1 /* 2 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * $FreeBSD$ 29 * 30 * The header contains the definitions of constants and function 31 * prototypes used only in kernelspace. 32 */ 33 34 #ifndef _NET_NETMAP_KERN_H_ 35 #define _NET_NETMAP_KERN_H_ 36 37 #define WITH_VALE // comment out to disable VALE support 38 #define WITH_PIPES 39 40 #if defined(__FreeBSD__) 41 42 #define likely(x) __builtin_expect((long)!!(x), 1L) 43 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 44 45 #define NM_LOCK_T struct mtx 46 #define NMG_LOCK_T struct mtx 47 #define NMG_LOCK_INIT() mtx_init(&netmap_global_lock, \ 48 "netmap global lock", NULL, MTX_DEF) 49 #define NMG_LOCK_DESTROY() mtx_destroy(&netmap_global_lock) 50 #define NMG_LOCK() mtx_lock(&netmap_global_lock) 51 #define NMG_UNLOCK() mtx_unlock(&netmap_global_lock) 52 #define NMG_LOCK_ASSERT() mtx_assert(&netmap_global_lock, MA_OWNED) 53 54 #define NM_SELINFO_T struct selinfo 55 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 56 #define MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 57 #define NM_SEND_UP(ifp, m) ((NA(ifp))->if_input)(ifp, m) 58 59 #define NM_ATOMIC_T volatile int // XXX ? 60 /* atomic operations */ 61 #include <machine/atomic.h> 62 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 63 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 64 65 66 MALLOC_DECLARE(M_NETMAP); 67 68 // XXX linux struct, not used in FreeBSD 69 struct net_device_ops { 70 }; 71 struct hrtimer { 72 }; 73 74 #elif defined (linux) 75 76 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 77 #define NM_SELINFO_T wait_queue_head_t 78 #define MBUF_LEN(m) ((m)->len) 79 #define MBUF_IFP(m) ((m)->dev) 80 #define NM_SEND_UP(ifp, m) \ 81 do { \ 82 m->priority = NM_MAGIC_PRIORITY; \ 83 netif_rx(m); \ 84 } while (0) 85 86 #define NM_ATOMIC_T volatile long unsigned int 87 88 // XXX a mtx would suffice here too 20130404 gl 89 #define NMG_LOCK_T struct semaphore 90 #define NMG_LOCK_INIT() sema_init(&netmap_global_lock, 1) 91 #define NMG_LOCK_DESTROY() 92 #define NMG_LOCK() down(&netmap_global_lock) 93 #define NMG_UNLOCK() up(&netmap_global_lock) 94 #define NMG_LOCK_ASSERT() // XXX to be completed 95 96 #ifndef DEV_NETMAP 97 #define DEV_NETMAP 98 #endif /* DEV_NETMAP */ 99 100 /* 101 * IFCAP_NETMAP goes into net_device's priv_flags (if_capenable). 102 * This was 16 bits up to linux 2.6.36, so we need a 16 bit value on older 103 * platforms and tolerate the clash with IFF_DYNAMIC and IFF_BRIDGE_PORT. 104 * For the 32-bit value, 0x100000 has no clashes until at least 3.5.1 105 */ 106 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) 107 #define IFCAP_NETMAP 0x8000 108 #else 109 #define IFCAP_NETMAP 0x200000 110 #endif 111 112 #elif defined (__APPLE__) 113 114 #warning apple support is incomplete. 115 #define likely(x) __builtin_expect(!!(x), 1) 116 #define unlikely(x) __builtin_expect(!!(x), 0) 117 #define NM_LOCK_T IOLock * 118 #define NM_SELINFO_T struct selinfo 119 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 120 #define NM_SEND_UP(ifp, m) ((ifp)->if_input)(ifp, m) 121 122 #else 123 124 #error unsupported platform 125 126 #endif /* end - platform-specific code */ 127 128 #define ND(format, ...) 129 #define D(format, ...) \ 130 do { \ 131 struct timeval __xxts; \ 132 microtime(&__xxts); \ 133 printf("%03d.%06d [%4d] %-25s " format "\n", \ 134 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 135 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 136 } while (0) 137 138 /* rate limited, lps indicates how many per second */ 139 #define RD(lps, format, ...) \ 140 do { \ 141 static int t0, __cnt; \ 142 if (t0 != time_second) { \ 143 t0 = time_second; \ 144 __cnt = 0; \ 145 } \ 146 if (__cnt++ < lps) \ 147 D(format, ##__VA_ARGS__); \ 148 } while (0) 149 150 struct netmap_adapter; 151 struct nm_bdg_fwd; 152 struct nm_bridge; 153 struct netmap_priv_d; 154 155 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 156 157 #include "netmap_mbq.h" 158 159 extern NMG_LOCK_T netmap_global_lock; 160 161 /* 162 * private, kernel view of a ring. Keeps track of the status of 163 * a ring across system calls. 164 * 165 * nr_hwcur index of the next buffer to refill. 166 * It corresponds to ring->head 167 * at the time the system call returns. 168 * 169 * nr_hwtail index of the first buffer owned by the kernel. 170 * On RX, hwcur->hwtail are receive buffers 171 * not yet released. hwcur is advanced following 172 * ring->head, hwtail is advanced on incoming packets, 173 * and a wakeup is generated when hwtail passes ring->cur 174 * On TX, hwcur->rcur have been filled by the sender 175 * but not sent yet to the NIC; rcur->hwtail are available 176 * for new transmissions, and hwtail->hwcur-1 are pending 177 * transmissions not yet acknowledged. 178 * 179 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 180 * This is so that, on a reset, buffers owned by userspace are not 181 * modified by the kernel. In particular: 182 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 183 * the next empty buffer as known by the hardware (next_to_check or so). 184 * TX rings: hwcur + hwofs coincides with next_to_send 185 * 186 * Clients cannot issue concurrent syscall on a ring. The system 187 * detects this and reports an error using two flags, 188 * NKR_WBUSY and NKR_RBUSY 189 * For received packets, slot->flags is set to nkr_slot_flags 190 * so we can provide a proper initial value (e.g. set NS_FORWARD 191 * when operating in 'transparent' mode). 