xref: /freebsd/sys/dev/netmap/netmap_kern.h (revision 8522d140a568be6044aad4288042c72e8d3b72a7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5  * Copyright (C) 2013-2016 Universita` di Pisa
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * $FreeBSD$
32  *
33  * The header contains the definitions of constants and function
34  * prototypes used only in kernelspace.
35  */
36 
37 #ifndef _NET_NETMAP_KERN_H_
38 #define _NET_NETMAP_KERN_H_
39 
40 #if defined(linux)
41 
42 #if defined(CONFIG_NETMAP_EXTMEM)
43 #define WITH_EXTMEM
44 #endif
45 #if  defined(CONFIG_NETMAP_VALE)
46 #define WITH_VALE
47 #endif
48 #if defined(CONFIG_NETMAP_PIPE)
49 #define WITH_PIPES
50 #endif
51 #if defined(CONFIG_NETMAP_MONITOR)
52 #define WITH_MONITOR
53 #endif
54 #if defined(CONFIG_NETMAP_GENERIC)
55 #define WITH_GENERIC
56 #endif
57 #if defined(CONFIG_NETMAP_PTNETMAP_GUEST)
58 #define WITH_PTNETMAP_GUEST
59 #endif
60 #if defined(CONFIG_NETMAP_PTNETMAP_HOST)
61 #define WITH_PTNETMAP_HOST
62 #endif
63 #if defined(CONFIG_NETMAP_SINK)
64 #define WITH_SINK
65 #endif
66 
67 #elif defined (_WIN32)
68 #define WITH_VALE	// comment out to disable VALE support
69 #define WITH_PIPES
70 #define WITH_MONITOR
71 #define WITH_GENERIC
72 
73 #else	/* neither linux nor windows */
74 #define WITH_VALE	// comment out to disable VALE support
75 #define WITH_PIPES
76 #define WITH_MONITOR
77 #define WITH_GENERIC
78 #define WITH_PTNETMAP_HOST	/* ptnetmap host support */
79 #define WITH_PTNETMAP_GUEST	/* ptnetmap guest support */
80 #define WITH_EXTMEM
81 #endif
82 
83 #if defined(__FreeBSD__)
84 #include <sys/selinfo.h>
85 
86 #define likely(x)	__builtin_expect((long)!!(x), 1L)
87 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
88 #define __user
89 
90 #define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
91 
92 #define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
93 #define NM_MTX_INIT(m)		sx_init(&(m), #m)
94 #define NM_MTX_DESTROY(m)	sx_destroy(&(m))
95 #define NM_MTX_LOCK(m)		sx_xlock(&(m))
96 #define NM_MTX_SPINLOCK(m)	while (!sx_try_xlock(&(m))) ;
97 #define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
98 #define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
99 
100 #define	NM_SELINFO_T	struct nm_selinfo
101 #define NM_SELRECORD_T	struct thread
102 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
103 #define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
104 #define MBUF_TRANSMIT(na, ifp, m)	((na)->if_transmit(ifp, m))
105 #define	GEN_TX_MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
106 
107 #define NM_ATOMIC_T	volatile int /* required by atomic/bitops.h */
108 /* atomic operations */
109 #include <machine/atomic.h>
110 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
111 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
112 
113 #if __FreeBSD_version >= 1100030
114 #define	WNA(_ifp)	(_ifp)->if_netmap
115 #else /* older FreeBSD */
116 #define	WNA(_ifp)	(_ifp)->if_pspare[0]
117 #endif /* older FreeBSD */
118 
119 #if __FreeBSD_version >= 1100005
120 struct netmap_adapter *netmap_getna(if_t ifp);
121 #endif
122 
123 #if __FreeBSD_version >= 1100027
124 #define MBUF_REFCNT(m)		((m)->m_ext.ext_count)
125 #define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
126 #else
127 #define MBUF_REFCNT(m)		((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
128 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
129 #endif
130 
131 #define MBUF_QUEUED(m)		1
132 
133 struct nm_selinfo {
134 	struct selinfo si;
135 	struct mtx m;
136 };
137 
138 
139 struct hrtimer {
140     /* Not used in FreeBSD. */
141 };
142 
143 #define NM_BNS_GET(b)
144 #define NM_BNS_PUT(b)
145 
146 #elif defined (linux)
147 
148 #define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
149 #define	NM_SELINFO_T	wait_queue_head_t
150 #define	MBUF_LEN(m)	((m)->len)
151 #define MBUF_TRANSMIT(na, ifp, m)							\
152 	({										\
153 		/* Avoid infinite recursion with generic. */				\
154 		m->priority = NM_MAGIC_PRIORITY_TX;					\
155 		(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp));	\
156 		0;									\
157 	})
158 
159 /* See explanation in nm_os_generic_xmit_frame. */
160 #define	GEN_TX_MBUF_IFP(m)	((struct ifnet *)skb_shinfo(m)->destructor_arg)
161 
162 #define NM_ATOMIC_T	volatile long unsigned int
163 
164 #define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
165 #define NM_MTX_INIT(m)	mutex_init(&(m))
166 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
167 #define NM_MTX_LOCK(m)		mutex_lock(&(m))
168 #define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
169 #define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
170 
171 #ifndef DEV_NETMAP
172 #define DEV_NETMAP
173 #endif /* DEV_NETMAP */
174 
175 #elif defined (__APPLE__)
176 
177 #warning apple support is incomplete.
178 #define likely(x)	__builtin_expect(!!(x), 1)
179 #define unlikely(x)	__builtin_expect(!!(x), 0)
180 #define	NM_LOCK_T	IOLock *
181 #define	NM_SELINFO_T	struct selinfo
182 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
183 
184 #elif defined (_WIN32)
185 #include "../../../WINDOWS/win_glue.h"
186 
187 #define NM_SELRECORD_T		IO_STACK_LOCATION
188 #define NM_SELINFO_T		win_SELINFO		// see win_glue.h
189 #define NM_LOCK_T		win_spinlock_t	// see win_glue.h
190 #define NM_MTX_T		KGUARDED_MUTEX	/* OS-specific mutex (sleepable) */
191 
192 #define NM_MTX_INIT(m)		KeInitializeGuardedMutex(&m);
193 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
194 #define NM_MTX_LOCK(m)		KeAcquireGuardedMutex(&(m))
195 #define NM_MTX_UNLOCK(m)	KeReleaseGuardedMutex(&(m))
196 #define NM_MTX_ASSERT(m)	assert(&m.Count>0)
197 
198 //These linknames are for the NDIS driver
199 #define NETMAP_NDIS_LINKNAME_STRING             L"\\DosDevices\\NMAPNDIS"
200 #define NETMAP_NDIS_NTDEVICE_STRING             L"\\Device\\NMAPNDIS"
201 
202 //Definition of internal driver-to-driver ioctl codes
203 #define NETMAP_KERNEL_XCHANGE_POINTERS		_IO('i', 180)
204 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL	_IO_direct('i', 195)
205 
206 typedef struct hrtimer{
207 	KTIMER timer;
208 	BOOLEAN active;
209 	KDPC deferred_proc;
210 };
211 
212 /* MSVC does not have likely/unlikely support */
213 #ifdef _MSC_VER
214 #define likely(x)	(x)
215 #define unlikely(x)	(x)
216 #else
217 #define likely(x)	__builtin_expect((long)!!(x), 1L)
218 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
219 #endif //_MSC_VER
220 
221 #else
222 
223 #error unsupported platform
224 
225 #endif /* end - platform-specific code */
226 
227 #ifndef _WIN32 /* support for emulated sysctl */
228 #define SYSBEGIN(x)
229 #define SYSEND
230 #endif /* _WIN32 */
231 
232 #define NM_ACCESS_ONCE(x)	(*(volatile __typeof__(x) *)&(x))
233 
234 #define	NMG_LOCK_T		NM_MTX_T
235 #define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
236 #define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
237 #define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
238 #define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
239 #define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
240 
241 #if defined(__FreeBSD__)
242 #define nm_prerr	printf
243 #define nm_prinf	printf
244 #elif defined (_WIN32)
245 #define nm_prerr	DbgPrint
246 #define nm_prinf	DbgPrint
247 #elif defined(linux)
248 #define nm_prerr(fmt, arg...)    printk(KERN_ERR fmt, ##arg)
249 #define nm_prinf(fmt, arg...)    printk(KERN_INFO fmt, ##arg)
250 #endif
251 
252 #define ND(format, ...)
253 #define D(format, ...)						\
254 	do {							\
255 		struct timeval __xxts;				\
256 		microtime(&__xxts);				\
257 		nm_prerr("%03d.%06d [%4d] %-25s " format "\n",	\
258 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
259 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
260 	} while (0)
261 
262 /* rate limited, lps indicates how many per second */
263 #define RD(lps, format, ...)					\
264 	do {							\
265 		static int t0, __cnt;				\
266 		if (t0 != time_second) {			\
267 			t0 = time_second;			\
268 			__cnt = 0;				\
269 		}						\
270 		if (__cnt++ < lps)				\
271 			D(format, ##__VA_ARGS__);		\
272 	} while (0)
273 
274 struct netmap_adapter;
275 struct nm_bdg_fwd;
276 struct nm_bridge;
277 struct netmap_priv_d;
278 struct nm_bdg_args;
279 
280 /* os-specific NM_SELINFO_T initialzation/destruction functions */
281 void nm_os_selinfo_init(NM_SELINFO_T *);
282 void nm_os_selinfo_uninit(NM_SELINFO_T *);
283 
284 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
285 
286 void nm_os_selwakeup(NM_SELINFO_T *si);
287 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
288 
289 int nm_os_ifnet_init(void);
290 void nm_os_ifnet_fini(void);
291 void nm_os_ifnet_lock(void);
292 void nm_os_ifnet_unlock(void);
293 
294 unsigned nm_os_ifnet_mtu(struct ifnet *ifp);
295 
296 void nm_os_get_module(void);
297 void nm_os_put_module(void);
298 
299 void netmap_make_zombie(struct ifnet *);
300 void netmap_undo_zombie(struct ifnet *);
301 
302 /* os independent alloc/realloc/free */
303 void *nm_os_malloc(size_t);
304 void *nm_os_vmalloc(size_t);
305 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
306 void nm_os_free(void *);
307 void nm_os_vfree(void *);
308 
309 /* os specific attach/detach enter/exit-netmap-mode routines */
310 void nm_os_onattach(struct ifnet *);
311 void nm_os_ondetach(struct ifnet *);
312 void nm_os_onenter(struct ifnet *);
313 void nm_os_onexit(struct ifnet *);
314 
315 /* passes a packet up to the host stack.
316  * If the packet is sent (or dropped) immediately it returns NULL,
317  * otherwise it links the packet to prev and returns m.
