1 /* 2 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * $FreeBSD$ 29 * 30 * The header contains the definitions of constants and function 31 * prototypes used only in kernelspace. 32 */ 33 34 #ifndef _NET_NETMAP_KERN_H_ 35 #define _NET_NETMAP_KERN_H_ 36 37 #define WITH_VALE // comment out to disable VALE support 38 #define WITH_PIPES 39 #define WITH_MONITOR 40 41 #if defined(__FreeBSD__) 42 43 #define likely(x) __builtin_expect((long)!!(x), 1L) 44 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 45 46 #define NM_LOCK_T struct mtx 47 #define NMG_LOCK_T struct sx 48 #define NMG_LOCK_INIT() sx_init(&netmap_global_lock, \ 49 "netmap global lock") 50 #define NMG_LOCK_DESTROY() sx_destroy(&netmap_global_lock) 51 #define NMG_LOCK() sx_xlock(&netmap_global_lock) 52 #define NMG_UNLOCK() sx_xunlock(&netmap_global_lock) 53 #define NMG_LOCK_ASSERT() sx_assert(&netmap_global_lock, SA_XLOCKED) 54 55 #define NM_SELINFO_T struct selinfo 56 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 57 #define MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 58 #define NM_SEND_UP(ifp, m) ((NA(ifp))->if_input)(ifp, m) 59 60 #define NM_ATOMIC_T volatile int // XXX ? 61 /* atomic operations */ 62 #include <machine/atomic.h> 63 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 64 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 65 66 #if __FreeBSD_version >= 1100030 67 #define WNA(_ifp) (_ifp)->if_netmap 68 #else /* older FreeBSD */ 69 #define WNA(_ifp) (_ifp)->if_pspare[0] 70 #endif /* older FreeBSD */ 71 72 #if __FreeBSD_version >= 1100005 73 struct netmap_adapter *netmap_getna(if_t ifp); 74 #endif 75 76 #if __FreeBSD_version >= 1100027 77 #define GET_MBUF_REFCNT(m) ((m)->m_ext.ext_cnt ? *((m)->m_ext.ext_cnt) : -1) 78 #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ext_cnt) = x 79 #define PNT_MBUF_REFCNT(m) ((m)->m_ext.ext_cnt) 80 #else 81 #define GET_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1) 82 #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x 83 #define PNT_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt) 84 #endif 85 86 MALLOC_DECLARE(M_NETMAP); 87 88 // XXX linux struct, not used in FreeBSD 89 struct net_device_ops { 90 }; 91 struct ethtool_ops { 92 }; 93 struct hrtimer { 94 }; 95 96 #elif defined (linux) 97 98 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 99 #define NM_SELINFO_T wait_queue_head_t 100 #define MBUF_LEN(m) ((m)->len) 101 #define MBUF_IFP(m) ((m)->dev) 102 #define NM_SEND_UP(ifp, m) \ 103 do { \ 104 m->priority = NM_MAGIC_PRIORITY_RX; \ 105 netif_rx(m); \ 106 } while (0) 107 108 #define NM_ATOMIC_T volatile long unsigned int 109 110 // XXX a mtx would suffice here too 20130404 gl 111 #define NMG_LOCK_T struct semaphore 112 #define NMG_LOCK_INIT() sema_init(&netmap_global_lock, 1) 113 #define NMG_LOCK_DESTROY() 114 #define NMG_LOCK() down(&netmap_global_lock) 115 #define NMG_UNLOCK() up(&netmap_global_lock) 116 #define NMG_LOCK_ASSERT() // XXX to be completed 117 118 #ifndef DEV_NETMAP 119 #define DEV_NETMAP 120 #endif /* DEV_NETMAP */ 121 122 #elif defined (__APPLE__) 123 124 #warning apple support is incomplete. 125 #define likely(x) __builtin_expect(!!(x), 1) 126 #define unlikely(x) __builtin_expect(!!(x), 0) 127 #define NM_LOCK_T IOLock * 128 #define NM_SELINFO_T struct selinfo 129 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 130 #define NM_SEND_UP(ifp, m) ((ifp)->if_input)(ifp, m) 131 132 #else 133 134 #error unsupported platform 135 136 #endif /* end - platform-specific code */ 137 138 #define ND(format, ...) 139 #define D(format, ...) \ 140 do { \ 141 struct timeval __xxts; \ 142 microtime(&__xxts); \ 143 printf("%03d.%06d [%4d] %-25s " format "\n", \ 144 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 145 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 146 } while (0) 147 148 /* rate limited, lps indicates how many per second */ 149 #define RD(lps, format, ...) \ 150 do { \ 151 static int t0, __cnt; \ 152 if (t0 != time_second) { \ 153 t0 = time_second; \ 154 __cnt = 0; \ 155 } \ 156 if (__cnt++ < lps) \ 157 D(format, ##__VA_ARGS__); \ 158 } while (0) 159 160 struct netmap_adapter; 161 struct nm_bdg_fwd; 162 struct nm_bridge; 163 struct netmap_priv_d; 164 165 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 166 167 #include "netmap_mbq.h" 168 169 extern NMG_LOCK_T netmap_global_lock; 170 171 /* 172 * private, kernel view of a ring. Keeps track of the status of 173 * a ring across system calls. 174 * 175 * nr_hwcur index of the next buffer to refill. 176 * It corresponds to ring->head 177 * at the time the system call returns. 178 * 179 * nr_hwtail index of the first buffer owned by the kernel. 180 * On RX, hwcur->hwtail are receive buffers 181 * not yet released. hwcur is advanced following 182 * ring->head, hwtail is advanced on incoming packets, 183 * and a wakeup is generated when hwtail passes ring->cur 184 * On TX, hwcur->rcur have been filled by the sender 185 * but not sent yet to the NIC; rcur->hwtail are available 186 * for new transmissions, and hwtail->hwcur-1 are pending 187 * transmissions not yet acknowledged. 188 * 189 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 190 * This is so that, on a reset, buffers owned by userspace are not 191 * modified by the kernel. In particular: 192 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 193 * the next empty buffer as known by the hardware (next_to_check or so). 194 * TX rings: hwcur + hwofs coincides with next_to_send 195 * 196 * For received packets, slot->flags is set to nkr_slot_flags 197 * so we can provide a proper initial value (e.g. set NS_FORWARD 198 * when operating in 'transparent' mode). 199 * 200 * The following fields are used to implement lock-free copy of packets 201 * from input to output ports in VALE switch: 202 * nkr_hwlease buffer after the last one being copied. 203 * A writer in nm_bdg_flush reserves N buffers 204 * from nr_hwlease, advances it, then does the 205 * copy outside the lock. 206 * In RX rings (used for VALE ports), 207 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 208 * In TX rings (used for NIC or host stack ports) 209 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 210 * nkr_leases array of nkr_num_slots where writers can report 211 * completion of their block. NR_NOSLOT (~0) indicates 212 * that the writer has not finished yet 213 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 214 * 215 * The kring is manipulated by txsync/rxsync and generic netmap function. 216 * 217 * Concurrent rxsync or txsync on the same ring are prevented through 218 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 219 * for NIC rings, and for TX rings attached to the host stack. 