1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo 5 * Copyright (C) 2013-2016 Universita` di Pisa 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * $FreeBSD$ 32 * 33 * The header contains the definitions of constants and function 34 * prototypes used only in kernelspace. 35 */ 36 37 #ifndef _NET_NETMAP_KERN_H_ 38 #define _NET_NETMAP_KERN_H_ 39 40 #if defined(linux) 41 42 #if defined(CONFIG_NETMAP_EXTMEM) 43 #define WITH_EXTMEM 44 #endif 45 #if defined(CONFIG_NETMAP_VALE) 46 #define WITH_VALE 47 #endif 48 #if defined(CONFIG_NETMAP_PIPE) 49 #define WITH_PIPES 50 #endif 51 #if defined(CONFIG_NETMAP_MONITOR) 52 #define WITH_MONITOR 53 #endif 54 #if defined(CONFIG_NETMAP_GENERIC) 55 #define WITH_GENERIC 56 #endif 57 #if defined(CONFIG_NETMAP_PTNETMAP) 58 #define WITH_PTNETMAP 59 #endif 60 #if defined(CONFIG_NETMAP_SINK) 61 #define WITH_SINK 62 #endif 63 #if defined(CONFIG_NETMAP_NULL) 64 #define WITH_NMNULL 65 #endif 66 67 #elif defined (_WIN32) 68 #define WITH_VALE // comment out to disable VALE support 69 #define WITH_PIPES 70 #define WITH_MONITOR 71 #define WITH_GENERIC 72 #define WITH_NMNULL 73 74 #else /* neither linux nor windows */ 75 #define WITH_VALE // comment out to disable VALE support 76 #define WITH_PIPES 77 #define WITH_MONITOR 78 #define WITH_GENERIC 79 #define WITH_EXTMEM 80 #define WITH_NMNULL 81 #endif 82 83 #if defined(__FreeBSD__) 84 #include <sys/selinfo.h> 85 86 #define likely(x) __builtin_expect((long)!!(x), 1L) 87 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 88 #define __user 89 90 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 91 92 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 93 #define NM_MTX_INIT(m) sx_init(&(m), #m) 94 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 95 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 96 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; 97 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 98 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 99 100 #define NM_SELINFO_T struct nm_selinfo 101 #define NM_SELRECORD_T struct thread 102 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 103 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 104 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) 105 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 106 107 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ 108 /* atomic operations */ 109 #include <machine/atomic.h> 110 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 111 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 112 113 struct netmap_adapter *netmap_getna(if_t ifp); 114 115 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) 116 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x 117 118 #define MBUF_QUEUED(m) 1 119 120 struct nm_selinfo { 121 /* Support for select(2) and poll(2). */ 122 struct selinfo si; 123 /* Support for kqueue(9). See comments in netmap_freebsd.c */ 124 struct taskqueue *ntfytq; 125 struct task ntfytask; 126 struct mtx m; 127 char mtxname[32]; 128 int kqueue_users; 129 }; 130 131 132 struct hrtimer { 133 /* Not used in FreeBSD. */ 134 }; 135 136 #define NM_BNS_GET(b) 137 #define NM_BNS_PUT(b) 138 139 #elif defined (linux) 140 141 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 142 #define NM_SELINFO_T wait_queue_head_t 143 #define MBUF_LEN(m) ((m)->len) 144 #define MBUF_TRANSMIT(na, ifp, m) \ 145 ({ \ 146 /* Avoid infinite recursion with generic. */ \ 147 m->priority = NM_MAGIC_PRIORITY_TX; \ 148 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 149 0; \ 150 }) 151 152 /* See explanation in nm_os_generic_xmit_frame. */ 153 #define GEN_TX_MBUF_IFP(m) ((if_t)skb_shinfo(m)->destructor_arg) 154 155 #define NM_ATOMIC_T volatile long unsigned int 156 157 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 158 #define NM_MTX_INIT(m) mutex_init(&(m)) 159 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 160 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 161 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 162 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 163 164 #ifndef DEV_NETMAP 165 #define DEV_NETMAP 166 #endif /* DEV_NETMAP */ 167 168 #elif defined (__APPLE__) 169 170 #warning apple support is incomplete. 171 #define likely(x) __builtin_expect(!!(x), 1) 172 #define unlikely(x) __builtin_expect(!!(x), 0) 173 #define NM_LOCK_T IOLock * 174 #define NM_SELINFO_T struct selinfo 175 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 176 177 #elif defined (_WIN32) 178 #include "../../../WINDOWS/win_glue.h" 179 180 #define NM_SELRECORD_T IO_STACK_LOCATION 181 #define NM_SELINFO_T win_SELINFO // see win_glue.h 182 #define NM_LOCK_T win_spinlock_t // see win_glue.h 183 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ 184 185 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); 186 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 187 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) 188 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) 189 #define NM_MTX_ASSERT(m) assert(&m.Count>0) 190 191 //These linknames are for the NDIS driver 192 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" 193 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" 194 195 //Definition of internal driver-to-driver ioctl codes 196 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) 197 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) 198 199 typedef struct hrtimer{ 200 KTIMER timer; 201 BOOLEAN active; 202 KDPC deferred_proc; 203 }; 204 205 /* MSVC does not have likely/unlikely support */ 206 #ifdef _MSC_VER 207 #define likely(x) (x) 208 #define unlikely(x) (x) 209 #else 210 #define likely(x) __builtin_expect((long)!!(x), 1L) 211 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 212 #endif //_MSC_VER 213 214 #else 215 216 #error unsupported platform 217 218 #endif /* end - platform-specific code */ 219 220 #ifndef _WIN32 /* support for emulated sysctl */ 221 #define SYSBEGIN(x) 222 #define SYSEND 223 #endif /* _WIN32 */ 224 225 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) 226 227 #define NMG_LOCK_T NM_MTX_T 228 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 229 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 230 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 231 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 232 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 233 234 #if defined(__FreeBSD__) 235 #define nm_prerr_int printf 236 #define nm_prinf_int printf 237 #elif defined (_WIN32) 238 #define nm_prerr_int DbgPrint 239 #define nm_prinf_int DbgPrint 240 #elif defined(linux) 241 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) 242 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) 243 #endif 244 245 #define nm_prinf(format, ...) \ 246 do { \ 247 struct timeval __xxts; \ 248 microtime(&__xxts); \ 249 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ 250 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 251 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 252 } while (0) 253 254 #define nm_prerr(format, ...) \ 255 do { \ 256 struct timeval __xxts; \ 257 microtime(&__xxts); \ 258 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ 259 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 260 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 261 } while (0) 262 263 /* Disabled printf (used to be nm_prdis). */ 264 #define nm_prdis(format, ...) 265 266 /* Rate limited, lps indicates how many per second. */ 267 #define nm_prlim(lps, format, ...) \ 268 do { \ 269 static int t0, __cnt; \ 270 if (t0 != time_second) { \ 271 t0 = time_second; \ 272 __cnt = 0; \ 273 } \ 274 if (__cnt++ < lps) \ 275 nm_prinf(format, ##__VA_ARGS__); \ 276 } while (0) 277 278 struct netmap_adapter; 279 struct nm_bdg_fwd; 280 struct nm_bridge; 281 struct netmap_priv_d; 282 struct nm_bdg_args; 283 284 /* os-specific NM_SELINFO_T initialization/destruction functions */ 285 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); 286 void nm_os_selinfo_uninit(NM_SELINFO_T *); 287 288 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 289 290 void nm_os_selwakeup(NM_SELINFO_T *si); 291 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); 292 293 int nm_os_ifnet_init(void); 294 void nm_os_ifnet_fini(void); 295 void nm_os_ifnet_lock(void); 296 void nm_os_ifnet_unlock(void); 297 298 unsigned nm_os_ifnet_mtu(if_t ifp); 299 300 void nm_os_get_module(void); 301 void nm_os_put_module(void); 302 303 void netmap_make_zombie(if_t); 304 void netmap_undo_zombie(if_t); 305 306 /* os independent alloc/realloc/free */ 307 void *nm_os_malloc(size_t); 308 void *nm_os_vmalloc(size_t); 309 void *nm_os_realloc(void *, size_t new_size, size_t old_size); 310 void nm_os_free(void *); 311 void nm_os_vfree(void *); 312 313 /* os specific attach/detach enter/exit-netmap-mode routines */ 314 void nm_os_onattach(if_t); 315 void nm_os_ondetach(if_t); 316 void nm_os_onenter(if_t); 317 void nm_os_onexit(if_t); 318 319 /* passes a packet up to the host stack. 320 * If the packet is sent (or dropped) immediately it returns NULL, 321 * otherwise it links the packet to prev and returns m. 322 * In this case, a final call with m=NULL and prev != NULL will send up 323 * the entire chain to the host stack. 324 */ 325 void *nm_os_send_up(if_t, struct mbuf *m, struct mbuf *prev); 326 327 int nm_os_mbuf_has_seg_offld(struct mbuf *m); 328 int nm_os_mbuf_has_csum_offld(struct mbuf *m); 329 330 #include "netmap_mbq.h" 331 332 extern NMG_LOCK_T netmap_global_lock; 333 334 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 335 336 static __inline const char* 337 nm_txrx2str(enum txrx t) 338 { 339 return (t== NR_RX ? "RX" : "TX"); 340 } 341 342 static __inline enum txrx 343 nm_txrx_swap(enum txrx t) 344 { 345 return (t== NR_RX ? NR_TX : NR_RX); 346 } 347 348 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 349 350 #ifdef WITH_MONITOR 351 struct netmap_zmon_list { 352 struct netmap_kring *next; 353 struct netmap_kring *prev; 354 }; 355 #endif /* WITH_MONITOR */ 356 357 /* 358 * private, kernel view of a ring. Keeps track of the status of 359 * a ring across system calls. 