1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo 5 * Copyright (C) 2013-2016 Universita` di Pisa 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * 32 * The header contains the definitions of constants and function 33 * prototypes used only in kernelspace. 34 */ 35 36 #ifndef _NET_NETMAP_KERN_H_ 37 #define _NET_NETMAP_KERN_H_ 38 39 #if defined(linux) 40 41 #if defined(CONFIG_NETMAP_EXTMEM) 42 #define WITH_EXTMEM 43 #endif 44 #if defined(CONFIG_NETMAP_VALE) 45 #define WITH_VALE 46 #endif 47 #if defined(CONFIG_NETMAP_PIPE) 48 #define WITH_PIPES 49 #endif 50 #if defined(CONFIG_NETMAP_MONITOR) 51 #define WITH_MONITOR 52 #endif 53 #if defined(CONFIG_NETMAP_GENERIC) 54 #define WITH_GENERIC 55 #endif 56 #if defined(CONFIG_NETMAP_PTNETMAP) 57 #define WITH_PTNETMAP 58 #endif 59 #if defined(CONFIG_NETMAP_SINK) 60 #define WITH_SINK 61 #endif 62 #if defined(CONFIG_NETMAP_NULL) 63 #define WITH_NMNULL 64 #endif 65 66 #elif defined (_WIN32) 67 #define WITH_VALE // comment out to disable VALE support 68 #define WITH_PIPES 69 #define WITH_MONITOR 70 #define WITH_GENERIC 71 #define WITH_NMNULL 72 73 #else /* neither linux nor windows */ 74 #define WITH_VALE // comment out to disable VALE support 75 #define WITH_PIPES 76 #define WITH_MONITOR 77 #define WITH_GENERIC 78 #define WITH_EXTMEM 79 #define WITH_NMNULL 80 #endif 81 82 #if defined(__FreeBSD__) 83 #include <sys/selinfo.h> 84 85 #define likely(x) __builtin_expect((long)!!(x), 1L) 86 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 87 #define __user 88 89 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 90 91 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 92 #define NM_MTX_INIT(m) sx_init(&(m), #m) 93 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 94 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 95 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; 96 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 97 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 98 99 #define NM_SELINFO_T struct nm_selinfo 100 #define NM_SELRECORD_T struct thread 101 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 102 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 103 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) 104 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 105 106 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ 107 /* atomic operations */ 108 #include <machine/atomic.h> 109 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 110 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 111 112 struct netmap_adapter *netmap_getna(if_t ifp); 113 114 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) 115 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x 116 117 #define MBUF_QUEUED(m) 1 118 119 struct nm_selinfo { 120 /* Support for select(2) and poll(2). */ 121 struct selinfo si; 122 /* Support for kqueue(9). See comments in netmap_freebsd.c */ 123 struct taskqueue *ntfytq; 124 struct task ntfytask; 125 struct mtx m; 126 char mtxname[32]; 127 int kqueue_users; 128 }; 129 130 131 struct hrtimer { 132 /* Not used in FreeBSD. */ 133 }; 134 135 #define NM_BNS_GET(b) 136 #define NM_BNS_PUT(b) 137 138 #elif defined (linux) 139 140 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 141 #define NM_SELINFO_T wait_queue_head_t 142 #define MBUF_LEN(m) ((m)->len) 143 #define MBUF_TRANSMIT(na, ifp, m) \ 144 ({ \ 145 /* Avoid infinite recursion with generic. */ \ 146 m->priority = NM_MAGIC_PRIORITY_TX; \ 147 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 148 0; \ 149 }) 150 151 /* See explanation in nm_os_generic_xmit_frame. */ 152 #define GEN_TX_MBUF_IFP(m) ((if_t)skb_shinfo(m)->destructor_arg) 153 154 #define NM_ATOMIC_T volatile long unsigned int 155 156 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 157 #define NM_MTX_INIT(m) mutex_init(&(m)) 158 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 159 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 160 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 161 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 162 163 #ifndef DEV_NETMAP 164 #define DEV_NETMAP 165 #endif /* DEV_NETMAP */ 166 167 #elif defined (__APPLE__) 168 169 #warning apple support is incomplete. 170 #define likely(x) __builtin_expect(!!(x), 1) 171 #define unlikely(x) __builtin_expect(!!(x), 0) 172 #define NM_LOCK_T IOLock * 173 #define NM_SELINFO_T struct selinfo 174 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 175 176 #elif defined (_WIN32) 177 #include "../../../WINDOWS/win_glue.h" 178 179 #define NM_SELRECORD_T IO_STACK_LOCATION 180 #define NM_SELINFO_T win_SELINFO // see win_glue.h 181 #define NM_LOCK_T win_spinlock_t // see win_glue.h 182 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ 183 184 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); 185 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 186 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) 187 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) 188 #define NM_MTX_ASSERT(m) assert(&m.Count>0) 189 190 //These linknames are for the NDIS driver 191 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" 192 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" 193 194 //Definition of internal driver-to-driver ioctl codes 195 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) 196 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) 197 198 typedef struct hrtimer{ 199 KTIMER timer; 200 BOOLEAN active; 201 KDPC deferred_proc; 202 }; 203 204 /* MSVC does not have likely/unlikely support */ 205 #ifdef _MSC_VER 206 #define likely(x) (x) 207 #define unlikely(x) (x) 208 #else 209 #define likely(x) __builtin_expect((long)!!