1 /* 2 * Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * $FreeBSD$ 28 * $Id: netmap_kern.h 11829 2012-09-26 04:06:34Z luigi $ 29 * 30 * The header contains the definitions of constants and function 31 * prototypes used only in kernelspace. 32 */ 33 34 #ifndef _NET_NETMAP_KERN_H_ 35 #define _NET_NETMAP_KERN_H_ 36 37 #if defined(__FreeBSD__) 38 #define likely(x) __builtin_expect(!!(x), 1) 39 #define unlikely(x) __builtin_expect(!!(x), 0) 40 41 #define NM_LOCK_T struct mtx 42 #define NM_SELINFO_T struct selinfo 43 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 44 #define NM_SEND_UP(ifp, m) ((ifp)->if_input)(ifp, m) 45 #elif defined (linux) 46 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 47 #define NM_SELINFO_T wait_queue_head_t 48 #define MBUF_LEN(m) ((m)->len) 49 #define NM_SEND_UP(ifp, m) netif_rx(m) 50 51 #ifndef DEV_NETMAP 52 #define DEV_NETMAP 53 #endif 54 55 /* 56 * IFCAP_NETMAP goes into net_device's priv_flags (if_capenable). 57 * This was 16 bits up to linux 2.6.36, so we need a 16 bit value on older 58 * platforms and tolerate the clash with IFF_DYNAMIC and IFF_BRIDGE_PORT. 59 * For the 32-bit value, 0x100000 has no clashes until at least 3.5.1 60 */ 61 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) 62 #define IFCAP_NETMAP 0x8000 63 #else 64 #define IFCAP_NETMAP 0x100000 65 #endif 66 67 #elif defined (__APPLE__) 68 #warning apple support is incomplete. 69 #define likely(x) __builtin_expect(!!(x), 1) 70 #define unlikely(x) __builtin_expect(!!(x), 0) 71 #define NM_LOCK_T IOLock * 72 #define NM_SELINFO_T struct selinfo 73 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 74 #define NM_SEND_UP(ifp, m) ((ifp)->if_input)(ifp, m) 75 76 #else 77 #error unsupported platform 78 #endif 79 80 #define ND(format, ...) 81 #define D(format, ...) \ 82 do { \ 83 struct timeval __xxts; \ 84 microtime(&__xxts); \ 85 printf("%03d.%06d %s [%d] " format "\n", \ 86 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 87 __FUNCTION__, __LINE__, ##__VA_ARGS__); \ 88 } while (0) 89 90 /* rate limited, lps indicates how many per second */ 91 #define RD(lps, format, ...) \ 92 do { \ 93 static int t0, __cnt; \ 94 if (t0 != time_second) { \ 95 t0 = time_second; \ 96 __cnt = 0; \ 97 } \ 98 if (__cnt++ < lps) \ 99 D(format, ##__VA_ARGS__); \ 100 } while (0) 101 102 struct netmap_adapter; 103 104 /* 105 * private, kernel view of a ring. Keeps track of the status of 106 * a ring across system calls. 107 * 108 * nr_hwcur index of the next buffer to refill. 109 * It corresponds to ring->cur - ring->reserved 110 * 111 * nr_hwavail the number of slots "owned" by userspace. 112 * nr_hwavail =:= ring->avail + ring->reserved 113 * 114 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 115 * This is so that, on a reset, buffers owned by userspace are not 116 * modified by the kernel. In particular: 117 * RX rings: the next empty buffer (hwcur + hwavail + hwofs) coincides with 118 * the next empty buffer as known by the hardware (next_to_check or so). 119 * TX rings: hwcur + hwofs coincides with next_to_send 120 * 121 * For received packets, slot->flags is set to nkr_slot_flags 122 * so we can provide a proper initial value (e.g. set NS_FORWARD 123 * when operating in 'transparent' mode). 124 */ 125 struct netmap_kring { 126 struct netmap_ring *ring; 127 u_int nr_hwcur; 128 int nr_hwavail; 129 u_int nr_kflags; /* private driver flags */ 130 #define NKR_PENDINTR 0x1 // Pending interrupt. 