192 * 193 * The following fields are used to implement lock-free copy of packets 194 * from input to output ports in VALE switch: 195 * nkr_hwlease buffer after the last one being copied. 196 * A writer in nm_bdg_flush reserves N buffers 197 * from nr_hwlease, advances it, then does the 198 * copy outside the lock. 199 * In RX rings (used for VALE ports), 200 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 201 * In TX rings (used for NIC or host stack ports) 202 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 203 * nkr_leases array of nkr_num_slots where writers can report 204 * completion of their block. NR_NOSLOT (~0) indicates 205 * that the writer has not finished yet 206 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 207 * 208 * The kring is manipulated by txsync/rxsync and generic netmap function. 209 * 210 * Concurrent rxsync or txsync on the same ring are prevented through 211 * by nm_kr_lock() which in turn uses nr_busy. This is all we need 212 * for NIC rings, and for TX rings attached to the host stack. 213 * 214 * RX rings attached to the host stack use an mbq (rx_queue) on both 215 * rxsync_from_host() and netmap_transmit(). The mbq is protected 216 * by its internal lock. 217 * 218 * RX rings attached to the VALE switch are accessed by both sender 219 * and receiver. They are protected through the q_lock on the RX ring. 220 */ 221 struct netmap_kring { 222 struct netmap_ring *ring; 223 224 uint32_t nr_hwcur; 225 uint32_t nr_hwtail; 226 227 /* 228 * Copies of values in user rings, so we do not need to look 229 * at the ring (which could be modified). These are set in the 230 * *sync_prologue()/finalize() routines. 231 */ 232 uint32_t rhead; 233 uint32_t rcur; 234 uint32_t rtail; 235 236 uint32_t nr_kflags; /* private driver flags */ 237 #define NKR_PENDINTR 0x1 // Pending interrupt. 238 uint32_t nkr_num_slots; 239 240 /* 241 * On a NIC reset, the NIC ring indexes may be reset but the 242 * indexes in the netmap rings remain the same. nkr_hwofs 243 * keeps track of the offset between the two. 244 */ 245 int32_t nkr_hwofs; 246 247 uint16_t nkr_slot_flags; /* initial value for flags */ 248 249 /* last_reclaim is opaque marker to help reduce the frequency 250 * of operations such as reclaiming tx buffers. A possible use 251 * is set it to ticks and do the reclaim only once per tick. 252 */ 253 uint64_t last_reclaim; 254 255 256 NM_SELINFO_T si; /* poll/select wait queue */ 257 NM_LOCK_T q_lock; /* protects kring and ring. */ 258 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 259 260 struct netmap_adapter *na; 261 262 /* The folloiwing fields are for VALE switch support */ 263 struct nm_bdg_fwd *nkr_ft; 264 uint32_t *nkr_leases; 265 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 266 uint32_t nkr_hwlease; 267 uint32_t nkr_lease_idx; 268 269 volatile int nkr_stopped; // XXX what for ? 270 271 /* Support for adapters without native netmap support. 272 * On tx rings we preallocate an array of tx buffers 273 * (same size as the netmap ring), on rx rings we 274 * store incoming mbufs in a queue that is drained by 275 * a rxsync. 276 */ 277 struct mbuf **tx_pool; 278 // u_int nr_ntc; /* Emulation of a next-to-clean RX ring pointer. */ 279 struct mbq rx_queue; /* intercepted rx mbufs. */ 280 281 uint32_t ring_id; /* debugging */ 282 char name[64]; /* diagnostic */ 283 284 int (*nm_sync)(struct netmap_kring *kring, int flags); 285 286 #ifdef WITH_PIPES 287 struct netmap_kring *pipe; 288 struct netmap_ring *save_ring; 289 #endif /* WITH_PIPES */ 290 291 } __attribute__((__aligned__(64))); 292 293 294 /* return the next index, with wraparound */ 295 static inline uint32_t 296 nm_next(uint32_t i, uint32_t lim) 297 { 298 return unlikely (i == lim) ? 0 : i + 1; 299 } 300 301 302 /* return the previous index, with wraparound */ 303 static inline uint32_t 304 nm_prev(uint32_t i, uint32_t lim) 305 { 306 return unlikely (i == 0) ? lim : i - 1; 307 } 308 309 310 /* 311 * 312 * Here is the layout for the Rx and Tx rings. 313 314 RxRING TxRING 315 316 +-----------------+ +-----------------+ 317 | | | | 318 |XXX free slot XXX| |XXX free slot XXX| 319 +-----------------+ +-----------------+ 320 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 321 | | | yet | 322 +-----------------+ | | 323 cur->| available to | | | 324 | user, not read | +-----------------+ 325 | yet | cur->| (being | 326 | | | prepared) | 327 | | | | 328 +-----------------+ + ------ + 329 tail->| |<-hwtail | |<-hwlease 330 | (being | ... | | ... 331 | prepared) | ... | | ... 332 +-----------------+ ... | | ... 333 | |<-hwlease +-----------------+ 334 | | tail->| |<-hwtail 335 | | | | 336 | | | | 337 | | | | 338 +-----------------+ +-----------------+ 339 340 * The cur/tail (user view) and hwcur/hwtail (kernel view) 341 * are used in the normal operation of the card. 342 * 343 * When a ring is the output of a switch port (Rx ring for 344 * a VALE port, Tx ring for the host stack or NIC), slots 345 * are reserved in blocks through 'hwlease' which points 346 * to the next unused slot. 347 * On an Rx ring, hwlease is always after hwtail, 348 * and completions cause hwtail to advance. 349 * On a Tx ring, hwlease is always between cur and hwtail, 350 * and completions cause cur to advance. 351 * 352 * nm_kr_space() returns the maximum number of slots that 353 * can be assigned. 354 * nm_kr_lease() reserves the required number of buffers, 355 * advances nkr_hwlease and also returns an entry in 356 * a circular array where completions should be reported. 