220 * 221 * RX rings attached to the host stack use an mbq (rx_queue) on both 222 * rxsync_from_host() and netmap_transmit(). The mbq is protected 223 * by its internal lock. 224 * 225 * RX rings attached to the VALE switch are accessed by both senders 226 * and receiver. They are protected through the q_lock on the RX ring. 227 */ 228 struct netmap_kring { 229 struct netmap_ring *ring; 230 231 uint32_t nr_hwcur; 232 uint32_t nr_hwtail; 233 234 /* 235 * Copies of values in user rings, so we do not need to look 236 * at the ring (which could be modified). These are set in the 237 * *sync_prologue()/finalize() routines. 238 */ 239 uint32_t rhead; 240 uint32_t rcur; 241 uint32_t rtail; 242 243 uint32_t nr_kflags; /* private driver flags */ 244 #define NKR_PENDINTR 0x1 // Pending interrupt. 245 uint32_t nkr_num_slots; 246 247 /* 248 * On a NIC reset, the NIC ring indexes may be reset but the 249 * indexes in the netmap rings remain the same. nkr_hwofs 250 * keeps track of the offset between the two. 251 */ 252 int32_t nkr_hwofs; 253 254 uint16_t nkr_slot_flags; /* initial value for flags */ 255 256 /* last_reclaim is opaque marker to help reduce the frequency 257 * of operations such as reclaiming tx buffers. A possible use 258 * is set it to ticks and do the reclaim only once per tick. 259 */ 260 uint64_t last_reclaim; 261 262 263 NM_SELINFO_T si; /* poll/select wait queue */ 264 NM_LOCK_T q_lock; /* protects kring and ring. */ 265 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 266 267 struct netmap_adapter *na; 268 269 /* The folloiwing fields are for VALE switch support */ 270 struct nm_bdg_fwd *nkr_ft; 271 uint32_t *nkr_leases; 272 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 273 uint32_t nkr_hwlease; 274 uint32_t nkr_lease_idx; 275 276 /* while nkr_stopped is set, no new [tr]xsync operations can 277 * be started on this kring. 278 * This is used by netmap_disable_all_rings() 279 * to find a synchronization point where critical data 280 * structures pointed to by the kring can be added or removed 281 */ 282 volatile int nkr_stopped; 283 284 /* Support for adapters without native netmap support. 285 * On tx rings we preallocate an array of tx buffers 286 * (same size as the netmap ring), on rx rings we 287 * store incoming mbufs in a queue that is drained by 288 * a rxsync. 289 */ 290 struct mbuf **tx_pool; 291 // u_int nr_ntc; /* Emulation of a next-to-clean RX ring pointer. */ 292 struct mbq rx_queue; /* intercepted rx mbufs. */ 293 294 uint32_t ring_id; /* debugging */ 295 char name[64]; /* diagnostic */ 296 297 /* [tx]sync callback for this kring. 298 * The default nm_kring_create callback (netmap_krings_create) 299 * sets the nm_sync callback of each hardware tx(rx) kring to 300 * the corresponding nm_txsync(nm_rxsync) taken from the 301 * netmap_adapter; moreover, it sets the sync callback 302 * of the host tx(rx) ring to netmap_txsync_to_host 303 * (netmap_rxsync_from_host). 304 * 305 * Overrides: the above configuration is not changed by 306 * any of the nm_krings_create callbacks. 307 */ 308 int (*nm_sync)(struct netmap_kring *kring, int flags); 309 310 #ifdef WITH_PIPES 311 struct netmap_kring *pipe; /* if this is a pipe ring, 312 * pointer to the other end 313 */ 314 struct netmap_ring *save_ring; /* pointer to hidden rings 315 * (see netmap_pipe.c for details) 316 */ 317 #endif /* WITH_PIPES */ 318 319 #ifdef WITH_MONITOR 320 /* pointer to the adapter that is monitoring this kring (if any) 321 */ 322 struct netmap_monitor_adapter *monitor; 323 /* 324 * Monitors work by intercepting the txsync and/or rxsync of the 325 * monitored krings. This is implemented by replacing 326 * the nm_sync pointer above and saving the previous 327 * one in save_sync below. 328 */ 329 int (*save_sync)(struct netmap_kring *kring, int flags); 330 #endif 331 } __attribute__((__aligned__(64))); 332 333 334 /* return the next index, with wraparound */ 335 static inline uint32_t 336 nm_next(uint32_t i, uint32_t lim) 337 { 338 return unlikely (i == lim) ? 0 : i + 1; 339 } 340 341 342 /* return the previous index, with wraparound */ 343 static inline uint32_t 344 nm_prev(uint32_t i, uint32_t lim) 345 { 346 return unlikely (i == 0) ? lim : i - 1; 347 } 348 349 350 /* 351 * 352 * Here is the layout for the Rx and Tx rings. 353 354 RxRING TxRING 355 356 +-----------------+ +-----------------+ 357 | | | | 358 |XXX free slot XXX| |XXX free slot XXX| 359 +-----------------+ +-----------------+ 360 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 361 | | | yet | 362 +-----------------+ | | 363 cur->| available to | | | 364 | user, not read | +-----------------+ 365 | yet | cur->| (being | 366 | | | prepared) | 367 | | | | 368 +-----------------+ + ------ + 369 tail->| |<-hwtail | |<-hwlease 370 | (being | ... | | ... 371 | prepared) | ... | | ... 372 +-----------------+ ... | | ... 373 | |<-hwlease +-----------------+ 374 | | tail->| |<-hwtail 375 | | | | 376 | | | | 377 | | | | 378 +-----------------+ +-----------------+ 379 380 * The cur/tail (user view) and hwcur/hwtail (kernel view) 381 * are used in the normal operation of the card. 382 * 383 * When a ring is the output of a switch port (Rx ring for 384 * a VALE port, Tx ring for the host stack or NIC), slots 385 * are reserved in blocks through 'hwlease' which points 386 * to the next unused slot. 387 * On an Rx ring, hwlease is always after hwtail, 388 * and completions cause hwtail to advance. 389 * On a Tx ring, hwlease is always between cur and hwtail, 390 * and completions cause cur to advance. 391 * 392 * nm_kr_space() returns the maximum number of slots that 393 * can be assigned. 394 * nm_kr_lease() reserves the required number of buffers, 395 * advances nkr_hwlease and also returns an entry in 396 * a circular array where completions should be reported. 397 */ 398 399 400 401 enum txrx { NR_RX = 0, NR_TX = 1 }; 402 403 struct netmap_vp_adapter; // forward 404 405 /* 406 * The "struct netmap_adapter" extends the "struct adapter" 407 * (or equivalent) device descriptor. 408 * It contains all base fields needed to support netmap operation. 