 1903 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1904 { 1905 int n = kr->nkr_num_slots; 1906 1907 if (likely(kr->nkr_hwofs == 0)) { 1908 return idx; 1909 } 1910 1911 idx += kr->nkr_hwofs; 1912 if (idx < 0) 1913 return idx + n; 1914 else if (idx < n) 1915 return idx; 1916 else 1917 return idx - n; 1918 } 1919 1920 1921 static inline int 1922 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1923 { 1924 int n = kr->nkr_num_slots; 1925 1926 if (likely(kr->nkr_hwofs == 0)) { 1927 return idx; 1928 } 1929 1930 idx -= kr->nkr_hwofs; 1931 if (idx < 0) 1932 return idx + n; 1933 else if (idx < n) 1934 return idx; 1935 else 1936 return idx - n; 1937 } 1938 1939 1940 /* Entries of the look-up table. */ 1941 #ifdef __FreeBSD__ 1942 struct lut_entry { 1943 void *vaddr; /* virtual address. */ 1944 vm_paddr_t paddr; /* physical address. */ 1945 }; 1946 #else /* linux & _WIN32 */ 1947 /* dma-mapping in linux can assign a buffer a different address 1948 * depending on the device, so we need to have a separate 1949 * physical-address look-up table for each na. 1950 * We can still share the vaddrs, though, therefore we split 1951 * the lut_entry structure. 1952 */ 1953 struct lut_entry { 1954 void *vaddr; /* virtual address. */ 1955 }; 1956 1957 struct plut_entry { 1958 vm_paddr_t paddr; /* physical address. */ 1959 }; 1960 #endif /* linux & _WIN32 */ 1961 1962 struct netmap_obj_pool; 1963 1964 /* alignment for netmap buffers */ 1965 #define NM_BUF_ALIGN 64 1966 1967 /* 1968 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1969 * PNMB also fills the physical address 1970 */ 1971 static inline void * 1972 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1973 { 1974 struct lut_entry *lut = na->na_lut.lut; 1975 uint32_t i = slot->buf_idx; 1976 return (unlikely(i >= na->na_lut.objtotal)) ? 1977 lut[0].vaddr : lut[i].vaddr; 1978 } 1979 1980 static inline void * 1981 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1982 { 1983 uint32_t i = slot->buf_idx; 1984 struct lut_entry *lut = na->na_lut.lut; 1985 struct plut_entry *plut = na->na_lut.plut; 1986 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1987 1988 #ifdef _WIN32 1989 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; 1990 #else 1991 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; 1992 #endif 1993 return ret; 1994 } 1995 1996 static inline void 1997 nm_write_offset(struct netmap_kring *kring, 1998 struct netmap_slot *slot, uint64_t offset) 1999 { 2000 slot->ptr = (slot->ptr & ~kring->offset_mask) | 2001 (offset & kring->offset_mask); 2002 } 2003 2004 static inline uint64_t 2005 nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot) 2006 { 2007 uint64_t offset = (slot->ptr & kring->offset_mask); 2008 if (unlikely(offset > kring->offset_max)) 2009 offset = kring->offset_max; 2010 return offset; 2011 } 2012 2013 static inline void * 2014 NMB_O(struct netmap_kring *kring, struct netmap_slot *slot) 2015 { 2016 void *addr = NMB(kring->na, slot); 2017 return (char *)addr + nm_get_offset(kring, slot); 2018 } 2019 2020 static inline void * 2021 PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp) 2022 { 2023 void *addr = PNMB(kring->na, slot, pp); 2024 uint64_t offset = nm_get_offset(kring, slot); 2025 addr = (char *)addr + offset; 2026 *pp += offset; 2027 return addr; 2028 } 2029 2030 2031 /* 2032 * Structure associated to each netmap file descriptor. 2033 * It is created on open and left unbound (np_nifp == NULL). 2034 * A successful NIOCREGIF will set np_nifp and the first few fields; 2035 * this is protected by a global lock (NMG_LOCK) due to low contention. 2036 * 2037 * np_refs counts the number of references to the structure: one for the fd, 2038 * plus (on FreeBSD) one for each active mmap which we track ourselves 2039 * (linux automatically tracks them, but FreeBSD does not). 