357 */ 358 359 360 361 enum txrx { NR_RX = 0, NR_TX = 1 }; 362 363 /* 364 * The "struct netmap_adapter" extends the "struct adapter" 365 * (or equivalent) device descriptor. 366 * It contains all base fields needed to support netmap operation. 367 * There are in fact different types of netmap adapters 368 * (native, generic, VALE switch...) so a netmap_adapter is 369 * just the first field in the derived type. 370 */ 371 struct netmap_adapter { 372 /* 373 * On linux we do not have a good way to tell if an interface 374 * is netmap-capable. So we always use the following trick: 375 * NA(ifp) points here, and the first entry (which hopefully 376 * always exists and is at least 32 bits) contains a magic 377 * value which we can use to detect that the interface is good. 378 */ 379 uint32_t magic; 380 uint32_t na_flags; /* enabled, and other flags */ 381 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 382 * useful during initialization 383 */ 384 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 385 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 386 * forwarding packets coming from this 387 * interface 388 */ 389 #define NAF_MEM_OWNER 8 /* the adapter is responsible for the 390 * deallocation of the memory allocator 391 */ 392 #define NAF_NATIVE_ON 16 /* the adapter is native and the attached 393 * interface is in netmap mode 394 */ 395 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 396 * emulated. Where possible (e.g. FreeBSD) 397 * IFCAP_NETMAP also mirrors this flag. 398 */ 399 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 400 int active_fds; /* number of user-space descriptors using this 401 interface, which is equal to the number of 402 struct netmap_if objs in the mapped region. */ 403 404 u_int num_rx_rings; /* number of adapter receive rings */ 405 u_int num_tx_rings; /* number of adapter transmit rings */ 406 407 u_int num_tx_desc; /* number of descriptor in each queue */ 408 u_int num_rx_desc; 409 410 /* tx_rings and rx_rings are private but allocated 411 * as a contiguous chunk of memory. Each array has 412 * N+1 entries, for the adapter queues and for the host queue. 413 */ 414 struct netmap_kring *tx_rings; /* array of TX rings. */ 415 struct netmap_kring *rx_rings; /* array of RX rings. */ 416 417 void *tailroom; /* space below the rings array */ 418 /* (used for leases) */ 419 420 421 NM_SELINFO_T tx_si, rx_si; /* global wait queues */ 422 423 /* count users of the global wait queues */ 424 int tx_si_users, rx_si_users; 425 426 /* copy of if_qflush and if_transmit pointers, to intercept 427 * packets from the network stack when netmap is active. 428 */ 429 int (*if_transmit)(struct ifnet *, struct mbuf *); 430 431 /* copy of if_input for netmap_send_up() */ 432 void (*if_input)(struct ifnet *, struct mbuf *); 433 434 /* references to the ifnet and device routines, used by 435 * the generic netmap functions. 436 */ 437 struct ifnet *ifp; /* adapter is ifp->if_softc */ 438 439 /*---- callbacks for this netmap adapter -----*/ 440 /* 441 * nm_dtor() is the cleanup routine called when destroying 442 * the adapter. 443 * 444 * nm_register() is called on NIOCREGIF and close() to enter 445 * or exit netmap mode on the NIC 446 * 447 * nm_txsync() pushes packets to the underlying hw/switch 448 * 449 * nm_rxsync() collects packets from the underlying hw/switch 450 * 451 * nm_config() returns configuration information from the OS 452 * 453 * nm_krings_create() create and init the krings array 454 * (the array layout must conform to the description 455 * found above the definition of netmap_krings_create) 456 * 457 * nm_krings_delete() cleanup and delete the kring array 458 * 459 * nm_notify() is used to act after data have become available. 460 * For hw devices this is typically a selwakeup(), 461 * but for NIC/host ports attached to a switch (or vice-versa) 462 * we also need to invoke the 'txsync' code downstream. 463 */ 464 465 /* private cleanup */ 466 void (*nm_dtor)(struct netmap_adapter *); 467 468 int (*nm_register)(struct netmap_adapter *, int onoff); 469 470 int (*nm_txsync)(struct netmap_adapter *, u_int ring, int flags); 471 int (*nm_rxsync)(struct netmap_adapter *, u_int ring, int flags); 472 #define NAF_FORCE_READ 1 473 #define NAF_FORCE_RECLAIM 2 474 /* return configuration information */ 475 int (*nm_config)(struct netmap_adapter *, 476 u_int *txr, u_int *txd, u_int *rxr, u_int *rxd); 477 int (*nm_krings_create)(struct netmap_adapter *); 478 void (*nm_krings_delete)(struct netmap_adapter *); 479 int (*nm_notify)(struct netmap_adapter *, 480 u_int ring, enum txrx, int flags); 481 #define NAF_DISABLE_NOTIFY 8 482 483 /* standard refcount to control the lifetime of the adapter 484 * (it should be equal to the lifetime of the corresponding ifp) 485 */ 486 int na_refcount; 487 488 /* memory allocator (opaque) 489 * We also cache a pointer to the lut_entry for translating 490 * buffer addresses, and the total number of buffers. 491 */ 492 struct netmap_mem_d *nm_mem; 493 struct lut_entry *na_lut; 494 uint32_t na_lut_objtotal; /* max buffer index */ 495 496 /* used internally. If non-null, the interface cannot be bound 497 * from userspace 498 */ 499 void *na_private; 500 501 #ifdef WITH_PIPES 502 struct netmap_pipe_adapter **na_pipes; 503 int na_next_pipe; 504 int na_max_pipes; 505 #endif /* WITH_PIPES */ 506 }; 507 508 509 /* 510 * If the NIC is owned by the kernel 511 * (i.e., bridge), neither another bridge nor user can use it; 512 * if the NIC is owned by a user, only users can share it. 513 * Evaluation must be done under NMG_LOCK(). 