xref: /freebsd/sys/dev/netmap/netmap_kern.h (revision af23369a6deaaeb612ab266eb88b8bb8d560c322)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5  * Copyright (C) 2013-2016 Universita` di Pisa
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * $FreeBSD$
32  *
33  * The header contains the definitions of constants and function
34  * prototypes used only in kernelspace.
35  */
36 
37 #ifndef _NET_NETMAP_KERN_H_
38 #define _NET_NETMAP_KERN_H_
39 
40 #if defined(linux)
41 
42 #if defined(CONFIG_NETMAP_EXTMEM)
43 #define WITH_EXTMEM
44 #endif
45 #if  defined(CONFIG_NETMAP_VALE)
46 #define WITH_VALE
47 #endif
48 #if defined(CONFIG_NETMAP_PIPE)
49 #define WITH_PIPES
50 #endif
51 #if defined(CONFIG_NETMAP_MONITOR)
52 #define WITH_MONITOR
53 #endif
54 #if defined(CONFIG_NETMAP_GENERIC)
55 #define WITH_GENERIC
56 #endif
57 #if defined(CONFIG_NETMAP_PTNETMAP)
58 #define WITH_PTNETMAP
59 #endif
60 #if defined(CONFIG_NETMAP_SINK)
61 #define WITH_SINK
62 #endif
63 #if defined(CONFIG_NETMAP_NULL)
64 #define WITH_NMNULL
65 #endif
66 
67 #elif defined (_WIN32)
68 #define WITH_VALE	// comment out to disable VALE support
69 #define WITH_PIPES
70 #define WITH_MONITOR
71 #define WITH_GENERIC
72 #define WITH_NMNULL
73 
74 #else	/* neither linux nor windows */
75 #define WITH_VALE	// comment out to disable VALE support
76 #define WITH_PIPES
77 #define WITH_MONITOR
78 #define WITH_GENERIC
79 #define WITH_EXTMEM
80 #define WITH_NMNULL
81 #endif
82 
83 #if defined(__FreeBSD__)
84 #include <sys/selinfo.h>
85 
86 #define likely(x)	__builtin_expect((long)!!(x), 1L)
87 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
88 #define __user
89 
90 #define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
91 
92 #define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
93 #define NM_MTX_INIT(m)		sx_init(&(m), #m)
94 #define NM_MTX_DESTROY(m)	sx_destroy(&(m))
95 #define NM_MTX_LOCK(m)		sx_xlock(&(m))
96 #define NM_MTX_SPINLOCK(m)	while (!sx_try_xlock(&(m))) ;
97 #define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
98 #define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
99 
100 #define	NM_SELINFO_T	struct nm_selinfo
101 #define NM_SELRECORD_T	struct thread
102 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
103 #define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
104 #define MBUF_TRANSMIT(na, ifp, m)	((na)->if_transmit(ifp, m))
105 #define	GEN_TX_MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
106 
107 #define NM_ATOMIC_T	volatile int /* required by atomic/bitops.h */
108 /* atomic operations */
109 #include <machine/atomic.h>
110 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
111 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
112 
113 #define	WNA(_ifp)	if_getnetmapadapter(_ifp)
114 
115 struct netmap_adapter *netmap_getna(if_t ifp);
116 
117 #define MBUF_REFCNT(m)		((m)->m_ext.ext_count)
118 #define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
119 
120 #define MBUF_QUEUED(m)		1
121 
122 struct nm_selinfo {
123 	/* Support for select(2) and poll(2). */
124 	struct selinfo si;
125 	/* Support for kqueue(9). See comments in netmap_freebsd.c */
126 	struct taskqueue *ntfytq;
127 	struct task ntfytask;
128 	struct mtx m;
129 	char mtxname[32];
130 	int kqueue_users;
131 };
132 
133 
134 struct hrtimer {
135     /* Not used in FreeBSD. */
136 };
137 
138 #define NM_BNS_GET(b)
139 #define NM_BNS_PUT(b)
140 
141 #elif defined (linux)
142 
143 #define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
144 #define	NM_SELINFO_T	wait_queue_head_t
145 #define	MBUF_LEN(m)	((m)->len)
146 #define MBUF_TRANSMIT(na, ifp, m)							\
147 	({										\
148 		/* Avoid infinite recursion with generic. */				\
149 		m->priority = NM_MAGIC_PRIORITY_TX;					\
150 		(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp));	\
151 		0;									\
152 	})
153 
154 /* See explanation in nm_os_generic_xmit_frame. */
155 #define	GEN_TX_MBUF_IFP(m)	((if_t)skb_shinfo(m)->destructor_arg)
156 
157 #define NM_ATOMIC_T	volatile long unsigned int
158 
159 #define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
160 #define NM_MTX_INIT(m)	mutex_init(&(m))
161 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
162 #define NM_MTX_LOCK(m)		mutex_lock(&(m))
163 #define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
164 #define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
165 
166 #ifndef DEV_NETMAP
167 #define DEV_NETMAP
168 #endif /* DEV_NETMAP */
169 
170 #elif defined (__APPLE__)
171 
172 #warning apple support is incomplete.
173 #define likely(x)	__builtin_expect(!!(x), 1)
174 #define unlikely(x)	__builtin_expect(!!(x), 0)
175 #define	NM_LOCK_T	IOLock *
176 #define	NM_SELINFO_T	struct selinfo
177 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
178 
179 #elif defined (_WIN32)
180 #include "../../../WINDOWS/win_glue.h"
181 
182 #define NM_SELRECORD_T		IO_STACK_LOCATION
183 #define NM_SELINFO_T		win_SELINFO		// see win_glue.h
184 #define NM_LOCK_T		win_spinlock_t	// see win_glue.h
185 #define NM_MTX_T		KGUARDED_MUTEX	/* OS-specific mutex (sleepable) */
186 
187 #define NM_MTX_INIT(m)		KeInitializeGuardedMutex(&m);
188 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
189 #define NM_MTX_LOCK(m)		KeAcquireGuardedMutex(&(m))
190 #define NM_MTX_UNLOCK(m)	KeReleaseGuardedMutex(&(m))
191 #define NM_MTX_ASSERT(m)	assert(&m.Count>0)
192 
193 //These linknames are for the NDIS driver
194 #define NETMAP_NDIS_LINKNAME_STRING             L"\\DosDevices\\NMAPNDIS"
195 #define NETMAP_NDIS_NTDEVICE_STRING             L"\\Device\\NMAPNDIS"
196 
197 //Definition of internal driver-to-driver ioctl codes
198 #define NETMAP_KERNEL_XCHANGE_POINTERS		_IO('i', 180)
199 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL	_IO_direct('i', 195)
200 
201 typedef struct hrtimer{
202 	KTIMER timer;
203 	BOOLEAN active;
204 	KDPC deferred_proc;
205 };
206 
207 /* MSVC does not have likely/unlikely support */
208 #ifdef _MSC_VER
209 #define likely(x)	(x)
210 #define unlikely(x)	(x)
211 #else
212 #define likely(x)	__builtin_expect((long)!!(x), 1L)
213 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
214 #endif //_MSC_VER
215 
216 #else
217 
218 #error unsupported platform
219 
220 #endif /* end - platform-specific code */
221 
222 #ifndef _WIN32 /* support for emulated sysctl */
223 #define SYSBEGIN(x)
224 #define SYSEND
225 #endif /* _WIN32 */
226 
227 #define NM_ACCESS_ONCE(x)	(*(volatile __typeof__(x) *)&(x))
228 
229 #define	NMG_LOCK_T		NM_MTX_T
230 #define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
231 #define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
232 #define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
233 #define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
234 #define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
235 
236 #if defined(__FreeBSD__)
237 #define nm_prerr_int	printf
238 #define nm_prinf_int	printf
239 #elif defined (_WIN32)
240 #define nm_prerr_int	DbgPrint
241 #define nm_prinf_int	DbgPrint
242 #elif defined(linux)
243 #define nm_prerr_int(fmt, arg...)    printk(KERN_ERR fmt, ##arg)
244 #define nm_prinf_int(fmt, arg...)    printk(KERN_INFO fmt, ##arg)
245 #endif
246 
247 #define nm_prinf(format, ...)					\
248 	do {							\
249 		struct timeval __xxts;				\
250 		microtime(&__xxts);				\
251 		nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
252 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
253 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
254 	} while (0)
255 
256 #define nm_prerr(format, ...)					\
257 	do {							\
258 		struct timeval __xxts;				\
259 		microtime(&__xxts);				\
260 		nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
261 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
262 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
263 	} while (0)
264 
265 /* Disabled printf (used to be nm_prdis). */
266 #define nm_prdis(format, ...)
267 
268 /* Rate limited, lps indicates how many per second. */
269 #define nm_prlim(lps, format, ...)				\
270 	do {							\
271 		static int t0, __cnt;				\
272 		if (t0 != time_second) {			\
273 			t0 = time_second;			\
274 			__cnt = 0;				\
275 		}						\
276 		if (__cnt++ < lps)				\
277 			nm_prinf(format, ##__VA_ARGS__);	\
278 	} while (0)
279 
280 struct netmap_adapter;
281 struct nm_bdg_fwd;
282 struct nm_bridge;
283 struct netmap_priv_d;
284 struct nm_bdg_args;
285 
286 /* os-specific NM_SELINFO_T initialization/destruction functions */
287 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
288 void nm_os_selinfo_uninit(NM_SELINFO_T *);
289 
290 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
291 
292 void nm_os_selwakeup(NM_SELINFO_T *si);
293 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
294 
295 int nm_os_ifnet_init(void);
296 void nm_os_ifnet_fini(void);
297 void nm_os_ifnet_lock(void);
298 void nm_os_ifnet_unlock(void);
299 
300 unsigned nm_os_ifnet_mtu(if_t ifp);
301 
302 void nm_os_get_module(void);
303 void nm_os_put_module(void);
304 
305 void netmap_make_zombie(if_t);
306 void netmap_undo_zombie(if_t);
307 
308 /* os independent alloc/realloc/free */
309 void *nm_os_malloc(size_t);
310 void *nm_os_vmalloc(size_t);
311 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
312 void nm_os_free(void *);
313 void nm_os_vfree(void *);
314 
315 /* os specific attach/detach enter/exit-netmap-mode routines */
316 void nm_os_onattach(if_t);
317 void nm_os_ondetach(if_t);
318 void nm_os_onenter(if_t);
319 void nm_os_onexit(if_t);
320 
321 /* passes a packet up to the host stack.
322  * If the packet is sent (or dropped) immediately it returns NULL,
323  * otherwise it links the packet to prev and returns m.
324  * In this case, a final call with m=NULL and prev != NULL will send up
325  * the entire chain to the host stack.