2040 * np_refs is protected by NMG_LOCK. 2041 * 2042 * Read access to the structure is lock free, because ni_nifp once set 2043 * can only go to 0 when nobody is using the entry anymore. Readers 2044 * must check that np_nifp != NULL before using the other fields. 2045 */ 2046 struct netmap_priv_d { 2047 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 2048 2049 struct netmap_adapter *np_na; 2050 if_t np_ifp; 2051 uint32_t np_flags; /* from the ioctl */ 2052 u_int np_qfirst[NR_TXRX], 2053 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 2054 uint16_t np_txpoll; 2055 uint16_t np_kloop_state; /* use with NMG_LOCK held */ 2056 #define NM_SYNC_KLOOP_RUNNING (1 << 0) 2057 #define NM_SYNC_KLOOP_STOPPING (1 << 1) 2058 int np_sync_flags; /* to be passed to nm_sync */ 2059 2060 int np_refs; /* use with NMG_LOCK held */ 2061 2062 /* pointers to the selinfo to be used for selrecord. 2063 * Either the local or the global one depending on the 2064 * number of rings. 2065 */ 2066 NM_SELINFO_T *np_si[NR_TXRX]; 2067 2068 /* In the optional CSB mode, the user must specify the start address 2069 * of two arrays of Communication Status Block (CSB) entries, for the 2070 * two directions (kernel read application write, and kernel write 2071 * application read). 2072 * The number of entries must agree with the number of rings bound to 2073 * the netmap file descriptor. The entries corresponding to the TX 2074 * rings are laid out before the ones corresponding to the RX rings. 2075 * 2076 * Array of CSB entries for application --> kernel communication 2077 * (N entries). */ 2078 struct nm_csb_atok *np_csb_atok_base; 2079 /* Array of CSB entries for kernel --> application communication 2080 * (N entries). */ 2081 struct nm_csb_ktoa *np_csb_ktoa_base; 2082 2083 #ifdef linux 2084 struct file *np_filp; /* used by sync kloop */ 2085 #endif /* linux */ 2086 }; 2087 2088 struct netmap_priv_d *netmap_priv_new(void); 2089 void netmap_priv_delete(struct netmap_priv_d *); 2090 2091 static inline int nm_kring_pending(struct netmap_priv_d *np) 2092 { 2093 struct netmap_adapter *na = np->np_na; 2094 enum txrx t; 2095 int i; 2096 2097 for_rx_tx(t) { 2098 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { 2099 struct netmap_kring *kring = NMR(na, t)[i]; 2100 if (kring->nr_mode != kring->nr_pending_mode) { 2101 return 1; 2102 } 2103 } 2104 } 2105 return 0; 2106 } 2107 2108 /* call with NMG_LOCK held */ 2109 static __inline int 2110 nm_si_user(struct netmap_priv_d *priv, enum txrx t) 2111 { 2112 return (priv->np_na != NULL && 2113 (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); 2114 } 2115 2116 #ifdef WITH_PIPES 2117 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); 2118 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); 2119 int netmap_pipe_krings_create_both(struct netmap_adapter *na, 2120 struct netmap_adapter *ona); 2121 void netmap_pipe_krings_delete_both(struct netmap_adapter *na, 2122 struct netmap_adapter *ona); 2123 int netmap_pipe_reg_both(struct netmap_adapter *na, 2124 struct netmap_adapter *ona); 2125 #endif /* WITH_PIPES */ 2126 2127 #ifdef WITH_MONITOR 2128 2129 struct netmap_monitor_adapter { 2130 struct netmap_adapter up; 2131 2132 struct netmap_priv_d priv; 2133 uint32_t flags; 2134 }; 2135 2136 #endif /* WITH_MONITOR */ 2137 2138 2139 #ifdef WITH_GENERIC 2140 /* 2141 * generic netmap emulation for devices that do not have 2142 * native netmap support. 2143 */ 2144 int generic_netmap_attach(if_t ifp); 2145 int generic_rx_handler(if_t ifp, struct mbuf *m); 2146 2147 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); 2148 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); 2149 2150 int na_is_generic(struct netmap_adapter *na); 2151 2152 /* 2153 * the generic transmit routine is passed a structure to optionally 2154 * build a queue of descriptors, in an OS-specific way. 2155 * The payload is at addr, if non-null, and the routine should send or queue 2156 * the packet, returning 0 if successful, 1 on failure. 