514 */ 515 #define NETMAP_OWNED_BY_KERN(na) (na->na_private) 516 #define NETMAP_OWNED_BY_ANY(na) \ 517 (NETMAP_OWNED_BY_KERN(na) || (na->active_fds > 0)) 518 519 520 /* 521 * derived netmap adapters for various types of ports 522 */ 523 struct netmap_vp_adapter { /* VALE software port */ 524 struct netmap_adapter up; 525 526 /* 527 * Bridge support: 528 * 529 * bdg_port is the port number used in the bridge; 530 * na_bdg points to the bridge this NA is attached to. 531 */ 532 int bdg_port; 533 struct nm_bridge *na_bdg; 534 int retry; 535 536 /* Offset of ethernet header for each packet. */ 537 u_int virt_hdr_len; 538 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 539 u_int mfs; 540 }; 541 542 543 struct netmap_hw_adapter { /* physical device */ 544 struct netmap_adapter up; 545 546 struct net_device_ops nm_ndo; // XXX linux only 547 }; 548 549 /* Mitigation support. */ 550 struct nm_generic_mit { 551 struct hrtimer mit_timer; 552 int mit_pending; 553 struct netmap_adapter *mit_na; /* backpointer */ 554 }; 555 556 struct netmap_generic_adapter { /* emulated device */ 557 struct netmap_hw_adapter up; 558 559 /* Pointer to a previously used netmap adapter. */ 560 struct netmap_adapter *prev; 561 562 /* generic netmap adapters support: 563 * a net_device_ops struct overrides ndo_select_queue(), 564 * save_if_input saves the if_input hook (FreeBSD), 565 * mit implements rx interrupt mitigation, 566 */ 567 struct net_device_ops generic_ndo; 568 void (*save_if_input)(struct ifnet *, struct mbuf *); 569 570 struct nm_generic_mit *mit; 571 #ifdef linux 572 netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); 573 #endif 574 }; 575 576 static __inline int 577 netmap_real_tx_rings(struct netmap_adapter *na) 578 { 579 return na->num_tx_rings + !!(na->na_flags & NAF_HOST_RINGS); 580 } 581 582 static __inline int 583 netmap_real_rx_rings(struct netmap_adapter *na) 584 { 585 return na->num_rx_rings + !!(na->na_flags & NAF_HOST_RINGS); 586 } 587 588 #ifdef WITH_VALE 589 590 /* 591 * Bridge wrapper for non VALE ports attached to a VALE switch. 592 * 593 * The real device must already have its own netmap adapter (hwna). 594 * The bridge wrapper and the hwna adapter share the same set of 595 * netmap rings and buffers, but they have two separate sets of 596 * krings descriptors, with tx/rx meanings swapped: 597 * 598 * netmap 599 * bwrap krings rings krings hwna 600 * +------+ +------+ +-----+ +------+ +------+ 601 * |tx_rings->| |\ /| |----| |<-tx_rings| 602 * | | +------+ \ / +-----+ +------+ | | 603 * | | X | | 604 * | | / \ | | 605 * | | +------+/ \+-----+ +------+ | | 606 * |rx_rings->| | | |----| |<-rx_rings| 607 * | | +------+ +-----+ +------+ | | 608 * +------+ +------+ 609 * 610 * - packets coming from the bridge go to the brwap rx rings, 611 * which are also the hwna tx rings. The bwrap notify callback 612 * will then complete the hwna tx (see netmap_bwrap_notify). 613 * 614 * - packets coming from the outside go to the hwna rx rings, 615 * which are also the bwrap tx rings. The (overwritten) hwna 616 * notify method will then complete the bridge tx 617 * (see netmap_bwrap_intr_notify). 618 * 619 * The bridge wrapper may optionally connect the hwna 'host' rings 620 * to the bridge. This is done by using a second port in the 621 * bridge and connecting it to the 'host' netmap_vp_adapter 622 * contained in the netmap_bwrap_adapter. The brwap host adapter 623 * cross-links the hwna host rings in the same way as shown above. 624 * 625 * - packets coming from the bridge and directed to the host stack 626 * are handled by the bwrap host notify callback 627 * (see netmap_bwrap_host_notify) 628 * 629 * - packets coming from the host stack are still handled by the 630 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 631 * but are diverted to the host adapter depending on the ring number. 632 * 633 */ 634 struct netmap_bwrap_adapter { 635 struct netmap_vp_adapter up; 636 struct netmap_vp_adapter host; /* for host rings */ 637 struct netmap_adapter *hwna; /* the underlying device */ 638 639 /* backup of the hwna notify callback */ 640 int (*save_notify)(struct netmap_adapter *, 641 u_int ring, enum txrx, int flags); 642 643 /* 644 * When we attach a physical interface to the bridge, we 645 * allow the controlling process to terminate, so we need 646 * a place to store the netmap_priv_d data structure. 647 * This is only done when physical interfaces 648 * are attached to a bridge. 649 */ 650 struct netmap_priv_d *na_kpriv; 651 }; 652 653 654 #endif /* WITH_VALE */ 655 656 #ifdef WITH_PIPES 657 658 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 659 660 struct netmap_pipe_adapter { 661 struct netmap_adapter up; 662 663 u_int id; /* pipe identifier */ 664 int role; /* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */ 665 666 struct netmap_adapter *parent; /* adapter that owns the memory */ 667 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 668 int peer_ref; /* 1 iff we are holding a ref to the peer */ 669 670 u_int parent_slot; /* index in the parent pipe array */ 671 }; 672 673 #endif /* WITH_PIPES */ 674 675 676 /* return slots reserved to rx clients; used in drivers */ 677 static inline uint32_t 678 nm_kr_rxspace(struct netmap_kring *k) 679 { 680 int space = k->nr_hwtail - k->nr_hwcur; 681 if (space < 0) 682 space += k->nkr_num_slots; 683 ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 684 685 return space; 686 } 687 688 689 /* True if no space in the tx ring. only valid after txsync_prologue */ 690 static inline int 691 nm_kr_txempty(struct netmap_kring *kring) 692 { 693 return kring->rcur == kring->nr_hwtail; 694 } 695 696 697 /* 698 * protect against multiple threads using the same ring. 699 * also check that the ring has not been stopped. 