360 * 361 * nr_hwcur index of the next buffer to refill. 362 * It corresponds to ring->head 363 * at the time the system call returns. 364 * 365 * nr_hwtail index of the first buffer owned by the kernel. 366 * On RX, hwcur->hwtail are receive buffers 367 * not yet released. hwcur is advanced following 368 * ring->head, hwtail is advanced on incoming packets, 369 * and a wakeup is generated when hwtail passes ring->cur 370 * On TX, hwcur->rcur have been filled by the sender 371 * but not sent yet to the NIC; rcur->hwtail are available 372 * for new transmissions, and hwtail->hwcur-1 are pending 373 * transmissions not yet acknowledged. 374 * 375 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 376 * This is so that, on a reset, buffers owned by userspace are not 377 * modified by the kernel. In particular: 378 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 379 * the next empty buffer as known by the hardware (next_to_check or so). 380 * TX rings: hwcur + hwofs coincides with next_to_send 381 * 382 * The following fields are used to implement lock-free copy of packets 383 * from input to output ports in VALE switch: 384 * nkr_hwlease buffer after the last one being copied. 385 * A writer in nm_bdg_flush reserves N buffers 386 * from nr_hwlease, advances it, then does the 387 * copy outside the lock. 388 * In RX rings (used for VALE ports), 389 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 390 * In TX rings (used for NIC or host stack ports) 391 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 392 * nkr_leases array of nkr_num_slots where writers can report 393 * completion of their block. NR_NOSLOT (~0) indicates 394 * that the writer has not finished yet 395 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 396 * 397 * The kring is manipulated by txsync/rxsync and generic netmap function. 398 * 399 * Concurrent rxsync or txsync on the same ring are prevented through 400 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 401 * for NIC rings, and for TX rings attached to the host stack. 402 * 403 * RX rings attached to the host stack use an mbq (rx_queue) on both 404 * rxsync_from_host() and netmap_transmit(). The mbq is protected 405 * by its internal lock. 406 * 407 * RX rings attached to the VALE switch are accessed by both senders 408 * and receiver. They are protected through the q_lock on the RX ring. 409 */ 410 struct netmap_kring { 411 struct netmap_ring *ring; 412 413 uint32_t nr_hwcur; /* should be nr_hwhead */ 414 uint32_t nr_hwtail; 415 416 /* 417 * Copies of values in user rings, so we do not need to look 418 * at the ring (which could be modified). These are set in the 419 * *sync_prologue()/finalize() routines. 420 */ 421 uint32_t rhead; 422 uint32_t rcur; 423 uint32_t rtail; 424 425 uint32_t nr_kflags; /* private driver flags */ 426 #define NKR_PENDINTR 0x1 // Pending interrupt. 427 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 428 #define NKR_FORWARD 0x4 /* (host ring only) there are 429 packets to forward 430 */ 431 #define NKR_NEEDRING 0x8 /* ring needed even if users==0 432 * (used internally by pipes and 433 * by ptnetmap host ports) 434 */ 435 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ 436 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ 437 438 uint32_t nr_mode; 439 uint32_t nr_pending_mode; 440 #define NKR_NETMAP_OFF 0x0 441 #define NKR_NETMAP_ON 0x1 442 443 uint32_t nkr_num_slots; 444 445 /* 446 * On a NIC reset, the NIC ring indexes may be reset but the 447 * indexes in the netmap rings remain the same. nkr_hwofs 448 * keeps track of the offset between the two. 449 * 450 * Moreover, during reset, we can restore only the subset of 451 * the NIC ring that corresponds to the kernel-owned part of 452 * the netmap ring. The rest of the slots must be restored 453 * by the *sync routines when the user releases more slots. 454 * The nkr_to_refill field keeps track of the number of slots 455 * that still need to be restored. 456 */ 457 int32_t nkr_hwofs; 458 int32_t nkr_to_refill; 459 460 /* last_reclaim is opaque marker to help reduce the frequency 461 * of operations such as reclaiming tx buffers. A possible use 462 * is set it to ticks and do the reclaim only once per tick. 463 */ 464 uint64_t last_reclaim; 465 466 467 NM_SELINFO_T si; /* poll/select wait queue */ 468 NM_LOCK_T q_lock; /* protects kring and ring. */ 469 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 470 471 /* the adapter the owns this kring */ 472 struct netmap_adapter *na; 473 474 /* the adapter that wants to be notified when this kring has 475 * new slots available. This is usually the same as the above, 476 * but wrappers may let it point to themselves 477 */ 478 struct netmap_adapter *notify_na; 479 480 /* The following fields are for VALE switch support */ 481 struct nm_bdg_fwd *nkr_ft; 482 uint32_t *nkr_leases; 483 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 484 uint32_t nkr_hwlease; 485 uint32_t nkr_lease_idx; 486 487 /* while nkr_stopped is set, no new [tr]xsync operations can 488 * be started on this kring. 489 * This is used by netmap_disable_all_rings() 490 * to find a synchronization point where critical data 491 * structures pointed to by the kring can be added or removed 492 */ 493 volatile int nkr_stopped; 494 495 /* Support for adapters without native netmap support. 496 * On tx rings we preallocate an array of tx buffers 497 * (same size as the netmap ring), on rx rings we 498 * store incoming mbufs in a queue that is drained by 499 * a rxsync. 500 */ 501 struct mbuf **tx_pool; 502 struct mbuf *tx_event; /* TX event used as a notification */ 503 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ 504 struct mbq rx_queue; /* intercepted rx mbufs. */ 505 506 uint32_t users; /* existing bindings for this ring */ 507 508 uint32_t ring_id; /* kring identifier */ 509 enum txrx tx; /* kind of ring (tx or rx) */ 510 char name[64]; /* diagnostic */ 511 512 /* [tx]sync callback for this kring. 513 * The default nm_kring_create callback (netmap_krings_create) 514 * sets the nm_sync callback of each hardware tx(rx) kring to 515 * the corresponding nm_txsync(nm_rxsync) taken from the 516 * netmap_adapter; moreover, it sets the sync callback 517 * of the host tx(rx) ring to netmap_txsync_to_host 518 * (netmap_rxsync_from_host). 519 * 520 * Overrides: the above configuration is not changed by 521 * any of the nm_krings_create callbacks. 522 */ 523 int (*nm_sync)(struct netmap_kring *kring, int flags); 524 int (*nm_notify)(struct netmap_kring *kring, int flags); 525 526 #ifdef WITH_PIPES 527 struct netmap_kring *pipe; /* if this is a pipe ring, 528 * pointer to the other end 529 */ 530 uint32_t pipe_tail; /* hwtail updated by the other end */ 531 #endif /* WITH_PIPES */ 532 533 /* mask for the offset-related part of the ptr field in the slots */ 534 uint64_t offset_mask; 535 /* maximum user-specified offset, as stipulated at bind time. 536 * Larger offset requests will be silently capped to offset_max. 537 */ 538 uint64_t offset_max; 539 /* minimum gap between two consecutive offsets into the same 540 * buffer, as stipulated at bind time. This is used to choose 541 * the hwbuf_len, but is not otherwise checked for compliance 542 * at runtime. 543 */ 544 uint64_t offset_gap; 545 546 /* size of hardware buffer. This may be less than the size of 547 * the netmap buffers because of non-zero offsets, or because 548 * the netmap buffer size exceeds the capability of the hardware. 549 */ 550 uint64_t hwbuf_len; 551 552 /* required alignment (in bytes) for the buffers used by this ring. 553 * Netmap buffers are aligned to cachelines, which should suffice 554 * for most NICs. If the user is passing offsets, though, we need 555 * to check that the resulting buf address complies with any 556 * alignment restriction. 557 */ 558 uint64_t buf_align; 559 560 /* hardware specific logic for the selection of the hwbuf_len */ 561 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); 562 563 int (*save_notify)(struct netmap_kring *kring, int flags); 564 565 #ifdef WITH_MONITOR 566 /* array of krings that are monitoring this kring */ 567 struct netmap_kring **monitors; 568 uint32_t max_monitors; /* current size of the monitors array */ 569 uint32_t n_monitors; /* next unused entry in the monitor array */ 570 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ 571 uint32_t mon_tail; /* last seen slot on rx */ 572 573 /* circular list of zero-copy monitors */ 574 struct netmap_zmon_list zmon_list[NR_TXRX]; 575 576 /* 577 * Monitors work by intercepting the sync and notify callbacks of the 578 * monitored krings. This is implemented by replacing the pointers 579 * above and saving the previous ones in mon_* pointers below 580 */ 581 int (*mon_sync)(struct netmap_kring *kring, int flags); 582 int (*mon_notify)(struct netmap_kring *kring, int flags); 583 584 #endif 585 } 586 #ifdef _WIN32 587 __declspec(align(64)); 588 #else 589 __attribute__((__aligned__(64))); 590 #endif 591 592 /* return 1 iff the kring needs to be turned on */ 593 static inline int 594 nm_kring_pending_on(struct netmap_kring *kring) 595 { 596 return kring->nr_pending_mode == NKR_NETMAP_ON && 597 kring->nr_mode == NKR_NETMAP_OFF; 598 } 599 600 /* return 1 iff the kring needs to be turned off */ 601 static inline int 602 nm_kring_pending_off(struct netmap_kring *kring) 603 { 604 return kring->nr_pending_mode == NKR_NETMAP_OFF && 605 kring->nr_mode == NKR_NETMAP_ON; 606 } 607 608 /* return the next index, with wraparound */ 609 static inline uint32_t 610 nm_next(uint32_t i, uint32_t lim) 611 { 612 return unlikely (i == lim) ? 0 : i + 1; 613 } 614 615 616 /* return the previous index, with wraparound */ 617 static inline uint32_t 618 nm_prev(uint32_t i, uint32_t lim) 619 { 620 return unlikely (i == 0) ? lim : i - 1; 621 } 622 623 624 /* 625 * 626 * Here is the layout for the Rx and Tx rings. 627 628 RxRING TxRING 629 630 +-----------------+ +-----------------+ 631 | | | | 632 | free | | free | 633 +-----------------+ +-----------------+ 634 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 635 | | | yet | 636 +-----------------+ | | 637 cur->| available to | | | 638 | user, not read | +-----------------+ 639 | yet | cur->| (being | 640 | | | prepared) | 641 | | | | 642 +-----------------+ + ------ + 643 tail->| |<-hwtail | |<-hwlease 644 | (being | ... | | ... 