326  */
327 void *nm_os_send_up(if_t, struct mbuf *m, struct mbuf *prev);
328 
329 int nm_os_mbuf_has_seg_offld(struct mbuf *m);
330 int nm_os_mbuf_has_csum_offld(struct mbuf *m);
331 
332 #include "netmap_mbq.h"
333 
334 extern NMG_LOCK_T	netmap_global_lock;
335 
336 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
337 
338 static __inline const char*
339 nm_txrx2str(enum txrx t)
340 {
341 	return (t== NR_RX ? "RX" : "TX");
342 }
343 
344 static __inline enum txrx
345 nm_txrx_swap(enum txrx t)
346 {
347 	return (t== NR_RX ? NR_TX : NR_RX);
348 }
349 
350 #define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
351 
352 #ifdef WITH_MONITOR
353 struct netmap_zmon_list {
354 	struct netmap_kring *next;
355 	struct netmap_kring *prev;
356 };
357 #endif /* WITH_MONITOR */
358 
359 /*
360  * private, kernel view of a ring. Keeps track of the status of
361  * a ring across system calls.
362  *
363  *	nr_hwcur	index of the next buffer to refill.
364  *			It corresponds to ring->head
365  *			at the time the system call returns.
366  *
367  *	nr_hwtail	index of the first buffer owned by the kernel.
368  *			On RX, hwcur->hwtail are receive buffers
369  *			not yet released. hwcur is advanced following
370  *			ring->head, hwtail is advanced on incoming packets,
371  *			and a wakeup is generated when hwtail passes ring->cur
372  *			    On TX, hwcur->rcur have been filled by the sender
373  *			but not sent yet to the NIC; rcur->hwtail are available
374  *			for new transmissions, and hwtail->hwcur-1 are pending
375  *			transmissions not yet acknowledged.
376  *
377  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
378  * This is so that, on a reset, buffers owned by userspace are not
379  * modified by the kernel. In particular:
380  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
381  * 	the next empty buffer as known by the hardware (next_to_check or so).
382  * TX rings: hwcur + hwofs coincides with next_to_send
383  *
384  * The following fields are used to implement lock-free copy of packets
385  * from input to output ports in VALE switch:
386  *	nkr_hwlease	buffer after the last one being copied.
387  *			A writer in nm_bdg_flush reserves N buffers
388  *			from nr_hwlease, advances it, then does the
389  *			copy outside the lock.
390  *			In RX rings (used for VALE ports),
391  *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
392  *			In TX rings (used for NIC or host stack ports)
393  *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
394  *	nkr_leases	array of nkr_num_slots where writers can report
395  *			completion of their block. NR_NOSLOT (~0) indicates
396  *			that the writer has not finished yet
397  *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
398  *
399  * The kring is manipulated by txsync/rxsync and generic netmap function.
400  *
401  * Concurrent rxsync or txsync on the same ring are prevented through
402  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
403  * for NIC rings, and for TX rings attached to the host stack.
404  *
405  * RX rings attached to the host stack use an mbq (rx_queue) on both
406  * rxsync_from_host() and netmap_transmit(). The mbq is protected
407  * by its internal lock.
408  *
409  * RX rings attached to the VALE switch are accessed by both senders
410  * and receiver. They are protected through the q_lock on the RX ring.
411  */
412 struct netmap_kring {
413 	struct netmap_ring	*ring;
414 
415 	uint32_t	nr_hwcur;  /* should be nr_hwhead */
416 	uint32_t	nr_hwtail;
417 
418 	/*
419 	 * Copies of values in user rings, so we do not need to look
420 	 * at the ring (which could be modified). These are set in the
421 	 * *sync_prologue()/finalize() routines.
422 	 */
423 	uint32_t	rhead;
424 	uint32_t	rcur;
425 	uint32_t	rtail;
426 
427 	uint32_t	nr_kflags;	/* private driver flags */
428 #define NKR_PENDINTR	0x1		// Pending interrupt.
429 #define NKR_EXCLUSIVE	0x2		/* exclusive binding */
430 #define NKR_FORWARD	0x4		/* (host ring only) there are
431 					   packets to forward
432 					 */
433 #define NKR_NEEDRING	0x8		/* ring needed even if users==0
434 					 * (used internally by pipes and
435 					 *  by ptnetmap host ports)
436 					 */
437 #define NKR_NOINTR      0x10            /* don't use interrupts on this ring */
438 #define NKR_FAKERING	0x20		/* don't allocate/free buffers */
439 
440 	uint32_t	nr_mode;
441 	uint32_t	nr_pending_mode;
442 #define NKR_NETMAP_OFF	0x0
443 #define NKR_NETMAP_ON	0x1
444 
445 	uint32_t	nkr_num_slots;
446 
447 	/*
448 	 * On a NIC reset, the NIC ring indexes may be reset but the
449 	 * indexes in the netmap rings remain the same. nkr_hwofs
450 	 * keeps track of the offset between the two.
451 	 *
452 	 * Moreover, during reset, we can restore only the subset of
453 	 * the NIC ring that corresponds to the kernel-owned part of
454 	 * the netmap ring. The rest of the slots must be restored
455 	 * by the *sync routines when the user releases more slots.
456 	 * The nkr_to_refill field keeps track of the number of slots
457 	 * that still need to be restored.
458 	 */
459 	int32_t		nkr_hwofs;
460 	int32_t		nkr_to_refill;
461 
462 	/* last_reclaim is opaque marker to help reduce the frequency
463 	 * of operations such as reclaiming tx buffers. A possible use
464 	 * is set it to ticks and do the reclaim only once per tick.
465 	 */
466 	uint64_t	last_reclaim;
467 
468 
469 	NM_SELINFO_T	si;		/* poll/select wait queue */
470 	NM_LOCK_T	q_lock;		/* protects kring and ring. */
471 	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
472 
473 	/* the adapter the owns this kring */
474 	struct netmap_adapter *na;
475 
476 	/* the adapter that wants to be notified when this kring has
477 	 * new slots available. This is usually the same as the above,
478 	 * but wrappers may let it point to themselves
479 	 */
480 	struct netmap_adapter *notify_na;
481 
482 	/* The following fields are for VALE switch support */
483 	struct nm_bdg_fwd *nkr_ft;
484 	uint32_t	*nkr_leases;
485 #define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
486 	uint32_t	nkr_hwlease;
487 	uint32_t	nkr_lease_idx;
488 
489 	/* while nkr_stopped is set, no new [tr]xsync operations can
490 	 * be started on this kring.
491 	 * This is used by netmap_disable_all_rings()
492 	 * to find a synchronization point where critical data
493 	 * structures pointed to by the kring can be added or removed
494 	 */
495 	volatile int nkr_stopped;
496 
497 	/* Support for adapters without native netmap support.
498 	 * On tx rings we preallocate an array of tx buffers
499 	 * (same size as the netmap ring), on rx rings we
500 	 * store incoming mbufs in a queue that is drained by
501 	 * a rxsync.
502 	 */
503 	struct mbuf	**tx_pool;
504 	struct mbuf	*tx_event;	/* TX event used as a notification */
505 	NM_LOCK_T	tx_event_lock;	/* protects the tx_event mbuf */
506 	struct mbq	rx_queue;       /* intercepted rx mbufs. */
507 
508 	uint32_t	users;		/* existing bindings for this ring */
509 
510 	uint32_t	ring_id;	/* kring identifier */
511 	enum txrx	tx;		/* kind of ring (tx or rx) */
512 	char name[64];			/* diagnostic */
513 
514 	/* [tx]sync callback for this kring.
515 	 * The default nm_kring_create callback (netmap_krings_create)
516 	 * sets the nm_sync callback of each hardware tx(rx) kring to
517 	 * the corresponding nm_txsync(nm_rxsync) taken from the
518 	 * netmap_adapter; moreover, it sets the sync callback
519 	 * of the host tx(rx) ring to netmap_txsync_to_host
520 	 * (netmap_rxsync_from_host).
521 	 *
522 	 * Overrides: the above configuration is not changed by
523 	 * any of the nm_krings_create callbacks.
524 	 */
525 	int (*nm_sync)(struct netmap_kring *kring, int flags);
526 	int (*nm_notify)(struct netmap_kring *kring, int flags);
527 
528 #ifdef WITH_PIPES
529 	struct netmap_kring *pipe;	/* if this is a pipe ring,
530 					 * pointer to the other end
531 					 */
532 	uint32_t pipe_tail;		/* hwtail updated by the other end */
533 #endif /* WITH_PIPES */
534 
535 	/* mask for the offset-related part of the ptr field in the slots */
536 	uint64_t offset_mask;
537 	/* maximum user-specified offset, as stipulated at bind time.
538 	 * Larger offset requests will be silently capped to offset_max.
539 	 */
540 	uint64_t offset_max;
541 	/* minimum gap between two consecutive offsets into the same
542 	 * buffer, as stipulated at bind time. This is used to choose
543 	 * the hwbuf_len, but is not otherwise checked for compliance
544 	 * at runtime.
545 	 */
546 	uint64_t offset_gap;
547 
548 	/* size of hardware buffer. This may be less than the size of
549 	 * the netmap buffers because of non-zero offsets, or because
550 	 * the netmap buffer size exceeds the capability of the hardware.
551 	 */
552 	uint64_t hwbuf_len;
553 
554 	/* required alignment (in bytes) for the buffers used by this ring.
555 	 * Netmap buffers are aligned to cachelines, which should suffice
556 	 * for most NICs. If the user is passing offsets, though, we need
557 	 * to check that the resulting buf address complies with any
558 	 * alignment restriction.
559 	 */
560 	uint64_t buf_align;
561 
562 	/* hardware specific logic for the selection of the hwbuf_len */
563 	int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target);
564 
565 	int (*save_notify)(struct netmap_kring *kring, int flags);
566 
567 #ifdef WITH_MONITOR
568 	/* array of krings that are monitoring this kring */
569 	struct netmap_kring **monitors;
570 	uint32_t max_monitors; /* current size of the monitors array */
571 	uint32_t n_monitors;	/* next unused entry in the monitor array */
572 	uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
573 	uint32_t mon_tail;  /* last seen slot on rx */
574 
575 	/* circular list of zero-copy monitors */
576 	struct netmap_zmon_list zmon_list[NR_TXRX];
577 
578 	/*
579 	 * Monitors work by intercepting the sync and notify callbacks of the
580 	 * monitored krings. This is implemented by replacing the pointers
581 	 * above and saving the previous ones in mon_* pointers below
582 	 */
583 	int (*mon_sync)(struct netmap_kring *kring, int flags);
584 	int (*mon_notify)(struct netmap_kring *kring, int flags);
585 
586 #endif
587 }
588 #ifdef _WIN32
589 __declspec(align(64));
590 #else
591 __attribute__((__aligned__(64)));
592 #endif
593 
594 /* return 1 iff the kring needs to be turned on */
595 static inline int
596 nm_kring_pending_on(struct netmap_kring *kring)
597 {
598 	return kring->nr_pending_mode == NKR_NETMAP_ON &&
599 	       kring->nr_mode == NKR_NETMAP_OFF;
600 }
601 
602 /* return 1 iff the kring needs to be turned off */
603 static inline int
604 nm_kring_pending_off(struct netmap_kring *kring)
605 {
606 	return kring->nr_pending_mode == NKR_NETMAP_OFF &&
607 	       kring->nr_mode == NKR_NETMAP_ON;
608 }
609 
610 /* return the next index, with wraparound */
611 static inline uint32_t
612 nm_next(uint32_t i, uint32_t lim)
613 {
614 	return unlikely (i == lim) ? 0 : i + 1;
615 }
616 
617 
618 /* return the previous index, with wraparound */
619 static inline uint32_t
620 nm_prev(uint32_t i, uint32_t lim)
621 {
622 	return unlikely (i == 0) ? lim : i - 1;
623 }
624 
625 
626 /*
627  *
628  * Here is the layout for the Rx and Tx rings.