700 * We only care for 0 or !=0 as a return code. 701 */ 702 #define NM_KR_BUSY 1 703 #define NM_KR_STOPPED 2 704 705 706 static __inline void nm_kr_put(struct netmap_kring *kr) 707 { 708 NM_ATOMIC_CLEAR(&kr->nr_busy); 709 } 710 711 712 static __inline int nm_kr_tryget(struct netmap_kring *kr) 713 { 714 /* check a first time without taking the lock 715 * to avoid starvation for nm_kr_get() 716 */ 717 if (unlikely(kr->nkr_stopped)) { 718 ND("ring %p stopped (%d)", kr, kr->nkr_stopped); 719 return NM_KR_STOPPED; 720 } 721 if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))) 722 return NM_KR_BUSY; 723 /* check a second time with lock held */ 724 if (unlikely(kr->nkr_stopped)) { 725 ND("ring %p stopped (%d)", kr, kr->nkr_stopped); 726 nm_kr_put(kr); 727 return NM_KR_STOPPED; 728 } 729 return 0; 730 } 731 732 733 /* 734 * The following functions are used by individual drivers to 735 * support netmap operation. 736 * 737 * netmap_attach() initializes a struct netmap_adapter, allocating the 738 * struct netmap_ring's and the struct selinfo. 739 * 740 * netmap_detach() frees the memory allocated by netmap_attach(). 741 * 742 * netmap_transmit() replaces the if_transmit routine of the interface, 743 * and is used to intercept packets coming from the stack. 744 * 745 * netmap_load_map/netmap_reload_map are helper routines to set/reset 746 * the dmamap for a packet buffer 747 * 748 * netmap_reset() is a helper routine to be called in the driver 749 * when reinitializing a ring. 750 */ 751 int netmap_attach(struct netmap_adapter *); 752 int netmap_attach_common(struct netmap_adapter *); 753 void netmap_detach_common(struct netmap_adapter *na); 754 void netmap_detach(struct ifnet *); 755 int netmap_transmit(struct ifnet *, struct mbuf *); 756 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 757 enum txrx tx, u_int n, u_int new_cur); 758 int netmap_ring_reinit(struct netmap_kring *); 759 760 /* default functions to handle rx/tx interrupts */ 761 int netmap_rx_irq(struct ifnet *, u_int, u_int *); 762 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 763 void netmap_common_irq(struct ifnet *, u_int, u_int *work_done); 764 765 void netmap_disable_all_rings(struct ifnet *); 766 void netmap_enable_all_rings(struct ifnet *); 767 void netmap_disable_ring(struct netmap_kring *kr); 768 769 770 /* set/clear native flags and if_transmit/netdev_ops */ 771 static inline void 772 nm_set_native_flags(struct netmap_adapter *na) 773 { 774 struct ifnet *ifp = na->ifp; 775 776 na->na_flags |= (NAF_NATIVE_ON | NAF_NETMAP_ON); 777 #ifdef IFCAP_NETMAP /* or FreeBSD ? */ 778 ifp->if_capenable |= IFCAP_NETMAP; 779 #endif 780 #ifdef __FreeBSD__ 781 na->if_transmit = ifp->if_transmit; 782 ifp->if_transmit = netmap_transmit; 783 #else 784 na->if_transmit = (void *)ifp->netdev_ops; 785 ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo; 786 #endif 787 } 788 789 790 static inline void 791 nm_clear_native_flags(struct netmap_adapter *na) 792 { 793 struct ifnet *ifp = na->ifp; 794 795 #ifdef __FreeBSD__ 796 ifp->if_transmit = na->if_transmit; 797 #else 798 ifp->netdev_ops = (void *)na->if_transmit; 799 #endif 800 na->na_flags &= ~(NAF_NATIVE_ON | NAF_NETMAP_ON); 801 #ifdef IFCAP_NETMAP /* or FreeBSD ? */ 802 ifp->if_capenable &= ~IFCAP_NETMAP; 803 #endif 804 } 805 806 807 /* 808 * validates parameters in the ring/kring, returns a value for head 809 * If any error, returns ring_size to force a reinit. 810 */ 811 uint32_t nm_txsync_prologue(struct netmap_kring *); 812 813 814 /* 815 * validates parameters in the ring/kring, returns a value for head, 816 * and the 'reserved' value in the argument. 817 * If any error, returns ring_size lim to force a reinit. 818 */ 819 uint32_t nm_rxsync_prologue(struct netmap_kring *); 820 821 822 /* 823 * update kring and ring at the end of txsync. 824 */ 825 static inline void 826 nm_txsync_finalize(struct netmap_kring *kring) 827 { 828 /* update ring tail to what the kernel knows */ 829 kring->ring->tail = kring->rtail = kring->nr_hwtail; 830 831 /* note, head/rhead/hwcur might be behind cur/rcur 832 * if no carrier 833 */ 834 ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", 835 kring->name, kring->nr_hwcur, kring->nr_hwtail, 836 kring->rhead, kring->rcur, kring->rtail); 837 } 838 839 840 /* 841 * update kring and ring at the end of rxsync 842 */ 843 static inline void 844 nm_rxsync_finalize(struct netmap_kring *kring) 845 { 846 /* tell userspace that there might be new packets */ 847 //struct netmap_ring *ring = kring->ring; 848 ND("head %d cur %d tail %d -> %d", ring->head, ring->cur, ring->tail, 849 kring->nr_hwtail); 850 kring->ring->tail = kring->rtail = kring->nr_hwtail; 851 /* make a copy of the state for next round */ 852 kring->rhead = kring->ring->head; 853 kring->rcur = kring->ring->cur; 854 } 855 856 857 /* check/fix address and len in tx rings */ 858 #if 1 /* debug version */ 859 #define NM_CHECK_ADDR_LEN(_a, _l) do { \ 860 if (_a == netmap_buffer_base || _l > NETMAP_BUF_SIZE) { \ 861 RD(5, "bad addr/len ring %d slot %d idx %d len %d", \ 862 ring_nr, nm_i, slot->buf_idx, len); \ 863 if (_l > NETMAP_BUF_SIZE) \ 864 _l = NETMAP_BUF_SIZE; \ 865 } } while (0) 866 #else /* no debug version */ 867 #define NM_CHECK_ADDR_LEN(_a, _l) do { \ 868 if (_l > NETMAP_BUF_SIZE) \ 869 _l = NETMAP_BUF_SIZE; \ 870 } while (0) 871 #endif 872 873 