2157 * 2158 * At the end, if head is non-null, there will be an additional call 2159 * to the function with addr = NULL; this should tell the OS-specific 2160 * routine to send the queue and free any resources. Failure is ignored. 2161 */ 2162 struct nm_os_gen_arg { 2163 if_t ifp; 2164 void *m; /* os-specific mbuf-like object */ 2165 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ 2166 void *addr; /* payload of current packet */ 2167 u_int len; /* packet length */ 2168 u_int ring_nr; /* transmit ring index */ 2169 u_int qevent; /* in txqdisc mode, place an event on this mbuf */ 2170 }; 2171 2172 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); 2173 int nm_os_generic_find_num_desc(if_t ifp, u_int *tx, u_int *rx); 2174 void nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq); 2175 void nm_os_generic_set_features(struct netmap_generic_adapter *gna); 2176 2177 static inline if_t 2178 netmap_generic_getifp(struct netmap_generic_adapter *gna) 2179 { 2180 if (gna->prev) 2181 return gna->prev->ifp; 2182 2183 return gna->up.up.ifp; 2184 } 2185 2186 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); 2187 2188 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 2189 #ifdef RATE_GENERIC 2190 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 2191 #else 2192 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 2193 #endif 2194 2195 /* 2196 * netmap_mitigation API. This is used by the generic adapter 2197 * to reduce the number of interrupt requests/selwakeup 2198 * to clients on incoming packets. 2199 */ 2200 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, 2201 struct netmap_adapter *na); 2202 void nm_os_mitigation_start(struct nm_generic_mit *mit); 2203 void nm_os_mitigation_restart(struct nm_generic_mit *mit); 2204 int nm_os_mitigation_active(struct nm_generic_mit *mit); 2205 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); 2206 #else /* !WITH_GENERIC */ 2207 #define generic_netmap_attach(ifp) (EOPNOTSUPP) 2208 #define na_is_generic(na) (0) 2209 #endif /* WITH_GENERIC */ 2210 2211 /* Shared declarations for the VALE switch. */ 2212 2213 /* 2214 * Each transmit queue accumulates a batch of packets into 2215 * a structure before forwarding. Packets to the same 2216 * destination are put in a list using ft_next as a link field. 2217 * ft_frags and ft_next are valid only on the first fragment. 2218 */ 2219 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 2220 void *ft_buf; /* netmap or indirect buffer */ 2221 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 2222 uint16_t ft_offset; /* dst port (unused) */ 2223 uint16_t ft_flags; /* flags, e.g. indirect */ 2224 uint16_t ft_len; /* src fragment len */ 2225 uint16_t ft_next; /* next packet to same destination */ 2226 }; 2227 2228 /* struct 'virtio_net_hdr' from linux. */ 2229 struct nm_vnet_hdr { 2230 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 2231 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 2232 uint8_t flags; 2233 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 2234 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 2235 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 2236 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 2237 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 2238 uint8_t gso_type; 2239 uint16_t hdr_len; 2240 uint16_t gso_size; 2241 uint16_t csum_start; 2242 uint16_t csum_offset; 2243 }; 2244 2245 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 2246 2247 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 2248 2249 struct nm_iphdr { 2250 uint8_t version_ihl; 2251 uint8_t tos; 2252 uint16_t tot_len; 2253 