629 
630        RxRING                            TxRING
631 
632       +-----------------+            +-----------------+
633       |                 |            |                 |
634       |      free       |            |      free       |
635       +-----------------+            +-----------------+
636 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
637       |                 |            | yet             |
638       +-----------------+            |                 |
639  cur->| available to    |            |                 |
640       | user, not read  |            +-----------------+
641       | yet             |       cur->| (being          |
642       |                 |            |  prepared)      |
643       |                 |            |                 |
644       +-----------------+            +     ------      +
645 tail->|                 |<-hwtail    |                 |<-hwlease
646       | (being          | ...        |                 | ...
647       |  prepared)      | ...        |                 | ...
648       +-----------------+ ...        |                 | ...
649       |                 |<-hwlease   +-----------------+
650       |                 |      tail->|                 |<-hwtail
651       |                 |            |                 |
652       |                 |            |                 |
653       |                 |            |                 |
654       +-----------------+            +-----------------+
655 
656  * The cur/tail (user view) and hwcur/hwtail (kernel view)
657  * are used in the normal operation of the card.
658  *
659  * When a ring is the output of a switch port (Rx ring for
660  * a VALE port, Tx ring for the host stack or NIC), slots
661  * are reserved in blocks through 'hwlease' which points
662  * to the next unused slot.
663  * On an Rx ring, hwlease is always after hwtail,
664  * and completions cause hwtail to advance.
665  * On a Tx ring, hwlease is always between cur and hwtail,
666  * and completions cause cur to advance.
667  *
668  * nm_kr_space() returns the maximum number of slots that
669  * can be assigned.
670  * nm_kr_lease() reserves the required number of buffers,
671  *    advances nkr_hwlease and also returns an entry in
672  *    a circular array where completions should be reported.
673  */
674 
675 struct lut_entry;
676 #ifdef __FreeBSD__
677 #define plut_entry lut_entry
678 #endif
679 
680 struct netmap_lut {
681 	struct lut_entry *lut;
682 	struct plut_entry *plut;
683 	uint32_t objtotal;	/* max buffer index */
684 	uint32_t objsize;	/* buffer size */
685 };
686 
687 struct netmap_vp_adapter; // forward
688 struct nm_bridge;
689 
690 /* Struct to be filled by nm_config callbacks. */
691 struct nm_config_info {
692 	unsigned num_tx_rings;
693 	unsigned num_rx_rings;
694 	unsigned num_tx_descs;
695 	unsigned num_rx_descs;
696 	unsigned rx_buf_maxsize;
697 };
698 
699 /*
700  * default type for the magic field.
701  * May be overridden in glue code.
702  */
703 #ifndef NM_OS_MAGIC
704 #define NM_OS_MAGIC uint32_t
705 #endif /* !NM_OS_MAGIC */
706 
707 /*
708  * The "struct netmap_adapter" extends the "struct adapter"
709  * (or equivalent) device descriptor.
710  * It contains all base fields needed to support netmap operation.
711  * There are in fact different types of netmap adapters
712  * (native, generic, VALE switch...) so a netmap_adapter is
713  * just the first field in the derived type.
714  */
715 struct netmap_adapter {
716 	/*
717 	 * On linux we do not have a good way to tell if an interface
718 	 * is netmap-capable. So we always use the following trick:
719 	 * NA(ifp) points here, and the first entry (which hopefully
720 	 * always exists and is at least 32 bits) contains a magic
721 	 * value which we can use to detect that the interface is good.
722 	 */
723 	NM_OS_MAGIC magic;
724 	uint32_t na_flags;	/* enabled, and other flags */
725 #define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
726 				 * useful during initialization
727 				 */
728 #define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
729 #define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
730 				 * forwarding packets coming from this
731 				 * interface
732 				 */
733 #define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
734 				 * that cannot be changed
735 				 */
736 #define NAF_NATIVE      16      /* the adapter is native.
737 				 * Virtual ports (non persistent vale ports,
738 				 * pipes, monitors...) should never use
739 				 * this flag.
740 				 */
741 #define	NAF_NETMAP_ON	32	/* netmap is active (either native or
742 				 * emulated). Where possible (e.g. FreeBSD)
743 				 * IFCAP_NETMAP also mirrors this flag.
744 				 */
745 #define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
746 #define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
747 /* free */
748 #define NAF_MOREFRAG	512	/* the adapter supports NS_MOREFRAG */
749 #define NAF_OFFSETS	1024	/* the adapter supports the slot offsets */
750 #define NAF_HOST_ALL	2048	/* the adapter wants as many host rings as hw */
751 #define NAF_ZOMBIE	(1U<<30) /* the nic driver has been unloaded */
752 #define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
753 				  * cannot be registered from userspace
754 				  */
755 	int active_fds; /* number of user-space descriptors using this
756 			 interface, which is equal to the number of
757 			 struct netmap_if objs in the mapped region. */
758 
759 	u_int num_rx_rings; /* number of adapter receive rings */
760 	u_int num_tx_rings; /* number of adapter transmit rings */
761 	u_int num_host_rx_rings; /* number of host receive rings */
762 	u_int num_host_tx_rings; /* number of host transmit rings */
763 
764 	u_int num_tx_desc;  /* number of descriptor in each queue */
765 	u_int num_rx_desc;
766 
767 	/* tx_rings and rx_rings are private but allocated as a
768 	 * contiguous chunk of memory. Each array has N+K entries,
769 	 * N for the hardware rings and K for the host rings.
770 	 */
771 	struct netmap_kring **tx_rings; /* array of TX rings. */
772 	struct netmap_kring **rx_rings; /* array of RX rings. */
773 
774 	void *tailroom;		       /* space below the rings array */
775 				       /* (used for leases) */
776 
777 
778 	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
779 
780 	/* count users of the global wait queues */
781 	int si_users[NR_TXRX];
782 
783 	void *pdev; /* used to store pci device */
784 
785 	/* copy of if_qflush and if_transmit pointers, to intercept
786 	 * packets from the network stack when netmap is active.
787 	 */
788 	int     (*if_transmit)(if_t, struct mbuf *);
789 
790 	/* copy of if_input for netmap_send_up() */
791 	void     (*if_input)(if_t, struct mbuf *);
792 
793 	/* Back reference to the parent ifnet struct. Used for
794 	 * hardware ports (emulated netmap included). */
795 	if_t ifp; /* adapter is if_getsoftc(ifp) */
796 
797 	/*---- callbacks for this netmap adapter -----*/
798 	/*
799 	 * nm_dtor() is the cleanup routine called when destroying
800 	 *	the adapter.
801 	 *	Called with NMG_LOCK held.
802 	 *
803 	 * nm_register() is called on NIOCREGIF and close() to enter
804 	 *	or exit netmap mode on the NIC
805 	 *	Called with NNG_LOCK held.
806 	 *
807 	 * nm_txsync() pushes packets to the underlying hw/switch
808 	 *
809 	 * nm_rxsync() collects packets from the underlying hw/switch
810 	 *
811 	 * nm_config() returns configuration information from the OS
812 	 *	Called with NMG_LOCK held.
813 	 *
814 	 * nm_bufcfg()
815 	 *      the purpose of this callback is to fill the kring->hwbuf_len
816 	 *      (l) and kring->buf_align fields. The l value is most important
817 	 *      for RX rings, where we want to disallow writes outside of the
818 	 *      netmap buffer. The l value must be computed taking into account
819 	 *      the stipulated max_offset (o), possibly increased if there are
820 	 *      alignment constraints, the maxframe (m), if known, and the
821 	 *      current NETMAP_BUF_SIZE (b) of the memory region used by the
822 	 *      adapter. We want the largest supported l such that o + l <= b.
823 	 *      If m is known to be <= b - o, the callback may also choose the
824 	 *      largest l <= m, ignoring the offset.  The buf_align field is
825 	 *      most important for TX rings when there are offsets.  The user
826 	 *      will see this value in the ring->buf_align field.  Misaligned
827 	 *      offsets will cause the corresponding packets to be silently
828 	 *      dropped.
829 	 *
830 	 * nm_krings_create() create and init the tx_rings and
831 	 * 	rx_rings arrays of kring structures. In particular,
832 	 * 	set the nm_sync callbacks for each ring.
833 	 * 	There is no need to also allocate the corresponding
834 	 * 	netmap_rings, since netmap_mem_rings_create() will always
835 	 * 	be called to provide the missing ones.
836 	 *	Called with NNG_LOCK held.
837 	 *
838 	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
839 	 * 	arrays
840 	 *	Called with NMG_LOCK held.
841 	 *
842 	 * nm_notify() is used to act after data have become available
843 	 * 	(or the stopped state of the ring has changed)
844 	 *	For hw devices this is typically a selwakeup(),
845 	 *	but for NIC/host ports attached to a switch (or vice-versa)
846 	 *	we also need to invoke the 'txsync' code downstream.
847 	 *      This callback pointer is actually used only to initialize
848 	 *      kring->nm_notify.
849 	 *      Return values are the same as for netmap_rx_irq().
850 	 */
851 	void (*nm_dtor)(struct netmap_adapter *);
852 
853 	int (*nm_register)(struct netmap_adapter *, int onoff);
854 	void (*nm_intr)(struct netmap_adapter *, int onoff);
855 
856 	int (*nm_txsync)(struct netmap_kring *kring, int flags);
857 	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
858 	int (*nm_notify)(struct netmap_kring *kring, int flags);
859 	int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target);
860 #define NAF_FORCE_READ      1
861 #define NAF_FORCE_RECLAIM   2
862 #define NAF_CAN_FORWARD_DOWN 4
863 	/* return configuration information */
864 	int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
865 	int (*nm_krings_create)(struct netmap_adapter *);
866 	void (*nm_krings_delete)(struct netmap_adapter *);
867 	/*
868 	 * nm_bdg_attach() initializes the na_vp field to point
869 	 *      to an adapter that can be attached to a VALE switch. If the
870 	 *      current adapter is already a VALE port, na_vp is simply a cast;
871 	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
872 	 *      If applicable, this callback also initializes na_hostvp,
873 	 *      that can be used to connect the adapter host rings to the
874 	 *      switch.
875 	 *      Called with NMG_LOCK held.
876 	 *
877 	 * nm_bdg_ctl() is called on the actual attach/detach to/from
878 	 *      to/from the switch, to perform adapter-specific
879 	 *      initializations
880 	 *      Called with NMG_LOCK held.