874 /*---------------------------------------------------------------*/ 875 /* 876 * Support routines to be used with the VALE switch 877 */ 878 int netmap_update_config(struct netmap_adapter *na); 879 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 880 void netmap_krings_delete(struct netmap_adapter *na); 881 int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait); 882 883 884 struct netmap_if * 885 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 886 uint16_t ringid, uint32_t flags, int *err); 887 888 889 890 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 891 int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 892 int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na); 893 894 895 #ifdef WITH_VALE 896 /* 897 * The following bridge-related functions are used by other 898 * kernel modules. 899 * 900 * VALE only supports unicast or broadcast. The lookup 901 * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports, 902 * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown. 903 * XXX in practice "unknown" might be handled same as broadcast. 904 */ 905 typedef u_int (*bdg_lookup_fn_t)(char *buf, u_int len, 906 uint8_t *ring_nr, struct netmap_vp_adapter *); 907 u_int netmap_bdg_learning(char *, u_int, uint8_t *, 908 struct netmap_vp_adapter *); 909 910 #define NM_BDG_MAXPORTS 254 /* up to 254 */ 911 #define NM_BDG_BROADCAST NM_BDG_MAXPORTS 912 #define NM_BDG_NOPORT (NM_BDG_MAXPORTS+1) 913 914 #define NM_NAME "vale" /* prefix for bridge port name */ 915 916 917 /* these are redefined in case of no VALE support */ 918 int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 919 void netmap_init_bridges(void); 920 int netmap_bdg_ctl(struct nmreq *nmr, bdg_lookup_fn_t func); 921 922 #else /* !WITH_VALE */ 923 #define netmap_get_bdg_na(_1, _2, _3) 0 924 #define netmap_init_bridges(_1) 925 #define netmap_bdg_ctl(_1, _2) EINVAL 926 #endif /* !WITH_VALE */ 927 928 #ifdef WITH_PIPES 929 /* max number of pipes per device */ 930 #define NM_MAXPIPES 64 /* XXX how many? */ 931 /* in case of no error, returns the actual number of pipes in nmr->nr_arg1 */ 932 int netmap_pipe_alloc(struct netmap_adapter *, struct nmreq *nmr); 933 void netmap_pipe_dealloc(struct netmap_adapter *); 934 int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 935 #else /* !WITH_PIPES */ 936 #define NM_MAXPIPES 0 937 #define netmap_pipe_alloc(_1, _2) EOPNOTSUPP 938 #define netmap_pipe_dealloc(_1) 939 #define netmap_get_pipe_na(_1, _2, _3) 0 940 #endif 941 942 /* Various prototypes */ 943 int netmap_poll(struct cdev *dev, int events, struct thread *td); 944 int netmap_init(void); 945 void netmap_fini(void); 946 int netmap_get_memory(struct netmap_priv_d* p); 947 void netmap_dtor(void *data); 948 int netmap_dtor_locked(struct netmap_priv_d *priv); 949 950 int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td); 951 952 /* netmap_adapter creation/destruction */ 953 #define NM_IFPNAME(ifp) ((ifp) ? (ifp)->if_xname : "zombie") 954 955 // #define NM_DEBUG_PUTGET 1 956 957 #ifdef NM_DEBUG_PUTGET 958 959 #define NM_DBG(f) __##f 960 961 void __netmap_adapter_get(struct netmap_adapter *na); 962 963 #define netmap_adapter_get(na) \ 964 do { \ 965 struct netmap_adapter *__na = na; \ 966 D("getting %p:%s (%d)", __na, NM_IFPNAME(__na->ifp), __na->na_refcount); \ 967 __netmap_adapter_get(__na); \ 968 } while (0) 969 970 int __netmap_adapter_put(struct netmap_adapter *na); 971 972 #define netmap_adapter_put(na) \ 973 ({ \ 974 struct netmap_adapter *__na = na; \ 975 D("putting %p:%s (%d)", __na, NM_IFPNAME(__na->ifp), __na->na_refcount); \ 976 __netmap_adapter_put(__na); \ 977 }) 978 979 #else /* !NM_DEBUG_PUTGET */ 980 981 #define NM_DBG(f) f 982 void netmap_adapter_get(struct netmap_adapter *na); 983 int netmap_adapter_put(struct netmap_adapter *na); 984 985 #endif /* !NM_DEBUG_PUTGET */ 986 987 988 /* 989 * module variables 990 */ 991 extern u_int netmap_buf_size; 992 #define NETMAP_BUF_SIZE netmap_buf_size // XXX remove 993 extern int netmap_mitigate; // XXX not really used 994 extern int netmap_no_pendintr; 995 extern u_int netmap_total_buffers; // global allocator 996 extern char *netmap_buffer_base; // global allocator 997 extern int netmap_verbose; // XXX debugging 998 enum { /* verbose flags */ 999 NM_VERB_ON = 1, /* generic verbose */ 1000 NM_VERB_HOST = 0x2, /* verbose host stack */ 1001 NM_VERB_RXSYNC = 0x10, /* verbose on rxsync/txsync */ 1002 NM_VERB_TXSYNC = 0x20, 1003 NM_VERB_RXINTR = 0x100, /* verbose on rx/tx intr (driver) */ 1004 NM_VERB_TXINTR = 0x200, 1005 NM_VERB_NIC_RXSYNC = 0x1000, /* verbose on rx/tx intr (driver) */ 1006 NM_VERB_NIC_TXSYNC = 0x2000, 1007 }; 1008 1009 extern int netmap_txsync_retry; 1010 extern int netmap_generic_mit; 1011 extern int netmap_generic_ringsize; 1012 extern int netmap_generic_rings; 1013 1014 /* 1015 * NA returns a pointer to the struct netmap adapter from the ifp, 1016 * WNA is used to write it. 1017 */ 1018 #ifndef WNA 1019 #define WNA(_ifp) (_ifp)->if_pspare[0] 1020 #endif 1021 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 1022 1023 /* 1024 * Macros to determine if an interface is netmap capable or netmap enabled. 1025 * See the magic field in struct netmap_adapter. 1026 */ 1027 #ifdef __FreeBSD__ 1028 /* 1029 * on FreeBSD just use if_capabilities and if_capenable. 1030 */ 1031 #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ 1032 (ifp)->if_capabilities & IFCAP_NETMAP ) 1033 1034 #define NETMAP_SET_CAPABLE(ifp) \ 1035 (ifp)->if_capabilities |= IFCAP_NETMAP 1036 1037 #else /* linux */ 1038 1039 /* 1040 * on linux: 1041 * we check if NA(ifp) is set and its first element has a related 1042 * magic value. The capenable is within the struct netmap_adapter. 