645 | prepared) | ... | | ... 646 +-----------------+ ... | | ... 647 | |<-hwlease +-----------------+ 648 | | tail->| |<-hwtail 649 | | | | 650 | | | | 651 | | | | 652 +-----------------+ +-----------------+ 653 654 * The cur/tail (user view) and hwcur/hwtail (kernel view) 655 * are used in the normal operation of the card. 656 * 657 * When a ring is the output of a switch port (Rx ring for 658 * a VALE port, Tx ring for the host stack or NIC), slots 659 * are reserved in blocks through 'hwlease' which points 660 * to the next unused slot. 661 * On an Rx ring, hwlease is always after hwtail, 662 * and completions cause hwtail to advance. 663 * On a Tx ring, hwlease is always between cur and hwtail, 664 * and completions cause cur to advance. 665 * 666 * nm_kr_space() returns the maximum number of slots that 667 * can be assigned. 668 * nm_kr_lease() reserves the required number of buffers, 669 * advances nkr_hwlease and also returns an entry in 670 * a circular array where completions should be reported. 671 */ 672 673 struct lut_entry; 674 #ifdef __FreeBSD__ 675 #define plut_entry lut_entry 676 #endif 677 678 struct netmap_lut { 679 struct lut_entry *lut; 680 struct plut_entry *plut; 681 uint32_t objtotal; /* max buffer index */ 682 uint32_t objsize; /* buffer size */ 683 }; 684 685 struct netmap_vp_adapter; // forward 686 struct nm_bridge; 687 688 /* Struct to be filled by nm_config callbacks. */ 689 struct nm_config_info { 690 unsigned num_tx_rings; 691 unsigned num_rx_rings; 692 unsigned num_tx_descs; 693 unsigned num_rx_descs; 694 unsigned rx_buf_maxsize; 695 }; 696 697 /* 698 * default type for the magic field. 699 * May be overridden in glue code. 700 */ 701 #ifndef NM_OS_MAGIC 702 #define NM_OS_MAGIC uint32_t 703 #endif /* !NM_OS_MAGIC */ 704 705 /* 706 * The "struct netmap_adapter" extends the "struct adapter" 707 * (or equivalent) device descriptor. 708 * It contains all base fields needed to support netmap operation. 709 * There are in fact different types of netmap adapters 710 * (native, generic, VALE switch...) so a netmap_adapter is 711 * just the first field in the derived type. 712 */ 713 struct netmap_adapter { 714 /* 715 * On linux we do not have a good way to tell if an interface 716 * is netmap-capable. So we always use the following trick: 717 * NA(ifp) points here, and the first entry (which hopefully 718 * always exists and is at least 32 bits) contains a magic 719 * value which we can use to detect that the interface is good. 720 */ 721 NM_OS_MAGIC magic; 722 uint32_t na_flags; /* enabled, and other flags */ 723 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 724 * useful during initialization 725 */ 726 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 727 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 728 * forwarding packets coming from this 729 * interface 730 */ 731 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 732 * that cannot be changed 733 */ 734 #define NAF_NATIVE 16 /* the adapter is native. 735 * Virtual ports (non persistent vale ports, 736 * pipes, monitors...) should never use 737 * this flag. 738 */ 739 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 740 * emulated). Where possible (e.g. FreeBSD) 741 * IFCAP_NETMAP also mirrors this flag. 742 */ 743 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 744 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 745 /* free */ 746 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ 747 #define NAF_OFFSETS 1024 /* the adapter supports the slot offsets */ 748 #define NAF_HOST_ALL 2048 /* the adapter wants as many host rings as hw */ 749 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ 750 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 751 * cannot be registered from userspace 752 */ 753 int active_fds; /* number of user-space descriptors using this 754 interface, which is equal to the number of 755 struct netmap_if objs in the mapped region. */ 756 757 u_int num_rx_rings; /* number of adapter receive rings */ 758 u_int num_tx_rings; /* number of adapter transmit rings */ 759 u_int num_host_rx_rings; /* number of host receive rings */ 760 u_int num_host_tx_rings; /* number of host transmit rings */ 761 762 u_int num_tx_desc; /* number of descriptor in each queue */ 763 u_int num_rx_desc; 764 765 /* tx_rings and rx_rings are private but allocated as a 766 * contiguous chunk of memory. Each array has N+K entries, 767 * N for the hardware rings and K for the host rings. 768 */ 769 struct netmap_kring **tx_rings; /* array of TX rings. */ 770 struct netmap_kring **rx_rings; /* array of RX rings. */ 771 772 void *tailroom; /* space below the rings array */ 773 /* (used for leases) */ 774 775 776 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 777 778 /* count users of the global wait queues */ 779 int si_users[NR_TXRX]; 780 781 void *pdev; /* used to store pci device */ 782 783 /* copy of if_qflush and if_transmit pointers, to intercept 784 * packets from the network stack when netmap is active. 785 */ 786 int (*if_transmit)(if_t, struct mbuf *); 787 788 /* copy of if_input for netmap_send_up() */ 789 void (*if_input)(if_t, struct mbuf *); 790 791 /* Back reference to the parent ifnet struct. Used for 792 * hardware ports (emulated netmap included). */ 793 if_t ifp; /* adapter is if_getsoftc(ifp) */ 794 795 /*---- callbacks for this netmap adapter -----*/ 796 /* 797 * nm_dtor() is the cleanup routine called when destroying 798 * the adapter. 799 * Called with NMG_LOCK held. 800 * 801 * nm_register() is called on NIOCREGIF and close() to enter 802 * or exit netmap mode on the NIC 803 * Called with NNG_LOCK held. 804 * 805 * nm_txsync() pushes packets to the underlying hw/switch 806 * 807 * nm_rxsync() collects packets from the underlying hw/switch 808 * 809 * nm_config() returns configuration information from the OS 810 * Called with NMG_LOCK held. 811 * 812 * nm_bufcfg() 813 * the purpose of this callback is to fill the kring->hwbuf_len 814 * (l) and kring->buf_align fields. The l value is most important 815 * for RX rings, where we want to disallow writes outside of the 816 * netmap buffer. The l value must be computed taking into account 817 * the stipulated max_offset (o), possibly increased if there are 818 * alignment constraints, the maxframe (m), if known, and the 819 * current NETMAP_BUF_SIZE (b) of the memory region used by the 820 * adapter. We want the largest supported l such that o + l <= b. 821 * If m is known to be <= b - o, the callback may also choose the 822 * largest l <= m, ignoring the offset. The buf_align field is 823 * most important for TX rings when there are offsets. The user 824 * will see this value in the ring->buf_align field. Misaligned 825 * offsets will cause the corresponding packets to be silently 826 * dropped. 827 * 828 * nm_krings_create() create and init the tx_rings and 829 * rx_rings arrays of kring structures. In particular, 830 * set the nm_sync callbacks for each ring. 831 * There is no need to also allocate the corresponding 832 * netmap_rings, since netmap_mem_rings_create() will always 833 * be called to provide the missing ones. 834 * Called with NNG_LOCK held. 835 * 836 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 837 * arrays 838 * Called with NMG_LOCK held. 839 * 840 * nm_notify() is used to act after data have become available 841 * (or the stopped state of the ring has changed) 842 * For hw devices this is typically a selwakeup(), 843 * but for NIC/host ports attached to a switch (or vice-versa) 844 * we also need to invoke the 'txsync' code downstream. 845 * This callback pointer is actually used only to initialize 846 * kring->nm_notify. 847 * Return values are the same as for netmap_rx_irq(). 848 */ 849 void (*nm_dtor)(struct netmap_adapter *); 850 851 int (*nm_register)(struct netmap_adapter *, int onoff); 852 void (*nm_intr)(struct netmap_adapter *, int onoff); 853 854 int (*nm_txsync)(struct netmap_kring *kring, int flags); 855 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 856 int (*nm_notify)(struct netmap_kring *kring, int flags); 857 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); 858 #define NAF_FORCE_READ 1 859 #define NAF_FORCE_RECLAIM 2 860 #define NAF_CAN_FORWARD_DOWN 4 861 /* return configuration information */ 862 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); 863 int (*nm_krings_create)(struct netmap_adapter *); 864 void (*nm_krings_delete)(struct netmap_adapter *); 865 /* 866 * nm_bdg_attach() initializes the na_vp field to point 867 * to an adapter that can be attached to a VALE switch. If the 868 * current adapter is already a VALE port, na_vp is simply a cast; 869 * otherwise, na_vp points to a netmap_bwrap_adapter. 870 * If applicable, this callback also initializes na_hostvp, 871 * that can be used to connect the adapter host rings to the 872 * switch. 