409 * There are in fact different types of netmap adapters 410 * (native, generic, VALE switch...) so a netmap_adapter is 411 * just the first field in the derived type. 412 */ 413 struct netmap_adapter { 414 /* 415 * On linux we do not have a good way to tell if an interface 416 * is netmap-capable. So we always use the following trick: 417 * NA(ifp) points here, and the first entry (which hopefully 418 * always exists and is at least 32 bits) contains a magic 419 * value which we can use to detect that the interface is good. 420 */ 421 uint32_t magic; 422 uint32_t na_flags; /* enabled, and other flags */ 423 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 424 * useful during initialization 425 */ 426 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 427 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 428 * forwarding packets coming from this 429 * interface 430 */ 431 #define NAF_MEM_OWNER 8 /* the adapter is responsible for the 432 * deallocation of the memory allocator 433 */ 434 #define NAF_NATIVE_ON 16 /* the adapter is native and the attached 435 * interface is in netmap mode. 436 * Virtual ports (vale, pipe, monitor...) 437 * should never use this flag. 438 */ 439 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 440 * emulated). Where possible (e.g. FreeBSD) 441 * IFCAP_NETMAP also mirrors this flag. 442 */ 443 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 444 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 445 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 446 * cannot be registered from userspace 447 */ 448 int active_fds; /* number of user-space descriptors using this 449 interface, which is equal to the number of 450 struct netmap_if objs in the mapped region. */ 451 452 u_int num_rx_rings; /* number of adapter receive rings */ 453 u_int num_tx_rings; /* number of adapter transmit rings */ 454 455 u_int num_tx_desc; /* number of descriptor in each queue */ 456 u_int num_rx_desc; 457 458 /* tx_rings and rx_rings are private but allocated 459 * as a contiguous chunk of memory. Each array has 460 * N+1 entries, for the adapter queues and for the host queue. 461 */ 462 struct netmap_kring *tx_rings; /* array of TX rings. */ 463 struct netmap_kring *rx_rings; /* array of RX rings. */ 464 465 void *tailroom; /* space below the rings array */ 466 /* (used for leases) */ 467 468 469 NM_SELINFO_T tx_si, rx_si; /* global wait queues */ 470 471 /* count users of the global wait queues */ 472 int tx_si_users, rx_si_users; 473 474 void *pdev; /* used to store pci device */ 475 476 /* copy of if_qflush and if_transmit pointers, to intercept 477 * packets from the network stack when netmap is active. 478 */ 479 int (*if_transmit)(struct ifnet *, struct mbuf *); 480 481 /* copy of if_input for netmap_send_up() */ 482 void (*if_input)(struct ifnet *, struct mbuf *); 483 484 /* references to the ifnet and device routines, used by 485 * the generic netmap functions. 486 */ 487 struct ifnet *ifp; /* adapter is ifp->if_softc */ 488 489 /*---- callbacks for this netmap adapter -----*/ 490 /* 491 * nm_dtor() is the cleanup routine called when destroying 492 * the adapter. 493 * Called with NMG_LOCK held. 494 * 495 * nm_register() is called on NIOCREGIF and close() to enter 496 * or exit netmap mode on the NIC 497 * Called with NNG_LOCK held. 498 * 499 * nm_txsync() pushes packets to the underlying hw/switch 500 * 501 * nm_rxsync() collects packets from the underlying hw/switch 502 * 503 * nm_config() returns configuration information from the OS 504 * Called with NMG_LOCK held. 505 * 506 * nm_krings_create() create and init the tx_rings and 507 * rx_rings arrays of kring structures. In particular, 508 * set the nm_sync callbacks for each ring. 509 * There is no need to also allocate the corresponding 510 * netmap_rings, since netmap_mem_rings_create() will always 511 * be called to provide the missing ones. 512 * Called with NNG_LOCK held. 513 * 514 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 515 * arrays 516 * Called with NMG_LOCK held. 517 * 518 * nm_notify() is used to act after data have become available 519 * (or the stopped state of the ring has changed) 520 * For hw devices this is typically a selwakeup(), 521 * but for NIC/host ports attached to a switch (or vice-versa) 522 * we also need to invoke the 'txsync' code downstream. 523 */ 524 void (*nm_dtor)(struct netmap_adapter *); 525 526 int (*nm_register)(struct netmap_adapter *, int onoff); 527 528 int (*nm_txsync)(struct netmap_kring *kring, int flags); 529 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 530 #define NAF_FORCE_READ 1 531 #define NAF_FORCE_RECLAIM 2 532 /* return configuration information */ 533 int (*nm_config)(struct netmap_adapter *, 534 u_int *txr, u_int *txd, u_int *rxr, u_int *rxd); 535 int (*nm_krings_create)(struct netmap_adapter *); 536 void (*nm_krings_delete)(struct netmap_adapter *); 537 int (*nm_notify)(struct netmap_adapter *, 538 u_int ring, enum txrx, int flags); 539 #define NAF_DISABLE_NOTIFY 8 /* notify that the stopped state of the 540 * ring has changed (kring->nkr_stopped) 541 */ 542 543 #ifdef WITH_VALE 544 /* 545 * nm_bdg_attach() initializes the na_vp field to point 546 * to an adapter that can be attached to a VALE switch. If the 547 * current adapter is already a VALE port, na_vp is simply a cast; 548 * otherwise, na_vp points to a netmap_bwrap_adapter. 549 * If applicable, this callback also initializes na_hostvp, 550 * that can be used to connect the adapter host rings to the 551 * switch. 552 * Called with NMG_LOCK held. 553 * 554 * nm_bdg_ctl() is called on the actual attach/detach to/from 555 * to/from the switch, to perform adapter-specific 556 * initializations 557 * Called with NMG_LOCK held. 558 */ 559 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *); 560 int (*nm_bdg_ctl)(struct netmap_adapter *, struct nmreq *, int); 561 562 /* adapter used to attach this adapter to a VALE switch (if any) */ 563 struct netmap_vp_adapter *na_vp; 564 /* adapter used to attach the host rings of this adapter 565 * to a VALE switch (if any) */ 566 struct netmap_vp_adapter *na_hostvp; 567 #endif 568 569 /* standard refcount to control the lifetime of the adapter 570 * (it should be equal to the lifetime of the corresponding ifp) 571 */ 572 int na_refcount; 573 574 /* memory allocator (opaque) 575 * We also cache a pointer to the lut_entry for translating 576 * buffer addresses, and the total number of buffers. 577 */ 578 struct netmap_mem_d *nm_mem; 579 struct lut_entry *na_lut; 580 uint32_t na_lut_objtotal; /* max buffer index */ 581 uint32_t na_lut_objsize; /* buffer size */ 582 583 /* additional information attached to this adapter 584 * by other netmap subsystems. Currently used by 585 * bwrap and LINUX/v1000. 586 */ 587 void *na_private; 588 589 #ifdef WITH_PIPES 590 /* array of pipes that have this adapter as a parent */ 591 struct netmap_pipe_adapter **na_pipes; 592 int na_next_pipe; /* next free slot in the array */ 593 int na_max_pipes; /* size of the array */ 594 #endif /* WITH_PIPES */ 595 596 char name[64]; 597 }; 598 599 600 /* 601 * If the NIC is owned by the kernel 602 * (i.e., bridge), neither another bridge nor user can use it; 603 * if the NIC is owned by a user, only users can share it. 604 * Evaluation must be done under NMG_LOCK(). 