(x), 1L) 210 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 211 #endif //_MSC_VER 212 213 #else 214 215 #error unsupported platform 216 217 #endif /* end - platform-specific code */ 218 219 #ifndef _WIN32 /* support for emulated sysctl */ 220 #define SYSBEGIN(x) 221 #define SYSEND 222 #endif /* _WIN32 */ 223 224 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) 225 226 #define NMG_LOCK_T NM_MTX_T 227 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 228 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 229 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 230 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 231 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 232 233 #if defined(__FreeBSD__) 234 #define nm_prerr_int printf 235 #define nm_prinf_int printf 236 #elif defined (_WIN32) 237 #define nm_prerr_int DbgPrint 238 #define nm_prinf_int DbgPrint 239 #elif defined(linux) 240 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) 241 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) 242 #endif 243 244 #define nm_prinf(format, ...) \ 245 do { \ 246 struct timeval __xxts; \ 247 microtime(&__xxts); \ 248 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ 249 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 250 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 251 } while (0) 252 253 #define nm_prerr(format, ...) \ 254 do { \ 255 struct timeval __xxts; \ 256 microtime(&__xxts); \ 257 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ 258 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 259 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 260 } while (0) 261 262 /* Disabled printf (used to be nm_prdis). */ 263 #define nm_prdis(format, ...) 264 265 /* Rate limited, lps indicates how many per second. */ 266 #define nm_prlim(lps, format, ...) \ 267 do { \ 268 static int t0, __cnt; \ 269 if (t0 != time_second) { \ 270 t0 = time_second; \ 271 __cnt = 0; \ 272 } \ 273 if (__cnt++ < lps) \ 274 nm_prinf(format, ##__VA_ARGS__); \ 275 } while (0) 276 277 struct netmap_adapter; 278 struct nm_bdg_fwd; 279 struct nm_bridge; 280 struct netmap_priv_d; 281 struct nm_bdg_args; 282 283 /* os-specific NM_SELINFO_T initialization/destruction functions */ 284 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); 285 void nm_os_selinfo_uninit(NM_SELINFO_T *); 286 287 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 288 289 void nm_os_selwakeup(NM_SELINFO_T *si); 290 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); 291 292 int nm_os_ifnet_init(void); 293 void nm_os_ifnet_fini(void); 294 void nm_os_ifnet_lock(void); 295 void nm_os_ifnet_unlock(void); 296 297 unsigned nm_os_ifnet_mtu(if_t ifp); 298 299 void nm_os_get_module(void); 300 void nm_os_put_module(void); 301 302 void netmap_make_zombie(if_t); 303 void netmap_undo_zombie(if_t); 304 305 /* os independent alloc/realloc/free */ 306 void *nm_os_malloc(size_t); 307 void *nm_os_vmalloc(size_t); 308 void *nm_os_realloc(void *, size_t new_size, size_t old_size); 309 void nm_os_free(void *); 310 void nm_os_vfree(void *); 311 312 /* os specific attach/detach enter/exit-netmap-mode routines */ 313 void nm_os_onattach(if_t); 314 void nm_os_ondetach(if_t); 315 void nm_os_onenter(if_t); 316 void nm_os_onexit(if_t); 317 318 /* passes a packet up to the host stack. 319 * If the packet is sent (or dropped) immediately it returns NULL, 320 * otherwise it links the packet to prev and returns m. 321 * In this case, a final call with m=NULL and prev != NULL will send up 322 * the entire chain to the host stack. 323 */ 324 void *nm_os_send_up(if_t, struct mbuf *m, struct mbuf *prev); 325 326 int nm_os_mbuf_has_seg_offld(struct mbuf *m); 327 int nm_os_mbuf_has_csum_offld(struct mbuf *m); 328 329 #include "netmap_mbq.h" 330 331 extern NMG_LOCK_T netmap_global_lock; 332 333 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 334 335 static __inline const char* 336 nm_txrx2str(enum txrx t) 337 { 338 return (t== NR_RX ? "RX" : "TX"); 339 } 340 341 static __inline enum txrx 342 nm_txrx_swap(enum txrx t) 343 { 344 return (t== NR_RX ? NR_TX : NR_RX); 345 } 346 347 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 348 349 #ifdef WITH_MONITOR 350 struct netmap_zmon_list { 351 struct netmap_kring *next; 352 struct netmap_kring *prev; 353 }; 354 #endif /* WITH_MONITOR */ 355 356 /* 357 * private, kernel view of a ring. Keeps track of the status of 358 * a ring across system calls. 359 * 360 * nr_hwcur index of the next buffer to refill. 361 * It corresponds to ring->head 362 * at the time the system call returns. 363 * 364 * nr_hwtail index of the first buffer owned by the kernel. 365 * On RX, hwcur->hwtail are receive buffers 366 * not yet released. hwcur is advanced following 367 * ring->head, hwtail is advanced on incoming packets, 368 * and a wakeup is generated when hwtail passes ring->cur 369 * On TX, hwcur->rcur have been filled by the sender 370 * but not sent yet to the NIC; rcur->hwtail are available 371 * for new transmissions, and hwtail->hwcur-1 are pending 372 * transmissions not yet acknowledged. 373 * 374 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 375 * This is so that, on a reset, buffers owned by userspace are not 376 * modified by the kernel. In particular: 377 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 378 * the next empty buffer as known by the hardware (next_to_check or so). 