881 	 */
882 	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
883 			struct nm_bridge *);
884 	int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
885 
886 	/* adapter used to attach this adapter to a VALE switch (if any) */
887 	struct netmap_vp_adapter *na_vp;
888 	/* adapter used to attach the host rings of this adapter
889 	 * to a VALE switch (if any) */
890 	struct netmap_vp_adapter *na_hostvp;
891 
892 	/* standard refcount to control the lifetime of the adapter
893 	 * (it should be equal to the lifetime of the corresponding ifp)
894 	 */
895 	int na_refcount;
896 
897 	/* memory allocator (opaque)
898 	 * We also cache a pointer to the lut_entry for translating
899 	 * buffer addresses, the total number of buffers and the buffer size.
900 	 */
901  	struct netmap_mem_d *nm_mem;
902 	struct netmap_mem_d *nm_mem_prev;
903 	struct netmap_lut na_lut;
904 
905 	/* additional information attached to this adapter
906 	 * by other netmap subsystems. Currently used by
907 	 * bwrap, LINUX/v1000 and ptnetmap
908 	 */
909 	void *na_private;
910 
911 	/* array of pipes that have this adapter as a parent */
912 	struct netmap_pipe_adapter **na_pipes;
913 	int na_next_pipe;	/* next free slot in the array */
914 	int na_max_pipes;	/* size of the array */
915 
916 	/* Offset of ethernet header for each packet. */
917 	u_int virt_hdr_len;
918 
919 	/* Max number of bytes that the NIC can store in the buffer
920 	 * referenced by each RX descriptor. This translates to the maximum
921 	 * bytes that a single netmap slot can reference. Larger packets
922 	 * require NS_MOREFRAG support. */
923 	unsigned rx_buf_maxsize;
924 
925 	char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
926 
927 #ifdef WITH_MONITOR
928 	unsigned long	monitor_id;	/* debugging */
929 #endif
930 };
931 
932 static __inline u_int
933 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
934 {
935 	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
936 }
937 
938 static __inline void
939 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
940 {
941 	if (t == NR_TX)
942 		na->num_tx_desc = v;
943 	else
944 		na->num_rx_desc = v;
945 }
946 
947 static __inline u_int
948 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
949 {
950 	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
951 }
952 
953 static __inline u_int
954 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
955 {
956 	return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
957 }
958 
959 static __inline void
960 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
961 {
962 	if (t == NR_TX)
963 		na->num_tx_rings = v;
964 	else
965 		na->num_rx_rings = v;
966 }
967 
968 static __inline void
969 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
970 {
971 	if (t == NR_TX)
972 		na->num_host_tx_rings = v;
973 	else
974 		na->num_host_rx_rings = v;
975 }
976 
977 static __inline struct netmap_kring**
978 NMR(struct netmap_adapter *na, enum txrx t)
979 {
980 	return (t == NR_TX ? na->tx_rings : na->rx_rings);
981 }
982 
983 int nma_intr_enable(struct netmap_adapter *na, int onoff);
984 
985 /*
986  * If the NIC is owned by the kernel
987  * (i.e., bridge), neither another bridge nor user can use it;
988  * if the NIC is owned by a user, only users can share it.
989  * Evaluation must be done under NMG_LOCK().
990  */
991 #define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
992 #define NETMAP_OWNED_BY_ANY(na) \
993 	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
994 
995 /*
996  * derived netmap adapters for various types of ports
997  */
998 struct netmap_vp_adapter {	/* VALE software port */
999 	struct netmap_adapter up;
1000 
1001 	/*
1002 	 * Bridge support:
1003 	 *
1004 	 * bdg_port is the port number used in the bridge;
1005 	 * na_bdg points to the bridge this NA is attached to.
1006 	 */
1007 	int bdg_port;
1008 	struct nm_bridge *na_bdg;
1009 	int retry;
1010 	int autodelete; /* remove the ifp on last reference */
1011 
1012 	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
1013 	u_int mfs;
1014 	/* Last source MAC on this port */
1015 	uint64_t last_smac;
1016 };
1017 
1018 
1019 struct netmap_hw_adapter {	/* physical device */
1020 	struct netmap_adapter up;
1021 
1022 #ifdef linux
1023 	struct net_device_ops nm_ndo;
1024 	struct ethtool_ops    nm_eto;
1025 #endif
1026 	const struct ethtool_ops*   save_ethtool;
1027 
1028 	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
1029 };
1030 
1031 #ifdef WITH_GENERIC
1032 /* Mitigation support. */
1033 struct nm_generic_mit {
1034 	struct hrtimer mit_timer;
1035 	int mit_pending;
1036 	int mit_ring_idx;  /* index of the ring being mitigated */
1037 	struct netmap_adapter *mit_na;  /* backpointer */
1038 };
1039 
1040 struct netmap_generic_adapter {	/* emulated device */
1041 	struct netmap_hw_adapter up;
1042 
1043 	/* Pointer to a previously used netmap adapter. */
1044 	struct netmap_adapter *prev;
1045 
1046 	/* Emulated netmap adapters support:
1047 	 *  - save_if_input saves the if_input hook (FreeBSD);
1048 	 *  - mit implements rx interrupt mitigation;
1049 	 */
1050 	void (*save_if_input)(if_t, struct mbuf *);
1051 
1052 	struct nm_generic_mit *mit;
1053 #ifdef linux
1054         netdev_tx_t (*save_start_xmit)(struct mbuf *, if_t);
1055 #endif
1056 	/* Is the adapter able to use multiple RX slots to scatter
1057 	 * each packet pushed up by the driver? */
1058 	int rxsg;
1059 
1060 	/* Is the transmission path controlled by a netmap-aware
1061 	 * device queue (i.e. qdisc on linux)? */
1062 	int txqdisc;
1063 };
1064 #endif  /* WITH_GENERIC */
1065 
1066 static __inline u_int
1067 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
1068 {
1069 	return nma_get_nrings(na, t) +
1070 		!!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
1071 }
1072 
1073 /* account for fake rings */
1074 static __inline u_int
1075 netmap_all_rings(struct netmap_adapter *na, enum txrx t)
1076 {
1077 	return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
1078 }
1079 
1080 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
1081 		struct nm_bridge *);
1082 struct nm_bdg_polling_state;
1083 /*
1084  * Bridge wrapper for non VALE ports attached to a VALE switch.
1085  *
1086  * The real device must already have its own netmap adapter (hwna).
1087  * The bridge wrapper and the hwna adapter share the same set of
1088  * netmap rings and buffers, but they have two separate sets of
1089  * krings descriptors, with tx/rx meanings swapped:
1090  *
1091  *                                  netmap
1092  *           bwrap     krings       rings      krings      hwna
1093  *         +------+   +------+     +-----+    +------+   +------+
1094  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
1095  *         |      |   +------+ \ / +-----+    +------+   |      |
1096  *         |      |             X                        |      |
1097  *         |      |            / \                       |      |
1098  *         |      |   +------+/   \+-----+    +------+   |      |
1099  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
1100  *         |      |   +------+     +-----+    +------+   |      |
1101  *         +------+                                      +------+
1102  *
1103  * - packets coming from the bridge go to the brwap rx rings,
1104  *   which are also the hwna tx rings.  The bwrap notify callback
1105  *   will then complete the hwna tx (see netmap_bwrap_notify).
1106  *
1107  * - packets coming from the outside go to the hwna rx rings,
1108  *   which are also the bwrap tx rings.  The (overwritten) hwna
1109  *   notify method will then complete the bridge tx
1110  *   (see netmap_bwrap_intr_notify).
1111  *
1112  *   The bridge wrapper may optionally connect the hwna 'host' rings
1113  *   to the bridge. This is done by using a second port in the
1114  *   bridge and connecting it to the 'host' netmap_vp_adapter
1115  *   contained in the netmap_bwrap_adapter. The brwap host adapter
1116  *   cross-links the hwna host rings in the same way as shown above.
1117  *
1118  * - packets coming from the bridge and directed to the host stack
1119  *   are handled by the bwrap host notify callback
1120  *   (see netmap_bwrap_host_notify)
1121  *
1122  * - packets coming from the host stack are still handled by the
1123  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
1124  *   but are diverted to the host adapter depending on the ring number.
1125  *
1126  */
1127 struct netmap_bwrap_adapter {
1128 	struct netmap_vp_adapter up;
1129 	struct netmap_vp_adapter host;  /* for host rings */
1130 	struct netmap_adapter *hwna;	/* the underlying device */
1131 
1132 	/*
1133 	 * When we attach a physical interface to the bridge, we
1134 	 * allow the controlling process to terminate, so we need
1135 	 * a place to store the n_detmap_priv_d data structure.
1136 	 * This is only done when physical interfaces
1137 	 * are attached to a bridge.
1138 	 */
1139 	struct netmap_priv_d *na_kpriv;
1140 	struct nm_bdg_polling_state *na_polling_state;
1141 	/* we overwrite the hwna->na_vp pointer, so we save
1142 	 * here its original value, to be restored at detach
1143 	 */
1144 	struct netmap_vp_adapter *saved_na_vp;
1145 	int (*nm_intr_notify)(struct netmap_kring *kring, int flags);
1146 };
1147 int nm_is_bwrap(struct netmap_adapter *na);
1148 int nm_bdg_polling(struct nmreq_header *hdr);
1149 
1150 int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token);
1151 int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token);
1152 #ifdef WITH_VALE
1153 int netmap_vale_list(struct nmreq_header *hdr);
1154 int netmap_vi_create(struct nmreq_header *hdr, int);
1155 int nm_vi_create(struct nmreq_header *);
1156 int nm_vi_destroy(const char *name);
1157 #else /* !WITH_VALE */
1158 #define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1159 #endif /* WITH_VALE */
1160 
1161 #ifdef WITH_PIPES
1162 
1163 #define NM_MAXPIPES 	64	/* max number of pipes per adapter */
1164 
1165 struct netmap_pipe_adapter {
1166 	/* pipe identifier is up.name */
1167 	struct netmap_adapter up;
1168 
1169 #define NM_PIPE_ROLE_MASTER	0x1
1170 #define NM_PIPE_ROLE_SLAVE	0x2
1171 	int role;	/* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1172 
1173 	struct netmap_adapter *parent; /* adapter that owns the memory */
1174 	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1175 	int peer_ref;		/* 1 iff we are holding a ref to the peer */
1176 	if_t parent_ifp;	/* maybe null */
1177 
1178 	u_int parent_slot; /* index in the parent pipe array */
1179 };
1180 
1181 #endif /* WITH_PIPES */
1182 
1183 #ifdef WITH_NMNULL
1184 struct netmap_null_adapter {
1185 	struct netmap_adapter up;
1186 };
1187 #endif /* WITH_NMNULL */
1188 
1189 
1190 /* return slots reserved to rx clients; used in drivers */
1191 static inline uint32_t
1192 nm_kr_rxspace(struct netmap_kring *k)
1193 {
1194 	int space = k->nr_hwtail - k->nr_hwcur;
1195 	if (space < 0)
1196 		space += k->nkr_num_slots;
1197 	nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1198 
1199 	return space;
1200 }
1201 
1202 /* return slots reserved to tx clients */
1203 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1204 
1205 
1206 /* True if no space in the tx ring, only valid after txsync_prologue */
1207 static inline int
1208 nm_kr_txempty(struct netmap_kring *kring)
1209 {
1210 	return kring->rhead == kring->nr_hwtail;
1211 }
1212 
1213 /* True if no more completed slots in the rx ring, only valid after
1214  * rxsync_prologue */
1215 #define nm_kr_rxempty(_k)	nm_kr_txempty(_k)
1216 
1217 /* True if the application needs to wait for more space on the ring
1218  * (more received packets or more free tx slots).