318  * In this case, a final call with m=NULL and prev != NULL will send up
319  * the entire chain to the host stack.
320  */
321 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev);
322 
323 int nm_os_mbuf_has_seg_offld(struct mbuf *m);
324 int nm_os_mbuf_has_csum_offld(struct mbuf *m);
325 
326 #include "netmap_mbq.h"
327 
328 extern NMG_LOCK_T	netmap_global_lock;
329 
330 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
331 
332 static __inline const char*
333 nm_txrx2str(enum txrx t)
334 {
335 	return (t== NR_RX ? "RX" : "TX");
336 }
337 
338 static __inline enum txrx
339 nm_txrx_swap(enum txrx t)
340 {
341 	return (t== NR_RX ? NR_TX : NR_RX);
342 }
343 
344 #define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
345 
346 #ifdef WITH_MONITOR
347 struct netmap_zmon_list {
348 	struct netmap_kring *next;
349 	struct netmap_kring *prev;
350 };
351 #endif /* WITH_MONITOR */
352 
353 /*
354  * private, kernel view of a ring. Keeps track of the status of
355  * a ring across system calls.
356  *
357  *	nr_hwcur	index of the next buffer to refill.
358  *			It corresponds to ring->head
359  *			at the time the system call returns.
360  *
361  *	nr_hwtail	index of the first buffer owned by the kernel.
362  *			On RX, hwcur->hwtail are receive buffers
363  *			not yet released. hwcur is advanced following
364  *			ring->head, hwtail is advanced on incoming packets,
365  *			and a wakeup is generated when hwtail passes ring->cur
366  *			    On TX, hwcur->rcur have been filled by the sender
367  *			but not sent yet to the NIC; rcur->hwtail are available
368  *			for new transmissions, and hwtail->hwcur-1 are pending
369  *			transmissions not yet acknowledged.
370  *
371  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
372  * This is so that, on a reset, buffers owned by userspace are not
373  * modified by the kernel. In particular:
374  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
375  * 	the next empty buffer as known by the hardware (next_to_check or so).
376  * TX rings: hwcur + hwofs coincides with next_to_send
377  *
378  * The following fields are used to implement lock-free copy of packets
379  * from input to output ports in VALE switch:
380  *	nkr_hwlease	buffer after the last one being copied.
381  *			A writer in nm_bdg_flush reserves N buffers
382  *			from nr_hwlease, advances it, then does the
383  *			copy outside the lock.
384  *			In RX rings (used for VALE ports),
385  *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
386  *			In TX rings (used for NIC or host stack ports)
387  *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
388  *	nkr_leases	array of nkr_num_slots where writers can report
389  *			completion of their block. NR_NOSLOT (~0) indicates
390  *			that the writer has not finished yet
391  *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
392  *
393  * The kring is manipulated by txsync/rxsync and generic netmap function.
394  *
395  * Concurrent rxsync or txsync on the same ring are prevented through
396  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
397  * for NIC rings, and for TX rings attached to the host stack.
398  *
399  * RX rings attached to the host stack use an mbq (rx_queue) on both
400  * rxsync_from_host() and netmap_transmit(). The mbq is protected
401  * by its internal lock.
402  *
403  * RX rings attached to the VALE switch are accessed by both senders
404  * and receiver. They are protected through the q_lock on the RX ring.
405  */
406 struct netmap_kring {
407 	struct netmap_ring	*ring;
408 
409 	uint32_t	nr_hwcur;  /* should be nr_hwhead */
410 	uint32_t	nr_hwtail;
411 
412 	/*
413 	 * Copies of values in user rings, so we do not need to look
414 	 * at the ring (which could be modified). These are set in the
415 	 * *sync_prologue()/finalize() routines.
416 	 */
417 	uint32_t	rhead;
418 	uint32_t	rcur;
419 	uint32_t	rtail;
420 
421 	uint32_t	nr_kflags;	/* private driver flags */
422 #define NKR_PENDINTR	0x1		// Pending interrupt.
423 #define NKR_EXCLUSIVE	0x2		/* exclusive binding */
424 #define NKR_FORWARD	0x4		/* (host ring only) there are
425 					   packets to forward
426 					 */
427 #define NKR_NEEDRING	0x8		/* ring needed even if users==0
428 					 * (used internally by pipes and
429 					 *  by ptnetmap host ports)
430 					 */
431 #define NKR_NOINTR      0x10            /* don't use interrupts on this ring */
432 #define NKR_FAKERING	0x20		/* don't allocate/free buffers */
433 
434 	uint32_t	nr_mode;
435 	uint32_t	nr_pending_mode;
436 #define NKR_NETMAP_OFF	0x0
437 #define NKR_NETMAP_ON	0x1
438 
439 	uint32_t	nkr_num_slots;
440 
441 	/*
442 	 * On a NIC reset, the NIC ring indexes may be reset but the
443 	 * indexes in the netmap rings remain the same. nkr_hwofs
444 	 * keeps track of the offset between the two.
445 	 */
446 	int32_t		nkr_hwofs;
447 
448 	/* last_reclaim is opaque marker to help reduce the frequency
449 	 * of operations such as reclaiming tx buffers. A possible use
450 	 * is set it to ticks and do the reclaim only once per tick.
451 	 */
452 	uint64_t	last_reclaim;
453 
454 
455 	NM_SELINFO_T	si;		/* poll/select wait queue */
456 	NM_LOCK_T	q_lock;		/* protects kring and ring. */
457 	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
458 
459 	/* the adapter the owns this kring */
460 	struct netmap_adapter *na;
461 
462 	/* the adapter that wants to be notified when this kring has
463 	 * new slots avaialable. This is usually the same as the above,
464 	 * but wrappers may let it point to themselves
465 	 */
466 	struct netmap_adapter *notify_na;
467 
468 	/* The following fields are for VALE switch support */
469 	struct nm_bdg_fwd *nkr_ft;
470 	uint32_t	*nkr_leases;
471 #define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
472 	uint32_t	nkr_hwlease;
473 	uint32_t	nkr_lease_idx;
474 
475 	/* while nkr_stopped is set, no new [tr]xsync operations can
476 	 * be started on this kring.
477 	 * This is used by netmap_disable_all_rings()
478 	 * to find a synchronization point where critical data
479 	 * structures pointed to by the kring can be added or removed
480 	 */
481 	volatile int nkr_stopped;
482 
483 	/* Support for adapters without native netmap support.
484 	 * On tx rings we preallocate an array of tx buffers
485 	 * (same size as the netmap ring), on rx rings we
486 	 * store incoming mbufs in a queue that is drained by
487 	 * a rxsync.
488 	 */
489 	struct mbuf	**tx_pool;
490 	struct mbuf	*tx_event;	/* TX event used as a notification */
491 	NM_LOCK_T	tx_event_lock;	/* protects the tx_event mbuf */
492 	struct mbq	rx_queue;       /* intercepted rx mbufs. */
493 
494 	uint32_t	users;		/* existing bindings for this ring */
495 
496 	uint32_t	ring_id;	/* kring identifier */
497 	enum txrx	tx;		/* kind of ring (tx or rx) */
498 	char name[64];			/* diagnostic */
499 
500 	/* [tx]sync callback for this kring.
501 	 * The default nm_kring_create callback (netmap_krings_create)
502 	 * sets the nm_sync callback of each hardware tx(rx) kring to
503 	 * the corresponding nm_txsync(nm_rxsync) taken from the
504 	 * netmap_adapter; moreover, it sets the sync callback
505 	 * of the host tx(rx) ring to netmap_txsync_to_host
506 	 * (netmap_rxsync_from_host).
507 	 *
508 	 * Overrides: the above configuration is not changed by
509 	 * any of the nm_krings_create callbacks.
510 	 */
511 	int (*nm_sync)(struct netmap_kring *kring, int flags);
512 	int (*nm_notify)(struct netmap_kring *kring, int flags);
513 
514 #ifdef WITH_PIPES
515 	struct netmap_kring *pipe;	/* if this is a pipe ring,
516 					 * pointer to the other end
517 					 */
518 	uint32_t pipe_tail;		/* hwtail updated by the other end */
519 #endif /* WITH_PIPES */
520 
521 	int (*save_notify)(struct netmap_kring *kring, int flags);
522 
523 #ifdef WITH_MONITOR
524 	/* array of krings that are monitoring this kring */
525 	struct netmap_kring **monitors;
526 	uint32_t max_monitors; /* current size of the monitors array */
527 	uint32_t n_monitors;	/* next unused entry in the monitor array */
528 	uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
529 	uint32_t mon_tail;  /* last seen slot on rx */
530 
531 	/* circular list of zero-copy monitors */
532 	struct netmap_zmon_list zmon_list[NR_TXRX];
533 
534 	/*
535 	 * Monitors work by intercepting the sync and notify callbacks of the
536 	 * monitored krings. This is implemented by replacing the pointers
537 	 * above and saving the previous ones in mon_* pointers below
538 	 */
539 	int (*mon_sync)(struct netmap_kring *kring, int flags);
540 	int (*mon_notify)(struct netmap_kring *kring, int flags);
541 
542 #endif
543 }
544 #ifdef _WIN32
545 __declspec(align(64));
546 #else
547 __attribute__((__aligned__(64)));
548 #endif
549 
550 /* return 1 iff the kring needs to be turned on */
551 static inline int
552 nm_kring_pending_on(struct netmap_kring *kring)
553 {
554 	return kring->nr_pending_mode == NKR_NETMAP_ON &&
555 	       kring->nr_mode == NKR_NETMAP_OFF;
556 }
557 
558 /* return 1 iff the kring needs to be turned off */
559 static inline int
560 nm_kring_pending_off(struct netmap_kring *kring)
561 {
562 	return kring->nr_pending_mode == NKR_NETMAP_OFF &&
563 	       kring->nr_mode == NKR_NETMAP_ON;
564 }
565 
566 /* return the next index, with wraparound */
567 static inline uint32_t
568 nm_next(uint32_t i, uint32_t lim)
569 {
570 	return unlikely (i == lim) ? 0 : i + 1;
571 }
572 
573 
574 /* return the previous index, with wraparound */
575 static inline uint32_t
576 nm_prev(uint32_t i, uint32_t lim)
577 {
578 	return unlikely (i == 0) ? lim : i - 1;
579 }
580 
581 
582 /*
583  *
584  * Here is the layout for the Rx and Tx rings.
585 
586        RxRING                            TxRING
587 
588       +-----------------+            +-----------------+
589       |                 |            |                 |
590       |      free       |            |      free       |
591       +-----------------+            +-----------------+
592 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
593       |                 |            | yet             |
594       +-----------------+            |                 |
595  cur->| available to    |            |                 |
596       | user, not read  |            +-----------------+
597       | yet             |       cur->| (being          |
598       |                 |            |  prepared)      |
599       |                 |            |                 |
600       +-----------------+            +     ------      +
601 tail->|                 |<-hwtail    |                 |<-hwlease
602       | (being          | ...        |                 | ...