1043 */ 1044 #define NETMAP_MAGIC 0x52697a7a 1045 1046 #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ 1047 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1048 1049 #define NETMAP_SET_CAPABLE(ifp) \ 1050 NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC 1051 1052 #endif /* linux */ 1053 1054 #ifdef __FreeBSD__ 1055 1056 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1057 static void netmap_dmamap_cb(__unused void *arg, 1058 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1059 { 1060 } 1061 1062 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1063 * XXX can we do it without a callback ? 1064 */ 1065 static inline void 1066 netmap_load_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1067 { 1068 if (map) 1069 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, 1070 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1071 } 1072 1073 /* update the map when a buffer changes. */ 1074 static inline void 1075 netmap_reload_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1076 { 1077 if (map) { 1078 bus_dmamap_unload(tag, map); 1079 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, 1080 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1081 } 1082 } 1083 1084 #else /* linux */ 1085 1086 /* 1087 * XXX How do we redefine these functions: 1088 * 1089 * on linux we need 1090 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1091 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction 1092 * The len can be implicit (on netmap it is NETMAP_BUF_SIZE) 1093 * unfortunately the direction is not, so we need to change 1094 * something to have a cross API 1095 */ 1096 #define netmap_load_map(_t, _m, _b) 1097 #define netmap_reload_map(_t, _m, _b) 1098 #if 0 1099 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1100 /* set time_stamp *before* dma to help avoid a possible race */ 1101 buffer_info->time_stamp = jiffies; 1102 buffer_info->mapped_as_page = false; 1103 buffer_info->length = len; 1104 //buffer_info->next_to_watch = l; 1105 /* reload dma map */ 1106 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1107 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1108 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1109 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1110 1111 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1112 D("dma mapping error"); 1113 /* goto dma_error; See e1000_put_txbuf() */ 1114 /* XXX reset */ 1115 } 1116 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1117 1118 #endif 1119 1120 /* 1121 * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction. 1122 */ 1123 #define bus_dmamap_sync(_a, _b, _c) 1124 1125 #endif /* linux */ 1126 1127 1128 /* 1129 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1130 */ 1131 static inline int 1132 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1133 { 1134 int n = kr->nkr_num_slots; 1135 idx += kr->nkr_hwofs; 1136 if (idx < 0) 1137 return idx + n; 1138 else if (idx < n) 1139 return idx; 1140 else 1141 return idx - n; 1142 } 1143 1144 1145 static inline int 1146 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1147 { 1148 int n = kr->nkr_num_slots; 1149 idx -= kr->nkr_hwofs; 1150 if (idx < 0) 1151 return idx + n; 1152 else if (idx < n) 1153 return idx; 1154 else 1155 return idx - n; 1156 } 1157 1158 1159 /* Entries of the look-up table. */ 1160 struct lut_entry { 1161 void *vaddr; /* virtual address. */ 1162 vm_paddr_t paddr; /* physical address. */ 1163 }; 1164 1165 struct netmap_obj_pool; 1166 extern struct lut_entry *netmap_buffer_lut; 1167 #define NMB_VA(i) (netmap_buffer_lut[i].vaddr) 1168 #define NMB_PA(i) (netmap_buffer_lut[i].paddr) 1169 1170 /* 1171 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1172 * PNMB also fills the physical address 1173 */ 1174 static inline void * 1175 NMB(struct netmap_slot *slot) 1176 { 1177 uint32_t i = slot->buf_idx; 1178 return (unlikely(i >= netmap_total_buffers)) ? NMB_VA(0) : NMB_VA(i); 1179 } 1180 1181 static inline void * 1182 PNMB(struct netmap_slot *slot, uint64_t *pp) 1183 { 1184 uint32_t i = slot->buf_idx; 1185 void *ret = (i >= netmap_total_buffers) ? NMB_VA(0) : NMB_VA(i); 1186 1187 *pp = (i >= netmap_total_buffers) ? NMB_PA(0) : NMB_PA(i); 1188 return ret; 1189 } 1190 1191 /* Generic version of NMB, which uses device-specific memory. */ 1192 static inline void * 1193 BDG_NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1194 { 1195 struct lut_entry *lut = na->na_lut; 1196 uint32_t i = slot->buf_idx; 1197 return (unlikely(i >= na->na_lut_objtotal)) ? 1198 lut[0].vaddr : lut[i].vaddr; 1199 } 1200 1201 1202 1203 void netmap_txsync_to_host(struct netmap_adapter *na); 1204 1205 1206 /* 1207 * Structure associated to each thread which registered an interface. 1208 * 1209 * The first 4 fields of this structure are written by NIOCREGIF and 1210 * read by poll() and NIOC?XSYNC. 1211 * 1212 * There is low contention among writers (a correct user program 1213 * should have none) and among writers and readers, so we use a 1214 * single global lock to protect the structure initialization; 1215 * since initialization involves the allocation of memory, 1216 * we reuse the memory allocator lock. 1217 * 1218 * Read access to the structure is lock free. Readers must check that 1219 * np_nifp is not NULL before using the other fields. 1220 * If np_nifp is NULL initialization has not been performed, 1221 * so they should return an error to userspace. 