131 u_int nkr_num_slots; 132 133 uint16_t nkr_slot_flags; /* initial value for flags */ 134 int nkr_hwofs; /* offset between NIC and netmap ring */ 135 struct netmap_adapter *na; 136 NM_SELINFO_T si; /* poll/select wait queue */ 137 NM_LOCK_T q_lock; /* used if no device lock available */ 138 } __attribute__((__aligned__(64))); 139 140 /* 141 * This struct extends the 'struct adapter' (or 142 * equivalent) device descriptor. It contains all fields needed to 143 * support netmap operation. 144 */ 145 struct netmap_adapter { 146 /* 147 * On linux we do not have a good way to tell if an interface 148 * is netmap-capable. So we use the following trick: 149 * NA(ifp) points here, and the first entry (which hopefully 150 * always exists and is at least 32 bits) contains a magic 151 * value which we can use to detect that the interface is good. 152 */ 153 uint32_t magic; 154 uint32_t na_flags; /* future place for IFCAP_NETMAP */ 155 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 156 * useful during initialization 157 */ 158 int refcount; /* number of user-space descriptors using this 159 interface, which is equal to the number of 160 struct netmap_if objs in the mapped region. */ 161 /* 162 * The selwakeup in the interrupt thread can use per-ring 163 * and/or global wait queues. We track how many clients 164 * of each type we have so we can optimize the drivers, 165 * and especially avoid huge contention on the locks. 166 */ 167 int na_single; /* threads attached to a single hw queue */ 168 int na_multi; /* threads attached to multiple hw queues */ 169 170 int separate_locks; /* set if the interface suports different 171 locks for rx, tx and core. */ 172 173 u_int num_rx_rings; /* number of adapter receive rings */ 174 u_int num_tx_rings; /* number of adapter transmit rings */ 175 176 u_int num_tx_desc; /* number of descriptor in each queue */ 177 u_int num_rx_desc; 178 179 /* tx_rings and rx_rings are private but allocated 180 * as a contiguous chunk of memory. Each array has 181 * N+1 entries, for the adapter queues and for the host queue. 182 */ 183 struct netmap_kring *tx_rings; /* array of TX rings. */ 184 struct netmap_kring *rx_rings; /* array of RX rings. */ 185 186 NM_SELINFO_T tx_si, rx_si; /* global wait queues */ 187 188 /* copy of if_qflush and if_transmit pointers, to intercept 189 * packets from the network stack when netmap is active. 190 */ 191 int (*if_transmit)(struct ifnet *, struct mbuf *); 192 193 /* references to the ifnet and device routines, used by 194 * the generic netmap functions. 195 */ 196 struct ifnet *ifp; /* adapter is ifp->if_softc */ 197 198 NM_LOCK_T core_lock; /* used if no device lock available */ 199 200 int (*nm_register)(struct ifnet *, int onoff); 201 void (*nm_lock)(struct ifnet *, int what, u_int ringid); 202 int (*nm_txsync)(struct ifnet *, u_int ring, int lock); 203 int (*nm_rxsync)(struct ifnet *, u_int ring, int lock); 204 /* return configuration information */ 205 int (*nm_config)(struct ifnet *, u_int *txr, u_int *txd, 206 u_int *rxr, u_int *rxd); 207 208 int bdg_port; 209 #ifdef linux 210 struct net_device_ops nm_ndo; 211 int if_refcount; // XXX additions for bridge 212 #endif /* linux */ 213 }; 214 215 /* 216 * The combination of "enable" (ifp->if_capenable & IFCAP_NETMAP) 217 * and refcount gives the status of the interface, namely: 218 * 219 * enable refcount Status 220 * 221 * FALSE 0 normal operation 222 * FALSE != 0 -- (impossible) 223 * TRUE 1 netmap mode 224 * TRUE 0 being deleted. 