603       |  prepared)      | ...        |                 | ...
604       +-----------------+ ...        |                 | ...
605       |                 |<-hwlease   +-----------------+
606       |                 |      tail->|                 |<-hwtail
607       |                 |            |                 |
608       |                 |            |                 |
609       |                 |            |                 |
610       +-----------------+            +-----------------+
611 
612  * The cur/tail (user view) and hwcur/hwtail (kernel view)
613  * are used in the normal operation of the card.
614  *
615  * When a ring is the output of a switch port (Rx ring for
616  * a VALE port, Tx ring for the host stack or NIC), slots
617  * are reserved in blocks through 'hwlease' which points
618  * to the next unused slot.
619  * On an Rx ring, hwlease is always after hwtail,
620  * and completions cause hwtail to advance.
621  * On a Tx ring, hwlease is always between cur and hwtail,
622  * and completions cause cur to advance.
623  *
624  * nm_kr_space() returns the maximum number of slots that
625  * can be assigned.
626  * nm_kr_lease() reserves the required number of buffers,
627  *    advances nkr_hwlease and also returns an entry in
628  *    a circular array where completions should be reported.
629  */
630 
631 struct lut_entry;
632 #ifdef __FreeBSD__
633 #define plut_entry lut_entry
634 #endif
635 
636 struct netmap_lut {
637 	struct lut_entry *lut;
638 	struct plut_entry *plut;
639 	uint32_t objtotal;	/* max buffer index */
640 	uint32_t objsize;	/* buffer size */
641 };
642 
643 struct netmap_vp_adapter; // forward
644 struct nm_bridge;
645 
646 /* Struct to be filled by nm_config callbacks. */
647 struct nm_config_info {
648 	unsigned num_tx_rings;
649 	unsigned num_rx_rings;
650 	unsigned num_tx_descs;
651 	unsigned num_rx_descs;
652 	unsigned rx_buf_maxsize;
653 };
654 
655 /*
656  * default type for the magic field.
657  * May be overriden in glue code.
658  */
659 #ifndef NM_OS_MAGIC
660 #define NM_OS_MAGIC uint32_t
661 #endif /* !NM_OS_MAGIC */
662 
663 /*
664  * The "struct netmap_adapter" extends the "struct adapter"
665  * (or equivalent) device descriptor.
666  * It contains all base fields needed to support netmap operation.
667  * There are in fact different types of netmap adapters
668  * (native, generic, VALE switch...) so a netmap_adapter is
669  * just the first field in the derived type.
670  */
671 struct netmap_adapter {
672 	/*
673 	 * On linux we do not have a good way to tell if an interface
674 	 * is netmap-capable. So we always use the following trick:
675 	 * NA(ifp) points here, and the first entry (which hopefully
676 	 * always exists and is at least 32 bits) contains a magic
677 	 * value which we can use to detect that the interface is good.
678 	 */
679 	NM_OS_MAGIC magic;
680 	uint32_t na_flags;	/* enabled, and other flags */
681 #define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
682 				 * useful during initialization
683 				 */
684 #define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
685 #define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
686 				 * forwarding packets coming from this
687 				 * interface
688 				 */
689 #define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
690 				 * that cannot be changed
691 				 */
692 #define NAF_NATIVE      16      /* the adapter is native.
693 				 * Virtual ports (non persistent vale ports,
694 				 * pipes, monitors...) should never use
695 				 * this flag.
696 				 */
697 #define	NAF_NETMAP_ON	32	/* netmap is active (either native or
698 				 * emulated). Where possible (e.g. FreeBSD)
699 				 * IFCAP_NETMAP also mirrors this flag.
700 				 */
701 #define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
702 #define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
703 #define NAF_PTNETMAP_HOST 256	/* the adapter supports ptnetmap in the host */
704 #define NAF_MOREFRAG	512	/* the adapter supports NS_MOREFRAG */
705 #define NAF_ZOMBIE	(1U<<30) /* the nic driver has been unloaded */
706 #define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
707 				  * cannot be registered from userspace
708 				  */
709 	int active_fds; /* number of user-space descriptors using this
710 			 interface, which is equal to the number of
711 			 struct netmap_if objs in the mapped region. */
712 
713 	u_int num_rx_rings; /* number of adapter receive rings */
714 	u_int num_tx_rings; /* number of adapter transmit rings */
715 	u_int num_host_rx_rings; /* number of host receive rings */
716 	u_int num_host_tx_rings; /* number of host transmit rings */
717 
718 	u_int num_tx_desc;  /* number of descriptor in each queue */
719 	u_int num_rx_desc;
720 
721 	/* tx_rings and rx_rings are private but allocated
722 	 * as a contiguous chunk of memory. Each array has
723 	 * N+1 entries, for the adapter queues and for the host queue.
724 	 */
725 	struct netmap_kring **tx_rings; /* array of TX rings. */
726 	struct netmap_kring **rx_rings; /* array of RX rings. */
727 
728 	void *tailroom;		       /* space below the rings array */
729 				       /* (used for leases) */
730 
731 
732 	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
733 
734 	/* count users of the global wait queues */
735 	int si_users[NR_TXRX];
736 
737 	void *pdev; /* used to store pci device */
738 
739 	/* copy of if_qflush and if_transmit pointers, to intercept
740 	 * packets from the network stack when netmap is active.
741 	 */
742 	int     (*if_transmit)(struct ifnet *, struct mbuf *);
743 
744 	/* copy of if_input for netmap_send_up() */
745 	void     (*if_input)(struct ifnet *, struct mbuf *);
746 
747 	/* Back reference to the parent ifnet struct. Used for
748 	 * hardware ports (emulated netmap included). */
749 	struct ifnet *ifp; /* adapter is ifp->if_softc */
750 
751 	/*---- callbacks for this netmap adapter -----*/
752 	/*
753 	 * nm_dtor() is the cleanup routine called when destroying
754 	 *	the adapter.
755 	 *	Called with NMG_LOCK held.
756 	 *
757 	 * nm_register() is called on NIOCREGIF and close() to enter
758 	 *	or exit netmap mode on the NIC
759 	 *	Called with NNG_LOCK held.
760 	 *
761 	 * nm_txsync() pushes packets to the underlying hw/switch
762 	 *
763 	 * nm_rxsync() collects packets from the underlying hw/switch
764 	 *
765 	 * nm_config() returns configuration information from the OS
766 	 *	Called with NMG_LOCK held.
767 	 *
768 	 * nm_krings_create() create and init the tx_rings and
769 	 * 	rx_rings arrays of kring structures. In particular,
770 	 * 	set the nm_sync callbacks for each ring.
771 	 * 	There is no need to also allocate the corresponding
772 	 * 	netmap_rings, since netmap_mem_rings_create() will always
773 	 * 	be called to provide the missing ones.
774 	 *	Called with NNG_LOCK held.
775 	 *
776 	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
777 	 * 	arrays
778 	 *	Called with NMG_LOCK held.
779 	 *
780 	 * nm_notify() is used to act after data have become available
781 	 * 	(or the stopped state of the ring has changed)
782 	 *	For hw devices this is typically a selwakeup(),
783 	 *	but for NIC/host ports attached to a switch (or vice-versa)
784 	 *	we also need to invoke the 'txsync' code downstream.
785 	 *      This callback pointer is actually used only to initialize
786 	 *      kring->nm_notify.
787 	 *      Return values are the same as for netmap_rx_irq().
788 	 */
789 	void (*nm_dtor)(struct netmap_adapter *);
790 
791 	int (*nm_register)(struct netmap_adapter *, int onoff);
792 	void (*nm_intr)(struct netmap_adapter *, int onoff);
793 
794 	int (*nm_txsync)(struct netmap_kring *kring, int flags);
795 	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
796 	int (*nm_notify)(struct netmap_kring *kring, int flags);
797 #define NAF_FORCE_READ      1
798 #define NAF_FORCE_RECLAIM   2
799 #define NAF_CAN_FORWARD_DOWN 4
800 	/* return configuration information */
801 	int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
802 	int (*nm_krings_create)(struct netmap_adapter *);
803 	void (*nm_krings_delete)(struct netmap_adapter *);
804 	/*
805 	 * nm_bdg_attach() initializes the na_vp field to point
806 	 *      to an adapter that can be attached to a VALE switch. If the
807 	 *      current adapter is already a VALE port, na_vp is simply a cast;
808 	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
809 	 *      If applicable, this callback also initializes na_hostvp,
810 	 *      that can be used to connect the adapter host rings to the
811 	 *      switch.
812 	 *      Called with NMG_LOCK held.
813 	 *
814 	 * nm_bdg_ctl() is called on the actual attach/detach to/from
815 	 *      to/from the switch, to perform adapter-specific
816 	 *      initializations
817 	 *      Called with NMG_LOCK held.
818 	 */
819 	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
820 			struct nm_bridge *);
821 	int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
822 
823 	/* adapter used to attach this adapter to a VALE switch (if any) */
824 	struct netmap_vp_adapter *na_vp;
825 	/* adapter used to attach the host rings of this adapter
826 	 * to a VALE switch (if any) */
827 	struct netmap_vp_adapter *na_hostvp;
828 
829 	/* standard refcount to control the lifetime of the adapter
830 	 * (it should be equal to the lifetime of the corresponding ifp)
831 	 */
832 	int na_refcount;
833 
834 	/* memory allocator (opaque)
835 	 * We also cache a pointer to the lut_entry for translating
836 	 * buffer addresses, the total number of buffers and the buffer size.