1222 * 1223 * The ref_done field is used to regulate access to the refcount in the 1224 * memory allocator. The refcount must be incremented at most once for 1225 * each open("/dev/netmap"). The increment is performed by the first 1226 * function that calls netmap_get_memory() (currently called by 1227 * mmap(), NIOCGINFO and NIOCREGIF). 1228 * If the refcount is incremented, it is then decremented when the 1229 * private structure is destroyed. 1230 */ 1231 struct netmap_priv_d { 1232 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 1233 1234 struct netmap_adapter *np_na; 1235 uint32_t np_flags; /* from the ioctl */ 1236 u_int np_txqfirst, np_txqlast; /* range of tx rings to scan */ 1237 u_int np_rxqfirst, np_rxqlast; /* range of rx rings to scan */ 1238 uint16_t np_txpoll; /* XXX and also np_rxpoll ? */ 1239 1240 struct netmap_mem_d *np_mref; /* use with NMG_LOCK held */ 1241 /* np_refcount is only used on FreeBSD */ 1242 int np_refcount; /* use with NMG_LOCK held */ 1243 1244 /* pointers to the selinfo to be used for selrecord. 1245 * Either the local or the global one depending on the 1246 * number of rings. 1247 */ 1248 NM_SELINFO_T *np_rxsi, *np_txsi; 1249 struct thread *np_td; /* kqueue, just debugging */ 1250 }; 1251 1252 1253 /* 1254 * generic netmap emulation for devices that do not have 1255 * native netmap support. 1256 */ 1257 int generic_netmap_attach(struct ifnet *ifp); 1258 1259 int netmap_catch_rx(struct netmap_adapter *na, int intercept); 1260 void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; 1261 void netmap_catch_tx(struct netmap_generic_adapter *na, int enable); 1262 int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr); 1263 int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); 1264 void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); 1265 1266 /* 1267 * netmap_mitigation API. This is used by the generic adapter 1268 * to reduce the number of interrupt requests/selwakeup 1269 * to clients on incoming packets. 1270 */ 1271 void netmap_mitigation_init(struct nm_generic_mit *mit, struct netmap_adapter *na); 1272 void netmap_mitigation_start(struct nm_generic_mit *mit); 1273 void netmap_mitigation_restart(struct nm_generic_mit *mit); 1274 int netmap_mitigation_active(struct nm_generic_mit *mit); 1275 void netmap_mitigation_cleanup(struct nm_generic_mit *mit); 1276 1277 1278 1279 /* Shared declarations for the VALE switch. */ 1280 1281 /* 1282 * Each transmit queue accumulates a batch of packets into 1283 * a structure before forwarding. Packets to the same 1284 * destination are put in a list using ft_next as a link field. 1285 * ft_frags and ft_next are valid only on the first fragment. 1286 */ 1287 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 1288 void *ft_buf; /* netmap or indirect buffer */ 1289 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 1290 uint8_t _ft_port; /* dst port (unused) */ 1291 uint16_t ft_flags; /* flags, e.g. indirect */ 1292 uint16_t ft_len; /* src fragment len */ 1293 uint16_t ft_next; /* next packet to same destination */ 1294 }; 1295 1296 /* struct 'virtio_net_hdr' from linux. */ 1297 struct nm_vnet_hdr { 1298 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 1299 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 1300 uint8_t flags; 1301 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 1302 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 1303 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 1304 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 1305 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 1306 uint8_t gso_type; 1307 uint16_t hdr_len; 1308 uint16_t gso_size; 1309 uint16_t csum_start; 1310 uint16_t csum_offset; 1311 }; 1312 1313 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 1314 1315 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 1316 1317 struct nm_iphdr { 1318 uint8_t version_ihl; 1319 uint8_t tos; 1320 uint16_t tot_len; 1321 uint16_t id; 1322 uint16_t frag_off; 1323 uint8_t ttl; 1324 uint8_t protocol; 1325 uint16_t check; 1326 uint32_t saddr; 1327 uint32_t daddr; 1328 /*The options start here. */ 1329 }; 1330 1331 struct nm_tcphdr { 1332 uint16_t source; 1333 uint16_t dest; 1334 uint32_t seq; 1335 uint32_t ack_seq; 1336 uint8_t doff; /* Data offset + Reserved */ 1337 uint8_t flags; 1338 uint16_t window; 1339 uint16_t check; 1340 uint16_t urg_ptr; 1341 }; 1342 1343 struct nm_udphdr { 1344 uint16_t source; 1345 uint16_t dest; 1346 uint16_t len; 1347 uint16_t check; 1348 }; 1349 1350 struct nm_ipv6hdr { 1351 uint8_t priority_version; 1352 uint8_t flow_lbl[3]; 1353 1354 uint16_t payload_len; 1355 uint8_t nexthdr; 1356 uint8_t hop_limit; 1357 1358 uint8_t saddr[16]; 1359 uint8_t daddr[16]; 1360 }; 1361 1362 /* Type used to store a checksum (in host byte order) that hasn't been 1363 * folded yet. 1364 */ 1365 #define rawsum_t uint32_t 1366 1367 rawsum_t nm_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 1368 uint16_t nm_csum_ipv4(struct nm_iphdr *iph); 1369 void nm_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 1370 size_t datalen, uint16_t *check); 1371 void nm_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 1372 size_t datalen, uint16_t *check); 1373 uint16_t nm_csum_fold(rawsum_t cur_sum); 1374 1375 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 1376 struct netmap_vp_adapter *dst_na, 1377 struct nm_bdg_fwd *ft_p, struct netmap_ring *ring, 1378 u_int *j, u_int lim, u_int *howmany); 1379 1380 #endif /* _NET_NETMAP_KERN_H_ */ 1381