605 */ 606 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 607 #define NETMAP_OWNED_BY_ANY(na) \ 608 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 609 610 611 /* 612 * derived netmap adapters for various types of ports 613 */ 614 struct netmap_vp_adapter { /* VALE software port */ 615 struct netmap_adapter up; 616 617 /* 618 * Bridge support: 619 * 620 * bdg_port is the port number used in the bridge; 621 * na_bdg points to the bridge this NA is attached to. 622 */ 623 int bdg_port; 624 struct nm_bridge *na_bdg; 625 int retry; 626 627 /* Offset of ethernet header for each packet. */ 628 u_int virt_hdr_len; 629 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 630 u_int mfs; 631 }; 632 633 634 struct netmap_hw_adapter { /* physical device */ 635 struct netmap_adapter up; 636 637 struct net_device_ops nm_ndo; // XXX linux only 638 struct ethtool_ops nm_eto; // XXX linux only 639 const struct ethtool_ops* save_ethtool; 640 641 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 642 }; 643 644 /* Mitigation support. */ 645 struct nm_generic_mit { 646 struct hrtimer mit_timer; 647 int mit_pending; 648 int mit_ring_idx; /* index of the ring being mitigated */ 649 struct netmap_adapter *mit_na; /* backpointer */ 650 }; 651 652 struct netmap_generic_adapter { /* emulated device */ 653 struct netmap_hw_adapter up; 654 655 /* Pointer to a previously used netmap adapter. */ 656 struct netmap_adapter *prev; 657 658 /* generic netmap adapters support: 659 * a net_device_ops struct overrides ndo_select_queue(), 660 * save_if_input saves the if_input hook (FreeBSD), 661 * mit implements rx interrupt mitigation, 662 */ 663 struct net_device_ops generic_ndo; 664 void (*save_if_input)(struct ifnet *, struct mbuf *); 665 666 struct nm_generic_mit *mit; 667 #ifdef linux 668 netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); 669 #endif 670 }; 671 672 static __inline int 673 netmap_real_tx_rings(struct netmap_adapter *na) 674 { 675 return na->num_tx_rings + !!(na->na_flags & NAF_HOST_RINGS); 676 } 677 678 static __inline int 679 netmap_real_rx_rings(struct netmap_adapter *na) 680 { 681 return na->num_rx_rings + !!(na->na_flags & NAF_HOST_RINGS); 682 } 683 684 #ifdef WITH_VALE 685 686 /* 687 * Bridge wrapper for non VALE ports attached to a VALE switch. 688 * 689 * The real device must already have its own netmap adapter (hwna). 690 * The bridge wrapper and the hwna adapter share the same set of 691 * netmap rings and buffers, but they have two separate sets of 692 * krings descriptors, with tx/rx meanings swapped: 693 * 694 * netmap 695 * bwrap krings rings krings hwna 696 * +------+ +------+ +-----+ +------+ +------+ 697 * |tx_rings->| |\ /| |----| |<-tx_rings| 698 * | | +------+ \ / +-----+ +------+ | | 699 * | | X | | 700 * | | / \ | | 701 * | | +------+/ \+-----+ +------+ | | 702 * |rx_rings->| | | |----| |<-rx_rings| 703 * | | +------+ +-----+ +------+ | | 704 * +------+ +------+ 705 * 706 * - packets coming from the bridge go to the brwap rx rings, 707 * which are also the hwna tx rings. The bwrap notify callback 708 * will then complete the hwna tx (see netmap_bwrap_notify). 709 * 710 * - packets coming from the outside go to the hwna rx rings, 711 * which are also the bwrap tx rings. The (overwritten) hwna 712 * notify method will then complete the bridge tx 713 * (see netmap_bwrap_intr_notify). 714 * 715 * The bridge wrapper may optionally connect the hwna 'host' rings 716 * to the bridge. This is done by using a second port in the 717 * bridge and connecting it to the 'host' netmap_vp_adapter 718 * contained in the netmap_bwrap_adapter. The brwap host adapter 719 * cross-links the hwna host rings in the same way as shown above. 720 * 721 * - packets coming from the bridge and directed to the host stack 722 * are handled by the bwrap host notify callback 723 * (see netmap_bwrap_host_notify) 724 * 725 * - packets coming from the host stack are still handled by the 726 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 727 * but are diverted to the host adapter depending on the ring number. 728 * 729 */ 730 struct netmap_bwrap_adapter { 731 struct netmap_vp_adapter up; 732 struct netmap_vp_adapter host; /* for host rings */ 733 struct netmap_adapter *hwna; /* the underlying device */ 734 735 /* backup of the hwna notify callback */ 736 int (*save_notify)(struct netmap_adapter *, 737 u_int ring, enum txrx, int flags); 738 /* backup of the hwna memory allocator */ 739 struct netmap_mem_d *save_nmd; 740 741 /* 742 * When we attach a physical interface to the bridge, we 743 * allow the controlling process to terminate, so we need 744 * a place to store the n_detmap_priv_d data structure. 745 * This is only done when physical interfaces 746 * are attached to a bridge. 747 */ 748 struct netmap_priv_d *na_kpriv; 749 }; 750 int netmap_bwrap_attach(const char *name, struct netmap_adapter *); 751 752 753 #endif /* WITH_VALE */ 754 755 #ifdef WITH_PIPES 756 757 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 758 759 struct netmap_pipe_adapter { 760 struct netmap_adapter up; 761 762 u_int id; /* pipe identifier */ 763 int role; /* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */ 764 765 struct netmap_adapter *parent; /* adapter that owns the memory */ 766 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 767 int peer_ref; /* 1 iff we are holding a ref to the peer */ 768 769 u_int parent_slot; /* index in the parent pipe array */ 770 }; 771 772 #endif /* WITH_PIPES */ 773 774 775 /* return slots reserved to rx clients; used in drivers */ 776 static inline uint32_t 777 nm_kr_rxspace(struct netmap_kring *k) 778 { 779 int space = k->nr_hwtail - k->nr_hwcur; 780 if (space < 0) 781 space += k->nkr_num_slots; 782 ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 783 784 return space; 785 } 786 787 788 /* True if no space in the tx ring. only valid after txsync_prologue */ 789 static inline int 790 nm_kr_txempty(struct netmap_kring *kring) 791 { 792 return kring->rcur == kring->nr_hwtail; 793 } 794 795 796 /* 797 * protect against multiple threads using the same ring. 798 * also check that the ring has not been stopped. 799 * We only care for 0 or !