379 * TX rings: hwcur + hwofs coincides with next_to_send 380 * 381 * The following fields are used to implement lock-free copy of packets 382 * from input to output ports in VALE switch: 383 * nkr_hwlease buffer after the last one being copied. 384 * A writer in nm_bdg_flush reserves N buffers 385 * from nr_hwlease, advances it, then does the 386 * copy outside the lock. 387 * In RX rings (used for VALE ports), 388 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 389 * In TX rings (used for NIC or host stack ports) 390 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 391 * nkr_leases array of nkr_num_slots where writers can report 392 * completion of their block. NR_NOSLOT (~0) indicates 393 * that the writer has not finished yet 394 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 395 * 396 * The kring is manipulated by txsync/rxsync and generic netmap function. 397 * 398 * Concurrent rxsync or txsync on the same ring are prevented through 399 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 400 * for NIC rings, and for TX rings attached to the host stack. 401 * 402 * RX rings attached to the host stack use an mbq (rx_queue) on both 403 * rxsync_from_host() and netmap_transmit(). The mbq is protected 404 * by its internal lock. 405 * 406 * RX rings attached to the VALE switch are accessed by both senders 407 * and receiver. They are protected through the q_lock on the RX ring. 408 */ 409 struct netmap_kring { 410 struct netmap_ring *ring; 411 412 uint32_t nr_hwcur; /* should be nr_hwhead */ 413 uint32_t nr_hwtail; 414 415 /* 416 * Copies of values in user rings, so we do not need to look 417 * at the ring (which could be modified). These are set in the 418 * *sync_prologue()/finalize() routines. 419 */ 420 uint32_t rhead; 421 uint32_t rcur; 422 uint32_t rtail; 423 424 uint32_t nr_kflags; /* private driver flags */ 425 #define NKR_PENDINTR 0x1 // Pending interrupt. 426 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 427 #define NKR_FORWARD 0x4 /* (host ring only) there are 428 packets to forward 429 */ 430 #define NKR_NEEDRING 0x8 /* ring needed even if users==0 431 * (used internally by pipes and 432 * by ptnetmap host ports) 433 */ 434 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ 435 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ 436 437 uint32_t nr_mode; 438 uint32_t nr_pending_mode; 439 #define NKR_NETMAP_OFF 0x0 440 #define NKR_NETMAP_ON 0x1 441 442 uint32_t nkr_num_slots; 443 444 /* 445 * On a NIC reset, the NIC ring indexes may be reset but the 446 * indexes in the netmap rings remain the same. nkr_hwofs 447 * keeps track of the offset between the two. 448 * 449 * Moreover, during reset, we can restore only the subset of 450 * the NIC ring that corresponds to the kernel-owned part of 451 * the netmap ring. The rest of the slots must be restored 452 * by the *sync routines when the user releases more slots. 453 * The nkr_to_refill field keeps track of the number of slots 454 * that still need to be restored. 455 */ 456 int32_t nkr_hwofs; 457 int32_t nkr_to_refill; 458 459 /* last_reclaim is opaque marker to help reduce the frequency 460 * of operations such as reclaiming tx buffers. A possible use 461 * is set it to ticks and do the reclaim only once per tick. 462 */ 463 uint64_t last_reclaim; 464 465 466 NM_SELINFO_T si; /* poll/select wait queue */ 467 NM_LOCK_T q_lock; /* protects kring and ring. */ 468 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 469 470 /* the adapter the owns this kring */ 471 struct netmap_adapter *na; 472 473 /* the adapter that wants to be notified when this kring has 474 * new slots available. This is usually the same as the above, 475 * but wrappers may let it point to themselves 476 */ 477 struct netmap_adapter *notify_na; 478 479 /* The following fields are for VALE switch support */ 480 struct nm_bdg_fwd *nkr_ft; 481 uint32_t *nkr_leases; 482 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 483 uint32_t nkr_hwlease; 484 uint32_t nkr_lease_idx; 485 486 /* while nkr_stopped is set, no new [tr]xsync operations can 487 * be started on this kring. 488 * This is used by netmap_disable_all_rings() 489 * to find a synchronization point where critical data 490 * structures pointed to by the kring can be added or removed 491 */ 492 volatile int nkr_stopped; 493 494 /* Support for adapters without native netmap support. 495 * On tx rings we preallocate an array of tx buffers 496 * (same size as the netmap ring), on rx rings we 497 * store incoming mbufs in a queue that is drained by 498 * a rxsync. 499 */ 500 struct mbuf **tx_pool; 501 struct mbuf *tx_event; /* TX event used as a notification */ 502 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ 503 #ifdef __FreeBSD__ 504 struct callout tx_event_callout; 505 #endif 506 struct mbq rx_queue; /* intercepted rx mbufs. */ 507 508 uint32_t users; /* existing bindings for this ring */ 509 510 uint32_t ring_id; /* kring identifier */ 511 enum txrx tx; /* kind of ring (tx or rx) */ 512 char name[64]; /* diagnostic */ 513 514 /* [tx]sync callback for this kring. 515 * The default nm_kring_create callback (netmap_krings_create) 516 * sets the nm_sync callback of each hardware tx(rx) kring to 517 * the corresponding nm_txsync(nm_rxsync) taken from the 518 * netmap_adapter; moreover, it sets the sync callback 519 * of the host tx(rx) ring to netmap_txsync_to_host 520 * (netmap_rxsync_from_host). 521 * 522 * Overrides: the above configuration is not changed by 523 * any of the nm_krings_create callbacks. 