837 	 */
838  	struct netmap_mem_d *nm_mem;
839 	struct netmap_mem_d *nm_mem_prev;
840 	struct netmap_lut na_lut;
841 
842 	/* additional information attached to this adapter
843 	 * by other netmap subsystems. Currently used by
844 	 * bwrap, LINUX/v1000 and ptnetmap
845 	 */
846 	void *na_private;
847 
848 	/* array of pipes that have this adapter as a parent */
849 	struct netmap_pipe_adapter **na_pipes;
850 	int na_next_pipe;	/* next free slot in the array */
851 	int na_max_pipes;	/* size of the array */
852 
853 	/* Offset of ethernet header for each packet. */
854 	u_int virt_hdr_len;
855 
856 	/* Max number of bytes that the NIC can store in the buffer
857 	 * referenced by each RX descriptor. This translates to the maximum
858 	 * bytes that a single netmap slot can reference. Larger packets
859 	 * require NS_MOREFRAG support. */
860 	unsigned rx_buf_maxsize;
861 
862 	char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
863 
864 #ifdef WITH_MONITOR
865 	unsigned long	monitor_id;	/* debugging */
866 #endif
867 };
868 
869 static __inline u_int
870 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
871 {
872 	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
873 }
874 
875 static __inline void
876 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
877 {
878 	if (t == NR_TX)
879 		na->num_tx_desc = v;
880 	else
881 		na->num_rx_desc = v;
882 }
883 
884 static __inline u_int
885 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
886 {
887 	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
888 }
889 
890 static __inline u_int
891 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
892 {
893 	return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
894 }
895 
896 static __inline void
897 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
898 {
899 	if (t == NR_TX)
900 		na->num_tx_rings = v;
901 	else
902 		na->num_rx_rings = v;
903 }
904 
905 static __inline void
906 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
907 {
908 	if (t == NR_TX)
909 		na->num_host_tx_rings = v;
910 	else
911 		na->num_host_rx_rings = v;
912 }
913 
914 static __inline struct netmap_kring**
915 NMR(struct netmap_adapter *na, enum txrx t)
916 {
917 	return (t == NR_TX ? na->tx_rings : na->rx_rings);
918 }
919 
920 int nma_intr_enable(struct netmap_adapter *na, int onoff);
921 
922 /*
923  * If the NIC is owned by the kernel
924  * (i.e., bridge), neither another bridge nor user can use it;
925  * if the NIC is owned by a user, only users can share it.
926  * Evaluation must be done under NMG_LOCK().
927  */
928 #define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
929 #define NETMAP_OWNED_BY_ANY(na) \
930 	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
931 
932 /*
933  * derived netmap adapters for various types of ports
934  */
935 struct netmap_vp_adapter {	/* VALE software port */
936 	struct netmap_adapter up;
937 
938 	/*
939 	 * Bridge support:
940 	 *
941 	 * bdg_port is the port number used in the bridge;
942 	 * na_bdg points to the bridge this NA is attached to.
943 	 */
944 	int bdg_port;
945 	struct nm_bridge *na_bdg;
946 	int retry;
947 	int autodelete; /* remove the ifp on last reference */
948 
949 	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
950 	u_int mfs;
951 	/* Last source MAC on this port */
952 	uint64_t last_smac;
953 };
954 
955 
956 struct netmap_hw_adapter {	/* physical device */
957 	struct netmap_adapter up;
958 
959 #ifdef linux
960 	struct net_device_ops nm_ndo;
961 	struct ethtool_ops    nm_eto;
962 #endif
963 	const struct ethtool_ops*   save_ethtool;
964 
965 	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
966 };
967 
968 #ifdef WITH_GENERIC
969 /* Mitigation support. */
970 struct nm_generic_mit {
971 	struct hrtimer mit_timer;
972 	int mit_pending;
973 	int mit_ring_idx;  /* index of the ring being mitigated */
974 	struct netmap_adapter *mit_na;  /* backpointer */
975 };
976 
977 struct netmap_generic_adapter {	/* emulated device */
978 	struct netmap_hw_adapter up;
979 
980 	/* Pointer to a previously used netmap adapter. */
981 	struct netmap_adapter *prev;
982 
983 	/* Emulated netmap adapters support:
984 	 *  - save_if_input saves the if_input hook (FreeBSD);
985 	 *  - mit implements rx interrupt mitigation;
986 	 */
987 	void (*save_if_input)(struct ifnet *, struct mbuf *);
988 
989 	struct nm_generic_mit *mit;
990 #ifdef linux
991         netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
992 #endif
993 	/* Is the adapter able to use multiple RX slots to scatter
994 	 * each packet pushed up by the driver? */
995 	int rxsg;
996 
997 	/* Is the transmission path controlled by a netmap-aware
998 	 * device queue (i.e. qdisc on linux)? */
999 	int txqdisc;
1000 };
1001 #endif  /* WITH_GENERIC */
1002 
1003 static __inline u_int
1004 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
1005 {
1006 	return nma_get_nrings(na, t) +
1007 		!!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
1008 }
1009 
1010 /* account for fake rings */
1011 static __inline u_int
1012 netmap_all_rings(struct netmap_adapter *na, enum txrx t)
1013 {
1014 	return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
1015 }
1016 
1017 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
1018 		struct nm_bridge *);
1019 struct nm_bdg_polling_state;
1020 /*
1021  * Bridge wrapper for non VALE ports attached to a VALE switch.
1022  *
1023  * The real device must already have its own netmap adapter (hwna).
1024  * The bridge wrapper and the hwna adapter share the same set of
1025  * netmap rings and buffers, but they have two separate sets of
1026  * krings descriptors, with tx/rx meanings swapped:
1027  *
1028  *                                  netmap
1029  *           bwrap     krings       rings      krings      hwna
1030  *         +------+   +------+     +-----+    +------+   +------+
1031  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
1032  *         |      |   +------+ \ / +-----+    +------+   |      |
1033  *         |      |             X                        |      |
1034  *         |      |            / \                       |      |
1035  *         |      |   +------+/   \+-----+    +------+   |      |
1036  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
1037  *         |      |   +------+     +-----+    +------+   |      |
1038  *         +------+                                      +------+
1039  *
1040  * - packets coming from the bridge go to the brwap rx rings,
1041  *   which are also the hwna tx rings.  The bwrap notify callback
1042  *   will then complete the hwna tx (see netmap_bwrap_notify).
1043  *
1044  * - packets coming from the outside go to the hwna rx rings,
1045  *   which are also the bwrap tx rings.  The (overwritten) hwna
1046  *   notify method will then complete the bridge tx
1047  *   (see netmap_bwrap_intr_notify).
1048  *
1049  *   The bridge wrapper may optionally connect the hwna 'host' rings
1050  *   to the bridge. This is done by using a second port in the
1051  *   bridge and connecting it to the 'host' netmap_vp_adapter
1052  *   contained in the netmap_bwrap_adapter. The brwap host adapter
1053  *   cross-links the hwna host rings in the same way as shown above.
1054  *
1055  * - packets coming from the bridge and directed to the host stack
1056  *   are handled by the bwrap host notify callback
1057  *   (see netmap_bwrap_host_notify)
1058  *
1059  * - packets coming from the host stack are still handled by the
1060  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
1061  *   but are diverted to the host adapter depending on the ring number.
1062  *
1063  */
1064 struct netmap_bwrap_adapter {
1065 	struct netmap_vp_adapter up;
1066 	struct netmap_vp_adapter host;  /* for host rings */
1067 	struct netmap_adapter *hwna;	/* the underlying device */
1068 
1069 	/*
1070 	 * When we attach a physical interface to the bridge, we
1071 	 * allow the controlling process to terminate, so we need
1072 	 * a place to store the n_detmap_priv_d data structure.
1073 	 * This is only done when physical interfaces
1074 	 * are attached to a bridge.
1075 	 */
1076 	struct netmap_priv_d *na_kpriv;
1077 	struct nm_bdg_polling_state *na_polling_state;
1078 	/* we overwrite the hwna->na_vp pointer, so we save
1079 	 * here its original value, to be restored at detach
1080 	 */
1081 	struct netmap_vp_adapter *saved_na_vp;
1082 };
1083 int nm_bdg_ctl_attach(struct nmreq_header *hdr, void *auth_token);
1084 int nm_bdg_ctl_detach(struct nmreq_header *hdr, void *auth_token);
1085 int nm_bdg_polling(struct nmreq_header *hdr);
1086 int netmap_bdg_list(struct nmreq_header *hdr);
1087 
1088 #ifdef WITH_VALE
1089 int netmap_vi_create(struct nmreq_header *hdr, int);
1090 int nm_vi_create(struct nmreq_header *);
1091 int nm_vi_destroy(const char *name);
1092 #else /* !WITH_VALE */
1093 #define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1094 #endif /* WITH_VALE */
1095 
1096 #ifdef WITH_PIPES
1097 
1098 #define NM_MAXPIPES 	64	/* max number of pipes per adapter */
1099 
1100 struct netmap_pipe_adapter {
1101 	/* pipe identifier is up.name */
1102 	struct netmap_adapter up;
1103 
1104 #define NM_PIPE_ROLE_MASTER	0x1
1105 #define NM_PIPE_ROLE_SLAVE	0x2
1106 	int role;	/* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1107 
1108 	struct netmap_adapter *parent; /* adapter that owns the memory */
1109 	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1110 	int peer_ref;		/* 1 iff we are holding a ref to the peer */
1111 	struct ifnet *parent_ifp;	/* maybe null */
1112 
1113 	u_int parent_slot; /* index in the parent pipe array */
1114 };
1115 
1116 #endif /* WITH_PIPES */
1117 
1118 
1119 /* return slots reserved to rx clients; used in drivers */
1120 static inline uint32_t
1121 nm_kr_rxspace(struct netmap_kring *k)
1122 {
1123 	int space = k->nr_hwtail - k->nr_hwcur;
1124 	if (space < 0)
1125 		space += k->nkr_num_slots;
1126 	ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1127 
1128 	return space;
1129 }
1130 
1131 /* return slots reserved to tx clients */
1132 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1133 
1134 
1135 /* True if no space in the tx ring, only valid after txsync_prologue */
1136 static inline int
1137 nm_kr_txempty(struct netmap_kring *kring)
1138 {
1139 	return kring->rcur == kring->nr_hwtail;
1140 }
1141 
1142 /* True if no more completed slots in the rx ring, only valid after
1143  * rxsync_prologue */
1144 #define nm_kr_rxempty(_k)	nm_kr_txempty(_k)
1145 
1146 /*
1147  * protect against multiple threads using the same ring.
1148  * also check that the ring has not been stopped or locked
1149  */
1150 #define NM_KR_BUSY	1	/* some other thread is syncing the ring */
1151 #define NM_KR_STOPPED	2	/* unbounded stop (ifconfig down or driver unload) */
1152 #define NM_KR_LOCKED	3	/* bounded, brief stop for mutual exclusion */
1153 
1154 
1155 /* release the previously acquired right to use the *sync() methods of the ring */
1156 static __inline void nm_kr_put(struct netmap_kring *kr)
1157 {
1158 	NM_ATOMIC_CLEAR(&kr->nr_busy);
1159 }
1160 
1161 
1162 /* true if the ifp that backed the adapter has disappeared (e.g., the
1163  * driver has been unloaded)
1164  */
1165 static inline int nm_iszombie(struct netmap_adapter *na);
1166 
1167 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1168  * The right is obtained and must be later relinquished via nm_kr_put() if and
1169  * only if nm_kr_tryget() returns 0.
1170  * If can_sleep is 1 there are only two other possible outcomes:
1171  * - the function returns NM_KR_BUSY
1172  * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1173  *   (if non-null)
1174  * In both cases the caller will typically skip the ring, possibly collecting
1175  * errors along the way.