=0 as a return code. 800 */ 801 #define NM_KR_BUSY 1 802 #define NM_KR_STOPPED 2 803 804 805 static __inline void nm_kr_put(struct netmap_kring *kr) 806 { 807 NM_ATOMIC_CLEAR(&kr->nr_busy); 808 } 809 810 811 static __inline int nm_kr_tryget(struct netmap_kring *kr) 812 { 813 /* check a first time without taking the lock 814 * to avoid starvation for nm_kr_get() 815 */ 816 if (unlikely(kr->nkr_stopped)) { 817 ND("ring %p stopped (%d)", kr, kr->nkr_stopped); 818 return NM_KR_STOPPED; 819 } 820 if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))) 821 return NM_KR_BUSY; 822 /* check a second time with lock held */ 823 if (unlikely(kr->nkr_stopped)) { 824 ND("ring %p stopped (%d)", kr, kr->nkr_stopped); 825 nm_kr_put(kr); 826 return NM_KR_STOPPED; 827 } 828 return 0; 829 } 830 831 832 /* 833 * The following functions are used by individual drivers to 834 * support netmap operation. 835 * 836 * netmap_attach() initializes a struct netmap_adapter, allocating the 837 * struct netmap_ring's and the struct selinfo. 838 * 839 * netmap_detach() frees the memory allocated by netmap_attach(). 840 * 841 * netmap_transmit() replaces the if_transmit routine of the interface, 842 * and is used to intercept packets coming from the stack. 843 * 844 * netmap_load_map/netmap_reload_map are helper routines to set/reset 845 * the dmamap for a packet buffer 846 * 847 * netmap_reset() is a helper routine to be called in the hw driver 848 * when reinitializing a ring. It should not be called by 849 * virtual ports (vale, pipes, monitor) 850 */ 851 int netmap_attach(struct netmap_adapter *); 852 void netmap_detach(struct ifnet *); 853 int netmap_transmit(struct ifnet *, struct mbuf *); 854 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 855 enum txrx tx, u_int n, u_int new_cur); 856 int netmap_ring_reinit(struct netmap_kring *); 857 858 /* default functions to handle rx/tx interrupts */ 859 int netmap_rx_irq(struct ifnet *, u_int, u_int *); 860 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 861 void netmap_common_irq(struct ifnet *, u_int, u_int *work_done); 862 863 864 #ifdef WITH_VALE 865 /* functions used by external modules to interface with VALE */ 866 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 867 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 868 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 869 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 870 const char *netmap_bdg_name(struct netmap_vp_adapter *); 871 #else /* !WITH_VALE */ 872 #define netmap_vp_to_ifp(_vp) NULL 873 #define netmap_ifp_to_vp(_ifp) NULL 874 #define netmap_ifp_to_host_vp(_ifp) NULL 875 #define netmap_bdg_idx(_vp) -1 876 #define netmap_bdg_name(_vp) NULL 877 #endif /* WITH_VALE */ 878 879 static inline int 880 nm_native_on(struct netmap_adapter *na) 881 { 882 return na && na->na_flags & NAF_NATIVE_ON; 883 } 884 885 static inline int 886 nm_netmap_on(struct netmap_adapter *na) 887 { 888 return na && na->na_flags & NAF_NETMAP_ON; 889 } 890 891 /* set/clear native flags and if_transmit/netdev_ops */ 892 static inline void 893 nm_set_native_flags(struct netmap_adapter *na) 894 { 895 struct ifnet *ifp = na->ifp; 896 897 na->na_flags |= (NAF_NATIVE_ON | NAF_NETMAP_ON); 898 #ifdef IFCAP_NETMAP /* or FreeBSD ? */ 899 ifp->if_capenable |= IFCAP_NETMAP; 900 #endif 901 #ifdef __FreeBSD__ 902 na->if_transmit = ifp->if_transmit; 903 ifp->if_transmit = netmap_transmit; 904 #else 905 na->if_transmit = (void *)ifp->netdev_ops; 906 ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo; 907 ((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops; 908 ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto; 909 #endif 910 } 911 912 913 static inline void 914 nm_clear_native_flags(struct netmap_adapter *na) 915 { 916 struct ifnet *ifp = na->ifp; 917 918 #ifdef __FreeBSD__ 919 ifp->if_transmit = na->if_transmit; 920 #else 921 ifp->netdev_ops = (void *)na->if_transmit; 922 ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool; 923 #endif 924 na->na_flags &= ~(NAF_NATIVE_ON | NAF_NETMAP_ON); 925 #ifdef IFCAP_NETMAP /* or FreeBSD ? */ 926 ifp->if_capenable &= ~IFCAP_NETMAP; 927 #endif 928 } 929 930 931 /* 932 * validates parameters in the ring/kring, returns a value for head 933 * If any error, returns ring_size to force a reinit. 934 */ 935 uint32_t nm_txsync_prologue(struct netmap_kring *); 936 937 938 /* 939 * validates parameters in the ring/kring, returns a value for head, 940 * and the 'reserved' value in the argument. 941 * If any error, returns ring_size lim to force a reinit. 942 */ 943 uint32_t nm_rxsync_prologue(struct netmap_kring *); 944 945 946 /* 947 * update kring and ring at the end of txsync. 948 */ 949 static inline void 950 nm_txsync_finalize(struct netmap_kring *kring) 951 { 952 /* update ring tail to what the kernel knows */ 953 kring->ring->tail = kring->rtail = kring->nr_hwtail; 954 955 /* note, head/rhead/hwcur might be behind cur/rcur 956 * if no carrier 957 */ 958 ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", 959 kring->name, kring->nr_hwcur, kring->nr_hwtail, 960 kring->rhead, kring->rcur, kring->rtail); 961 } 962 963 964 /* 965 * update kring and ring at the end of rxsync 966 */ 967 static inline void 968 nm_rxsync_finalize(struct netmap_kring *kring) 969 { 970 /* tell userspace that there might be new packets */ 971 //struct netmap_ring *ring = kring->ring; 972 ND("head %d cur %d tail %d -> %d", ring->head, ring->cur, ring->tail, 973 kring->nr_hwtail); 974 kring->ring->tail = kring->rtail = kring->nr_hwtail; 975 /* make a copy of the state for next round */ 976 kring->rhead = kring->ring->head; 977 kring->rcur = kring->ring->cur; 978 } 979 980 981 /* check/fix address and len in tx rings */ 982 #if 1 /* debug version */ 983 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 984 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 985 RD(5, "bad addr/len ring %d slot %d idx %d len %d", \ 986 kring->ring_id, nm_i, slot->buf_idx, len); \ 987 if (_l > NETMAP_BUF_SIZE(_na)) \ 988 _l = NETMAP_BUF_SIZE(_na); \ 989 } } while (0) 990 #else /* no debug version */ 991 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 992 if (_l > NETMAP_BUF_SIZE(_na)) \ 993 _l = NETMAP_BUF_SIZE(_na); \ 994 } while (0) 995 #endif 996 997 998 /*---------------------------------------------------------------*/ 999 /* 1000 * Support routines used by netmap subsystems 1001 * (native drivers, VALE, generic, pipes, monitors, ...) 1002 */ 1003 1004 1005 /* common routine for all functions that create a netmap adapter. It performs 1006 * two main tasks: 1007 * - if the na points to an ifp, mark the ifp as netmap capable 1008 * using na as its native adapter; 1009 * - provide defaults for the setup callbacks and the memory allocator 1010 */ 1011 int netmap_attach_common(struct netmap_adapter *); 1012 /* common actions to be performed on netmap adapter destruction */ 1013 void netmap_detach_common(struct netmap_adapter *); 1014 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1015 * coming from a struct nmreq 1016 */ 1017 int netmap_interp_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags); 1018 /* update the ring parameters (number and size of tx and rx rings). 