873 * Called with NMG_LOCK held. 874 * 875 * nm_bdg_ctl() is called on the actual attach/detach to/from 876 * to/from the switch, to perform adapter-specific 877 * initializations 878 * Called with NMG_LOCK held. 879 */ 880 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, 881 struct nm_bridge *); 882 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); 883 884 /* adapter used to attach this adapter to a VALE switch (if any) */ 885 struct netmap_vp_adapter *na_vp; 886 /* adapter used to attach the host rings of this adapter 887 * to a VALE switch (if any) */ 888 struct netmap_vp_adapter *na_hostvp; 889 890 /* standard refcount to control the lifetime of the adapter 891 * (it should be equal to the lifetime of the corresponding ifp) 892 */ 893 int na_refcount; 894 895 /* memory allocator (opaque) 896 * We also cache a pointer to the lut_entry for translating 897 * buffer addresses, the total number of buffers and the buffer size. 898 */ 899 struct netmap_mem_d *nm_mem; 900 struct netmap_mem_d *nm_mem_prev; 901 struct netmap_lut na_lut; 902 903 /* additional information attached to this adapter 904 * by other netmap subsystems. Currently used by 905 * bwrap, LINUX/v1000 and ptnetmap 906 */ 907 void *na_private; 908 909 /* array of pipes that have this adapter as a parent */ 910 struct netmap_pipe_adapter **na_pipes; 911 int na_next_pipe; /* next free slot in the array */ 912 int na_max_pipes; /* size of the array */ 913 914 /* Offset of ethernet header for each packet. */ 915 u_int virt_hdr_len; 916 917 /* Max number of bytes that the NIC can store in the buffer 918 * referenced by each RX descriptor. This translates to the maximum 919 * bytes that a single netmap slot can reference. Larger packets 920 * require NS_MOREFRAG support. */ 921 unsigned rx_buf_maxsize; 922 923 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ 924 925 #ifdef WITH_MONITOR 926 unsigned long monitor_id; /* debugging */ 927 #endif 928 }; 929 930 static __inline u_int 931 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 932 { 933 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 934 } 935 936 static __inline void 937 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 938 { 939 if (t == NR_TX) 940 na->num_tx_desc = v; 941 else 942 na->num_rx_desc = v; 943 } 944 945 static __inline u_int 946 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 947 { 948 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 949 } 950 951 static __inline u_int 952 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) 953 { 954 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); 955 } 956 957 static __inline void 958 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 959 { 960 if (t == NR_TX) 961 na->num_tx_rings = v; 962 else 963 na->num_rx_rings = v; 964 } 965 966 static __inline void 967 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 968 { 969 if (t == NR_TX) 970 na->num_host_tx_rings = v; 971 else 972 na->num_host_rx_rings = v; 973 } 974 975 static __inline struct netmap_kring** 976 NMR(struct netmap_adapter *na, enum txrx t) 977 { 978 return (t == NR_TX ? na->tx_rings : na->rx_rings); 979 } 980 981 int nma_intr_enable(struct netmap_adapter *na, int onoff); 982 983 /* 984 * If the NIC is owned by the kernel 985 * (i.e., bridge), neither another bridge nor user can use it; 986 * if the NIC is owned by a user, only users can share it. 987 * Evaluation must be done under NMG_LOCK(). 988 */ 989 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 990 #define NETMAP_OWNED_BY_ANY(na) \ 991 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 992 993 /* 994 * derived netmap adapters for various types of ports 995 */ 996 struct netmap_vp_adapter { /* VALE software port */ 997 struct netmap_adapter up; 998 999 /* 1000 * Bridge support: 1001 * 1002 * bdg_port is the port number used in the bridge; 1003 * na_bdg points to the bridge this NA is attached to. 1004 */ 1005 int bdg_port; 1006 struct nm_bridge *na_bdg; 1007 int retry; 1008 int autodelete; /* remove the ifp on last reference */ 1009 1010 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 1011 u_int mfs; 1012 /* Last source MAC on this port */ 1013 uint64_t last_smac; 1014 }; 1015 1016 1017 struct netmap_hw_adapter { /* physical device */ 1018 struct netmap_adapter up; 1019 1020 #ifdef linux 1021 struct net_device_ops nm_ndo; 1022 struct ethtool_ops nm_eto; 1023 #endif 1024 const struct ethtool_ops* save_ethtool; 1025 1026 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 1027 }; 1028 1029 #ifdef WITH_GENERIC 1030 /* Mitigation support. */ 1031 struct nm_generic_mit { 1032 struct hrtimer mit_timer; 1033 int mit_pending; 1034 int mit_ring_idx; /* index of the ring being mitigated */ 1035 struct netmap_adapter *mit_na; /* backpointer */ 1036 }; 1037 1038 struct netmap_generic_adapter { /* emulated device */ 1039 struct netmap_hw_adapter up; 1040 1041 /* Pointer to a previously used netmap adapter. */ 1042 struct netmap_adapter *prev; 1043 1044 /* Emulated netmap adapters support: 1045 * - mit implements rx interrupt mitigation; 1046 */ 1047 struct nm_generic_mit *mit; 1048 #ifdef linux 1049 netdev_tx_t (*save_start_xmit)(struct mbuf *, if_t); 1050 #endif 1051 /* Is the adapter able to use multiple RX slots to scatter 1052 * each packet pushed up by the driver? */ 1053 int rxsg; 1054 1055 /* Is the transmission path controlled by a netmap-aware 1056 * device queue (i.e. qdisc on linux)? */ 1057 int txqdisc; 1058 }; 1059 #endif /* WITH_GENERIC */ 1060 1061 static __inline u_int 1062 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 1063 { 1064 return nma_get_nrings(na, t) + 1065 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); 1066 } 1067 1068 /* account for fake rings */ 1069 static __inline u_int 1070 netmap_all_rings(struct netmap_adapter *na, enum txrx t) 1071 { 1072 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); 1073 } 1074 1075 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, 1076 struct nm_bridge *); 1077 struct nm_bdg_polling_state; 1078 /* 1079 * Bridge wrapper for non VALE ports attached to a VALE switch. 1080 * 1081 * The real device must already have its own netmap adapter (hwna). 1082 * The bridge wrapper and the hwna adapter share the same set of 1083 * netmap rings and buffers, but they have two separate sets of 1084 * krings descriptors, with tx/rx meanings swapped: 1085 * 1086 * netmap 1087 * bwrap krings rings krings hwna 1088 * +------+ +------+ +-----+ +------+ +------+ 1089 * |tx_rings->| |\ /| |----| |<-tx_rings| 1090 * | | +------+ \ / +-----+ +------+ | | 1091 * | | X | | 1092 * | | / \ | | 1093 * | | +------+/ \+-----+ +------+ | | 1094 * |rx_rings->| | | |----| |<-rx_rings| 1095 * | | +------+ +-----+ +------+ | | 1096 * +------+ +------+ 1097 * 1098 * - packets coming from the bridge go to the brwap rx rings, 1099 * which are also the hwna tx rings. The bwrap notify callback 1100 * will then complete the hwna tx (see netmap_bwrap_notify). 1101 * 1102 * - packets coming from the outside go to the hwna rx rings, 1103 * which are also the bwrap tx rings. The (overwritten) hwna 1104 * notify method will then complete the bridge tx 1105 * (see netmap_bwrap_intr_notify). 1106 * 1107 * The bridge wrapper may optionally connect the hwna 'host' rings 1108 * to the bridge. This is done by using a second port in the 1109 * bridge and connecting it to the 'host' netmap_vp_adapter 1110 * contained in the netmap_bwrap_adapter. The brwap host adapter 1111 * cross-links the hwna host rings in the same way as shown above. 1112 * 1113 * - packets coming from the bridge and directed to the host stack 1114 * are handled by the bwrap host notify callback 1115 * (see netmap_bwrap_host_notify) 1116 * 1117 * - packets coming from the host stack are still handled by the 1118 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 1119 * but are diverted to the host adapter depending on the ring number. 1120 * 1121 */ 1122 struct netmap_bwrap_adapter { 1123 struct netmap_vp_adapter up; 1124 struct netmap_vp_adapter host; /* for host rings */ 1125 struct netmap_adapter *hwna; /* the underlying device */ 1126 1127 /* 1128 * When we attach a physical interface to the bridge, we 1129 * allow the controlling process to terminate, so we need 1130 * a place to store the n_detmap_priv_d data structure. 1131 * This is only done when physical interfaces 1132 * are attached to a bridge. 1133 */ 1134 struct netmap_priv_d *na_kpriv; 1135 struct nm_bdg_polling_state *na_polling_state; 1136 /* we overwrite the hwna->na_vp pointer, so we save 1137 * here its original value, to be restored at detach 1138 */ 1139 struct netmap_vp_adapter *saved_na_vp; 1140 int (*nm_intr_notify)(struct netmap_kring *kring, int flags); 1141 }; 1142 int nm_is_bwrap(struct netmap_adapter *na); 1143 int nm_bdg_polling(struct nmreq_header *hdr); 1144 1145 int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token); 1146 int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token); 1147 #ifdef WITH_VALE 1148 int netmap_vale_list(struct nmreq_header *hdr); 1149 int netmap_vi_create(struct nmreq_header *hdr, int); 1150 int nm_vi_create(struct nmreq_header *); 1151 int nm_vi_destroy(const char *name); 1152 #else /* !WITH_VALE */ 1153 #define netmap_vi_create(hdr, a) (EOPNOTSUPP) 1154 #endif /* WITH_VALE */ 1155 1156 #ifdef WITH_PIPES 1157 1158 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 1159 1160 struct netmap_pipe_adapter { 1161 /* pipe identifier is up.name */ 1162 struct netmap_adapter up; 1163 1164 #define NM_PIPE_ROLE_MASTER 0x1 1165 #define NM_PIPE_ROLE_SLAVE 0x2 1166 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ 1167 1168 struct netmap_adapter *parent; /* adapter that owns the memory */ 1169 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 1170 int peer_ref; /* 1 iff we are holding a ref to the peer */ 1171 if_t parent_ifp; /* maybe null */ 1172 1173 u_int parent_slot; /* index in the parent pipe array */ 1174 }; 1175 1176 #endif /* WITH_PIPES */ 1177 1178 #ifdef WITH_NMNULL 1179 struct netmap_null_adapter { 1180 struct netmap_adapter up; 1181 }; 1182 #endif /* WITH_NMNULL */ 1183 1184 1185 /* return slots reserved to rx clients; used in drivers */ 1186 static inline uint32_t 1187 nm_kr_rxspace(struct netmap_kring *k) 1188 { 1189 int space = k->nr_hwtail - k->nr_hwcur; 1190 if (space < 0) 1191 space += k->nkr_num_slots; 1192 nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 1193 1194 return space; 1195 } 1196 1197 /* return slots reserved to tx clients */ 1198 #define nm_kr_txspace(_k) nm_kr_rxspace(_k) 1199 1200 1201 /* True if no space in the tx ring, only valid after txsync_prologue */ 1202 static inline int 1203 nm_kr_txempty(struct netmap_kring *kring) 1204 { 1205 return kring->rhead == kring->nr_hwtail; 1206 } 1207 1208 /* True if no more completed slots in the rx ring, only valid after 1209 * rxsync_prologue */ 1210 #define nm_kr_rxempty(_k) nm_kr_txempty(_k) 1211 1212 /* True if the application needs to wait for more space on the ring 1213 * (more received packets or more free tx slots). 