1219  * Only valid after *xsync_prologue. */
1220 static inline int
1221 nm_kr_wouldblock(struct netmap_kring *kring)
1222 {
1223 	return kring->rcur == kring->nr_hwtail;
1224 }
1225 
1226 /*
1227  * protect against multiple threads using the same ring.
1228  * also check that the ring has not been stopped or locked
1229  */
1230 #define NM_KR_BUSY	1	/* some other thread is syncing the ring */
1231 #define NM_KR_STOPPED	2	/* unbounded stop (ifconfig down or driver unload) */
1232 #define NM_KR_LOCKED	3	/* bounded, brief stop for mutual exclusion */
1233 
1234 
1235 /* release the previously acquired right to use the *sync() methods of the ring */
1236 static __inline void nm_kr_put(struct netmap_kring *kr)
1237 {
1238 	NM_ATOMIC_CLEAR(&kr->nr_busy);
1239 }
1240 
1241 
1242 /* true if the ifp that backed the adapter has disappeared (e.g., the
1243  * driver has been unloaded)
1244  */
1245 static inline int nm_iszombie(struct netmap_adapter *na);
1246 
1247 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1248  * The right is obtained and must be later relinquished via nm_kr_put() if and
1249  * only if nm_kr_tryget() returns 0.
1250  * If can_sleep is 1 there are only two other possible outcomes:
1251  * - the function returns NM_KR_BUSY
1252  * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1253  *   (if non-null)
1254  * In both cases the caller will typically skip the ring, possibly collecting
1255  * errors along the way.
1256  * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1257  * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1258  * untouched: ideally, the caller should try again at a later time.
1259  */
1260 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1261 {
1262 	int busy = 1, stopped;
1263 	/* check a first time without taking the lock
1264 	 * to avoid starvation for nm_kr_get()
1265 	 */
1266 retry:
1267 	stopped = kr->nkr_stopped;
1268 	if (unlikely(stopped)) {
1269 		goto stop;
1270 	}
1271 	busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1272 	/* we should not return NM_KR_BUSY if the ring was
1273 	 * actually stopped, so check another time after
1274 	 * the barrier provided by the atomic operation
1275 	 */
1276 	stopped = kr->nkr_stopped;
1277 	if (unlikely(stopped)) {
1278 		goto stop;
1279 	}
1280 
1281 	if (unlikely(nm_iszombie(kr->na))) {
1282 		stopped = NM_KR_STOPPED;
1283 		goto stop;
1284 	}
1285 
1286 	return unlikely(busy) ? NM_KR_BUSY : 0;
1287 
1288 stop:
1289 	if (!busy)
1290 		nm_kr_put(kr);
1291 	if (stopped == NM_KR_STOPPED) {
1292 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1293  * Otherwise, any non-zero value will do.
1294  */
1295 #ifdef POLLERR
1296 #define NM_POLLERR POLLERR
1297 #else
1298 #define NM_POLLERR 1
1299 #endif /* POLLERR */
1300 		if (perr)
1301 			*perr |= NM_POLLERR;
1302 #undef NM_POLLERR
1303 	} else if (can_sleep) {
1304 		tsleep(kr, 0, "NM_KR_TRYGET", 4);
1305 		goto retry;
1306 	}
1307 	return stopped;
1308 }
1309 
1310 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1311  * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1312  */
1313 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1314 {
1315 	kr->nkr_stopped = stopped;
1316 	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1317 		tsleep(kr, 0, "NM_KR_GET", 4);
1318 }
1319 
1320 /* restart a ring after a stop */
1321 static __inline void nm_kr_start(struct netmap_kring *kr)
1322 {
1323 	kr->nkr_stopped = 0;
1324 	nm_kr_put(kr);
1325 }
1326 
1327 
1328 /*
1329  * The following functions are used by individual drivers to
1330  * support netmap operation.
1331  *
1332  * netmap_attach() initializes a struct netmap_adapter, allocating the
1333  * 	struct netmap_ring's and the struct selinfo.
1334  *
1335  * netmap_detach() frees the memory allocated by netmap_attach().
1336  *
1337  * netmap_transmit() replaces the if_transmit routine of the interface,
1338  *	and is used to intercept packets coming from the stack.
1339  *
1340  * netmap_load_map/netmap_reload_map are helper routines to set/reset
1341  *	the dmamap for a packet buffer
1342  *
1343  * netmap_reset() is a helper routine to be called in the hw driver
1344  *	when reinitializing a ring. It should not be called by
1345  *	virtual ports (vale, pipes, monitor)
1346  */
1347 int netmap_attach(struct netmap_adapter *);
1348 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1349 void netmap_detach(if_t);
1350 int netmap_transmit(if_t, struct mbuf *);
1351 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1352 	enum txrx tx, u_int n, u_int new_cur);
1353 int netmap_ring_reinit(struct netmap_kring *);
1354 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1355 
1356 /* Return codes for netmap_*x_irq. */
1357 enum {
1358 	/* Driver should do normal interrupt processing, e.g. because
1359 	 * the interface is not in netmap mode. */
1360 	NM_IRQ_PASS = 0,
1361 	/* Port is in netmap mode, and the interrupt work has been
1362 	 * completed. The driver does not have to notify netmap
1363 	 * again before the next interrupt. */
1364 	NM_IRQ_COMPLETED = -1,
1365 	/* Port is in netmap mode, but the interrupt work has not been
1366 	 * completed. The driver has to make sure netmap will be
1367 	 * notified again soon, even if no more interrupts come (e.g.
1368 	 * on Linux the driver should not call napi_complete()). */
1369 	NM_IRQ_RESCHED = -2,
1370 };
1371 
1372 /* default functions to handle rx/tx interrupts */
1373 int netmap_rx_irq(if_t, u_int, u_int *);
1374 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1375 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1376 
1377 
1378 #ifdef WITH_VALE
1379 /* functions used by external modules to interface with VALE */
1380 #define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
1381 #define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
1382 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1383 #define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
1384 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1385 #else /* !WITH_VALE */
1386 #define netmap_vp_to_ifp(_vp)	NULL
1387 #define netmap_ifp_to_vp(_ifp)	NULL
1388 #define netmap_ifp_to_host_vp(_ifp) NULL
1389 #define netmap_bdg_idx(_vp)	-1
1390 #endif /* WITH_VALE */
1391 
1392 static inline int
1393 nm_netmap_on(struct netmap_adapter *na)
1394 {
1395 	return na && na->na_flags & NAF_NETMAP_ON;
1396 }
1397 
1398 static inline int
1399 nm_native_on(struct netmap_adapter *na)
1400 {
1401 	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1402 }
1403 
1404 static inline struct netmap_kring *
1405 netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t)
1406 {
1407 	struct netmap_kring *kring = NULL;
1408 
1409 	if (!nm_native_on(na))
1410 		return NULL;
1411 
1412 	if (t == NR_RX && q < na->num_rx_rings)
1413 		kring = na->rx_rings[q];
1414 	else if (t == NR_TX && q < na->num_tx_rings)
1415 		kring = na->tx_rings[q];
1416 	else
1417 		return NULL;
1418 
1419 	return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL;
1420 }
1421 
1422 static inline int
1423 nm_iszombie(struct netmap_adapter *na)
1424 {
1425 	return na == NULL || (na->na_flags & NAF_ZOMBIE);
1426 }
1427 
1428 void nm_set_native_flags(struct netmap_adapter *);
1429 void nm_clear_native_flags(struct netmap_adapter *);
1430 
1431 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff);
1432 
1433 /*
1434  * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1435  * kthreads.
1436  * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1437  * from host kring.
1438  * The user-space ring pointers (head/cur/tail) are shared through
1439  * CSB between host and guest.
1440  */
1441 
1442 /*
1443  * validates parameters in the ring/kring, returns a value for head
1444  * If any error, returns ring_size to force a reinit.
1445  */
1446 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1447 
1448 
1449 /*
1450  * validates parameters in the ring/kring, returns a value for head
1451  * If any error, returns ring_size lim to force a reinit.
1452  */
1453 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1454 
1455 
1456 /* check/fix address and len in tx rings */
1457 #if 1 /* debug version */
1458 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1459 	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1460 		nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1461 			kring->ring_id, nm_i, slot->buf_idx, len);	\
1462 		if (_l > NETMAP_BUF_SIZE(_na))				\
1463 			_l = NETMAP_BUF_SIZE(_na);			\
1464 	} } while (0)
1465 #else /* no debug version */
1466 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1467 		if (_l > NETMAP_BUF_SIZE(_na))				\
1468 			_l = NETMAP_BUF_SIZE(_na);			\
1469 	} while (0)
1470 #endif
1471 
1472 #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do {				\
1473 	if ((l_) + (o_) < (l_) || 					\
1474 	    (l_) + (o_) > NETMAP_BUF_SIZE(na_)) {			\
1475 		(l_) = NETMAP_BUF_SIZE(na_) - (o_);			\
1476 	} } while (0)
1477 
1478 
1479 /*---------------------------------------------------------------*/
1480 /*
1481  * Support routines used by netmap subsystems
1482  * (native drivers, VALE, generic, pipes, monitors, ...)
1483  */
1484 
1485 
1486 /* common routine for all functions that create a netmap adapter. It performs
1487  * two main tasks:
1488  * - if the na points to an ifp, mark the ifp as netmap capable
1489  *   using na as its native adapter;
1490  * - provide defaults for the setup callbacks and the memory allocator
1491  */
1492 int netmap_attach_common(struct netmap_adapter *);
1493 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1494  * coming from a struct nmreq_register
1495  */
1496 int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr);
1497 /* update the ring parameters (number and size of tx and rx rings).
1498  * It calls the nm_config callback, if available.
1499  */
1500 int netmap_update_config(struct netmap_adapter *na);
1501 /* create and initialize the common fields of the krings array.
1502  * using the information that must be already available in the na.
1503  * tailroom can be used to request the allocation of additional
1504  * tailroom bytes after the krings array. This is used by
1505  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1506  * leasing-related data structures
1507  */
1508 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1509 /* deletes the kring array of the adapter. The array must have
1510  * been created using netmap_krings_create
1511  */
1512 void netmap_krings_delete(struct netmap_adapter *na);
1513 
1514 int netmap_hw_krings_create(struct netmap_adapter *na);
1515 void netmap_hw_krings_delete(struct netmap_adapter *na);
1516 
1517 /* set the stopped/enabled status of ring
1518  * When stopping, they also wait for all current activity on the ring to
1519  * terminate. The status change is then notified using the na nm_notify
1520  * callback.