1019 * It calls the nm_config callback, if available. 1020 */ 1021 int netmap_update_config(struct netmap_adapter *na); 1022 /* create and initialize the common fields of the krings array. 1023 * using the information that must be already available in the na. 1024 * tailroom can be used to request the allocation of additional 1025 * tailroom bytes after the krings array. This is used by 1026 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1027 * leasing-related data structures 1028 */ 1029 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1030 /* deletes the kring array of the adapter. The array must have 1031 * been created using netmap_krings_create 1032 */ 1033 void netmap_krings_delete(struct netmap_adapter *na); 1034 1035 /* set the stopped/enabled status of ring 1036 * When stopping, they also wait for all current activity on the ring to 1037 * terminate. The status change is then notified using the na nm_notify 1038 * callback. 1039 */ 1040 void netmap_set_txring(struct netmap_adapter *, u_int ring_id, int stopped); 1041 void netmap_set_rxring(struct netmap_adapter *, u_int ring_id, int stopped); 1042 /* set the stopped/enabled status of all rings of the adapter. */ 1043 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1044 /* convenience wrappers for netmap_set_all_rings, used in drivers */ 1045 void netmap_disable_all_rings(struct ifnet *); 1046 void netmap_enable_all_rings(struct ifnet *); 1047 1048 int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait); 1049 1050 struct netmap_if * 1051 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1052 uint16_t ringid, uint32_t flags, int *err); 1053 1054 1055 1056 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1057 int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 1058 int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na); 1059 1060 1061 #ifdef WITH_VALE 1062 /* 1063 * The following bridge-related functions are used by other 1064 * kernel modules. 1065 * 1066 * VALE only supports unicast or broadcast. The lookup 1067 * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports, 1068 * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown. 1069 * XXX in practice "unknown" might be handled same as broadcast. 1070 */ 1071 typedef u_int (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr, 1072 const struct netmap_vp_adapter *); 1073 typedef int (*bdg_config_fn_t)(struct nm_ifreq *); 1074 typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *); 1075 struct netmap_bdg_ops { 1076 bdg_lookup_fn_t lookup; 1077 bdg_config_fn_t config; 1078 bdg_dtor_fn_t dtor; 1079 }; 1080 1081 u_int netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1082 const struct netmap_vp_adapter *); 1083 1084 #define NM_BDG_MAXPORTS 254 /* up to 254 */ 1085 #define NM_BDG_BROADCAST NM_BDG_MAXPORTS 1086 #define NM_BDG_NOPORT (NM_BDG_MAXPORTS+1) 1087 1088 #define NM_NAME "vale" /* prefix for bridge port name */ 1089 1090 /* these are redefined in case of no VALE support */ 1091 int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 1092 void netmap_init_bridges(void); 1093 int netmap_bdg_ctl(struct nmreq *nmr, struct netmap_bdg_ops *bdg_ops); 1094 int netmap_bdg_config(struct nmreq *nmr); 1095 1096 #else /* !WITH_VALE */ 1097 #define netmap_get_bdg_na(_1, _2, _3) 0 1098 #define netmap_init_bridges(_1) 1099 #define netmap_bdg_ctl(_1, _2) EINVAL 1100 #endif /* !WITH_VALE */ 1101 1102 #ifdef WITH_PIPES 1103 /* max number of pipes per device */ 1104 #define NM_MAXPIPES 64 /* XXX how many? */ 1105 /* in case of no error, returns the actual number of pipes in nmr->nr_arg1 */ 1106 int netmap_pipe_alloc(struct netmap_adapter *, struct nmreq *nmr); 1107 void netmap_pipe_dealloc(struct netmap_adapter *); 1108 int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 1109 #else /* !WITH_PIPES */ 1110 #define NM_MAXPIPES 0 1111 #define netmap_pipe_alloc(_1, _2) EOPNOTSUPP 1112 #define netmap_pipe_dealloc(_1) 1113 #define netmap_get_pipe_na(_1, _2, _3) 0 1114 #endif 1115 1116 #ifdef WITH_MONITOR 1117 int netmap_get_monitor_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 1118 #else 1119 #define netmap_get_monitor_na(_1, _2, _3) 0 1120 #endif 1121 1122 /* Various prototypes */ 1123 int netmap_poll(struct cdev *dev, int events, struct thread *td); 1124 int netmap_init(void); 1125 void netmap_fini(void); 1126 int netmap_get_memory(struct netmap_priv_d* p); 1127 void netmap_dtor(void *data); 1128 int netmap_dtor_locked(struct netmap_priv_d *priv); 1129 1130 int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td); 1131 1132 /* netmap_adapter creation/destruction */ 1133 1134 // #define NM_DEBUG_PUTGET 1 1135 1136 #ifdef NM_DEBUG_PUTGET 1137 1138 #define NM_DBG(f) __##f 1139 1140 void __netmap_adapter_get(struct netmap_adapter *na); 1141 1142 #define netmap_adapter_get(na) \ 1143 do { \ 1144 struct netmap_adapter *__na = na; \ 1145 D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1146 __netmap_adapter_get(__na); \ 1147 } while (0) 1148 1149 int __netmap_adapter_put(struct netmap_adapter *na); 1150 1151 #define netmap_adapter_put(na) \ 1152 ({ \ 1153 struct netmap_adapter *__na = na; \ 1154 D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1155 __netmap_adapter_put(__na); \ 1156 }) 1157 1158 #else /* !NM_DEBUG_PUTGET */ 1159 1160 #define NM_DBG(f) f 1161 void netmap_adapter_get(struct netmap_adapter *na); 1162 int netmap_adapter_put(struct netmap_adapter *na); 1163 1164 #endif /* !NM_DEBUG_PUTGET */ 1165 1166 1167 /* 1168 * module variables 1169 */ 1170 #define NETMAP_BUF_BASE(na) ((na)->na_lut[0].vaddr) 1171 #define NETMAP_BUF_SIZE(na) ((na)->na_lut_objsize) 1172 extern int netmap_mitigate; // XXX not really used 1173 extern int netmap_no_pendintr; 1174 extern int netmap_verbose; // XXX debugging 1175 enum { /* verbose flags */ 1176 NM_VERB_ON = 1, /* generic verbose */ 1177 NM_VERB_HOST = 0x2, /* verbose host stack */ 1178 NM_VERB_RXSYNC = 0x10, /* verbose on rxsync/txsync */ 1179 NM_VERB_TXSYNC = 0x20, 1180 NM_VERB_RXINTR = 0x100, /* verbose on rx/tx intr (driver) */ 1181 NM_VERB_TXINTR = 0x200, 1182 NM_VERB_NIC_RXSYNC = 0x1000, /* verbose on rx/tx intr (driver) */ 1183 NM_VERB_NIC_TXSYNC = 0x2000, 1184 }; 1185 1186 extern int netmap_txsync_retry; 1187 extern int netmap_generic_mit; 1188 extern int netmap_generic_ringsize; 1189 extern int netmap_generic_rings; 1190 1191 /* 1192 * NA returns a pointer to the struct netmap adapter from the ifp, 1193 * WNA is used to write it. 1194 */ 1195 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 1196 1197 /* 1198 * Macros to determine if an interface is netmap capable or netmap enabled. 