1214 * Only valid after *xsync_prologue. */ 1215 static inline int 1216 nm_kr_wouldblock(struct netmap_kring *kring) 1217 { 1218 return kring->rcur == kring->nr_hwtail; 1219 } 1220 1221 /* 1222 * protect against multiple threads using the same ring. 1223 * also check that the ring has not been stopped or locked 1224 */ 1225 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ 1226 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ 1227 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ 1228 1229 1230 /* release the previously acquired right to use the *sync() methods of the ring */ 1231 static __inline void nm_kr_put(struct netmap_kring *kr) 1232 { 1233 NM_ATOMIC_CLEAR(&kr->nr_busy); 1234 } 1235 1236 1237 /* true if the ifp that backed the adapter has disappeared (e.g., the 1238 * driver has been unloaded) 1239 */ 1240 static inline int nm_iszombie(struct netmap_adapter *na); 1241 1242 /* try to obtain exclusive right to issue the *sync() operations on the ring. 1243 * The right is obtained and must be later relinquished via nm_kr_put() if and 1244 * only if nm_kr_tryget() returns 0. 1245 * If can_sleep is 1 there are only two other possible outcomes: 1246 * - the function returns NM_KR_BUSY 1247 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr 1248 * (if non-null) 1249 * In both cases the caller will typically skip the ring, possibly collecting 1250 * errors along the way. 1251 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. 1252 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr 1253 * untouched: ideally, the caller should try again at a later time. 1254 */ 1255 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) 1256 { 1257 int busy = 1, stopped; 1258 /* check a first time without taking the lock 1259 * to avoid starvation for nm_kr_get() 1260 */ 1261 retry: 1262 stopped = kr->nkr_stopped; 1263 if (unlikely(stopped)) { 1264 goto stop; 1265 } 1266 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); 1267 /* we should not return NM_KR_BUSY if the ring was 1268 * actually stopped, so check another time after 1269 * the barrier provided by the atomic operation 1270 */ 1271 stopped = kr->nkr_stopped; 1272 if (unlikely(stopped)) { 1273 goto stop; 1274 } 1275 1276 if (unlikely(nm_iszombie(kr->na))) { 1277 stopped = NM_KR_STOPPED; 1278 goto stop; 1279 } 1280 1281 return unlikely(busy) ? NM_KR_BUSY : 0; 1282 1283 stop: 1284 if (!busy) 1285 nm_kr_put(kr); 1286 if (stopped == NM_KR_STOPPED) { 1287 /* if POLLERR is defined we want to use it to simplify netmap_poll(). 1288 * Otherwise, any non-zero value will do. 1289 */ 1290 #ifdef POLLERR 1291 #define NM_POLLERR POLLERR 1292 #else 1293 #define NM_POLLERR 1 1294 #endif /* POLLERR */ 1295 if (perr) 1296 *perr |= NM_POLLERR; 1297 #undef NM_POLLERR 1298 } else if (can_sleep) { 1299 tsleep(kr, 0, "NM_KR_TRYGET", 4); 1300 goto retry; 1301 } 1302 return stopped; 1303 } 1304 1305 /* put the ring in the 'stopped' state and wait for the current user (if any) to 1306 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED 1307 */ 1308 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) 1309 { 1310 kr->nkr_stopped = stopped; 1311 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 1312 tsleep(kr, 0, "NM_KR_GET", 4); 1313 } 1314 1315 /* restart a ring after a stop */ 1316 static __inline void nm_kr_start(struct netmap_kring *kr) 1317 { 1318 kr->nkr_stopped = 0; 1319 nm_kr_put(kr); 1320 } 1321 1322 1323 /* 1324 * The following functions are used by individual drivers to 1325 * support netmap operation. 1326 * 1327 * netmap_attach() initializes a struct netmap_adapter, allocating the 1328 * struct netmap_ring's and the struct selinfo. 1329 * 1330 * netmap_detach() frees the memory allocated by netmap_attach(). 1331 * 1332 * netmap_transmit() replaces the if_transmit routine of the interface, 1333 * and is used to intercept packets coming from the stack. 1334 * 1335 * netmap_load_map/netmap_reload_map are helper routines to set/reset 1336 * the dmamap for a packet buffer 1337 * 1338 * netmap_reset() is a helper routine to be called in the hw driver 1339 * when reinitializing a ring. It should not be called by 1340 * virtual ports (vale, pipes, monitor) 1341 */ 1342 int netmap_attach(struct netmap_adapter *); 1343 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); 1344 void netmap_detach(if_t); 1345 int netmap_transmit(if_t, struct mbuf *); 1346 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 1347 enum txrx tx, u_int n, u_int new_cur); 1348 int netmap_ring_reinit(struct netmap_kring *); 1349 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); 1350 1351 /* Return codes for netmap_*x_irq. */ 1352 enum { 1353 /* Driver should do normal interrupt processing, e.g. because 1354 * the interface is not in netmap mode. */ 1355 NM_IRQ_PASS = 0, 1356 /* Port is in netmap mode, and the interrupt work has been 1357 * completed. The driver does not have to notify netmap 1358 * again before the next interrupt. */ 1359 NM_IRQ_COMPLETED = -1, 1360 /* Port is in netmap mode, but the interrupt work has not been 1361 * completed. The driver has to make sure netmap will be 1362 * notified again soon, even if no more interrupts come (e.g. 1363 * on Linux the driver should not call napi_complete()). */ 1364 NM_IRQ_RESCHED = -2, 1365 }; 1366 1367 /* default functions to handle rx/tx interrupts */ 1368 int netmap_rx_irq(if_t, u_int, u_int *); 1369 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 1370 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); 1371 1372 1373 #ifdef WITH_VALE 1374 /* functions used by external modules to interface with VALE */ 1375 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 1376 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 1377 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 1378 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 1379 const char *netmap_bdg_name(struct netmap_vp_adapter *); 1380 #else /* !WITH_VALE */ 1381 #define netmap_vp_to_ifp(_vp) NULL 1382 #define netmap_ifp_to_vp(_ifp) NULL 1383 #define netmap_ifp_to_host_vp(_ifp) NULL 1384 #define netmap_bdg_idx(_vp) -1 1385 #endif /* WITH_VALE */ 1386 1387 static inline int 1388 nm_netmap_on(struct netmap_adapter *na) 1389 { 1390 return na && na->na_flags & NAF_NETMAP_ON; 1391 } 1392 1393 static inline int 1394 nm_native_on(struct netmap_adapter *na) 1395 { 1396 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 1397 } 1398 1399 static inline struct netmap_kring * 1400 netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t) 1401 { 1402 struct netmap_kring *kring = NULL; 1403 1404 if (!nm_native_on(na)) 1405 return NULL; 1406 1407 if (t == NR_RX && q < na->num_rx_rings) 1408 kring = na->rx_rings[q]; 1409 else if (t == NR_TX && q < na->num_tx_rings) 1410 kring = na->tx_rings[q]; 1411 else 1412 return NULL; 1413 1414 return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL; 1415 } 1416 1417 static inline int 1418 nm_iszombie(struct netmap_adapter *na) 1419 { 1420 return na == NULL || (na->na_flags & NAF_ZOMBIE); 1421 } 1422 1423 void nm_set_native_flags(struct netmap_adapter *); 1424 void nm_clear_native_flags(struct netmap_adapter *); 1425 1426 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff); 1427 1428 /* 1429 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap 1430 * kthreads. 1431 * We need netmap_ring* parameter, because in ptnetmap it is decoupled 1432 * from host kring. 1433 * The user-space ring pointers (head/cur/tail) are shared through 1434 * CSB between host and guest. 1435 */ 1436 1437 /* 1438 * validates parameters in the ring/kring, returns a value for head 1439 * If any error, returns ring_size to force a reinit. 1440 */ 1441 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); 1442 1443 1444 /* 1445 * validates parameters in the ring/kring, returns a value for head 1446 * If any error, returns ring_size lim to force a reinit. 1447 */ 1448 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); 1449 1450 1451 /* check/fix address and len in tx rings */ 1452 #if 1 /* debug version */ 1453 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1454 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1455 nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1456 kring->ring_id, nm_i, slot->buf_idx, len); \ 1457 if (_l > NETMAP_BUF_SIZE(_na)) \ 1458 _l = NETMAP_BUF_SIZE(_na); \ 1459 } } while (0) 1460 #else /* no debug version */ 1461 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1462 if (_l > NETMAP_BUF_SIZE(_na)) \ 1463 _l = NETMAP_BUF_SIZE(_na); \ 1464 } while (0) 1465 #endif 1466 1467 #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do { \ 1468 if ((l_) + (o_) < (l_) || \ 1469 (l_) + (o_) > NETMAP_BUF_SIZE(na_)) { \ 1470 (l_) = NETMAP_BUF_SIZE(na_) - (o_); \ 1471 } } while (0) 1472 1473 1474 /*---------------------------------------------------------------*/ 1475 /* 1476 * Support routines used by netmap subsystems 1477 * (native drivers, VALE, generic, pipes, monitors, ...) 1478 */ 1479 1480 1481 /* common routine for all functions that create a netmap adapter. It performs 1482 * two main tasks: 1483 * - if the na points to an ifp, mark the ifp as netmap capable 1484 * using na as its native adapter; 1485 * - provide defaults for the setup callbacks and the memory allocator 1486 */ 1487 int netmap_attach_common(struct netmap_adapter *); 1488 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1489 * coming from a struct nmreq_register 1490 */ 1491 int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr); 1492 /* update the ring parameters (number and size of tx and rx rings). 1493 * It calls the nm_config callback, if available. 1494 */ 1495 int netmap_update_config(struct netmap_adapter *na); 1496 /* create and initialize the common fields of the krings array. 1497 * using the information that must be already available in the na. 1498 * tailroom can be used to request the allocation of additional 1499 * tailroom bytes after the krings array. This is used by 1500 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1501 * leasing-related data structures 1502 */ 1503 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1504 /* deletes the kring array of the adapter. The array must have 1505 * been created using netmap_krings_create 1506 */ 1507 void netmap_krings_delete(struct netmap_adapter *na); 1508 1509 int netmap_hw_krings_create(struct netmap_adapter *na); 1510 void netmap_hw_krings_delete(struct netmap_adapter *na); 1511 1512 /* set the stopped/enabled status of ring 1513 * When stopping, they also wait for all current activity on the ring to 1514 * terminate. The status change is then notified using the na nm_notify 1515 * callback. 