225 */ 226 227 #define NETMAP_DELETING(_na) ( ((_na)->refcount == 0) && \ 228 ( (_na)->ifp->if_capenable & IFCAP_NETMAP) ) 229 230 /* 231 * parameters for (*nm_lock)(adapter, what, index) 232 */ 233 enum { 234 NETMAP_NO_LOCK = 0, 235 NETMAP_CORE_LOCK, NETMAP_CORE_UNLOCK, 236 NETMAP_TX_LOCK, NETMAP_TX_UNLOCK, 237 NETMAP_RX_LOCK, NETMAP_RX_UNLOCK, 238 #ifdef __FreeBSD__ 239 #define NETMAP_REG_LOCK NETMAP_CORE_LOCK 240 #define NETMAP_REG_UNLOCK NETMAP_CORE_UNLOCK 241 #else 242 NETMAP_REG_LOCK, NETMAP_REG_UNLOCK 243 #endif 244 }; 245 246 /* 247 * The following are support routines used by individual drivers to 248 * support netmap operation. 249 * 250 * netmap_attach() initializes a struct netmap_adapter, allocating the 251 * struct netmap_ring's and the struct selinfo. 252 * 253 * netmap_detach() frees the memory allocated by netmap_attach(). 254 * 255 * netmap_start() replaces the if_transmit routine of the interface, 256 * and is used to intercept packets coming from the stack. 257 * 258 * netmap_load_map/netmap_reload_map are helper routines to set/reset 259 * the dmamap for a packet buffer 260 * 261 * netmap_reset() is a helper routine to be called in the driver 262 * when reinitializing a ring. 263 */ 264 int netmap_attach(struct netmap_adapter *, int); 265 void netmap_detach(struct ifnet *); 266 int netmap_start(struct ifnet *, struct mbuf *); 267 enum txrx { NR_RX = 0, NR_TX = 1 }; 268 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 269 enum txrx tx, int n, u_int new_cur); 270 int netmap_ring_reinit(struct netmap_kring *); 271 272 extern u_int netmap_buf_size; 273 #define NETMAP_BUF_SIZE netmap_buf_size 274 extern int netmap_mitigate; 275 extern int netmap_no_pendintr; 276 extern u_int netmap_total_buffers; 277 extern char *netmap_buffer_base; 278 extern int netmap_verbose; // XXX debugging 279 enum { /* verbose flags */ 280 NM_VERB_ON = 1, /* generic verbose */ 281 NM_VERB_HOST = 0x2, /* verbose host stack */ 282 NM_VERB_RXSYNC = 0x10, /* verbose on rxsync/txsync */ 283 NM_VERB_TXSYNC = 0x20, 284 NM_VERB_RXINTR = 0x100, /* verbose on rx/tx intr (driver) */ 285 NM_VERB_TXINTR = 0x200, 286 NM_VERB_NIC_RXSYNC = 0x1000, /* verbose on rx/tx intr (driver) */ 287 NM_VERB_NIC_TXSYNC = 0x2000, 288 }; 289 290 /* 291 * NA returns a pointer to the struct netmap adapter from the ifp, 292 * WNA is used to write it. 293 */ 294 #ifndef WNA 295 #define WNA(_ifp) (_ifp)->if_pspare[0] 296 #endif 297 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 298 299 /* 300 * Macros to determine if an interface is netmap capable or netmap enabled. 301 * See the magic field in struct netmap_adapter. 302 */ 303 #ifdef __FreeBSD__ 304 /* 305 * on FreeBSD just use if_capabilities and if_capenable. 306 */ 307 #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ 308 (ifp)->if_capabilities & IFCAP_NETMAP ) 309 310 #define NETMAP_SET_CAPABLE(ifp) \ 311 (ifp)->if_capabilities |= IFCAP_NETMAP 312 313 #else /* linux */ 314 315 /* 316 * on linux: 317 * we check if NA(ifp) is set and its first element has a related 318 * magic value. The capenable is within the struct netmap_adapter. 319 */ 320 #define NETMAP_MAGIC 0x52697a7a 321 322 #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ 323 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 324 325 #define NETMAP_SET_CAPABLE(ifp) \ 326 NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC 327 328 #endif /* linux */ 329 330 #ifdef __FreeBSD__ 331 /* Callback invoked by the dma machinery after a successfull dmamap_load */ 332 static void netmap_dmamap_cb(__unused void *arg, 333 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 334 { 335 } 336 337 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 338 * XXX can we do it without a callback ? 