1199 * See the magic field in struct netmap_adapter. 1200 */ 1201 #ifdef __FreeBSD__ 1202 /* 1203 * on FreeBSD just use if_capabilities and if_capenable. 1204 */ 1205 #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ 1206 (ifp)->if_capabilities & IFCAP_NETMAP ) 1207 1208 #define NETMAP_SET_CAPABLE(ifp) \ 1209 (ifp)->if_capabilities |= IFCAP_NETMAP 1210 1211 #else /* linux */ 1212 1213 /* 1214 * on linux: 1215 * we check if NA(ifp) is set and its first element has a related 1216 * magic value. The capenable is within the struct netmap_adapter. 1217 */ 1218 #define NETMAP_MAGIC 0x52697a7a 1219 1220 #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ 1221 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1222 1223 #define NETMAP_SET_CAPABLE(ifp) \ 1224 NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC 1225 1226 #endif /* linux */ 1227 1228 #ifdef __FreeBSD__ 1229 1230 /* Assigns the device IOMMU domain to an allocator. 1231 * Returns -ENOMEM in case the domain is different */ 1232 #define nm_iommu_group_id(dev) (0) 1233 1234 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1235 static void netmap_dmamap_cb(__unused void *arg, 1236 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1237 { 1238 } 1239 1240 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1241 * XXX can we do it without a callback ? 1242 */ 1243 static inline void 1244 netmap_load_map(struct netmap_adapter *na, 1245 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1246 { 1247 if (map) 1248 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1249 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1250 } 1251 1252 static inline void 1253 netmap_unload_map(struct netmap_adapter *na, 1254 bus_dma_tag_t tag, bus_dmamap_t map) 1255 { 1256 if (map) 1257 bus_dmamap_unload(tag, map); 1258 } 1259 1260 /* update the map when a buffer changes. */ 1261 static inline void 1262 netmap_reload_map(struct netmap_adapter *na, 1263 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1264 { 1265 if (map) { 1266 bus_dmamap_unload(tag, map); 1267 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1268 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1269 } 1270 } 1271 1272 #else /* linux */ 1273 1274 int nm_iommu_group_id(bus_dma_tag_t dev); 1275 extern size_t netmap_mem_get_bufsize(struct netmap_mem_d *); 1276 #include <linux/dma-mapping.h> 1277 1278 static inline void 1279 netmap_load_map(struct netmap_adapter *na, 1280 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1281 { 1282 if (map) { 1283 *map = dma_map_single(na->pdev, buf, netmap_mem_get_bufsize(na->nm_mem), 1284 DMA_BIDIRECTIONAL); 1285 } 1286 } 1287 1288 static inline void 1289 netmap_unload_map(struct netmap_adapter *na, 1290 bus_dma_tag_t tag, bus_dmamap_t map) 1291 { 1292 u_int sz = netmap_mem_get_bufsize(na->nm_mem); 1293 1294 if (*map) { 1295 dma_unmap_single(na->pdev, *map, sz, 1296 DMA_BIDIRECTIONAL); 1297 } 1298 } 1299 1300 static inline void 1301 netmap_reload_map(struct netmap_adapter *na, 1302 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1303 { 1304 u_int sz = netmap_mem_get_bufsize(na->nm_mem); 1305 1306 if (*map) { 1307 dma_unmap_single(na->pdev, *map, sz, 1308 DMA_BIDIRECTIONAL); 1309 } 1310 1311 *map = dma_map_single(na->pdev, buf, sz, 1312 DMA_BIDIRECTIONAL); 1313 } 1314 1315 /* 1316 * XXX How do we redefine these functions: 1317 * 1318 * on linux we need 1319 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1320 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction 1321 * The len can be implicit (on netmap it is NETMAP_BUF_SIZE) 1322 * unfortunately the direction is not, so we need to change 1323 * something to have a cross API 1324 */ 1325 1326 #if 0 1327 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1328 /* set time_stamp *before* dma to help avoid a possible race */ 1329 buffer_info->time_stamp = jiffies; 1330 buffer_info->mapped_as_page = false; 1331 buffer_info->length = len; 1332 //buffer_info->next_to_watch = l; 1333 /* reload dma map */ 1334 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1335 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1336 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1337 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1338 1339 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1340 D("dma mapping error"); 1341 /* goto dma_error; See e1000_put_txbuf() */ 1342 /* XXX reset */ 1343 } 1344 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1345 1346 #endif 1347 1348 /* 1349 * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction. 1350 */ 1351 #define bus_dmamap_sync(_a, _b, _c) 1352 1353 #endif /* linux */ 1354 1355 1356 /* 1357 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1358 */ 1359 static inline int 1360 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1361 { 1362 int n = kr->nkr_num_slots; 1363 idx += kr->nkr_hwofs; 1364 if (idx < 0) 1365 return idx + n; 1366 else if (idx < n) 1367 return idx; 1368 else 1369 return idx - n; 1370 } 1371 1372 1373 static inline int 1374 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1375 { 1376 int n = kr->nkr_num_slots; 1377 idx -= kr->nkr_hwofs; 1378 if (idx < 0) 1379 return idx + n; 1380 else if (idx < n) 1381 return idx; 1382 else 1383 return idx - n; 1384 } 1385 1386 1387 /* Entries of the look-up table. */ 1388 struct lut_entry { 1389 void *vaddr; /* virtual address. */ 1390 vm_paddr_t paddr; /* physical address. */ 1391 }; 1392 1393 struct netmap_obj_pool; 1394 1395 /* 1396 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1397 * PNMB also fills the physical address 1398 */ 1399 static inline void * 1400 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1401 { 1402 struct lut_entry *lut = na->na_lut; 1403 uint32_t i = slot->buf_idx; 1404 return (unlikely(i >= na->na_lut_objtotal)) ? 1405 lut[0].vaddr : lut[i].vaddr; 1406 } 1407 1408 static inline void * 1409 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1410 { 1411 uint32_t i = slot->buf_idx; 1412 struct lut_entry *lut = na->na_lut; 1413 void *ret = (i >= na->na_lut_objtotal) ? lut[0].vaddr : lut[i].vaddr; 1414 1415 *pp = (i >= na->na_lut_objtotal) ? lut[0].paddr : lut[i].paddr; 1416 return ret; 1417 } 1418 1419 /* Generic version of NMB, which uses device-specific memory. */ 1420 1421 1422 1423 void netmap_txsync_to_host(struct netmap_adapter *na); 1424 1425 1426 /* 1427 * Structure associated to each thread which registered an interface. 1428 * 1429 * The first 4 fields of this structure are written by NIOCREGIF and 1430 * read by poll() and NIOC?XSYNC. 