1176  * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1177  * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1178  * untouched: ideally, the caller should try again at a later time.
1179  */
1180 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1181 {
1182 	int busy = 1, stopped;
1183 	/* check a first time without taking the lock
1184 	 * to avoid starvation for nm_kr_get()
1185 	 */
1186 retry:
1187 	stopped = kr->nkr_stopped;
1188 	if (unlikely(stopped)) {
1189 		goto stop;
1190 	}
1191 	busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1192 	/* we should not return NM_KR_BUSY if the ring was
1193 	 * actually stopped, so check another time after
1194 	 * the barrier provided by the atomic operation
1195 	 */
1196 	stopped = kr->nkr_stopped;
1197 	if (unlikely(stopped)) {
1198 		goto stop;
1199 	}
1200 
1201 	if (unlikely(nm_iszombie(kr->na))) {
1202 		stopped = NM_KR_STOPPED;
1203 		goto stop;
1204 	}
1205 
1206 	return unlikely(busy) ? NM_KR_BUSY : 0;
1207 
1208 stop:
1209 	if (!busy)
1210 		nm_kr_put(kr);
1211 	if (stopped == NM_KR_STOPPED) {
1212 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1213  * Otherwise, any non-zero value will do.
1214  */
1215 #ifdef POLLERR
1216 #define NM_POLLERR POLLERR
1217 #else
1218 #define NM_POLLERR 1
1219 #endif /* POLLERR */
1220 		if (perr)
1221 			*perr |= NM_POLLERR;
1222 #undef NM_POLLERR
1223 	} else if (can_sleep) {
1224 		tsleep(kr, 0, "NM_KR_TRYGET", 4);
1225 		goto retry;
1226 	}
1227 	return stopped;
1228 }
1229 
1230 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1231  * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1232  */
1233 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1234 {
1235 	kr->nkr_stopped = stopped;
1236 	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1237 		tsleep(kr, 0, "NM_KR_GET", 4);
1238 }
1239 
1240 /* restart a ring after a stop */
1241 static __inline void nm_kr_start(struct netmap_kring *kr)
1242 {
1243 	kr->nkr_stopped = 0;
1244 	nm_kr_put(kr);
1245 }
1246 
1247 
1248 /*
1249  * The following functions are used by individual drivers to
1250  * support netmap operation.
1251  *
1252  * netmap_attach() initializes a struct netmap_adapter, allocating the
1253  * 	struct netmap_ring's and the struct selinfo.
1254  *
1255  * netmap_detach() frees the memory allocated by netmap_attach().
1256  *
1257  * netmap_transmit() replaces the if_transmit routine of the interface,
1258  *	and is used to intercept packets coming from the stack.
1259  *
1260  * netmap_load_map/netmap_reload_map are helper routines to set/reset
1261  *	the dmamap for a packet buffer
1262  *
1263  * netmap_reset() is a helper routine to be called in the hw driver
1264  *	when reinitializing a ring. It should not be called by
1265  *	virtual ports (vale, pipes, monitor)
1266  */
1267 int netmap_attach(struct netmap_adapter *);
1268 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1269 void netmap_detach(struct ifnet *);
1270 int netmap_transmit(struct ifnet *, struct mbuf *);
1271 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1272 	enum txrx tx, u_int n, u_int new_cur);
1273 int netmap_ring_reinit(struct netmap_kring *);
1274 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1275 
1276 /* Return codes for netmap_*x_irq. */
1277 enum {
1278 	/* Driver should do normal interrupt processing, e.g. because
1279 	 * the interface is not in netmap mode. */
1280 	NM_IRQ_PASS = 0,
1281 	/* Port is in netmap mode, and the interrupt work has been
1282 	 * completed. The driver does not have to notify netmap
1283 	 * again before the next interrupt. */
1284 	NM_IRQ_COMPLETED = -1,
1285 	/* Port is in netmap mode, but the interrupt work has not been
1286 	 * completed. The driver has to make sure netmap will be
1287 	 * notified again soon, even if no more interrupts come (e.g.
1288 	 * on Linux the driver should not call napi_complete()). */
1289 	NM_IRQ_RESCHED = -2,
1290 };
1291 
1292 /* default functions to handle rx/tx interrupts */
1293 int netmap_rx_irq(struct ifnet *, u_int, u_int *);
1294 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1295 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1296 
1297 
1298 #ifdef WITH_VALE
1299 /* functions used by external modules to interface with VALE */
1300 #define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
1301 #define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
1302 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1303 #define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
1304 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1305 #else /* !WITH_VALE */
1306 #define netmap_vp_to_ifp(_vp)	NULL
1307 #define netmap_ifp_to_vp(_ifp)	NULL
1308 #define netmap_ifp_to_host_vp(_ifp) NULL
1309 #define netmap_bdg_idx(_vp)	-1
1310 #endif /* WITH_VALE */
1311 
1312 static inline int
1313 nm_netmap_on(struct netmap_adapter *na)
1314 {
1315 	return na && na->na_flags & NAF_NETMAP_ON;
1316 }
1317 
1318 static inline int
1319 nm_native_on(struct netmap_adapter *na)
1320 {
1321 	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1322 }
1323 
1324 static inline int
1325 nm_iszombie(struct netmap_adapter *na)
1326 {
1327 	return na == NULL || (na->na_flags & NAF_ZOMBIE);
1328 }
1329 
1330 static inline void
1331 nm_update_hostrings_mode(struct netmap_adapter *na)
1332 {
1333 	/* Process nr_mode and nr_pending_mode for host rings. */
1334 	na->tx_rings[na->num_tx_rings]->nr_mode =
1335 		na->tx_rings[na->num_tx_rings]->nr_pending_mode;
1336 	na->rx_rings[na->num_rx_rings]->nr_mode =
1337 		na->rx_rings[na->num_rx_rings]->nr_pending_mode;
1338 }
1339 
1340 void nm_set_native_flags(struct netmap_adapter *);
1341 void nm_clear_native_flags(struct netmap_adapter *);
1342 
1343 /*
1344  * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1345  * kthreads.
1346  * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1347  * from host kring.
1348  * The user-space ring pointers (head/cur/tail) are shared through
1349  * CSB between host and guest.
1350  */
1351 
1352 /*
1353  * validates parameters in the ring/kring, returns a value for head
1354  * If any error, returns ring_size to force a reinit.
1355  */
1356 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1357 
1358 
1359 /*
1360  * validates parameters in the ring/kring, returns a value for head
1361  * If any error, returns ring_size lim to force a reinit.
1362  */
1363 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1364 
1365 
1366 /* check/fix address and len in tx rings */
1367 #if 1 /* debug version */
1368 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1369 	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1370 		RD(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1371 			kring->ring_id, nm_i, slot->buf_idx, len);	\
1372 		if (_l > NETMAP_BUF_SIZE(_na))				\
1373 			_l = NETMAP_BUF_SIZE(_na);			\
1374 	} } while (0)
1375 #else /* no debug version */
1376 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1377 		if (_l > NETMAP_BUF_SIZE(_na))				\
1378 			_l = NETMAP_BUF_SIZE(_na);			\
1379 	} while (0)
1380 #endif
1381 
1382 
1383 /*---------------------------------------------------------------*/
1384 /*
1385  * Support routines used by netmap subsystems
1386  * (native drivers, VALE, generic, pipes, monitors, ...)
1387  */
1388 
1389 
1390 /* common routine for all functions that create a netmap adapter. It performs
1391  * two main tasks:
1392  * - if the na points to an ifp, mark the ifp as netmap capable
1393  *   using na as its native adapter;
1394  * - provide defaults for the setup callbacks and the memory allocator
1395  */
1396 int netmap_attach_common(struct netmap_adapter *);
1397 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1398  * coming from a struct nmreq_register
1399  */
1400 int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1401 			uint16_t nr_ringid, uint64_t nr_flags);
1402 /* update the ring parameters (number and size of tx and rx rings).
1403  * It calls the nm_config callback, if available.
1404  */
1405 int netmap_update_config(struct netmap_adapter *na);
1406 /* create and initialize the common fields of the krings array.
1407  * using the information that must be already available in the na.
1408  * tailroom can be used to request the allocation of additional
1409  * tailroom bytes after the krings array. This is used by
1410  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1411  * leasing-related data structures
1412  */
1413 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1414 /* deletes the kring array of the adapter. The array must have
1415  * been created using netmap_krings_create
1416  */
1417 void netmap_krings_delete(struct netmap_adapter *na);
1418 
1419 int netmap_hw_krings_create(struct netmap_adapter *na);
1420 void netmap_hw_krings_delete(struct netmap_adapter *na);
1421 
1422 /* set the stopped/enabled status of ring
1423  * When stopping, they also wait for all current activity on the ring to
1424  * terminate. The status change is then notified using the na nm_notify
1425  * callback.
1426  */
1427 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1428 /* set the stopped/enabled status of all rings of the adapter. */
1429 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1430 /* convenience wrappers for netmap_set_all_rings */
1431 void netmap_disable_all_rings(struct ifnet *);
1432 void netmap_enable_all_rings(struct ifnet *);
1433 
1434 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1435 		uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags);
1436 void netmap_do_unregif(struct netmap_priv_d *priv);
1437 
1438 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1439 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1440 		struct ifnet **ifp, struct netmap_mem_d *nmd, int create);
1441 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp);
1442 int netmap_get_hw_na(struct ifnet *ifp,
1443 		struct netmap_mem_d *nmd, struct netmap_adapter **na);
1444 
1445 
1446 /*
1447  * The following bridge-related functions are used by other
1448  * kernel modules.
1449  *
1450  * VALE only supports unicast or broadcast. The lookup
1451  * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports,
1452  * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 to indicate
1453  * drop.