uint16_t id; 2254 uint16_t frag_off; 2255 uint8_t ttl; 2256 uint8_t protocol; 2257 uint16_t check; 2258 uint32_t saddr; 2259 uint32_t daddr; 2260 /*The options start here. */ 2261 }; 2262 2263 struct nm_tcphdr { 2264 uint16_t source; 2265 uint16_t dest; 2266 uint32_t seq; 2267 uint32_t ack_seq; 2268 uint8_t doff; /* Data offset + Reserved */ 2269 uint8_t flags; 2270 uint16_t window; 2271 uint16_t check; 2272 uint16_t urg_ptr; 2273 }; 2274 2275 struct nm_udphdr { 2276 uint16_t source; 2277 uint16_t dest; 2278 uint16_t len; 2279 uint16_t check; 2280 }; 2281 2282 struct nm_ipv6hdr { 2283 uint8_t priority_version; 2284 uint8_t flow_lbl[3]; 2285 2286 uint16_t payload_len; 2287 uint8_t nexthdr; 2288 uint8_t hop_limit; 2289 2290 uint8_t saddr[16]; 2291 uint8_t daddr[16]; 2292 }; 2293 2294 /* Type used to store a checksum (in host byte order) that hasn't been 2295 * folded yet. 2296 */ 2297 #define rawsum_t uint32_t 2298 2299 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 2300 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); 2301 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 2302 size_t datalen, uint16_t *check); 2303 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 2304 size_t datalen, uint16_t *check); 2305 uint16_t nm_os_csum_fold(rawsum_t cur_sum); 2306 2307 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 2308 struct netmap_vp_adapter *dst_na, 2309 const struct nm_bdg_fwd *ft_p, 2310 struct netmap_ring *dst_ring, 2311 u_int *j, u_int lim, u_int *howmany); 2312 2313 /* persistent virtual port routines */ 2314 int nm_os_vi_persist(const char *, if_t *); 2315 void nm_os_vi_detach(if_t); 2316 void nm_os_vi_init_index(void); 2317 2318 /* 2319 * kernel thread routines 2320 */ 2321 struct nm_kctx; /* OS-specific kernel context - opaque */ 2322 typedef void (*nm_kctx_worker_fn_t)(void *data); 2323 2324 /* kthread configuration */ 2325 struct nm_kctx_cfg { 2326 long type; /* kthread type/identifier */ 2327 nm_kctx_worker_fn_t worker_fn; /* worker function */ 2328 void *worker_private;/* worker parameter */ 2329 int attach_user; /* attach kthread to user process */ 2330 }; 2331 /* kthread configuration */ 2332 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, 2333 void *opaque); 2334 int nm_os_kctx_worker_start(struct nm_kctx *); 2335 void nm_os_kctx_worker_stop(struct nm_kctx *); 2336 void nm_os_kctx_destroy(struct nm_kctx *); 2337 void nm_os_kctx_worker_setaff(struct nm_kctx *, int); 2338 u_int nm_os_ncpus(void); 2339 2340 int netmap_sync_kloop(struct netmap_priv_d *priv, 2341 struct nmreq_header *hdr); 2342 int netmap_sync_kloop_stop(struct netmap_priv_d *priv); 2343 2344 #ifdef WITH_PTNETMAP 2345 /* ptnetmap guest routines */ 2346 2347 /* 2348 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver 2349 */ 2350 struct ptnetmap_memdev; 2351 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, 2352 uint64_t *); 2353 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); 2354 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); 2355 2356 /* 2357 * netmap adapter for guest ptnetmap ports 2358 */ 2359 struct netmap_pt_guest_adapter { 2360 /* The netmap adapter to be used by netmap applications. 2361 * This field must be the first, to allow upcast. */ 2362 struct netmap_hw_adapter hwup; 2363 2364 /* The netmap adapter to be used by the driver. */ 2365 struct netmap_hw_adapter dr; 2366 2367 /* Reference counter to track users of backend netmap port: the 2368 * network stack and netmap clients. 