1521  */
1522 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1523 /* set the stopped/enabled status of all rings of the adapter. */
1524 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1525 /* convenience wrappers for netmap_set_all_rings */
1526 void netmap_disable_all_rings(if_t);
1527 void netmap_enable_all_rings(if_t);
1528 
1529 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
1530 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1531 		struct nmreq_header *);
1532 void netmap_do_unregif(struct netmap_priv_d *priv);
1533 
1534 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1535 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1536 		if_t *ifp, struct netmap_mem_d *nmd, int create);
1537 void netmap_unget_na(struct netmap_adapter *na, if_t ifp);
1538 int netmap_get_hw_na(if_t ifp,
1539 		struct netmap_mem_d *nmd, struct netmap_adapter **na);
1540 void netmap_mem_restore(struct netmap_adapter *na);
1541 
1542 #ifdef WITH_VALE
1543 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1544 		struct netmap_vp_adapter *, void *private_data);
1545 
1546 /* these are redefined in case of no VALE support */
1547 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1548 		struct netmap_mem_d *nmd, int create);
1549 void *netmap_vale_create(const char *bdg_name, int *return_status);
1550 int netmap_vale_destroy(const char *bdg_name, void *auth_token);
1551 
1552 extern unsigned int vale_max_bridges;
1553 
1554 #else /* !WITH_VALE */
1555 #define netmap_bdg_learning(_1, _2, _3, _4)	0
1556 #define	netmap_get_vale_na(_1, _2, _3, _4)	0
1557 #define netmap_bdg_create(_1, _2)	NULL
1558 #define netmap_bdg_destroy(_1, _2)	0
1559 #define vale_max_bridges		1
1560 #endif /* !WITH_VALE */
1561 
1562 #ifdef WITH_PIPES
1563 /* max number of pipes per device */
1564 #define NM_MAXPIPES	64	/* XXX this should probably be a sysctl */
1565 void netmap_pipe_dealloc(struct netmap_adapter *);
1566 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1567 			struct netmap_mem_d *nmd, int create);
1568 #else /* !WITH_PIPES */
1569 #define NM_MAXPIPES	0
1570 #define netmap_pipe_alloc(_1, _2) 	0
1571 #define netmap_pipe_dealloc(_1)
1572 #define netmap_get_pipe_na(hdr, _2, _3, _4)	\
1573 	((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1574 #endif
1575 
1576 #ifdef WITH_MONITOR
1577 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1578 		struct netmap_mem_d *nmd, int create);
1579 void netmap_monitor_stop(struct netmap_adapter *na);
1580 #else
1581 #define netmap_get_monitor_na(hdr, _2, _3, _4) \
1582 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1583 #endif
1584 
1585 #ifdef WITH_NMNULL
1586 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1587 		struct netmap_mem_d *nmd, int create);
1588 #else /* !WITH_NMNULL */
1589 #define netmap_get_null_na(hdr, _2, _3, _4) \
1590 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1591 #endif /* WITH_NMNULL */
1592 
1593 #ifdef CONFIG_NET_NS
1594 struct net *netmap_bns_get(void);
1595 void netmap_bns_put(struct net *);
1596 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1597 #else
1598 extern struct nm_bridge *nm_bridges;
1599 #define netmap_bns_get()
1600 #define netmap_bns_put(_1)
1601 #define netmap_bns_getbridges(b, n) \
1602 	do { *b = nm_bridges; *n = vale_max_bridges; } while (0)
1603 #endif
1604 
1605 /* Various prototypes */
1606 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1607 int netmap_init(void);
1608 void netmap_fini(void);
1609 int netmap_get_memory(struct netmap_priv_d* p);
1610 void netmap_dtor(void *data);
1611 
1612 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1613 		struct thread *, int nr_body_is_user);
1614 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1615 			struct thread *td);
1616 size_t nmreq_size_by_type(uint16_t nr_reqtype);
1617 
1618 /* netmap_adapter creation/destruction */
1619 
1620 // #define NM_DEBUG_PUTGET 1
1621 
1622 #ifdef NM_DEBUG_PUTGET
1623 
1624 #define NM_DBG(f) __##f
1625 
1626 void __netmap_adapter_get(struct netmap_adapter *na);
1627 
1628 #define netmap_adapter_get(na) 				\
1629 	do {						\
1630 		struct netmap_adapter *__na = na;	\
1631 		__netmap_adapter_get(__na);		\
1632 		nm_prinf("getting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount);	\
1633 	} while (0)
1634 
1635 int __netmap_adapter_put(struct netmap_adapter *na);
1636 
1637 #define netmap_adapter_put(na)				\
1638 	({						\
1639 		struct netmap_adapter *__na = na;	\
1640 		if (__na == NULL)			\
1641 			nm_prinf("putting NULL");	\
1642 		else					\
1643 			nm_prinf("putting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount - 1);	\
1644 		__netmap_adapter_put(__na);	\
1645 	})
1646 
1647 #else /* !NM_DEBUG_PUTGET */
1648 
1649 #define NM_DBG(f) f
1650 void netmap_adapter_get(struct netmap_adapter *na);
1651 int netmap_adapter_put(struct netmap_adapter *na);
1652 
1653 #endif /* !NM_DEBUG_PUTGET */
1654 
1655 
1656 /*
1657  * module variables
1658  */
1659 #define NETMAP_BUF_BASE(_na)	((_na)->na_lut.lut[0].vaddr)
1660 #define NETMAP_BUF_SIZE(_na)	((_na)->na_lut.objsize)
1661 extern int netmap_no_pendintr;
1662 extern int netmap_verbose;
1663 #ifdef CONFIG_NETMAP_DEBUG
1664 extern int netmap_debug;		/* for debugging */
1665 #else /* !CONFIG_NETMAP_DEBUG */
1666 #define netmap_debug (0)
1667 #endif /* !CONFIG_NETMAP_DEBUG */
1668 enum {                                  /* debug flags */
1669 	NM_DEBUG_ON = 1,		/* generic debug messages */
1670 	NM_DEBUG_HOST = 0x2,            /* debug host stack */
1671 	NM_DEBUG_RXSYNC = 0x10,         /* debug on rxsync/txsync */
1672 	NM_DEBUG_TXSYNC = 0x20,
1673 	NM_DEBUG_RXINTR = 0x100,        /* debug on rx/tx intr (driver) */
1674 	NM_DEBUG_TXINTR = 0x200,
1675 	NM_DEBUG_NIC_RXSYNC = 0x1000,   /* debug on rx/tx intr (driver) */
1676 	NM_DEBUG_NIC_TXSYNC = 0x2000,
1677 	NM_DEBUG_MEM = 0x4000,		/* verbose memory allocations/deallocations */
1678 	NM_DEBUG_VALE = 0x8000,		/* debug messages from memory allocators */
1679 	NM_DEBUG_BDG = NM_DEBUG_VALE,
1680 };
1681 
1682 extern int netmap_txsync_retry;
1683 extern int netmap_generic_hwcsum;
1684 extern int netmap_generic_mit;
1685 extern int netmap_generic_ringsize;
1686 extern int netmap_generic_rings;
1687 #ifdef linux
1688 extern int netmap_generic_txqdisc;
1689 #endif
1690 
1691 /*
1692  * NA returns a pointer to the struct netmap adapter from the ifp.
1693  * WNA is os-specific and must be defined in glue code.
1694  */
1695 #define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1696 
1697 /*
1698  * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
1699  * based on the WNA field.
1700  * Glue code may override this by defining its own NM_ATTACH_NA
1701  */
1702 #ifndef NM_ATTACH_NA
1703 /*
1704  * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1705  * overload another pointer in the netdev.
1706  *
1707  * We check if NA(ifp) is set and its first element has a related
1708  * magic value. The capenable is within the struct netmap_adapter.
1709  */
1710 #define	NETMAP_MAGIC	0x52697a7a
1711 
1712 #define NM_NA_VALID(ifp)	(NA(ifp) &&		\
1713 	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1714 
1715 #define	NM_ATTACH_NA(ifp, na) do {					\
1716 	if_setnetmapadapter(ifp, na);					\
1717 	if (NA(ifp))							\
1718 		NA(ifp)->magic = 					\
1719 			((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC;	\
1720 } while(0)
1721 #define NM_RESTORE_NA(ifp, na) 	if_setnetmapadapter(ifp, na);
1722 
1723 #define NM_DETACH_NA(ifp)	do { if_setnetmapadapter(ifp, NULL); } while (0)
1724 #define NM_NA_CLASH(ifp)	(NA(ifp) && !NM_NA_VALID(ifp))
1725 #endif /* !NM_ATTACH_NA */
1726 
1727 
1728 #define NM_IS_NATIVE(ifp)	(NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1729 
1730 #if defined(__FreeBSD__)
1731 
1732 /* Assigns the device IOMMU domain to an allocator.
1733  * Returns -ENOMEM in case the domain is different */
1734 #define nm_iommu_group_id(dev) (-1)
1735 
1736 /* Callback invoked by the dma machinery after a successful dmamap_load */
1737 static void netmap_dmamap_cb(__unused void *arg,
1738     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1739 {
1740 }
1741 
1742 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1743  * XXX can we do it without a callback ?