1516 */ 1517 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1518 /* set the stopped/enabled status of all rings of the adapter. */ 1519 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1520 /* convenience wrappers for netmap_set_all_rings */ 1521 void netmap_disable_all_rings(if_t); 1522 void netmap_enable_all_rings(if_t); 1523 1524 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); 1525 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1526 struct nmreq_header *); 1527 void netmap_do_unregif(struct netmap_priv_d *priv); 1528 1529 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1530 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1531 if_t *ifp, struct netmap_mem_d *nmd, int create); 1532 void netmap_unget_na(struct netmap_adapter *na, if_t ifp); 1533 int netmap_get_hw_na(if_t ifp, 1534 struct netmap_mem_d *nmd, struct netmap_adapter **na); 1535 void netmap_mem_restore(struct netmap_adapter *na); 1536 1537 #ifdef WITH_VALE 1538 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1539 struct netmap_vp_adapter *, void *private_data); 1540 1541 /* these are redefined in case of no VALE support */ 1542 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1543 struct netmap_mem_d *nmd, int create); 1544 void *netmap_vale_create(const char *bdg_name, int *return_status); 1545 int netmap_vale_destroy(const char *bdg_name, void *auth_token); 1546 1547 extern unsigned int vale_max_bridges; 1548 1549 #else /* !WITH_VALE */ 1550 #define netmap_bdg_learning(_1, _2, _3, _4) 0 1551 #define netmap_get_vale_na(_1, _2, _3, _4) 0 1552 #define netmap_bdg_create(_1, _2) NULL 1553 #define netmap_bdg_destroy(_1, _2) 0 1554 #define vale_max_bridges 1 1555 #endif /* !WITH_VALE */ 1556 1557 #ifdef WITH_PIPES 1558 /* max number of pipes per device */ 1559 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ 1560 void netmap_pipe_dealloc(struct netmap_adapter *); 1561 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1562 struct netmap_mem_d *nmd, int create); 1563 #else /* !WITH_PIPES */ 1564 #define NM_MAXPIPES 0 1565 #define netmap_pipe_alloc(_1, _2) 0 1566 #define netmap_pipe_dealloc(_1) 1567 #define netmap_get_pipe_na(hdr, _2, _3, _4) \ 1568 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) 1569 #endif 1570 1571 #ifdef WITH_MONITOR 1572 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1573 struct netmap_mem_d *nmd, int create); 1574 void netmap_monitor_stop(struct netmap_adapter *na); 1575 #else 1576 #define netmap_get_monitor_na(hdr, _2, _3, _4) \ 1577 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1578 #endif 1579 1580 #ifdef WITH_NMNULL 1581 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1582 struct netmap_mem_d *nmd, int create); 1583 #else /* !WITH_NMNULL */ 1584 #define netmap_get_null_na(hdr, _2, _3, _4) \ 1585 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1586 #endif /* WITH_NMNULL */ 1587 1588 #ifdef CONFIG_NET_NS 1589 struct net *netmap_bns_get(void); 1590 void netmap_bns_put(struct net *); 1591 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1592 #else 1593 extern struct nm_bridge *nm_bridges; 1594 #define netmap_bns_get() 1595 #define netmap_bns_put(_1) 1596 #define netmap_bns_getbridges(b, n) \ 1597 do { *b = nm_bridges; *n = vale_max_bridges; } while (0) 1598 #endif 1599 1600 /* Various prototypes */ 1601 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); 1602 int netmap_init(void); 1603 void netmap_fini(void); 1604 int netmap_get_memory(struct netmap_priv_d* p); 1605 void netmap_dtor(void *data); 1606 1607 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1608 struct thread *, int nr_body_is_user); 1609 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1610 struct thread *td); 1611 size_t nmreq_size_by_type(uint16_t nr_reqtype); 1612 1613 /* netmap_adapter creation/destruction */ 1614 1615 // #define NM_DEBUG_PUTGET 1 1616 1617 #ifdef NM_DEBUG_PUTGET 1618 1619 #define NM_DBG(f) __##f 1620 1621 void __netmap_adapter_get(struct netmap_adapter *na); 1622 1623 #define netmap_adapter_get(na) \ 1624 do { \ 1625 struct netmap_adapter *__na = na; \ 1626 __netmap_adapter_get(__na); \ 1627 nm_prinf("getting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount); \ 1628 } while (0) 1629 1630 int __netmap_adapter_put(struct netmap_adapter *na); 1631 1632 #define netmap_adapter_put(na) \ 1633 ({ \ 1634 struct netmap_adapter *__na = na; \ 1635 if (__na == NULL) \ 1636 nm_prinf("putting NULL"); \ 1637 else \ 1638 nm_prinf("putting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount - 1); \ 1639 __netmap_adapter_put(__na); \ 1640 }) 1641 1642 #else /* !NM_DEBUG_PUTGET */ 1643 1644 #define NM_DBG(f) f 1645 void netmap_adapter_get(struct netmap_adapter *na); 1646 int netmap_adapter_put(struct netmap_adapter *na); 1647 1648 #endif /* !NM_DEBUG_PUTGET */ 1649 1650 1651 /* 1652 * module variables 1653 */ 1654 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) 1655 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) 1656 extern int netmap_no_pendintr; 1657 extern int netmap_verbose; 1658 #ifdef CONFIG_NETMAP_DEBUG 1659 extern int netmap_debug; /* for debugging */ 1660 #else /* !CONFIG_NETMAP_DEBUG */ 1661 #define netmap_debug (0) 1662 #endif /* !CONFIG_NETMAP_DEBUG */ 1663 enum { /* debug flags */ 1664 NM_DEBUG_ON = 1, /* generic debug messages */ 1665 NM_DEBUG_HOST = 0x2, /* debug host stack */ 1666 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ 1667 NM_DEBUG_TXSYNC = 0x20, 1668 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ 1669 NM_DEBUG_TXINTR = 0x200, 1670 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ 1671 NM_DEBUG_NIC_TXSYNC = 0x2000, 1672 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ 1673 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ 1674 NM_DEBUG_BDG = NM_DEBUG_VALE, 1675 }; 1676 1677 extern int netmap_txsync_retry; 1678 extern int netmap_generic_hwcsum; 1679 extern int netmap_generic_mit; 1680 extern int netmap_generic_ringsize; 1681 extern int netmap_generic_rings; 1682 #ifdef linux 1683 extern int netmap_generic_txqdisc; 1684 #endif 1685 1686 /* 1687 * NA returns a pointer to the struct netmap adapter from the ifp. 1688 * The if_getnetmapadapter() and if_setnetmapadapter() helpers are 1689 * os-specific and must be defined in glue code. 1690 */ 1691 #define NA(_ifp) (if_getnetmapadapter(_ifp)) 1692 1693 /* 1694 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA 1695 * based on the if_setnetmapadapter() setter function. 1696 * Glue code may override this by defining its own NM_ATTACH_NA 1697 */ 1698 #ifndef NM_ATTACH_NA 1699 /* 1700 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we 1701 * overload another pointer in the netdev. 1702 * 1703 * We check if NA(ifp) is set and its first element has a related 1704 * magic value. The capenable is within the struct netmap_adapter. 1705 */ 1706 #define NETMAP_MAGIC 0x52697a7a 1707 1708 #define NM_NA_VALID(ifp) (NA(ifp) && \ 1709 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1710 1711 #define NM_ATTACH_NA(ifp, na) do { \ 1712 if_setnetmapadapter(ifp, na); \ 1713 if (NA(ifp)) \ 1714 NA(ifp)->magic = \ 1715 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ 1716 } while(0) 1717 #define NM_RESTORE_NA(ifp, na) if_setnetmapadapter(ifp, na); 1718 1719 #define NM_DETACH_NA(ifp) do { if_setnetmapadapter(ifp, NULL); } while (0) 1720 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) 1721 #endif /* !NM_ATTACH_NA */ 1722 1723 1724 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) 1725 1726 #if defined(__FreeBSD__) 1727 1728 /* Assigns the device IOMMU domain to an allocator. 1729 * Returns -ENOMEM in case the domain is different */ 1730 #define nm_iommu_group_id(dev) (-1) 1731 1732 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1733 static void netmap_dmamap_cb(__unused void *arg, 1734 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1735 { 1736 } 1737 1738 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1739 * XXX can we do it without a callback ? 1740 */ 1741 static inline int 1742 netmap_load_map(struct netmap_adapter *na, 1743 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1744 { 1745 if (map) 1746 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1747 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1748 return 0; 1749 } 1750 1751 static inline void 1752 netmap_unload_map(struct netmap_adapter *na, 1753 bus_dma_tag_t tag, bus_dmamap_t map) 1754 { 1755 if (map) 1756 bus_dmamap_unload(tag, map); 1757 } 1758 1759 #define netmap_sync_map(na, tag, map, sz, t) 1760 1761 /* update the map when a buffer changes. */ 1762 static inline void 1763 netmap_reload_map(struct netmap_adapter *na, 1764 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1765 { 1766 if (map) { 1767 bus_dmamap_unload(tag, map); 1768 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1769 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1770 } 1771 } 1772 1773 #elif defined(_WIN32) 1774 1775 #else /* linux */ 1776 1777 int nm_iommu_group_id(bus_dma_tag_t dev); 1778 #include <linux/dma-mapping.h> 1779 1780 /* 1781 * on linux we need 1782 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1783 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) 1784 */ 1785 #if 0 1786 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1787 /* set time_stamp *before* dma to help avoid a possible race */ 1788 buffer_info->time_stamp = jiffies; 1789 buffer_info->mapped_as_page = false; 1790 buffer_info->length = len; 1791 //buffer_info->next_to_watch = l; 1792 /* reload dma map */ 1793 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1794 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1795 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1796 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1797 1798 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1799 