524 */ 525 int (*nm_sync)(struct netmap_kring *kring, int flags); 526 int (*nm_notify)(struct netmap_kring *kring, int flags); 527 528 #ifdef WITH_PIPES 529 struct netmap_kring *pipe; /* if this is a pipe ring, 530 * pointer to the other end 531 */ 532 uint32_t pipe_tail; /* hwtail updated by the other end */ 533 #endif /* WITH_PIPES */ 534 535 /* mask for the offset-related part of the ptr field in the slots */ 536 uint64_t offset_mask; 537 /* maximum user-specified offset, as stipulated at bind time. 538 * Larger offset requests will be silently capped to offset_max. 539 */ 540 uint64_t offset_max; 541 /* minimum gap between two consecutive offsets into the same 542 * buffer, as stipulated at bind time. This is used to choose 543 * the hwbuf_len, but is not otherwise checked for compliance 544 * at runtime. 545 */ 546 uint64_t offset_gap; 547 548 /* size of hardware buffer. This may be less than the size of 549 * the netmap buffers because of non-zero offsets, or because 550 * the netmap buffer size exceeds the capability of the hardware. 551 */ 552 uint64_t hwbuf_len; 553 554 /* required alignment (in bytes) for the buffers used by this ring. 555 * Netmap buffers are aligned to cachelines, which should suffice 556 * for most NICs. If the user is passing offsets, though, we need 557 * to check that the resulting buf address complies with any 558 * alignment restriction. 559 */ 560 uint64_t buf_align; 561 562 /* hardware specific logic for the selection of the hwbuf_len */ 563 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); 564 565 int (*save_notify)(struct netmap_kring *kring, int flags); 566 567 #ifdef WITH_MONITOR 568 /* array of krings that are monitoring this kring */ 569 struct netmap_kring **monitors; 570 uint32_t max_monitors; /* current size of the monitors array */ 571 uint32_t n_monitors; /* next unused entry in the monitor array */ 572 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ 573 uint32_t mon_tail; /* last seen slot on rx */ 574 575 /* circular list of zero-copy monitors */ 576 struct netmap_zmon_list zmon_list[NR_TXRX]; 577 578 /* 579 * Monitors work by intercepting the sync and notify callbacks of the 580 * monitored krings. This is implemented by replacing the pointers 581 * above and saving the previous ones in mon_* pointers below 582 */ 583 int (*mon_sync)(struct netmap_kring *kring, int flags); 584 int (*mon_notify)(struct netmap_kring *kring, int flags); 585 586 #endif 587 } 588 #ifdef _WIN32 589 __declspec(align(64)); 590 #else 591 __attribute__((__aligned__(64))); 592 #endif 593 594 /* return 1 iff the kring needs to be turned on */ 595 static inline int 596 nm_kring_pending_on(struct netmap_kring *kring) 597 { 598 return kring->nr_pending_mode == NKR_NETMAP_ON && 599 kring->nr_mode == NKR_NETMAP_OFF; 600 } 601 602 /* return 1 iff the kring needs to be turned off */ 603 static inline int 604 nm_kring_pending_off(struct netmap_kring *kring) 605 { 606 return kring->nr_pending_mode == NKR_NETMAP_OFF && 607 kring->nr_mode == NKR_NETMAP_ON; 608 } 609 610 /* return the next index, with wraparound */ 611 static inline uint32_t 612 nm_next(uint32_t i, uint32_t lim) 613 { 614 return unlikely (i == lim) ? 0 : i + 1; 615 } 616 617 618 /* return the previous index, with wraparound */ 619 static inline uint32_t 620 nm_prev(uint32_t i, uint32_t lim) 621 { 622 return unlikely (i == 0) ? lim : i - 1; 623 } 624 625 626 /* 627 * 628 * Here is the layout for the Rx and Tx rings. 629 630 RxRING TxRING 631 632 +-----------------+ +-----------------+ 633 | | | | 634 | free | | free | 635 +-----------------+ +-----------------+ 636 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 637 | | | yet | 638 +-----------------+ | | 639 cur->| available to | | | 640 | user, not read | +-----------------+ 641 | yet | cur->| (being | 642 | | | prepared) | 643 | | | | 644 +-----------------+ + ------ + 645 tail->| |<-hwtail | |<-hwlease 646 | (being | ... | | ... 647 | prepared) | ... | | ... 648 +-----------------+ ... | | ... 649 | |<-hwlease +-----------------+ 650 | | tail->| |<-hwtail 651 | | | | 652 | | | | 653 | | | | 654 +-----------------+ +-----------------+ 655 656 * The cur/tail (user view) and hwcur/hwtail (kernel view) 657 * are used in the normal operation of the card. 658 * 659 * When a ring is the output of a switch port (Rx ring for 660 * a VALE port, Tx ring for the host stack or NIC), slots 661 * are reserved in blocks through 'hwlease' which points 662 * to the next unused slot. 663 * On an Rx ring, hwlease is always after hwtail, 664 * and completions cause hwtail to advance. 665 * On a Tx ring, hwlease is always between cur and hwtail, 666 * and completions cause cur to advance. 667 * 668 * nm_kr_space() returns the maximum number of slots that 669 * can be assigned. 670 * nm_kr_lease() reserves the required number of buffers, 671 * advances nkr_hwlease and also returns an entry in 672 * a circular array where completions should be reported. 673 */ 674 675 struct lut_entry; 676 #ifdef __FreeBSD__ 677 #define plut_entry lut_entry 678 #endif 679 680 struct netmap_lut { 681 struct lut_entry *lut; 682 struct plut_entry *plut; 683 uint32_t objtotal; /* max buffer index */ 684 uint32_t objsize; /* buffer size */ 685 }; 686 687 struct netmap_vp_adapter; // forward 688 struct nm_bridge; 689 690 /* Struct to be filled by nm_config callbacks. */ 691 struct nm_config_info { 692 unsigned num_tx_rings; 693 unsigned num_rx_rings; 694 unsigned num_tx_descs; 695 unsigned num_rx_descs; 696 unsigned rx_buf_maxsize; 697 }; 698 699 /* 700 * default type for the magic field. 701 * May be overridden in glue code. 702 */ 703 #ifndef NM_OS_MAGIC 704 #define NM_OS_MAGIC uint32_t 705 #endif /* !NM_OS_MAGIC */ 706 707 /* 708 * The "struct netmap_adapter" extends the "struct adapter" 709 * (or equivalent) device descriptor. 