1744  */
1745 static inline int
1746 netmap_load_map(struct netmap_adapter *na,
1747 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1748 {
1749 	if (map)
1750 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1751 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1752 	return 0;
1753 }
1754 
1755 static inline void
1756 netmap_unload_map(struct netmap_adapter *na,
1757         bus_dma_tag_t tag, bus_dmamap_t map)
1758 {
1759 	if (map)
1760 		bus_dmamap_unload(tag, map);
1761 }
1762 
1763 #define netmap_sync_map(na, tag, map, sz, t)
1764 
1765 /* update the map when a buffer changes. */
1766 static inline void
1767 netmap_reload_map(struct netmap_adapter *na,
1768 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1769 {
1770 	if (map) {
1771 		bus_dmamap_unload(tag, map);
1772 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1773 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1774 	}
1775 }
1776 
1777 #elif defined(_WIN32)
1778 
1779 #else /* linux */
1780 
1781 int nm_iommu_group_id(bus_dma_tag_t dev);
1782 #include <linux/dma-mapping.h>
1783 
1784 /*
1785  * on linux we need
1786  *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1787  *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1788  */
1789 #if 0
1790 	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1791 	/* set time_stamp *before* dma to help avoid a possible race */
1792 	buffer_info->time_stamp = jiffies;
1793 	buffer_info->mapped_as_page = false;
1794 	buffer_info->length = len;
1795 	//buffer_info->next_to_watch = l;
1796 	/* reload dma map */
1797 	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1798 			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1799 	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1800 			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1801 
1802 	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1803 		nm_prerr("dma mapping error");
1804 		/* goto dma_error; See e1000_put_txbuf() */
1805 		/* XXX reset */
1806 	}
1807 	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1808 
1809 #endif
1810 
1811 static inline int
1812 netmap_load_map(struct netmap_adapter *na,
1813 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1814 {
1815 	if (map) {
1816 		*map = dma_map_single(na->pdev, buf, size,
1817 				      DMA_BIDIRECTIONAL);
1818 		if (dma_mapping_error(na->pdev, *map)) {
1819 			*map = 0;
1820 			return ENOMEM;
1821 		}
1822 	}
1823 	return 0;
1824 }
1825 
1826 static inline void
1827 netmap_unload_map(struct netmap_adapter *na,
1828 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1829 {
1830 	if (*map) {
1831 		dma_unmap_single(na->pdev, *map, sz,
1832 				 DMA_BIDIRECTIONAL);
1833 	}
1834 }
1835 
1836 #ifdef NETMAP_LINUX_HAVE_DMASYNC
1837 static inline void
1838 netmap_sync_map_cpu(struct netmap_adapter *na,
1839 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1840 {
1841 	if (*map) {
1842 		dma_sync_single_for_cpu(na->pdev, *map, sz,
1843 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1844 	}
1845 }
1846 
1847 static inline void
1848 netmap_sync_map_dev(struct netmap_adapter *na,
1849 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1850 {
1851 	if (*map) {
1852 		dma_sync_single_for_device(na->pdev, *map, sz,
1853 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1854 	}
1855 }
1856 
1857 static inline void
1858 netmap_reload_map(struct netmap_adapter *na,
1859 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1860 {
1861 	u_int sz = NETMAP_BUF_SIZE(na);
1862 
1863 	if (*map) {
1864 		dma_unmap_single(na->pdev, *map, sz,
1865 				DMA_BIDIRECTIONAL);
1866 	}
1867 
1868 	*map = dma_map_single(na->pdev, buf, sz,
1869 				DMA_BIDIRECTIONAL);
1870 }
1871 #else /* !NETMAP_LINUX_HAVE_DMASYNC */
1872 #define netmap_sync_map_cpu(na, tag, map, sz, t)
1873 #define netmap_sync_map_dev(na, tag, map, sz, t)
1874 #endif /* NETMAP_LINUX_HAVE_DMASYNC */
1875 
1876 #endif /* linux */
1877 
1878 
1879 /*
1880  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1881  */
1882 static inline int
1883 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1884 {
1885 	int n = kr->nkr_num_slots;
1886 
1887 	if (likely(kr->nkr_hwofs == 0)) {
1888 		return idx;
1889 	}
1890 
1891 	idx += kr->nkr_hwofs;
1892 	if (idx < 0)
1893 		return idx + n;
1894 	else if (idx < n)
1895 		return idx;
1896 	else
1897 		return idx - n;
1898 }
1899 
1900 
1901 static inline int
1902 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1903 {
1904 	int n = kr->nkr_num_slots;
1905 
1906 	if (likely(kr->nkr_hwofs == 0)) {
1907 		return idx;
1908 	}
1909 
1910 	idx -= kr->nkr_hwofs;
1911 	if (idx < 0)
1912 		return idx + n;
1913 	else if (idx < n)
1914 		return idx;
1915 	else
1916 		return idx - n;
1917 }
1918 
1919 
1920 /* Entries of the look-up table. */
1921 #ifdef __FreeBSD__
1922 struct lut_entry {
1923 	void *vaddr;		/* virtual address. */
1924 	vm_paddr_t paddr;	/* physical address. */
1925 };
1926 #else /* linux & _WIN32 */
1927 /* dma-mapping in linux can assign a buffer a different address
1928  * depending on the device, so we need to have a separate
1929  * physical-address look-up table for each na.
1930  * We can still share the vaddrs, though, therefore we split
1931  * the lut_entry structure.
1932  */
1933 struct lut_entry {
1934 	void *vaddr;		/* virtual address. */
1935 };
1936 
1937 struct plut_entry {
1938 	vm_paddr_t paddr;	/* physical address. */
1939 };
1940 #endif /* linux & _WIN32 */
1941 
1942 struct netmap_obj_pool;
1943 
1944 /* alignment for netmap buffers */
1945 #define NM_BUF_ALIGN	64
1946 
1947 /*
1948  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1949  * PNMB also fills the physical address
1950  */
1951 static inline void *
1952 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1953 {
1954 	struct lut_entry *lut = na->na_lut.lut;
1955 	uint32_t i = slot->buf_idx;
1956 	return (unlikely(i >= na->na_lut.objtotal)) ?
1957 		lut[0].vaddr : lut[i].vaddr;
1958 }
1959 
1960 static inline void *
1961 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1962 {
1963 	uint32_t i = slot->buf_idx;
1964 	struct lut_entry *lut = na->na_lut.lut;
1965 	struct plut_entry *plut = na->na_lut.plut;
1966 	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1967 
1968 #ifdef _WIN32
1969 	*pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1970 #else
1971 	*pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1972 #endif
1973 	return ret;
1974 }
1975 
1976 static inline void
1977 nm_write_offset(struct netmap_kring *kring,
1978 		struct netmap_slot *slot, uint64_t offset)
1979 {
1980 	slot->ptr = (slot->ptr & ~kring->offset_mask) |
1981 		(offset & kring->offset_mask);
1982 }
1983 
1984 static inline uint64_t
1985 nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot)
1986 {
1987 	uint64_t offset = (slot->ptr & kring->offset_mask);
1988 	if (unlikely(offset > kring->offset_max))
1989 		offset = kring->offset_max;
1990 	return offset;
1991 }
1992 
1993 static inline void *
1994 NMB_O(struct netmap_kring *kring, struct netmap_slot *slot)
1995 {
1996 	void *addr = NMB(kring->na, slot);
1997 	return (char *)addr + nm_get_offset(kring, slot);
1998 }
1999 
2000 static inline void *
2001 PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp)
2002 {
2003 	void *addr = PNMB(kring->na, slot, pp);
2004 	uint64_t offset = nm_get_offset(kring, slot);
2005 	addr = (char *)addr + offset;
2006 	*pp += offset;
2007 	return addr;
2008 }
2009 
2010 
2011 /*
2012  * Structure associated to each netmap file descriptor.
2013  * It is created on open and left unbound (np_nifp == NULL).
2014  * A successful NIOCREGIF will set np_nifp and the first few fields;
2015  * this is protected by a global lock (NMG_LOCK) due to low contention.
2016  *
2017  * np_refs counts the number of references to the structure: one for the fd,
2018  * plus (on FreeBSD) one for each active mmap which we track ourselves
2019  * (linux automatically tracks them, but FreeBSD does not).
2020  * np_refs is protected by NMG_LOCK.
2021  *
2022  * Read access to the structure is lock free, because ni_nifp once set
2023  * can only go to 0 when nobody is using the entry anymore. Readers
2024  * must check that np_nifp != NULL before using the other fields.
2025  */
2026 struct netmap_priv_d {
2027 	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
2028 
2029 	struct netmap_adapter	*np_na;
2030 	if_t		np_ifp;
2031 	uint32_t	np_flags;	/* from the ioctl */
2032 	u_int		np_qfirst[NR_TXRX],
2033 			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
2034 	uint16_t	np_txpoll;
2035 	uint16_t        np_kloop_state;	/* use with NMG_LOCK held */
2036 #define NM_SYNC_KLOOP_RUNNING	(1 << 0)
2037 #define NM_SYNC_KLOOP_STOPPING	(1 << 1)
2038 	int             np_sync_flags; /* to be passed to nm_sync */
2039 
2040 	int		np_refs;	/* use with NMG_LOCK held */
2041 
2042 	/* pointers to the selinfo to be used for selrecord.
2043 	 * Either the local or the global one depending on the
2044 	 * number of rings.
2045 	 */
2046 	NM_SELINFO_T *np_si[NR_TXRX];
2047 
2048 	/* In the optional CSB mode, the user must specify the start address
2049 	 * of two arrays of Communication Status Block (CSB) entries, for the
2050 	 * two directions (kernel read application write, and kernel write
2051 	 * application read).
2052 	 * The number of entries must agree with the number of rings bound to
2053 	 * the netmap file descriptor. The entries corresponding to the TX
2054 	 * rings are laid out before the ones corresponding to the RX rings.
2055 	 *
2056 	 * Array of CSB entries for application --> kernel communication
2057 	 * (N entries). */
2058 	struct nm_csb_atok	*np_csb_atok_base;
2059 	/* Array of CSB entries for kernel --> application communication
2060 	 * (N entries). */
2061 	struct nm_csb_ktoa	*np_csb_ktoa_base;
2062 
2063 #ifdef linux
2064 	struct file	*np_filp;  /* used by sync kloop */
2065 #endif /* linux */
2066 };
2067 
2068 struct netmap_priv_d *netmap_priv_new(void);
2069 void netmap_priv_delete(struct netmap_priv_d *);
2070 
2071 static inline int nm_kring_pending(struct netmap_priv_d *np)
2072 {
2073 	struct netmap_adapter *na = np->np_na;
2074 	enum txrx t;
2075 	int i;
2076 
2077 	for_rx_tx(t) {
2078 		for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
2079 			struct netmap_kring *kring = NMR(na, t)[i];
2080 			if (kring->nr_mode != kring->nr_pending_mode) {
2081 				return 1;
2082 			}
2083 		}
2084 	}
2085 	return 0;
2086 }
2087 
2088 /* call with NMG_LOCK held */
2089 static __inline int
2090 nm_si_user(struct netmap_priv_d *priv, enum txrx t)
2091 {
2092 	return (priv->np_na != NULL &&
2093 		(priv->np_qlast[t] - priv->np_qfirst[t] > 1));
2094 }
2095 
2096 #ifdef WITH_PIPES
2097 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
2098 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
2099 int netmap_pipe_krings_create_both(struct netmap_adapter *na,
2100 				  struct netmap_adapter *ona);
2101 void netmap_pipe_krings_delete_both(struct netmap_adapter *na,
2102 				    struct netmap_adapter *ona);
2103 int netmap_pipe_reg_both(struct netmap_adapter *na,
2104 			 struct netmap_adapter *ona);
2105 #endif /* WITH_PIPES */
2106 
2107 #ifdef WITH_MONITOR
2108 
2109 struct netmap_monitor_adapter {
2110 	struct netmap_adapter up;
2111 
2112 	struct netmap_priv_d priv;
2113 	uint32_t flags;
2114 };
2115 
2116 #endif /* WITH_MONITOR */
2117 
2118 
2119 #ifdef WITH_GENERIC
2120 /*
2121  * generic netmap emulation for devices that do not have
2122  * native netmap support.
2123  */
2124 int generic_netmap_attach(if_t ifp);
2125 int generic_rx_handler(if_t ifp, struct mbuf *m);
2126 
2127 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
2128 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
2129 
2130 int na_is_generic(struct netmap_adapter *na);
2131 
2132 /*
2133  * the generic transmit routine is passed a structure to optionally
2134  * build a queue of descriptors, in an OS-specific way.