1454  */
1455 typedef uint32_t (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr,
1456 		struct netmap_vp_adapter *, void *private_data);
1457 typedef int (*bdg_config_fn_t)(struct nm_ifreq *);
1458 typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *);
1459 typedef void *(*bdg_update_private_data_fn_t)(void *private_data, void *callback_data, int *error);
1460 typedef int (*bdg_vp_create_fn_t)(struct nmreq_header *hdr,
1461 		struct ifnet *ifp, struct netmap_mem_d *nmd,
1462 		struct netmap_vp_adapter **ret);
1463 typedef int (*bdg_bwrap_attach_fn_t)(const char *nr_name, struct netmap_adapter *hwna);
1464 struct netmap_bdg_ops {
1465 	bdg_lookup_fn_t lookup;
1466 	bdg_config_fn_t config;
1467 	bdg_dtor_fn_t	dtor;
1468 	bdg_vp_create_fn_t	vp_create;
1469 	bdg_bwrap_attach_fn_t	bwrap_attach;
1470 	char name[IFNAMSIZ];
1471 };
1472 int netmap_bwrap_attach(const char *name, struct netmap_adapter *, struct netmap_bdg_ops *);
1473 int netmap_bdg_regops(const char *name, struct netmap_bdg_ops *bdg_ops, void *private_data, void *auth_token);
1474 
1475 #define	NM_BRIDGES		8	/* number of bridges */
1476 #define	NM_BDG_MAXPORTS		254	/* up to 254 */
1477 #define	NM_BDG_BROADCAST	NM_BDG_MAXPORTS
1478 #define	NM_BDG_NOPORT		(NM_BDG_MAXPORTS+1)
1479 
1480 struct nm_bridge *netmap_init_bridges2(u_int);
1481 void netmap_uninit_bridges2(struct nm_bridge *, u_int);
1482 int netmap_init_bridges(void);
1483 void netmap_uninit_bridges(void);
1484 int nm_bdg_update_private_data(const char *name, bdg_update_private_data_fn_t callback,
1485 	void *callback_data, void *auth_token);
1486 int netmap_bdg_config(struct nm_ifreq *nifr);
1487 
1488 #ifdef WITH_VALE
1489 uint32_t netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1490 		struct netmap_vp_adapter *, void *private_data);
1491 
1492 /* these are redefined in case of no VALE support */
1493 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1494 		struct netmap_mem_d *nmd, int create);
1495 void *netmap_vale_create(const char *bdg_name, int *return_status);
1496 int netmap_vale_destroy(const char *bdg_name, void *auth_token);
1497 
1498 #else /* !WITH_VALE */
1499 #define netmap_bdg_learning(_1, _2, _3, _4)	0
1500 #define	netmap_get_vale_na(_1, _2, _3, _4)	0
1501 #define netmap_bdg_create(_1, _2)	NULL
1502 #define netmap_bdg_destroy(_1, _2)	0
1503 #endif /* !WITH_VALE */
1504 
1505 #ifdef WITH_PIPES
1506 /* max number of pipes per device */
1507 #define NM_MAXPIPES	64	/* XXX this should probably be a sysctl */
1508 void netmap_pipe_dealloc(struct netmap_adapter *);
1509 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1510 			struct netmap_mem_d *nmd, int create);
1511 #else /* !WITH_PIPES */
1512 #define NM_MAXPIPES	0
1513 #define netmap_pipe_alloc(_1, _2) 	0
1514 #define netmap_pipe_dealloc(_1)
1515 #define netmap_get_pipe_na(hdr, _2, _3, _4)	\
1516 	((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1517 #endif
1518 
1519 #ifdef WITH_MONITOR
1520 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1521 		struct netmap_mem_d *nmd, int create);
1522 void netmap_monitor_stop(struct netmap_adapter *na);
1523 #else
1524 #define netmap_get_monitor_na(hdr, _2, _3, _4) \
1525 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1526 #endif
1527 
1528 #ifdef CONFIG_NET_NS
1529 struct net *netmap_bns_get(void);
1530 void netmap_bns_put(struct net *);
1531 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1532 #else
1533 #define netmap_bns_get()
1534 #define netmap_bns_put(_1)
1535 #define netmap_bns_getbridges(b, n) \
1536 	do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
1537 #endif
1538 
1539 /* Various prototypes */
1540 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1541 int netmap_init(void);
1542 void netmap_fini(void);
1543 int netmap_get_memory(struct netmap_priv_d* p);
1544 void netmap_dtor(void *data);
1545 
1546 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1547 		struct thread *, int nr_body_is_user);
1548 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1549 			struct thread *td);
1550 size_t nmreq_size_by_type(uint16_t nr_reqtype);
1551 
1552 /* netmap_adapter creation/destruction */
1553 
1554 // #define NM_DEBUG_PUTGET 1
1555 
1556 #ifdef NM_DEBUG_PUTGET
1557 
1558 #define NM_DBG(f) __##f
1559 
1560 void __netmap_adapter_get(struct netmap_adapter *na);
1561 
1562 #define netmap_adapter_get(na) 				\
1563 	do {						\
1564 		struct netmap_adapter *__na = na;	\
1565 		D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1566 		__netmap_adapter_get(__na);		\
1567 	} while (0)
1568 
1569 int __netmap_adapter_put(struct netmap_adapter *na);
1570 
1571 #define netmap_adapter_put(na)				\
1572 	({						\
1573 		struct netmap_adapter *__na = na;	\
1574 		D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1575 		__netmap_adapter_put(__na);		\
1576 	})
1577 
1578 #else /* !NM_DEBUG_PUTGET */
1579 
1580 #define NM_DBG(f) f
1581 void netmap_adapter_get(struct netmap_adapter *na);
1582 int netmap_adapter_put(struct netmap_adapter *na);
1583 
1584 #endif /* !NM_DEBUG_PUTGET */
1585 
1586 
1587 /*
1588  * module variables
1589  */
1590 #define NETMAP_BUF_BASE(_na)	((_na)->na_lut.lut[0].vaddr)
1591 #define NETMAP_BUF_SIZE(_na)	((_na)->na_lut.objsize)
1592 extern int netmap_no_pendintr;
1593 extern int netmap_mitigate;
1594 extern int netmap_verbose;		/* for debugging */
1595 enum {                                  /* verbose flags */
1596 	NM_VERB_ON = 1,                 /* generic verbose */
1597 	NM_VERB_HOST = 0x2,             /* verbose host stack */
1598 	NM_VERB_RXSYNC = 0x10,          /* verbose on rxsync/txsync */
1599 	NM_VERB_TXSYNC = 0x20,
1600 	NM_VERB_RXINTR = 0x100,         /* verbose on rx/tx intr (driver) */
1601 	NM_VERB_TXINTR = 0x200,
1602 	NM_VERB_NIC_RXSYNC = 0x1000,    /* verbose on rx/tx intr (driver) */
1603 	NM_VERB_NIC_TXSYNC = 0x2000,
1604 };
1605 
1606 extern int netmap_txsync_retry;
1607 extern int netmap_flags;
1608 extern int netmap_generic_hwcsum;
1609 extern int netmap_generic_mit;
1610 extern int netmap_generic_ringsize;
1611 extern int netmap_generic_rings;
1612 #ifdef linux
1613 extern int netmap_generic_txqdisc;
1614 #endif
1615 extern int ptnetmap_tx_workers;
1616 
1617 /*
1618  * NA returns a pointer to the struct netmap adapter from the ifp.
1619  * WNA is os-specific and must be defined in glue code.
1620  */
1621 #define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1622 
1623 /*
1624  * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
1625  * based on the WNA field.
1626  * Glue code may override this by defining its own NM_ATTACH_NA
1627  */
1628 #ifndef NM_ATTACH_NA
1629 /*
1630  * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1631  * overload another pointer in the netdev.
1632  *
1633  * We check if NA(ifp) is set and its first element has a related
1634  * magic value. The capenable is within the struct netmap_adapter.
1635  */
1636 #define	NETMAP_MAGIC	0x52697a7a
1637 
1638 #define NM_NA_VALID(ifp)	(NA(ifp) &&		\
1639 	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1640 
1641 #define	NM_ATTACH_NA(ifp, na) do {					\
1642 	WNA(ifp) = na;							\
1643 	if (NA(ifp))							\
1644 		NA(ifp)->magic = 					\
1645 			((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC;	\
1646 } while(0)
1647 #define NM_RESTORE_NA(ifp, na) 	WNA(ifp) = na;
1648 
1649 #define NM_DETACH_NA(ifp)	do { WNA(ifp) = NULL; } while (0)
1650 #define NM_NA_CLASH(ifp)	(NA(ifp) && !NM_NA_VALID(ifp))
1651 #endif /* !NM_ATTACH_NA */
1652 
1653 
1654 #define NM_IS_NATIVE(ifp)	(NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1655 
1656 #if defined(__FreeBSD__)
1657 
1658 /* Assigns the device IOMMU domain to an allocator.
1659  * Returns -ENOMEM in case the domain is different */
1660 #define nm_iommu_group_id(dev) (0)
1661 
1662 /* Callback invoked by the dma machinery after a successful dmamap_load */
1663 static void netmap_dmamap_cb(__unused void *arg,
1664     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1665 {
1666 }
1667 
1668 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1669  * XXX can we do it without a callback ?