710 * It contains all base fields needed to support netmap operation. 711 * There are in fact different types of netmap adapters 712 * (native, generic, VALE switch...) so a netmap_adapter is 713 * just the first field in the derived type. 714 */ 715 struct netmap_adapter { 716 /* 717 * On linux we do not have a good way to tell if an interface 718 * is netmap-capable. So we always use the following trick: 719 * NA(ifp) points here, and the first entry (which hopefully 720 * always exists and is at least 32 bits) contains a magic 721 * value which we can use to detect that the interface is good. 722 */ 723 NM_OS_MAGIC magic; 724 uint32_t na_flags; /* enabled, and other flags */ 725 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 726 * useful during initialization 727 */ 728 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 729 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 730 * forwarding packets coming from this 731 * interface 732 */ 733 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 734 * that cannot be changed 735 */ 736 #define NAF_NATIVE 16 /* the adapter is native. 737 * Virtual ports (non persistent vale ports, 738 * pipes, monitors...) should never use 739 * this flag. 740 */ 741 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 742 * emulated). Where possible (e.g. FreeBSD) 743 * IFCAP_NETMAP also mirrors this flag. 744 */ 745 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 746 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 747 /* free */ 748 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ 749 #define NAF_OFFSETS 1024 /* the adapter supports the slot offsets */ 750 #define NAF_HOST_ALL 2048 /* the adapter wants as many host rings as hw */ 751 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ 752 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 753 * cannot be registered from userspace 754 */ 755 int active_fds; /* number of user-space descriptors using this 756 interface, which is equal to the number of 757 struct netmap_if objs in the mapped region. */ 758 759 u_int num_rx_rings; /* number of adapter receive rings */ 760 u_int num_tx_rings; /* number of adapter transmit rings */ 761 u_int num_host_rx_rings; /* number of host receive rings */ 762 u_int num_host_tx_rings; /* number of host transmit rings */ 763 764 u_int num_tx_desc; /* number of descriptor in each queue */ 765 u_int num_rx_desc; 766 767 /* tx_rings and rx_rings are private but allocated as a 768 * contiguous chunk of memory. Each array has N+K entries, 769 * N for the hardware rings and K for the host rings. 770 */ 771 struct netmap_kring **tx_rings; /* array of TX rings. */ 772 struct netmap_kring **rx_rings; /* array of RX rings. */ 773 774 void *tailroom; /* space below the rings array */ 775 /* (used for leases) */ 776 777 778 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 779 780 /* count users of the global wait queues */ 781 int si_users[NR_TXRX]; 782 783 void *pdev; /* used to store pci device */ 784 785 /* copy of if_qflush and if_transmit pointers, to intercept 786 * packets from the network stack when netmap is active. 787 */ 788 int (*if_transmit)(if_t, struct mbuf *); 789 790 /* copy of if_input for netmap_send_up() */ 791 void (*if_input)(if_t, struct mbuf *); 792 793 /* Back reference to the parent ifnet struct. Used for 794 * hardware ports (emulated netmap included). */ 795 if_t ifp; /* adapter is if_getsoftc(ifp) */ 796 797 /*---- callbacks for this netmap adapter -----*/ 798 /* 799 * nm_dtor() is the cleanup routine called when destroying 800 * the adapter. 801 * Called with NMG_LOCK held. 802 * 803 * nm_register() is called on NIOCREGIF and close() to enter 804 * or exit netmap mode on the NIC 805 * Called with NNG_LOCK held. 806 * 807 * nm_txsync() pushes packets to the underlying hw/switch 808 * 809 * nm_rxsync() collects packets from the underlying hw/switch 810 * 811 * nm_config() returns configuration information from the OS 812 * Called with NMG_LOCK held. 813 * 814 * nm_bufcfg() 815 * the purpose of this callback is to fill the kring->hwbuf_len 816 * (l) and kring->buf_align fields. The l value is most important 817 * for RX rings, where we want to disallow writes outside of the 818 * netmap buffer. The l value must be computed taking into account 819 * the stipulated max_offset (o), possibly increased if there are 820 * alignment constraints, the maxframe (m), if known, and the 821 * current NETMAP_BUF_SIZE (b) of the memory region used by the 822 * adapter. We want the largest supported l such that o + l <= b. 823 * If m is known to be <= b - o, the callback may also choose the 824 * largest l <= m, ignoring the offset. The buf_align field is 825 * most important for TX rings when there are offsets. The user 826 * will see this value in the ring->buf_align field. Misaligned 827 * offsets will cause the corresponding packets to be silently 828 * dropped. 829 * 830 * nm_krings_create() create and init the tx_rings and 831 * rx_rings arrays of kring structures. In particular, 832 * set the nm_sync callbacks for each ring. 833 * There is no need to also allocate the corresponding 834 * netmap_rings, since netmap_mem_rings_create() will always 835 * be called to provide the missing ones. 836 * Called with NNG_LOCK held. 837 * 838 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 839 * arrays 840 * Called with NMG_LOCK held. 841 * 842 * nm_notify() is used to act after data have become available 843 * (or the stopped state of the ring has changed) 844 * For hw devices this is typically a selwakeup(), 845 * but for NIC/host ports attached to a switch (or vice-versa) 846 * we also need to invoke the 'txsync' code downstream. 