2135  * The payload is at addr, if non-null, and the routine should send or queue
2136  * the packet, returning 0 if successful, 1 on failure.
2137  *
2138  * At the end, if head is non-null, there will be an additional call
2139  * to the function with addr = NULL; this should tell the OS-specific
2140  * routine to send the queue and free any resources. Failure is ignored.
2141  */
2142 struct nm_os_gen_arg {
2143 	if_t ifp;
2144 	void *m;	/* os-specific mbuf-like object */
2145 	void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
2146 	void *addr;	/* payload of current packet */
2147 	u_int len;	/* packet length */
2148 	u_int ring_nr;	/* transmit ring index */
2149 	u_int qevent;   /* in txqdisc mode, place an event on this mbuf */
2150 };
2151 
2152 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
2153 int nm_os_generic_find_num_desc(if_t ifp, u_int *tx, u_int *rx);
2154 void nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq);
2155 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
2156 
2157 static inline if_t
2158 netmap_generic_getifp(struct netmap_generic_adapter *gna)
2159 {
2160         if (gna->prev)
2161             return gna->prev->ifp;
2162 
2163         return gna->up.up.ifp;
2164 }
2165 
2166 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
2167 
2168 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
2169 #ifdef RATE_GENERIC
2170 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
2171 #else
2172 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
2173 #endif
2174 
2175 /*
2176  * netmap_mitigation API. This is used by the generic adapter
2177  * to reduce the number of interrupt requests/selwakeup
2178  * to clients on incoming packets.
2179  */
2180 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2181                                 struct netmap_adapter *na);
2182 void nm_os_mitigation_start(struct nm_generic_mit *mit);
2183 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2184 int nm_os_mitigation_active(struct nm_generic_mit *mit);
2185 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2186 #else /* !WITH_GENERIC */
2187 #define generic_netmap_attach(ifp)	(EOPNOTSUPP)
2188 #define na_is_generic(na)		(0)
2189 #endif /* WITH_GENERIC */
2190 
2191 /* Shared declarations for the VALE switch. */
2192 
2193 /*
2194  * Each transmit queue accumulates a batch of packets into
2195  * a structure before forwarding. Packets to the same
2196  * destination are put in a list using ft_next as a link field.
2197  * ft_frags and ft_next are valid only on the first fragment.
2198  */
2199 struct nm_bdg_fwd {	/* forwarding entry for a bridge */
2200 	void *ft_buf;		/* netmap or indirect buffer */
2201 	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
2202 	uint16_t ft_offset;	/* dst port (unused) */
2203 	uint16_t ft_flags;	/* flags, e.g. indirect */
2204 	uint16_t ft_len;	/* src fragment len */
2205 	uint16_t ft_next;	/* next packet to same destination */
2206 };
2207 
2208 /* struct 'virtio_net_hdr' from linux. */
2209 struct nm_vnet_hdr {
2210 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
2211 #define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
2212     uint8_t flags;
2213 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
2214 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
2215 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
2216 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
2217 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
2218     uint8_t gso_type;
2219     uint16_t hdr_len;
2220     uint16_t gso_size;
2221     uint16_t csum_start;
2222     uint16_t csum_offset;
2223 };
2224 
2225 #define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
2226 
2227 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2228 
2229 struct nm_iphdr {
2230 	uint8_t		version_ihl;
2231 	uint8_t		tos;
2232 	uint16_t	tot_len;
2233 	uint16_t	id;
2234 	uint16_t	frag_off;
2235 	uint8_t		ttl;
2236 	uint8_t		protocol;
2237 	uint16_t	check;
2238 	uint32_t	saddr;
2239 	uint32_t	daddr;
2240 	/*The options start here. */
2241 };
2242 
2243 struct nm_tcphdr {
2244 	uint16_t	source;
2245 	uint16_t	dest;
2246 	uint32_t	seq;
2247 	uint32_t	ack_seq;
2248 	uint8_t		doff;  /* Data offset + Reserved */
2249 	uint8_t		flags;
2250 	uint16_t	window;
2251 	uint16_t	check;
2252 	uint16_t	urg_ptr;
2253 };
2254 
2255 struct nm_udphdr {
2256 	uint16_t	source;
2257 	uint16_t	dest;
2258 	uint16_t	len;
2259 	uint16_t	check;
2260 };
2261 
2262 struct nm_ipv6hdr {
2263 	uint8_t		priority_version;
2264 	uint8_t		flow_lbl[3];
2265 
2266 	uint16_t	payload_len;
2267 	uint8_t		nexthdr;
2268 	uint8_t		hop_limit;
2269 
2270 	uint8_t		saddr[16];
2271 	uint8_t		daddr[16];
2272 };
2273 
2274 /* Type used to store a checksum (in host byte order) that hasn't been
2275  * folded yet.
2276  */
2277 #define rawsum_t uint32_t
2278 
2279 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2280 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2281 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2282 		      size_t datalen, uint16_t *check);
2283 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2284 		      size_t datalen, uint16_t *check);
2285 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2286 
2287 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2288 			   struct netmap_vp_adapter *dst_na,
2289 			   const struct nm_bdg_fwd *ft_p,
2290 			   struct netmap_ring *dst_ring,
2291 			   u_int *j, u_int lim, u_int *howmany);
2292 
2293 /* persistent virtual port routines */
2294 int nm_os_vi_persist(const char *, if_t *);
2295 void nm_os_vi_detach(if_t);
2296 void nm_os_vi_init_index(void);
2297 
2298 /*
2299  * kernel thread routines
2300  */
2301 struct nm_kctx; /* OS-specific kernel context - opaque */
2302 typedef void (*nm_kctx_worker_fn_t)(void *data);
2303 
2304 /* kthread configuration */
2305 struct nm_kctx_cfg {
2306 	long			type;		/* kthread type/identifier */
2307 	nm_kctx_worker_fn_t	worker_fn;	/* worker function */
2308 	void			*worker_private;/* worker parameter */
2309 	int			attach_user;	/* attach kthread to user process */
2310 };
2311 /* kthread configuration */
2312 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2313 					void *opaque);
2314 int nm_os_kctx_worker_start(struct nm_kctx *);
2315 void nm_os_kctx_worker_stop(struct nm_kctx *);
2316 void nm_os_kctx_destroy(struct nm_kctx *);
2317 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2318 u_int nm_os_ncpus(void);
2319 
2320 int netmap_sync_kloop(struct netmap_priv_d *priv,
2321 		      struct nmreq_header *hdr);
2322 int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
2323 
2324 #ifdef WITH_PTNETMAP
2325 /* ptnetmap guest routines */
2326 
2327 /*
2328  * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
2329  */
2330 struct ptnetmap_memdev;
2331 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
2332                           uint64_t *);
2333 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
2334 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
2335 
2336 /*
2337  * netmap adapter for guest ptnetmap ports
2338  */
2339 struct netmap_pt_guest_adapter {
2340         /* The netmap adapter to be used by netmap applications.
2341 	 * This field must be the first, to allow upcast. */
2342 	struct netmap_hw_adapter hwup;
2343 
2344         /* The netmap adapter to be used by the driver. */
2345         struct netmap_hw_adapter dr;
2346 
2347 	/* Reference counter to track users of backend netmap port: the
2348 	 * network stack and netmap clients.
2349 	 * Used to decide when we need (de)allocate krings/rings and
2350 	 * start (stop) ptnetmap kthreads. */
2351 	int backend_users;
2352 
2353 };
2354 
2355 int netmap_pt_guest_attach(struct netmap_adapter *na,
2356 			unsigned int nifp_offset,
2357 			unsigned int memid);
2358 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
2359 			struct nm_csb_ktoa *ktoa,
2360 			struct netmap_kring *kring, int flags);
2361 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
2362 			struct nm_csb_ktoa *ktoa,
2363 			struct netmap_kring *kring, int flags);
2364 int ptnet_nm_krings_create(struct netmap_adapter *na);
2365 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2366 void ptnet_nm_dtor(struct netmap_adapter *na);
2367 
2368 /* Helper function wrapping nm_sync_kloop_appl_read(). */
2369 static inline void
2370 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
2371 {
2372 	struct netmap_ring *ring = kring->ring;
2373 
2374 	/* Update hwcur and hwtail as known by the host. */
2375         nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
2376 
2377 	/* nm_sync_finalize */
2378 	ring->tail = kring->rtail = kring->nr_hwtail;
2379 }
2380 #endif /* WITH_PTNETMAP */
2381 
2382 #ifdef __FreeBSD__
2383 /*
2384  * FreeBSD mbuf allocator/deallocator in emulation mode:
2385  *
2386  * We allocate mbufs with m_gethdr(), since the mbuf header is needed
2387  * by the driver. We also attach a customly-provided external storage,
2388  * which in this case is a netmap buffer. When calling m_extadd(), however
2389  * we pass a NULL address, since the real address (and length) will be
2390  * filled in by nm_os_generic_xmit_frame() right before calling
2391  * if_transmit().
2392  *
2393  * The dtor function does nothing, however we need it since mb_free_ext()
2394  * has a KASSERT(), checking that the mbuf dtor function is not NULL.
2395  */
2396 
2397 static void void_mbuf_dtor(struct mbuf *m) { }
2398 
2399 #define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
2400 	(m)->m_ext.ext_free = (fn != NULL) ?		\
2401 	    (void *)fn : (void *)void_mbuf_dtor;	\
2402 } while (0)
2403 
2404 static inline struct mbuf *
2405 nm_os_get_mbuf(if_t ifp, int len)
2406 {
2407 	struct mbuf *m;
2408 
2409 	(void)ifp;
2410 	(void)len;
2411 
2412 	m = m_gethdr(M_NOWAIT, MT_DATA);
2413 	if (m == NULL) {
2414 		return m;
2415 	}
2416 
2417 	m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor,
2418 		 NULL, NULL, 0, EXT_NET_DRV);
2419 
2420 	return m;
2421 }
2422 
2423 #endif /* __FreeBSD__ */
2424 
2425 struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t);
2426 
2427 int netmap_init_bridges(void);
2428 void netmap_uninit_bridges(void);
2429 
2430 /* Functions to read and write CSB fields from the kernel. */
2431 #if defined (linux)
2432 #define CSB_READ(csb, field, r) (get_user(r, &csb->field))
2433 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
2434 #else  /* ! linux */
2435 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field))
2436 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v))
2437 #endif /* ! linux */
2438 
2439 /* some macros that may not be defined */
2440 #ifndef ETH_HLEN
2441 #define ETH_HLEN 6
2442 #endif
2443 #ifndef ETH_FCS_LEN
2444 #define ETH_FCS_LEN 4
2445 #endif
2446 #ifndef VLAN_HLEN
2447 #define VLAN_HLEN 4
2448 #endif
2449 
2450 #endif /* _NET_NETMAP_KERN_H_ */
2451