2369 * Used to decide when we need (de)allocate krings/rings and 2370 * start (stop) ptnetmap kthreads. */ 2371 int backend_users; 2372 2373 }; 2374 2375 int netmap_pt_guest_attach(struct netmap_adapter *na, 2376 unsigned int nifp_offset, 2377 unsigned int memid); 2378 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, 2379 struct nm_csb_ktoa *ktoa, 2380 struct netmap_kring *kring, int flags); 2381 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, 2382 struct nm_csb_ktoa *ktoa, 2383 struct netmap_kring *kring, int flags); 2384 int ptnet_nm_krings_create(struct netmap_adapter *na); 2385 void ptnet_nm_krings_delete(struct netmap_adapter *na); 2386 void ptnet_nm_dtor(struct netmap_adapter *na); 2387 2388 /* Helper function wrapping nm_sync_kloop_appl_read(). */ 2389 static inline void 2390 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) 2391 { 2392 struct netmap_ring *ring = kring->ring; 2393 2394 /* Update hwcur and hwtail as known by the host. */ 2395 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); 2396 2397 /* nm_sync_finalize */ 2398 ring->tail = kring->rtail = kring->nr_hwtail; 2399 } 2400 #endif /* WITH_PTNETMAP */ 2401 2402 #ifdef __FreeBSD__ 2403 /* 2404 * FreeBSD mbuf allocator/deallocator in emulation mode: 2405 * 2406 * We allocate mbufs with m_gethdr(), since the mbuf header is needed 2407 * by the driver. We also attach a customly-provided external storage, 2408 * which in this case is a netmap buffer. 2409 * 2410 * The dtor function does nothing, however we need it since mb_free_ext() 2411 * has a KASSERT(), checking that the mbuf dtor function is not NULL. 2412 */ 2413 2414 static inline void 2415 nm_generic_mbuf_dtor(struct mbuf *m) 2416 { 2417 uma_zfree(zone_clust, m->m_ext.ext_buf); 2418 } 2419 2420 #define SET_MBUF_DESTRUCTOR(m, fn, na) do { \ 2421 (m)->m_ext.ext_free = (fn != NULL) ? \ 2422 (void *)fn : (void *)nm_generic_mbuf_dtor; \ 2423 (m)->m_ext.ext_arg1 = na; \ 2424 } while (0) 2425 2426 static inline struct mbuf * 2427 nm_os_get_mbuf(if_t ifp __unused, int len) 2428 { 2429 struct mbuf *m; 2430 void *buf; 2431 2432 KASSERT(len <= MCLBYTES, ("%s: len %d", __func__, len)); 2433 2434 m = m_gethdr(M_NOWAIT, MT_DATA); 2435 if (__predict_false(m == NULL)) 2436 return (NULL); 2437 buf = uma_zalloc(zone_clust, M_NOWAIT); 2438 if (__predict_false(buf == NULL)) { 2439 m_free(m); 2440 return (NULL); 2441 } 2442 m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0, 2443 EXT_NET_DRV); 2444 return (m); 2445 } 2446 2447 static inline void 2448 nm_os_mbuf_reinit(struct mbuf *m) 2449 { 2450 void *buf; 2451 2452 KASSERT((m->m_flags & M_EXT) != 0, 2453 ("%s: mbuf %p has no external storage", __func__, m)); 2454 KASSERT(m->m_ext.ext_size == MCLBYTES, 2455 ("%s: mbuf %p has wrong external storage size %u", __func__, m, 2456 m->m_ext.ext_size)); 2457 2458 buf = m->m_ext.ext_buf; 2459 m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR); 2460 m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0, 2461 EXT_NET_DRV); 2462 } 2463 2464 #endif /* __FreeBSD__ */ 2465 2466 struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t); 2467 2468 int netmap_init_bridges(void); 2469 void netmap_uninit_bridges(void); 2470 2471 /* Functions to read and write CSB fields from the kernel. */ 2472 #if defined (linux) 2473 #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) 2474 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) 2475 #else /* ! linux */ 2476 #define CSB_READ(csb, field, r) do { \ 2477 int32_t v __diagused; \ 2478 \ 2479 v = fuword32(&csb->field); \ 2480 KASSERT(v != -1, ("%s: fuword32 failed", __func__)); \ 2481 r = v; \ 2482 } while (0) 2483 #define CSB_WRITE(csb, field, v) do { \ 2484 int error __diagused; \ 2485 \ 2486 error = suword32(&csb->field, v); \ 2487 KASSERT(error == 0, ("%s: suword32 failed", __func__)); \ 2488 } while (0) 2489 #endif /* ! linux */ 2490 2491 /* some macros that may not be defined */ 2492 #ifndef ETH_HLEN 2493 #define ETH_HLEN 6 2494 #endif 2495 #ifndef ETH_FCS_LEN 2496 #define ETH_FCS_LEN 4 2497 #endif 2498 #ifndef VLAN_HLEN 2499 #define VLAN_HLEN 4 2500 #endif 2501 2502 #endif /* _NET_NETMAP_KERN_H_ */ 2503