339 */ 340 static inline void 341 netmap_load_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 342 { 343 if (map) 344 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, 345 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 346 } 347 348 /* update the map when a buffer changes. */ 349 static inline void 350 netmap_reload_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 351 { 352 if (map) { 353 bus_dmamap_unload(tag, map); 354 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, 355 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 356 } 357 } 358 #else /* linux */ 359 360 /* 361 * XXX How do we redefine these functions: 362 * 363 * on linux we need 364 * dma_map_single(&pdev->dev, virt_addr, len, direction) 365 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction 366 * The len can be implicit (on netmap it is NETMAP_BUF_SIZE) 367 * unfortunately the direction is not, so we need to change 368 * something to have a cross API 369 */ 370 #define netmap_load_map(_t, _m, _b) 371 #define netmap_reload_map(_t, _m, _b) 372 #if 0 373 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 374 /* set time_stamp *before* dma to help avoid a possible race */ 375 buffer_info->time_stamp = jiffies; 376 buffer_info->mapped_as_page = false; 377 buffer_info->length = len; 378 //buffer_info->next_to_watch = l; 379 /* reload dma map */ 380 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 381 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 382 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 383 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 384 385 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 386 D("dma mapping error"); 387 /* goto dma_error; See e1000_put_txbuf() */ 388 /* XXX reset */ 389 } 390 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 391 392 #endif 393 394 /* 395 * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction. 396 */ 397 #define bus_dmamap_sync(_a, _b, _c) 398 399 #endif /* linux */ 400 401 /* 402 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 403 */ 404 static inline int 405 netmap_idx_n2k(struct netmap_kring *kr, int idx) 406 { 407 int n = kr->nkr_num_slots; 408 idx += kr->nkr_hwofs; 409 if (idx < 0) 410 return idx + n; 411 else if (idx < n) 412 return idx; 413 else 414 return idx - n; 415 } 416 417 418 static inline int 419 netmap_idx_k2n(struct netmap_kring *kr, int idx) 420 { 421 int n = kr->nkr_num_slots; 422 idx -= kr->nkr_hwofs; 423 if (idx < 0) 424 return idx + n; 425 else if (idx < n) 426 return idx; 427 else 428 return idx - n; 429 } 430 431 432 /* Entries of the look-up table. */ 433 struct lut_entry { 434 void *vaddr; /* virtual address. */ 435 vm_paddr_t paddr; /* phisical address. */ 436 }; 437 438 struct netmap_obj_pool; 439 extern struct lut_entry *netmap_buffer_lut; 440 #define NMB_VA(i) (netmap_buffer_lut[i].vaddr) 441 #define NMB_PA(i) (netmap_buffer_lut[i].paddr) 442 443 /* 444 * NMB return the virtual address of a buffer (buffer 0 on bad index) 445 * PNMB also fills the physical address 446 */ 447 static inline void * 448 NMB(struct netmap_slot *slot) 449 { 450 uint32_t i = slot->buf_idx; 451 return (unlikely(i >= netmap_total_buffers)) ? NMB_VA(0) : NMB_VA(i); 452 } 453 454 static inline void * 455 PNMB(struct netmap_slot *slot, uint64_t *pp) 456 { 457 uint32_t i = slot->buf_idx; 458 void *ret = (i >= netmap_total_buffers) ? NMB_VA(0) : NMB_VA(i); 459 460 *pp = (i >= netmap_total_buffers) ? NMB_PA(0) : NMB_PA(i); 461 return ret; 462 } 463 464 /* default functions to handle rx/tx interrupts */ 465 int netmap_rx_irq(struct ifnet *, int, int *); 466 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 467 468 469 extern int netmap_copy; 470 #endif /* _NET_NETMAP_KERN_H_ */ 471