1670  */
1671 static inline int
1672 netmap_load_map(struct netmap_adapter *na,
1673 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1674 {
1675 	if (map)
1676 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1677 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1678 	return 0;
1679 }
1680 
1681 static inline void
1682 netmap_unload_map(struct netmap_adapter *na,
1683         bus_dma_tag_t tag, bus_dmamap_t map)
1684 {
1685 	if (map)
1686 		bus_dmamap_unload(tag, map);
1687 }
1688 
1689 #define netmap_sync_map(na, tag, map, sz, t)
1690 
1691 /* update the map when a buffer changes. */
1692 static inline void
1693 netmap_reload_map(struct netmap_adapter *na,
1694 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1695 {
1696 	if (map) {
1697 		bus_dmamap_unload(tag, map);
1698 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1699 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1700 	}
1701 }
1702 
1703 #elif defined(_WIN32)
1704 
1705 #else /* linux */
1706 
1707 int nm_iommu_group_id(bus_dma_tag_t dev);
1708 #include <linux/dma-mapping.h>
1709 
1710 /*
1711  * on linux we need
1712  *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1713  *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1714  */
1715 #if 0
1716 	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1717 	/* set time_stamp *before* dma to help avoid a possible race */
1718 	buffer_info->time_stamp = jiffies;
1719 	buffer_info->mapped_as_page = false;
1720 	buffer_info->length = len;
1721 	//buffer_info->next_to_watch = l;
1722 	/* reload dma map */
1723 	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1724 			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1725 	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1726 			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1727 
1728 	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1729 		D("dma mapping error");
1730 		/* goto dma_error; See e1000_put_txbuf() */
1731 		/* XXX reset */
1732 	}
1733 	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1734 
1735 #endif
1736 
1737 static inline int
1738 netmap_load_map(struct netmap_adapter *na,
1739 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1740 {
1741 	if (map) {
1742 		*map = dma_map_single(na->pdev, buf, size,
1743 				      DMA_BIDIRECTIONAL);
1744 		if (dma_mapping_error(na->pdev, *map)) {
1745 			*map = 0;
1746 			return ENOMEM;
1747 		}
1748 	}
1749 	return 0;
1750 }
1751 
1752 static inline void
1753 netmap_unload_map(struct netmap_adapter *na,
1754 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1755 {
1756 	if (*map) {
1757 		dma_unmap_single(na->pdev, *map, sz,
1758 				 DMA_BIDIRECTIONAL);
1759 	}
1760 }
1761 
1762 #ifdef NETMAP_LINUX_HAVE_DMASYNC
1763 static inline void
1764 netmap_sync_map_cpu(struct netmap_adapter *na,
1765 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1766 {
1767 	if (*map) {
1768 		dma_sync_single_for_cpu(na->pdev, *map, sz,
1769 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1770 	}
1771 }
1772 
1773 static inline void
1774 netmap_sync_map_dev(struct netmap_adapter *na,
1775 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1776 {
1777 	if (*map) {
1778 		dma_sync_single_for_device(na->pdev, *map, sz,
1779 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1780 	}
1781 }
1782 
1783 static inline void
1784 netmap_reload_map(struct netmap_adapter *na,
1785 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1786 {
1787 	u_int sz = NETMAP_BUF_SIZE(na);
1788 
1789 	if (*map) {
1790 		dma_unmap_single(na->pdev, *map, sz,
1791 				DMA_BIDIRECTIONAL);
1792 	}
1793 
1794 	*map = dma_map_single(na->pdev, buf, sz,
1795 				DMA_BIDIRECTIONAL);
1796 }
1797 #else /* !NETMAP_LINUX_HAVE_DMASYNC */
1798 #define netmap_sync_map_cpu(na, tag, map, sz, t)
1799 #define netmap_sync_map_dev(na, tag, map, sz, t)
1800 #endif /* NETMAP_LINUX_HAVE_DMASYNC */
1801 
1802 #endif /* linux */
1803 
1804 
1805 /*
1806  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1807  */
1808 static inline int
1809 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1810 {
1811 	int n = kr->nkr_num_slots;
1812 	idx += kr->nkr_hwofs;
1813 	if (idx < 0)
1814 		return idx + n;
1815 	else if (idx < n)
1816 		return idx;
1817 	else
1818 		return idx - n;
1819 }
1820 
1821 
1822 static inline int
1823 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1824 {
1825 	int n = kr->nkr_num_slots;
1826 	idx -= kr->nkr_hwofs;
1827 	if (idx < 0)
1828 		return idx + n;
1829 	else if (idx < n)
1830 		return idx;
1831 	else
1832 		return idx - n;
1833 }
1834 
1835 
1836 /* Entries of the look-up table. */
1837 #ifdef __FreeBSD__
1838 struct lut_entry {
1839 	void *vaddr;		/* virtual address. */
1840 	vm_paddr_t paddr;	/* physical address. */
1841 };
1842 #else /* linux & _WIN32 */
1843 /* dma-mapping in linux can assign a buffer a different address
1844  * depending on the device, so we need to have a separate
1845  * physical-address look-up table for each na.
1846  * We can still share the vaddrs, though, therefore we split
1847  * the lut_entry structure.
1848  */
1849 struct lut_entry {
1850 	void *vaddr;		/* virtual address. */
1851 };
1852 
1853 struct plut_entry {
1854 	vm_paddr_t paddr;	/* physical address. */
1855 };
1856 #endif /* linux & _WIN32 */
1857 
1858 struct netmap_obj_pool;
1859 
1860 /*
1861  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1862  * PNMB also fills the physical address
1863  */
1864 static inline void *
1865 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1866 {
1867 	struct lut_entry *lut = na->na_lut.lut;
1868 	uint32_t i = slot->buf_idx;
1869 	return (unlikely(i >= na->na_lut.objtotal)) ?
1870 		lut[0].vaddr : lut[i].vaddr;
1871 }
1872 
1873 static inline void *
1874 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1875 {
1876 	uint32_t i = slot->buf_idx;
1877 	struct lut_entry *lut = na->na_lut.lut;
1878 	struct plut_entry *plut = na->na_lut.plut;
1879 	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1880 
1881 #ifdef _WIN32
1882 	*pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1883 #else
1884 	*pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1885 #endif
1886 	return ret;
1887 }
1888 
1889 
1890 /*
1891  * Structure associated to each netmap file descriptor.
1892  * It is created on open and left unbound (np_nifp == NULL).
1893  * A successful NIOCREGIF will set np_nifp and the first few fields;
1894  * this is protected by a global lock (NMG_LOCK) due to low contention.
1895  *
1896  * np_refs counts the number of references to the structure: one for the fd,
1897  * plus (on FreeBSD) one for each active mmap which we track ourselves
1898  * (linux automatically tracks them, but FreeBSD does not).
1899  * np_refs is protected by NMG_LOCK.
1900  *
1901  * Read access to the structure is lock free, because ni_nifp once set
1902  * can only go to 0 when nobody is using the entry anymore. Readers
1903  * must check that np_nifp != NULL before using the other fields.
1904  */
1905 struct netmap_priv_d {
1906 	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
1907 
1908 	struct netmap_adapter	*np_na;
1909 	struct ifnet	*np_ifp;
1910 	uint32_t	np_flags;	/* from the ioctl */
1911 	u_int		np_qfirst[NR_TXRX],
1912 			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
1913 	uint16_t	np_txpoll;
1914 	int             np_sync_flags; /* to be passed to nm_sync */
1915 
1916 	int		np_refs;	/* use with NMG_LOCK held */
1917 
1918 	/* pointers to the selinfo to be used for selrecord.
1919 	 * Either the local or the global one depending on the
1920 	 * number of rings.
1921 	 */
1922 	NM_SELINFO_T *np_si[NR_TXRX];
1923 	struct thread	*np_td;		/* kqueue, just debugging */
1924 };
1925 
1926 struct netmap_priv_d *netmap_priv_new(void);
1927 void netmap_priv_delete(struct netmap_priv_d *);
1928 
1929 static inline int nm_kring_pending(struct netmap_priv_d *np)
1930 {
1931 	struct netmap_adapter *na = np->np_na;
1932 	enum txrx t;
1933 	int i;
1934 
1935 	for_rx_tx(t) {
1936 		for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
1937 			struct netmap_kring *kring = NMR(na, t)[i];
1938 			if (kring->nr_mode != kring->nr_pending_mode) {
1939 				return 1;
1940 			}
1941 		}
1942 	}
1943 	return 0;
1944 }
1945 
1946 #ifdef WITH_PIPES
1947 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
1948 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
1949 #endif /* WITH_PIPES */
1950 
1951 #ifdef WITH_MONITOR
1952 
1953 struct netmap_monitor_adapter {
1954 	struct netmap_adapter up;
1955 
1956 	struct netmap_priv_d priv;
1957 	uint32_t flags;
1958 };
1959 
1960 #endif /* WITH_MONITOR */
1961 
1962 
1963 #ifdef WITH_GENERIC
1964 /*
1965  * generic netmap emulation for devices that do not have
1966  * native netmap support.
1967  */
1968 int generic_netmap_attach(struct ifnet *ifp);
1969 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
1970 
1971 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
1972 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
1973 
1974 int na_is_generic(struct netmap_adapter *na);
1975 
1976 /*
1977  * the generic transmit routine is passed a structure to optionally
1978  * build a queue of descriptors, in an OS-specific way.
1979  * The payload is at addr, if non-null, and the routine should send or queue
1980  * the packet, returning 0 if successful, 1 on failure.
1981  *
1982  * At the end, if head is non-null, there will be an additional call
1983  * to the function with addr = NULL; this should tell the OS-specific
1984  * routine to send the queue and free any resources. Failure is ignored.
1985  */
1986 struct nm_os_gen_arg {
1987 	struct ifnet *ifp;
1988 	void *m;	/* os-specific mbuf-like object */
1989 	void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
1990 	void *addr;	/* payload of current packet */
1991 	u_int len;	/* packet length */
1992 	u_int ring_nr;	/* packet length */
1993 	u_int qevent;   /* in txqdisc mode, place an event on this mbuf */
1994 };
1995 
1996 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
1997 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
1998 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
1999 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
2000 
2001 static inline struct ifnet*
2002 netmap_generic_getifp(struct netmap_generic_adapter *gna)
2003 {
2004         if (gna->prev)
2005             return gna->prev->ifp;
2006 
2007         return gna->up.up.ifp;
2008 }
2009 
2010 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
2011 
2012 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
2013 #ifdef RATE_GENERIC
2014 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
2015 #else
2016 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
2017 #endif
2018 
2019 /*
2020  * netmap_mitigation API. This is used by the generic adapter
2021  * to reduce the number of interrupt requests/selwakeup
2022  * to clients on incoming packets.
2023  */
2024 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2025                                 struct netmap_adapter *na);
2026 void nm_os_mitigation_start(struct nm_generic_mit *mit);
2027 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2028 int nm_os_mitigation_active(struct nm_generic_mit *mit);
2029 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2030 #else /* !WITH_GENERIC */
2031 #define generic_netmap_attach(ifp)	(EOPNOTSUPP)
2032 #define na_is_generic(na)		(0)
2033 #endif /* WITH_GENERIC */
2034 
2035 /* Shared declarations for the VALE switch. */
2036 
2037 /*
2038  * Each transmit queue accumulates a batch of packets into
2039  * a structure before forwarding. Packets to the same
2040  * destination are put in a list using ft_next as a link field.
2041  * ft_frags and ft_next are valid only on the first fragment.
2042  */
2043 struct nm_bdg_fwd {	/* forwarding entry for a bridge */
2044 	void *ft_buf;		/* netmap or indirect buffer */
2045 	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
2046 	uint16_t ft_offset;	/* dst port (unused) */
2047 	uint16_t ft_flags;	/* flags, e.g. indirect */
2048 	uint16_t ft_len;	/* src fragment len */
2049 	uint16_t ft_next;	/* next packet to same destination */
2050 };
2051 
2052 /* struct 'virtio_net_hdr' from linux. */
2053 struct nm_vnet_hdr {
2054 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
2055 #define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
2056     uint8_t flags;
2057 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
2058 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
2059 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
2060 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
2061 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
2062     uint8_t gso_type;
2063     uint16_t hdr_len;
2064     uint16_t gso_size;
2065     uint16_t csum_start;
2066     uint16_t csum_offset;
2067 };
2068 
2069 #define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
2070 
2071 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2072 
2073 struct nm_iphdr {
2074 	uint8_t		version_ihl;
2075 	uint8_t		tos;
2076 	uint16_t	tot_len;
2077 	uint16_t	id;
2078 	uint16_t	frag_off;
2079 	uint8_t		ttl;
2080 	uint8_t		protocol;
2081 	uint16_t	check;
2082 	uint32_t	saddr;
2083 	uint32_t	daddr;
2084 	/*The options start here. */
2085 };
2086 
2087 struct nm_tcphdr {
2088 	uint16_t	source;
2089 	uint16_t	dest;
2090 	uint32_t	seq;
2091 	uint32_t	ack_seq;
2092 	uint8_t		doff;  /* Data offset + Reserved */
2093 	uint8_t		flags;
2094 	uint16_t	window;
2095 	uint16_t	check;
2096 	uint16_t	urg_ptr;
2097 };
2098 
2099 struct nm_udphdr {
2100 	uint16_t	source;
2101 	uint16_t	dest;
2102 	uint16_t	len;
2103 	uint16_t	check;
2104 };
2105 
2106 struct nm_ipv6hdr {
2107 	uint8_t		priority_version;
2108 	uint8_t		flow_lbl[3];
2109 
2110 	uint16_t	payload_len;
2111 	uint8_t		nexthdr;
2112 	uint8_t		hop_limit;
2113 
2114 	uint8_t		saddr[16];
2115 	uint8_t		daddr[16];
2116 };
2117 
2118 /* Type used to store a checksum (in host byte order) that hasn't been
2119  * folded yet.