nm_prerr("dma mapping error"); 1800 /* goto dma_error; See e1000_put_txbuf() */ 1801 /* XXX reset */ 1802 } 1803 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1804 1805 #endif 1806 1807 static inline int 1808 netmap_load_map(struct netmap_adapter *na, 1809 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) 1810 { 1811 if (map) { 1812 *map = dma_map_single(na->pdev, buf, size, 1813 DMA_BIDIRECTIONAL); 1814 if (dma_mapping_error(na->pdev, *map)) { 1815 *map = 0; 1816 return ENOMEM; 1817 } 1818 } 1819 return 0; 1820 } 1821 1822 static inline void 1823 netmap_unload_map(struct netmap_adapter *na, 1824 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) 1825 { 1826 if (*map) { 1827 dma_unmap_single(na->pdev, *map, sz, 1828 DMA_BIDIRECTIONAL); 1829 } 1830 } 1831 1832 #ifdef NETMAP_LINUX_HAVE_DMASYNC 1833 static inline void 1834 netmap_sync_map_cpu(struct netmap_adapter *na, 1835 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1836 { 1837 if (*map) { 1838 dma_sync_single_for_cpu(na->pdev, *map, sz, 1839 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1840 } 1841 } 1842 1843 static inline void 1844 netmap_sync_map_dev(struct netmap_adapter *na, 1845 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1846 { 1847 if (*map) { 1848 dma_sync_single_for_device(na->pdev, *map, sz, 1849 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1850 } 1851 } 1852 1853 static inline void 1854 netmap_reload_map(struct netmap_adapter *na, 1855 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1856 { 1857 u_int sz = NETMAP_BUF_SIZE(na); 1858 1859 if (*map) { 1860 dma_unmap_single(na->pdev, *map, sz, 1861 DMA_BIDIRECTIONAL); 1862 } 1863 1864 *map = dma_map_single(na->pdev, buf, sz, 1865 DMA_BIDIRECTIONAL); 1866 } 1867 #else /* !NETMAP_LINUX_HAVE_DMASYNC */ 1868 #define netmap_sync_map_cpu(na, tag, map, sz, t) 1869 #define netmap_sync_map_dev(na, tag, map, sz, t) 1870 #endif /* NETMAP_LINUX_HAVE_DMASYNC */ 1871 1872 #endif /* linux */ 1873 1874 1875 /* 1876 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1877 */ 1878 static inline int 1879 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1880 { 1881 int n = kr->nkr_num_slots; 1882 1883 if (likely(kr->nkr_hwofs == 0)) { 1884 return idx; 1885 } 1886 1887 idx += kr->nkr_hwofs; 1888 if (idx < 0) 1889 return idx + n; 1890 else if (idx < n) 1891 return idx; 1892 else 1893 return idx - n; 1894 } 1895 1896 1897 static inline int 1898 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1899 { 1900 int n = kr->nkr_num_slots; 1901 1902 if (likely(kr->nkr_hwofs == 0)) { 1903 return idx; 1904 } 1905 1906 idx -= kr->nkr_hwofs; 1907 if (idx < 0) 1908 return idx + n; 1909 else if (idx < n) 1910 return idx; 1911 else 1912 return idx - n; 1913 } 1914 1915 1916 /* Entries of the look-up table. */ 1917 #ifdef __FreeBSD__ 1918 struct lut_entry { 1919 void *vaddr; /* virtual address. */ 1920 vm_paddr_t paddr; /* physical address. */ 1921 }; 1922 #else /* linux & _WIN32 */ 1923 /* dma-mapping in linux can assign a buffer a different address 1924 * depending on the device, so we need to have a separate 1925 * physical-address look-up table for each na. 1926 * We can still share the vaddrs, though, therefore we split 1927 * the lut_entry structure. 1928 */ 1929 struct lut_entry { 1930 void *vaddr; /* virtual address. */ 1931 }; 1932 1933 struct plut_entry { 1934 vm_paddr_t paddr; /* physical address. */ 1935 }; 1936 #endif /* linux & _WIN32 */ 1937 1938 struct netmap_obj_pool; 1939 1940 /* alignment for netmap buffers */ 1941 #define NM_BUF_ALIGN 64 1942 1943 /* 1944 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1945 * PNMB also fills the physical address 1946 */ 1947 static inline void * 1948 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1949 { 1950 struct lut_entry *lut = na->na_lut.lut; 1951 uint32_t i = slot->buf_idx; 1952 return (unlikely(i >= na->na_lut.objtotal)) ? 1953 lut[0].vaddr : lut[i].vaddr; 1954 } 1955 1956 static inline void * 1957 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1958 { 1959 uint32_t i = slot->buf_idx; 1960 struct lut_entry *lut = na->na_lut.lut; 1961 struct plut_entry *plut = na->na_lut.plut; 1962 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1963 1964 #ifdef _WIN32 1965 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; 1966 #else 1967 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; 1968 #endif 1969 return ret; 1970 } 1971 1972 static inline void 1973 nm_write_offset(struct netmap_kring *kring, 1974 struct netmap_slot *slot, uint64_t offset) 1975 { 1976 slot->ptr = (slot->ptr & ~kring->offset_mask) | 1977 (offset & kring->offset_mask); 1978 } 1979 1980 static inline uint64_t 1981 nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot) 1982 { 1983 uint64_t offset = (slot->ptr & kring->offset_mask); 1984 if (unlikely(offset > kring->offset_max)) 1985 offset = kring->offset_max; 1986 return offset; 1987 } 1988 1989 static inline void * 1990 NMB_O(struct netmap_kring *kring, struct netmap_slot *slot) 1991 { 1992 void *addr = NMB(kring->na, slot); 1993 return (char *)addr + nm_get_offset(kring, slot); 1994 } 1995 1996 static inline void * 1997 PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp) 1998 { 1999 void *addr = PNMB(kring->na, slot, pp); 2000 uint64_t offset = nm_get_offset(kring, slot); 2001 addr = (char *)addr + offset; 2002 *pp += offset; 2003 return addr; 2004 } 2005 2006 2007 /* 2008 * Structure associated to each netmap file descriptor. 2009 * It is created on open and left unbound (np_nifp == NULL). 2010 * A successful NIOCREGIF will set np_nifp and the first few fields; 2011 * this is protected by a global lock (NMG_LOCK) due to low contention. 2012 * 2013 * np_refs counts the number of references to the structure: one for the fd, 2014 * plus (on FreeBSD) one for each active mmap which we track ourselves 2015 * (linux automatically tracks them, but FreeBSD does not). 2016 * np_refs is protected by NMG_LOCK. 2017 * 2018 * Read access to the structure is lock free, because ni_nifp once set 2019 * can only go to 0 when nobody is using the entry anymore. Readers 2020 * must check that np_nifp != NULL before using the other fields. 2021 */ 2022 struct netmap_priv_d { 2023 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 2024 2025 struct netmap_adapter *np_na; 2026 if_t np_ifp; 2027 uint32_t np_flags; /* from the ioctl */ 2028 u_int np_qfirst[NR_TXRX], 2029 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 2030 uint16_t np_txpoll; 2031 uint16_t np_kloop_state; /* use with NMG_LOCK held */ 2032 #define NM_SYNC_KLOOP_RUNNING (1 << 0) 2033 #define NM_SYNC_KLOOP_STOPPING (1 << 1) 2034 int np_sync_flags; /* to be passed to nm_sync */ 2035 2036 int np_refs; /* use with NMG_LOCK held */ 2037 2038 /* pointers to the selinfo to be used for selrecord. 2039 * Either the local or the global one depending on the 2040 * number of rings. 2041 */ 2042 NM_SELINFO_T *np_si[NR_TXRX]; 2043 2044 /* In the optional CSB mode, the user must specify the start address 2045 * of two arrays of Communication Status Block (CSB) entries, for the 2046 * two directions (kernel read application write, and kernel write 2047 * application read). 2048 * The number of entries must agree with the number of rings bound to 2049 * the netmap file descriptor. The entries corresponding to the TX 2050 * rings are laid out before the ones corresponding to the RX rings. 2051 * 2052 * Array of CSB entries for application --> kernel communication 2053 * (N entries). */ 2054 struct nm_csb_atok *np_csb_atok_base; 2055 /* Array of CSB entries for kernel --> application communication 2056 * (N entries). */ 2057 struct nm_csb_ktoa *np_csb_ktoa_base; 2058 2059 #ifdef linux 2060 struct file *np_filp; /* used by sync kloop */ 2061 #endif /* linux */ 2062 }; 2063 2064 struct netmap_priv_d *netmap_priv_new(void); 2065 void netmap_priv_delete(struct netmap_priv_d *); 2066 2067 static inline int nm_kring_pending(struct netmap_priv_d *np) 2068 { 2069 struct netmap_adapter *na = np->np_na; 2070 enum txrx t; 2071 int i; 2072 2073 for_rx_tx(t) { 2074 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { 2075 struct netmap_kring *kring = NMR(na, t)[i]; 2076 if (kring->nr_mode != kring->nr_pending_mode) { 2077 return 1; 2078 } 2079 } 2080 } 2081 return 0; 2082 } 2083 2084 /* call with NMG_LOCK held */ 2085 static __inline int 2086 nm_si_user(struct netmap_priv_d *priv, enum txrx t) 2087 { 2088 return (priv->np_na != NULL && 2089 (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); 2090 } 2091 2092 #ifdef WITH_PIPES 2093 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); 2094 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); 2095 int netmap_pipe_krings_create_both(struct netmap_adapter *na, 2096 struct netmap_adapter *ona); 2097 void netmap_pipe_krings_delete_both(struct netmap_adapter *na, 2098 struct netmap_adapter *ona); 2099 int netmap_pipe_reg_both(struct netmap_adapter *na, 2100 struct netmap_adapter *ona); 2101 #endif /* WITH_PIPES */ 2102 2103 #ifdef WITH_MONITOR 2104 2105 struct netmap_monitor_adapter { 2106 struct netmap_adapter up; 2107 2108 struct netmap_priv_d priv; 2109 uint32_t flags; 2110 }; 2111 2112 #endif /* WITH_MONITOR */ 2113 2114 2115 #ifdef WITH_GENERIC 2116 /* 2117 * generic netmap emulation for devices that do not have 2118 * native netmap support. 2119 */ 2120 int generic_netmap_attach(if_t ifp); 2121 int generic_rx_handler(if_t ifp, struct mbuf *m); 2122 2123 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); 2124 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); 2125 2126 int na_is_generic(struct netmap_adapter *na); 2127 2128 /* 2129 * the generic transmit routine is passed a structure to optionally 2130 * build a queue of descriptors, in an OS-specific way. 2131 * The payload is at addr, if non-null, and the routine should send or queue 2132 * the packet, returning 0 if successful, 1 on failure. 2133 * 2134 * At the end, if head is non-null, there will be an additional call 2135 * to the function with addr = NULL; this should tell the OS-specific 2136 * routine to send the queue and free any resources. Failure is ignored. 