1431 * 1432 * There is low contention among writers (a correct user program 1433 * should have none) and among writers and readers, so we use a 1434 * single global lock to protect the structure initialization; 1435 * since initialization involves the allocation of memory, 1436 * we reuse the memory allocator lock. 1437 * 1438 * Read access to the structure is lock free. Readers must check that 1439 * np_nifp is not NULL before using the other fields. 1440 * If np_nifp is NULL initialization has not been performed, 1441 * so they should return an error to userspace. 1442 * 1443 * The ref_done field is used to regulate access to the refcount in the 1444 * memory allocator. The refcount must be incremented at most once for 1445 * each open("/dev/netmap"). The increment is performed by the first 1446 * function that calls netmap_get_memory() (currently called by 1447 * mmap(), NIOCGINFO and NIOCREGIF). 1448 * If the refcount is incremented, it is then decremented when the 1449 * private structure is destroyed. 1450 */ 1451 struct netmap_priv_d { 1452 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 1453 1454 struct netmap_adapter *np_na; 1455 uint32_t np_flags; /* from the ioctl */ 1456 u_int np_txqfirst, np_txqlast; /* range of tx rings to scan */ 1457 u_int np_rxqfirst, np_rxqlast; /* range of rx rings to scan */ 1458 uint16_t np_txpoll; /* XXX and also np_rxpoll ? */ 1459 1460 struct netmap_mem_d *np_mref; /* use with NMG_LOCK held */ 1461 /* np_refcount is only used on FreeBSD */ 1462 int np_refcount; /* use with NMG_LOCK held */ 1463 1464 /* pointers to the selinfo to be used for selrecord. 1465 * Either the local or the global one depending on the 1466 * number of rings. 1467 */ 1468 NM_SELINFO_T *np_rxsi, *np_txsi; 1469 struct thread *np_td; /* kqueue, just debugging */ 1470 }; 1471 1472 #ifdef WITH_MONITOR 1473 1474 struct netmap_monitor_adapter { 1475 struct netmap_adapter up; 1476 1477 struct netmap_priv_d priv; 1478 uint32_t flags; 1479 }; 1480 1481 #endif /* WITH_MONITOR */ 1482 1483 1484 /* 1485 * generic netmap emulation for devices that do not have 1486 * native netmap support. 1487 */ 1488 int generic_netmap_attach(struct ifnet *ifp); 1489 1490 int netmap_catch_rx(struct netmap_adapter *na, int intercept); 1491 void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; 1492 void netmap_catch_tx(struct netmap_generic_adapter *na, int enable); 1493 int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr); 1494 int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); 1495 void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); 1496 1497 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 1498 #ifdef RATE_GENERIC 1499 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 1500 #else 1501 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 1502 #endif 1503 1504 /* 1505 * netmap_mitigation API. This is used by the generic adapter 1506 * to reduce the number of interrupt requests/selwakeup 1507 * to clients on incoming packets. 1508 */ 1509 void netmap_mitigation_init(struct nm_generic_mit *mit, int idx, 1510 struct netmap_adapter *na); 1511 void netmap_mitigation_start(struct nm_generic_mit *mit); 1512 void netmap_mitigation_restart(struct nm_generic_mit *mit); 1513 int netmap_mitigation_active(struct nm_generic_mit *mit); 1514 void netmap_mitigation_cleanup(struct nm_generic_mit *mit); 1515 1516 1517 1518 /* Shared declarations for the VALE switch. */ 1519 1520 /* 1521 * Each transmit queue accumulates a batch of packets into 1522 * a structure before forwarding. Packets to the same 1523 * destination are put in a list using ft_next as a link field. 1524 * ft_frags and ft_next are valid only on the first fragment. 1525 */ 1526 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 1527 void *ft_buf; /* netmap or indirect buffer */ 1528 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 1529 uint8_t _ft_port; /* dst port (unused) */ 1530 uint16_t ft_flags; /* flags, e.g. indirect */ 1531 uint16_t ft_len; /* src fragment len */ 1532 uint16_t ft_next; /* next packet to same destination */ 1533 }; 1534 1535 /* struct 'virtio_net_hdr' from linux. */ 1536 struct nm_vnet_hdr { 1537 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 1538 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 1539 uint8_t flags; 1540 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 1541 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 1542 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 1543 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 1544 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 1545 uint8_t gso_type; 1546 uint16_t hdr_len; 1547 uint16_t gso_size; 1548 uint16_t csum_start; 1549 uint16_t csum_offset; 1550 }; 1551 1552 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 1553 1554 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 1555 1556 struct nm_iphdr { 1557 uint8_t version_ihl; 1558 uint8_t tos; 1559 uint16_t tot_len; 1560 uint16_t id; 1561 uint16_t frag_off; 1562 uint8_t ttl; 1563 uint8_t protocol; 1564 uint16_t check; 1565 uint32_t saddr; 1566 uint32_t daddr; 1567 /*The options start here. */ 1568 }; 1569 1570 struct nm_tcphdr { 1571 uint16_t source; 1572 uint16_t dest; 1573 uint32_t seq; 1574 uint32_t ack_seq; 1575 uint8_t doff; /* Data offset + Reserved */ 1576 uint8_t flags; 1577 uint16_t window; 1578 uint16_t check; 1579 uint16_t urg_ptr; 1580 }; 1581 1582 struct nm_udphdr { 1583 uint16_t source; 1584 uint16_t dest; 1585 uint16_t len; 1586 uint16_t check; 1587 }; 1588 1589 struct nm_ipv6hdr { 1590 uint8_t priority_version; 1591 uint8_t flow_lbl[3]; 1592 1593 uint16_t payload_len; 1594 uint8_t nexthdr; 1595 uint8_t hop_limit; 1596 1597 uint8_t saddr[16]; 1598 uint8_t daddr[16]; 1599 }; 1600 1601 /* Type used to store a checksum (in host byte order) that hasn't been 1602 * folded yet. 1603 */ 1604 #define rawsum_t uint32_t 1605 1606 rawsum_t nm_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 1607 uint16_t nm_csum_ipv4(struct nm_iphdr *iph); 1608 void nm_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 1609 size_t datalen, uint16_t *check); 1610 void nm_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 1611 size_t datalen, uint16_t *check); 1612 uint16_t nm_csum_fold(rawsum_t cur_sum); 1613 1614 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 1615 struct netmap_vp_adapter *dst_na, 1616 struct nm_bdg_fwd *ft_p, struct netmap_ring *ring, 1617 u_int *j, u_int lim, u_int *howmany); 1618 1619 /* persistent virtual port routines */ 1620 int nm_vi_persist(const char *, struct ifnet **); 1621 void nm_vi_detach(struct ifnet *); 1622 void nm_vi_init_index(void); 1623 1624 #endif /* _NET_NETMAP_KERN_H_ */ 1625