847 * This callback pointer is actually used only to initialize 848 * kring->nm_notify. 849 * Return values are the same as for netmap_rx_irq(). 850 */ 851 void (*nm_dtor)(struct netmap_adapter *); 852 853 int (*nm_register)(struct netmap_adapter *, int onoff); 854 void (*nm_intr)(struct netmap_adapter *, int onoff); 855 856 int (*nm_txsync)(struct netmap_kring *kring, int flags); 857 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 858 int (*nm_notify)(struct netmap_kring *kring, int flags); 859 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); 860 #define NAF_FORCE_READ 1 861 #define NAF_FORCE_RECLAIM 2 862 #define NAF_CAN_FORWARD_DOWN 4 863 /* return configuration information */ 864 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); 865 int (*nm_krings_create)(struct netmap_adapter *); 866 void (*nm_krings_delete)(struct netmap_adapter *); 867 /* 868 * nm_bdg_attach() initializes the na_vp field to point 869 * to an adapter that can be attached to a VALE switch. If the 870 * current adapter is already a VALE port, na_vp is simply a cast; 871 * otherwise, na_vp points to a netmap_bwrap_adapter. 872 * If applicable, this callback also initializes na_hostvp, 873 * that can be used to connect the adapter host rings to the 874 * switch. 875 * Called with NMG_LOCK held. 876 * 877 * nm_bdg_ctl() is called on the actual attach/detach to/from 878 * to/from the switch, to perform adapter-specific 879 * initializations 880 * Called with NMG_LOCK held. 881 */ 882 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, 883 struct nm_bridge *); 884 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); 885 886 /* adapter used to attach this adapter to a VALE switch (if any) */ 887 struct netmap_vp_adapter *na_vp; 888 /* adapter used to attach the host rings of this adapter 889 * to a VALE switch (if any) */ 890 struct netmap_vp_adapter *na_hostvp; 891 892 /* standard refcount to control the lifetime of the adapter 893 * (it should be equal to the lifetime of the corresponding ifp) 894 */ 895 int na_refcount; 896 897 /* memory allocator (opaque) 898 * We also cache a pointer to the lut_entry for translating 899 * buffer addresses, the total number of buffers and the buffer size. 900 */ 901 struct netmap_mem_d *nm_mem; 902 struct netmap_mem_d *nm_mem_prev; 903 struct netmap_lut na_lut; 904 905 /* additional information attached to this adapter 906 * by other netmap subsystems. Currently used by 907 * bwrap, LINUX/v1000 and ptnetmap 908 */ 909 void *na_private; 910 911 /* array of pipes that have this adapter as a parent */ 912 struct netmap_pipe_adapter **na_pipes; 913 int na_next_pipe; /* next free slot in the array */ 914 int na_max_pipes; /* size of the array */ 915 916 /* Offset of ethernet header for each packet. */ 917 u_int virt_hdr_len; 918 919 /* Max number of bytes that the NIC can store in the buffer 920 * referenced by each RX descriptor. This translates to the maximum 921 * bytes that a single netmap slot can reference. Larger packets 922 * require NS_MOREFRAG support. */ 923 unsigned rx_buf_maxsize; 924 925 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ 926 927 #ifdef WITH_MONITOR 928 unsigned long monitor_id; /* debugging */ 929 #endif 930 }; 931 932 static __inline u_int 933 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 934 { 935 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 936 } 937 938 static __inline void 939 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 940 { 941 if (t == NR_TX) 942 na->num_tx_desc = v; 943 else 944 na->num_rx_desc = v; 945 } 946 947 static __inline u_int 948 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 949 { 950 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 951 } 952 953 static __inline u_int 954 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) 955 { 956 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); 957 } 958 959 static __inline void 960 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 961 { 962 if (t == NR_TX) 963 na->num_tx_rings = v; 964 else 965 na->num_rx_rings = v; 966 } 967 968 static __inline void 969 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 970 { 971 if (t == NR_TX) 972 na->num_host_tx_rings = v; 973 else 974 na->num_host_rx_rings = v; 975 } 976 977 static __inline struct netmap_kring** 978 NMR(struct netmap_adapter *na, enum txrx t) 979 { 980 return (t == NR_TX ? na->tx_rings : na->rx_rings); 981 } 982 983 int nma_intr_enable(struct netmap_adapter *na, int onoff); 984 985 /* 986 * If the NIC is owned by the kernel 987 * (i.e., bridge), neither another bridge nor user can use it; 988 * if the NIC is owned by a user, only users can share it. 989 * Evaluation must be done under NMG_LOCK(). 