2137 */ 2138 struct nm_os_gen_arg { 2139 if_t ifp; 2140 void *m; /* os-specific mbuf-like object */ 2141 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ 2142 void *addr; /* payload of current packet */ 2143 u_int len; /* packet length */ 2144 u_int ring_nr; /* transmit ring index */ 2145 u_int qevent; /* in txqdisc mode, place an event on this mbuf */ 2146 }; 2147 2148 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); 2149 int nm_os_generic_find_num_desc(if_t ifp, u_int *tx, u_int *rx); 2150 void nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq); 2151 void nm_os_generic_set_features(struct netmap_generic_adapter *gna); 2152 2153 static inline if_t 2154 netmap_generic_getifp(struct netmap_generic_adapter *gna) 2155 { 2156 if (gna->prev) 2157 return gna->prev->ifp; 2158 2159 return gna->up.up.ifp; 2160 } 2161 2162 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); 2163 2164 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 2165 #ifdef RATE_GENERIC 2166 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 2167 #else 2168 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 2169 #endif 2170 2171 /* 2172 * netmap_mitigation API. This is used by the generic adapter 2173 * to reduce the number of interrupt requests/selwakeup 2174 * to clients on incoming packets. 2175 */ 2176 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, 2177 struct netmap_adapter *na); 2178 void nm_os_mitigation_start(struct nm_generic_mit *mit); 2179 void nm_os_mitigation_restart(struct nm_generic_mit *mit); 2180 int nm_os_mitigation_active(struct nm_generic_mit *mit); 2181 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); 2182 #else /* !WITH_GENERIC */ 2183 #define generic_netmap_attach(ifp) (EOPNOTSUPP) 2184 #define na_is_generic(na) (0) 2185 #endif /* WITH_GENERIC */ 2186 2187 /* Shared declarations for the VALE switch. */ 2188 2189 /* 2190 * Each transmit queue accumulates a batch of packets into 2191 * a structure before forwarding. Packets to the same 2192 * destination are put in a list using ft_next as a link field. 2193 * ft_frags and ft_next are valid only on the first fragment. 2194 */ 2195 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 2196 void *ft_buf; /* netmap or indirect buffer */ 2197 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 2198 uint16_t ft_offset; /* dst port (unused) */ 2199 uint16_t ft_flags; /* flags, e.g. indirect */ 2200 uint16_t ft_len; /* src fragment len */ 2201 uint16_t ft_next; /* next packet to same destination */ 2202 }; 2203 2204 /* struct 'virtio_net_hdr' from linux. */ 2205 struct nm_vnet_hdr { 2206 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 2207 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 2208 uint8_t flags; 2209 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 2210 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 2211 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 2212 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 2213 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 2214 uint8_t gso_type; 2215 uint16_t hdr_len; 2216 uint16_t gso_size; 2217 uint16_t csum_start; 2218 uint16_t csum_offset; 2219 }; 2220 2221 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 2222 2223 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 2224 2225 struct nm_iphdr { 2226 uint8_t version_ihl; 2227 uint8_t tos; 2228 uint16_t tot_len; 2229 uint16_t id; 2230 uint16_t frag_off; 2231 uint8_t ttl; 2232 uint8_t protocol; 2233 uint16_t check; 2234 uint32_t saddr; 2235 uint32_t daddr; 2236 /*The options start here. */ 2237 }; 2238 2239 struct nm_tcphdr { 2240 uint16_t source; 2241 uint16_t dest; 2242 uint32_t seq; 2243 uint32_t ack_seq; 2244 uint8_t doff; /* Data offset + Reserved */ 2245 uint8_t flags; 2246 uint16_t window; 2247 uint16_t check; 2248 uint16_t urg_ptr; 2249 }; 2250 2251 struct nm_udphdr { 2252 uint16_t source; 2253 uint16_t dest; 2254 uint16_t len; 2255 uint16_t check; 2256 }; 2257 2258 struct nm_ipv6hdr { 2259 uint8_t priority_version; 2260 uint8_t flow_lbl[3]; 2261 2262 uint16_t payload_len; 2263 uint8_t nexthdr; 2264 uint8_t hop_limit; 2265 2266 uint8_t saddr[16]; 2267 uint8_t daddr[16]; 2268 }; 2269 2270 /* Type used to store a checksum (in host byte order) that hasn't been 2271 * folded yet. 2272 */ 2273 #define rawsum_t uint32_t 2274 2275 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 2276 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); 2277 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 2278 size_t datalen, uint16_t *check); 2279 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 2280 size_t datalen, uint16_t *check); 2281 uint16_t nm_os_csum_fold(rawsum_t cur_sum); 2282 2283 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 2284 struct netmap_vp_adapter *dst_na, 2285 const struct nm_bdg_fwd *ft_p, 2286 struct netmap_ring *dst_ring, 2287 u_int *j, u_int lim, u_int *howmany); 2288 2289 /* persistent virtual port routines */ 2290 int nm_os_vi_persist(const char *, if_t *); 2291 void nm_os_vi_detach(if_t); 2292 void nm_os_vi_init_index(void); 2293 2294 /* 2295 * kernel thread routines 2296 */ 2297 struct nm_kctx; /* OS-specific kernel context - opaque */ 2298 typedef void (*nm_kctx_worker_fn_t)(void *data); 2299 2300 /* kthread configuration */ 2301 struct nm_kctx_cfg { 2302 long type; /* kthread type/identifier */ 2303 nm_kctx_worker_fn_t worker_fn; /* worker function */ 2304 void *worker_private;/* worker parameter */ 2305 int attach_user; /* attach kthread to user process */ 2306 }; 2307 /* kthread configuration */ 2308 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, 2309 void *opaque); 2310 int nm_os_kctx_worker_start(struct nm_kctx *); 2311 void nm_os_kctx_worker_stop(struct nm_kctx *); 2312 void nm_os_kctx_destroy(struct nm_kctx *); 2313 void nm_os_kctx_worker_setaff(struct nm_kctx *, int); 2314 u_int nm_os_ncpus(void); 2315 2316 int netmap_sync_kloop(struct netmap_priv_d *priv, 2317 struct nmreq_header *hdr); 2318 int netmap_sync_kloop_stop(struct netmap_priv_d *priv); 2319 2320 #ifdef WITH_PTNETMAP 2321 /* ptnetmap guest routines */ 2322 2323 /* 2324 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver 2325 */ 2326 struct ptnetmap_memdev; 2327 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, 2328 uint64_t *); 2329 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); 2330 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); 2331 2332 /* 2333 * netmap adapter for guest ptnetmap ports 2334 */ 2335 struct netmap_pt_guest_adapter { 2336 /* The netmap adapter to be used by netmap applications. 2337 * This field must be the first, to allow upcast. */ 2338 struct netmap_hw_adapter hwup; 2339 2340 /* The netmap adapter to be used by the driver. */ 2341 struct netmap_hw_adapter dr; 2342 2343 /* Reference counter to track users of backend netmap port: the 2344 * network stack and netmap clients. 2345 * Used to decide when we need (de)allocate krings/rings and 2346 * start (stop) ptnetmap kthreads. */ 2347 int backend_users; 2348 2349 }; 2350 2351 int netmap_pt_guest_attach(struct netmap_adapter *na, 2352 unsigned int nifp_offset, 2353 unsigned int memid); 2354 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, 2355 struct nm_csb_ktoa *ktoa, 2356 struct netmap_kring *kring, int flags); 2357 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, 2358 struct nm_csb_ktoa *ktoa, 2359 struct netmap_kring *kring, int flags); 2360 int ptnet_nm_krings_create(struct netmap_adapter *na); 2361 void ptnet_nm_krings_delete(struct netmap_adapter *na); 2362 void ptnet_nm_dtor(struct netmap_adapter *na); 2363 2364 /* Helper function wrapping nm_sync_kloop_appl_read(). */ 2365 static inline void 2366 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) 2367 { 2368 struct netmap_ring *ring = kring->ring; 2369 2370 /* Update hwcur and hwtail as known by the host. */ 2371 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); 2372 2373 /* nm_sync_finalize */ 2374 ring->tail = kring->rtail = kring->nr_hwtail; 2375 } 2376 #endif /* WITH_PTNETMAP */ 2377 2378 #ifdef __FreeBSD__ 2379 /* 2380 * FreeBSD mbuf allocator/deallocator in emulation mode: 2381 * 2382 * We allocate mbufs with m_gethdr(), since the mbuf header is needed 2383 * by the driver. We also attach a customly-provided external storage, 2384 * which in this case is a netmap buffer. When calling m_extadd(), however 2385 * we pass a NULL address, since the real address (and length) will be 2386 * filled in by nm_os_generic_xmit_frame() right before calling 2387 * if_transmit(). 2388 * 2389 * The dtor function does nothing, however we need it since mb_free_ext() 2390 * has a KASSERT(), checking that the mbuf dtor function is not NULL. 2391 */ 2392 2393 static void void_mbuf_dtor(struct mbuf *m) { } 2394 2395 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2396 (m)->m_ext.ext_free = (fn != NULL) ? \ 2397 (void *)fn : (void *)void_mbuf_dtor; \ 2398 } while (0) 2399 2400 static inline struct mbuf * 2401 nm_os_get_mbuf(if_t ifp, int len) 2402 { 2403 struct mbuf *m; 2404 2405 (void)ifp; 2406 (void)len; 2407 2408 m = m_gethdr(M_NOWAIT, MT_DATA); 2409 if (m == NULL) { 2410 return m; 2411 } 2412 2413 m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor, 2414 NULL, NULL, 0, EXT_NET_DRV); 2415 2416 return m; 2417 } 2418 2419 #endif /* __FreeBSD__ */ 2420 2421 struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t); 2422 2423 int netmap_init_bridges(void); 2424 void netmap_uninit_bridges(void); 2425 2426 /* Functions to read and write CSB fields from the kernel. */ 2427 #if defined (linux) 2428 #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) 2429 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) 2430 #else /* ! linux */ 2431 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field)) 2432 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v)) 2433 #endif /* ! linux */ 2434 2435 /* some macros that may not be defined */ 2436 #ifndef ETH_HLEN 2437 #define ETH_HLEN 6 2438 #endif 2439 #ifndef ETH_FCS_LEN 2440 #define ETH_FCS_LEN 4 2441 #endif 2442 #ifndef VLAN_HLEN 2443 #define VLAN_HLEN 4 2444 #endif 2445 2446 #endif /* _NET_NETMAP_KERN_H_ */ 2447