2120  */
2121 #define rawsum_t uint32_t
2122 
2123 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2124 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2125 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2126 		      size_t datalen, uint16_t *check);
2127 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2128 		      size_t datalen, uint16_t *check);
2129 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2130 
2131 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2132 			   struct netmap_vp_adapter *dst_na,
2133 			   const struct nm_bdg_fwd *ft_p,
2134 			   struct netmap_ring *dst_ring,
2135 			   u_int *j, u_int lim, u_int *howmany);
2136 
2137 /* persistent virtual port routines */
2138 int nm_os_vi_persist(const char *, struct ifnet **);
2139 void nm_os_vi_detach(struct ifnet *);
2140 void nm_os_vi_init_index(void);
2141 
2142 /*
2143  * kernel thread routines
2144  */
2145 struct nm_kctx; /* OS-specific kernel context - opaque */
2146 typedef void (*nm_kctx_worker_fn_t)(void *data, int is_kthread);
2147 typedef void (*nm_kctx_notify_fn_t)(void *data);
2148 
2149 /* kthread configuration */
2150 struct nm_kctx_cfg {
2151 	long			type;		/* kthread type/identifier */
2152 	nm_kctx_worker_fn_t	worker_fn;	/* worker function */
2153 	void			*worker_private;/* worker parameter */
2154 	nm_kctx_notify_fn_t	notify_fn;	/* notify function */
2155 	int			attach_user;	/* attach kthread to user process */
2156 	int			use_kthread;	/* use a kthread for the context */
2157 };
2158 /* kthread configuration */
2159 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2160 					void *opaque);
2161 int nm_os_kctx_worker_start(struct nm_kctx *);
2162 void nm_os_kctx_worker_stop(struct nm_kctx *);
2163 void nm_os_kctx_destroy(struct nm_kctx *);
2164 void nm_os_kctx_worker_wakeup(struct nm_kctx *nmk);
2165 void nm_os_kctx_send_irq(struct nm_kctx *);
2166 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2167 u_int nm_os_ncpus(void);
2168 
2169 #ifdef WITH_PTNETMAP_HOST
2170 /*
2171  * netmap adapter for host ptnetmap ports
2172  */
2173 struct netmap_pt_host_adapter {
2174 	struct netmap_adapter up;
2175 
2176 	/* the passed-through adapter */
2177 	struct netmap_adapter *parent;
2178 	/* parent->na_flags, saved at NETMAP_PT_HOST_CREATE time,
2179 	 * and restored at NETMAP_PT_HOST_DELETE time */
2180 	uint32_t parent_na_flags;
2181 
2182 	int (*parent_nm_notify)(struct netmap_kring *kring, int flags);
2183 	void *ptns;
2184 };
2185 
2186 /* ptnetmap host-side routines */
2187 int netmap_get_pt_host_na(struct nmreq_header *hdr, struct netmap_adapter **na,
2188 			struct netmap_mem_d * nmd, int create);
2189 int ptnetmap_ctl(const char *nr_name, int create, struct netmap_adapter *na);
2190 
2191 static inline int
2192 nm_ptnetmap_host_on(struct netmap_adapter *na)
2193 {
2194 	return na && na->na_flags & NAF_PTNETMAP_HOST;
2195 }
2196 #else /* !WITH_PTNETMAP_HOST */
2197 #define netmap_get_pt_host_na(hdr, _2, _3, _4) \
2198 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_PTNETMAP_HOST) ? EOPNOTSUPP : 0)
2199 #define ptnetmap_ctl(_1, _2, _3)   EINVAL
2200 #define nm_ptnetmap_host_on(_1)   EINVAL
2201 #endif /* !WITH_PTNETMAP_HOST */
2202 
2203 #ifdef WITH_PTNETMAP_GUEST
2204 /* ptnetmap GUEST routines */
2205 
2206 /*
2207  * netmap adapter for guest ptnetmap ports
2208  */
2209 struct netmap_pt_guest_adapter {
2210         /* The netmap adapter to be used by netmap applications.
2211 	 * This field must be the first, to allow upcast. */
2212 	struct netmap_hw_adapter hwup;
2213 
2214         /* The netmap adapter to be used by the driver. */
2215         struct netmap_hw_adapter dr;
2216 
2217 	/* Reference counter to track users of backend netmap port: the
2218 	 * network stack and netmap clients.
2219 	 * Used to decide when we need (de)allocate krings/rings and
2220 	 * start (stop) ptnetmap kthreads. */
2221 	int backend_regifs;
2222 
2223 };
2224 
2225 int netmap_pt_guest_attach(struct netmap_adapter *na,
2226 			unsigned int nifp_offset,
2227 			unsigned int memid);
2228 struct ptnet_csb_gh;
2229 struct ptnet_csb_hg;
2230 bool netmap_pt_guest_txsync(struct ptnet_csb_gh *ptgh,
2231 			struct ptnet_csb_hg *pthg,
2232 			struct netmap_kring *kring,
2233 			int flags);
2234 bool netmap_pt_guest_rxsync(struct ptnet_csb_gh *ptgh,
2235 			struct ptnet_csb_hg *pthg,
2236 			struct netmap_kring *kring, int flags);
2237 int ptnet_nm_krings_create(struct netmap_adapter *na);
2238 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2239 void ptnet_nm_dtor(struct netmap_adapter *na);
2240 #endif /* WITH_PTNETMAP_GUEST */
2241 
2242 #ifdef __FreeBSD__
2243 /*
2244  * FreeBSD mbuf allocator/deallocator in emulation mode:
2245  */
2246 #if __FreeBSD_version < 1100000
2247 
2248 /*
2249  * For older versions of FreeBSD:
2250  *
2251  * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE
2252  * so that the destructor, if invoked, will not free the packet.
2253  * In principle we should set the destructor only on demand,
2254  * but since there might be a race we better do it on allocation.
2255  * As a consequence, we also need to set the destructor or we
2256  * would leak buffers.
2257  */
2258 
2259 /* mbuf destructor, also need to change the type to EXT_EXTREF,
2260  * add an M_NOFREE flag, and then clear the flag and
2261  * chain into uma_zfree(zone_pack, mf)
2262  * (or reinstall the buffer ?)
2263  */
2264 #define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
2265 	(m)->m_ext.ext_free = (void *)fn;	\
2266 	(m)->m_ext.ext_type = EXT_EXTREF;	\
2267 } while (0)
2268 
2269 static int
2270 void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2)
2271 {
2272 	/* restore original mbuf */
2273 	m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1;
2274 	m->m_ext.ext_arg1 = NULL;
2275 	m->m_ext.ext_type = EXT_PACKET;
2276 	m->m_ext.ext_free = NULL;
2277 	if (MBUF_REFCNT(m) == 0)
2278 		SET_MBUF_REFCNT(m, 1);
2279 	uma_zfree(zone_pack, m);
2280 
2281 	return 0;
2282 }
2283 
2284 static inline struct mbuf *
2285 nm_os_get_mbuf(struct ifnet *ifp, int len)
2286 {
2287 	struct mbuf *m;
2288 
2289 	(void)ifp;
2290 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2291 	if (m) {
2292 		/* m_getcl() (mb_ctor_mbuf) has an assert that checks that
2293 		 * M_NOFREE flag is not specified as third argument,
2294 		 * so we have to set M_NOFREE after m_getcl(). */
2295 		m->m_flags |= M_NOFREE;
2296 		m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save
2297 		m->m_ext.ext_free = (void *)void_mbuf_dtor;
2298 		m->m_ext.ext_type = EXT_EXTREF;
2299 		ND(5, "create m %p refcnt %d", m, MBUF_REFCNT(m));
2300 	}
2301 	return m;
2302 }
2303 
2304 #else /* __FreeBSD_version >= 1100000 */
2305 
2306 /*
2307  * Newer versions of FreeBSD, using a straightforward scheme.
2308  *
2309  * We allocate mbufs with m_gethdr(), since the mbuf header is needed
2310  * by the driver. We also attach a customly-provided external storage,
2311  * which in this case is a netmap buffer. When calling m_extadd(), however
2312  * we pass a NULL address, since the real address (and length) will be
2313  * filled in by nm_os_generic_xmit_frame() right before calling
2314  * if_transmit().
2315  *
2316  * The dtor function does nothing, however we need it since mb_free_ext()
2317  * has a KASSERT(), checking that the mbuf dtor function is not NULL.
2318  */
2319 
2320 #if __FreeBSD_version <= 1200050
2321 static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { }
2322 #else  /* __FreeBSD_version >= 1200051 */
2323 /* The arg1 and arg2 pointers argument were removed by r324446, which
2324  * in included since version 1200051. */
2325 static void void_mbuf_dtor(struct mbuf *m) { }
2326 #endif /* __FreeBSD_version >= 1200051 */
2327 
2328 #define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
2329 	(m)->m_ext.ext_free = (fn != NULL) ?		\
2330 	    (void *)fn : (void *)void_mbuf_dtor;	\
2331 } while (0)
2332 
2333 static inline struct mbuf *
2334 nm_os_get_mbuf(struct ifnet *ifp, int len)
2335 {
2336 	struct mbuf *m;
2337 
2338 	(void)ifp;
2339 	(void)len;
2340 
2341 	m = m_gethdr(M_NOWAIT, MT_DATA);
2342 	if (m == NULL) {
2343 		return m;
2344 	}
2345 
2346 	m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor,
2347 		 NULL, NULL, 0, EXT_NET_DRV);
2348 
2349 	return m;
2350 }
2351 
2352 #endif /* __FreeBSD_version >= 1100000 */
2353 #endif /* __FreeBSD__ */
2354 
2355 struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t);
2356 int nmreq_checkduplicate(struct nmreq_option *);
2357 
2358 #endif /* _NET_NETMAP_KERN_H_ */
2359