990 */ 991 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 992 #define NETMAP_OWNED_BY_ANY(na) \ 993 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 994 995 /* 996 * derived netmap adapters for various types of ports 997 */ 998 struct netmap_vp_adapter { /* VALE software port */ 999 struct netmap_adapter up; 1000 1001 /* 1002 * Bridge support: 1003 * 1004 * bdg_port is the port number used in the bridge; 1005 * na_bdg points to the bridge this NA is attached to. 1006 */ 1007 int bdg_port; 1008 struct nm_bridge *na_bdg; 1009 int retry; 1010 int autodelete; /* remove the ifp on last reference */ 1011 1012 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 1013 u_int mfs; 1014 /* Last source MAC on this port */ 1015 uint64_t last_smac; 1016 }; 1017 1018 1019 struct netmap_hw_adapter { /* physical device */ 1020 struct netmap_adapter up; 1021 1022 #ifdef linux 1023 struct net_device_ops nm_ndo; 1024 struct ethtool_ops nm_eto; 1025 #endif 1026 const struct ethtool_ops* save_ethtool; 1027 1028 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 1029 }; 1030 1031 #ifdef WITH_GENERIC 1032 /* Mitigation support. */ 1033 struct nm_generic_mit { 1034 struct hrtimer mit_timer; 1035 int mit_pending; 1036 int mit_ring_idx; /* index of the ring being mitigated */ 1037 struct netmap_adapter *mit_na; /* backpointer */ 1038 }; 1039 1040 struct netmap_generic_adapter { /* emulated device */ 1041 struct netmap_hw_adapter up; 1042 1043 /* Pointer to a previously used netmap adapter. */ 1044 struct netmap_adapter *prev; 1045 1046 /* Emulated netmap adapters support: 1047 * - mit implements rx interrupt mitigation; 1048 */ 1049 struct nm_generic_mit *mit; 1050 #ifdef linux 1051 netdev_tx_t (*save_start_xmit)(struct mbuf *, if_t); 1052 #endif 1053 /* Is the adapter able to use multiple RX slots to scatter 1054 * each packet pushed up by the driver? */ 1055 int rxsg; 1056 1057 /* Is the transmission path controlled by a netmap-aware 1058 * device queue (i.e. qdisc on linux)? */ 1059 int txqdisc; 1060 }; 1061 #endif /* WITH_GENERIC */ 1062 1063 static __inline u_int 1064 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 1065 { 1066 return nma_get_nrings(na, t) + 1067 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); 1068 } 1069 1070 /* account for fake rings */ 1071 static __inline u_int 1072 netmap_all_rings(struct netmap_adapter *na, enum txrx t) 1073 { 1074 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); 1075 } 1076 1077 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, 1078 struct nm_bridge *); 1079 struct nm_bdg_polling_state; 1080 /* 1081 * Bridge wrapper for non VALE ports attached to a VALE switch. 1082 * 1083 * The real device must already have its own netmap adapter (hwna). 1084 * The bridge wrapper and the hwna adapter share the same set of 1085 * netmap rings and buffers, but they have two separate sets of 1086 * krings descriptors, with tx/rx meanings swapped: 1087 * 1088 * netmap 1089 * bwrap krings rings krings hwna 1090 * +------+ +------+ +-----+ +------+ +------+ 1091 * |tx_rings->| |\ /| |----| |<-tx_rings| 1092 * | | +------+ \ / +-----+ +------+ | | 1093 * | | X | | 1094 * | | / \ | | 1095 * | | +------+/ \+-----+ +------+ | | 1096 * |rx_rings->| | | |----| |<-rx_rings| 1097 * | | +------+ +-----+ +------+ | | 1098 * +------+ +------+ 1099 * 1100 * - packets coming from the bridge go to the brwap rx rings, 1101 * which are also the hwna tx rings. The bwrap notify callback 1102 * will then complete the hwna tx (see netmap_bwrap_notify). 1103 * 1104 * - packets coming from the outside go to the hwna rx rings, 1105 * which are also the bwrap tx rings. The (overwritten) hwna 1106 * notify method will then complete the bridge tx 1107 * (see netmap_bwrap_intr_notify). 1108 * 1109 * The bridge wrapper may optionally connect the hwna 'host' rings 1110 * to the bridge. This is done by using a second port in the 1111 * bridge and connecting it to the 'host' netmap_vp_adapter 1112 * contained in the netmap_bwrap_adapter. The brwap host adapter 1113 * cross-links the hwna host rings in the same way as shown above. 1114 * 1115 * - packets coming from the bridge and directed to the host stack 1116 * are handled by the bwrap host notify callback 1117 * (see netmap_bwrap_host_notify) 1118 * 1119 * - packets coming from the host stack are still handled by the 1120 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 1121 * but are diverted to the host adapter depending on the ring number. 1122 * 1123 */ 1124 struct netmap_bwrap_adapter { 1125 struct netmap_vp_adapter up; 1126 struct netmap_vp_adapter host; /* for host rings */ 1127 struct netmap_adapter *hwna; /* the underlying device */ 1128 1129 /* 1130 * When we attach a physical interface to the bridge, we 1131 * allow the controlling process to terminate, so we need 1132 * a place to store the n_detmap_priv_d data structure. 1133 * This is only done when physical interfaces 1134 * are attached to a bridge. 1135 */ 1136 struct netmap_priv_d *na_kpriv; 1137 struct nm_bdg_polling_state *na_polling_state; 1138 /* we overwrite the hwna->na_vp pointer, so we save 1139 * here its original value, to be restored at detach 1140 */ 1141 struct netmap_vp_adapter *saved_na_vp; 1142 int (*nm_intr_notify)(struct netmap_kring *kring, int flags); 1143 }; 1144 int nm_is_bwrap(struct netmap_adapter *na); 1145 int nm_bdg_polling(struct nmreq_header *hdr); 1146 1147 int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token); 1148 int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token); 1149 #ifdef WITH_VALE 1150 int netmap_vale_list(struct nmreq_header *hdr); 1151 int netmap_vi_create(struct nmreq_header *hdr, int); 1152 int nm_vi_create(struct nmreq_header *); 1153 int nm_vi_destroy(const char *name); 1154 #else /* !WITH_VALE */ 1155 #define netmap_vi_create(hdr, a) (EOPNOTSUPP) 1156 #endif /* WITH_VALE */ 1157 1158 #ifdef WITH_PIPES 1159 1160 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 1161 1162 struct netmap_pipe_adapter { 1163 /* pipe identifier is up.name */ 1164 struct netmap_adapter up; 1165 1166 #define NM_PIPE_ROLE_MASTER 0x1 1167 #define NM_PIPE_ROLE_SLAVE 0x2 1168 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ 1169 1170 struct netmap_adapter *parent; /* adapter that owns the memory */ 1171 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 1172 int peer_ref; /* 1 iff we are holding a ref to the peer */ 1173 if_t parent_ifp; /* maybe null */ 1174 1175 u_int parent_slot; /* index in the parent pipe array */ 1176 }; 1177 1178 #endif /* WITH_PIPES */ 1179 1180 #ifdef WITH_NMNULL 1181 struct netmap_null_adapter { 1182 struct netmap_adapter up; 1183 }; 1184 #endif /* WITH_NMNULL */ 1185 1186 1187 /* return slots reserved to rx clients; used in drivers */ 1188 static inline uint32_t 1189 nm_kr_rxspace(struct netmap_kring *k) 1190 { 1191 int space = k->nr_hwtail - k->nr_hwcur; 1192 if (space < 0) 1193 space += k->nkr_num_slots; 1194 nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 1195 1196 return space; 1197 } 1198 1199 /* return slots reserved to tx clients */ 1200 #define nm_kr_txspace(_k) nm_kr_rxspace(_k) 1201 1202 1203 /* True if no space in the tx ring, only valid after txsync_prologue */ 1204 static inline int 1205 nm_kr_txempty(struct netmap_kring *kring) 1206 { 1207 return kring->rhead == kring->nr_hwtail; 1208 } 1209 1210 /* True if no more completed slots in the rx ring, only valid after 1211 * rxsync_prologue */ 1212 #define nm_kr_rxempty(_k) nm_kr_txempty(_k) 1213 1214 /* True if the application needs to wait for more space on the ring 1215 * (more received packets or more free tx slots). 1216 * Only valid after *xsync_prologue. */ 1217 static inline int 1218 nm_kr_wouldblock(struct netmap_kring *kring) 1219 { 1220 return kring->rcur == kring->nr_hwtail; 1221 } 1222 1223 /* 1224 * protect against multiple threads using the same ring. 1225 * also check that the ring has not been stopped or locked 1226 */ 1227 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ 1228 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ 1229 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ 1230 1231 1232 /* release the previously acquired right to use the *sync() methods of the ring */ 1233 static __inline void nm_kr_put(struct netmap_kring *kr) 1234 { 1235 NM_ATOMIC_CLEAR(&kr->nr_busy); 1236 } 1237 1238 1239 /* true if the ifp that backed the adapter has disappeared (e.g., the 1240 * driver has been unloaded) 1241 */ 1242 static inline int nm_iszombie(struct netmap_adapter *na); 1243 1244 /* try to obtain exclusive right to issue the *sync() operations on the ring. 1245 * The right is obtained and must be later relinquished via nm_kr_put() if and 1246 * only if nm_kr_tryget() returns 0. 1247 * If can_sleep is 1 there are only two other possible outcomes: 1248 * - the function returns NM_KR_BUSY 1249 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr 1250 * (if non-null) 1251 * In both cases the caller will typically skip the ring, possibly collecting 1252 * errors along the way. 1253 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. 1254 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr 1255 * untouched: ideally, the caller should try again at a later time. 1256 */ 1257 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) 1258 { 1259 int busy = 1, stopped; 1260 /* check a first time without taking the lock 1261 * to avoid starvation for nm_kr_get() 1262 */ 1263 retry: 1264 stopped = kr->nkr_stopped; 1265 if (unlikely(stopped)) { 1266 goto stop; 1267 } 1268 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); 1269 /* we should not return NM_KR_BUSY if the ring was 1270 * actually stopped, so check another time after 1271 * the barrier provided by the atomic operation 1272 */ 1273 stopped = kr->nkr_stopped; 1274 if (unlikely(stopped)) { 1275 goto stop; 1276 } 1277 1278 if (unlikely(nm_iszombie(kr->na))) { 1279 stopped = NM_KR_STOPPED; 1280 goto stop; 1281 } 1282 1283 return unlikely(busy) ? NM_KR_BUSY : 0; 1284 1285 stop: 1286 if (!busy) 1287 nm_kr_put(kr); 1288 if (stopped == NM_KR_STOPPED) { 1289 /* if POLLERR is defined we want to use it to simplify netmap_poll(). 1290 * Otherwise, any non-zero value will do. 1291 */ 1292 #ifdef POLLERR 1293 #define NM_POLLERR POLLERR 1294 #else 1295 #define NM_POLLERR 1 1296 #endif /* POLLERR */ 1297 if (perr) 1298 *perr |= NM_POLLERR; 1299 #undef NM_POLLERR 1300 } else if (can_sleep) { 1301 tsleep(kr, 0, "NM_KR_TRYGET", 4); 1302 goto retry; 1303 } 1304 return stopped; 1305 } 1306 1307 /* put the ring in the 'stopped' state and wait for the current user (if any) to 1308 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED 1309 */ 1310 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) 1311 { 1312 kr->nkr_stopped = stopped; 1313 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 1314 tsleep(kr, 0, "NM_KR_GET", 4); 1315 } 1316 1317 /* restart a ring after a stop */ 1318 static __inline void nm_kr_start(struct netmap_kring *kr) 1319 { 1320 kr->nkr_stopped = 0; 1321 nm_kr_put(kr); 1322 } 1323 1324 1325 /* 1326 * The following functions are used by individual drivers to 1327 * support netmap operation. 1328 * 1329 * netmap_attach() initializes a struct netmap_adapter, allocating the 1330 * struct netmap_ring's and the struct selinfo. 1331 * 1332 * netmap_detach() frees the memory allocated by netmap_attach(). 1333 * 1334 * netmap_transmit() replaces the if_transmit routine of the interface, 1335 * and is used to intercept packets coming from the stack. 1336 * 1337 * netmap_load_map/netmap_reload_map are helper routines to set/reset 1338 * the dmamap for a packet buffer 1339 * 1340 * netmap_reset() is a helper routine to be called in the hw driver 1341 * when reinitializing a ring. It should not be called by 1342 * virtual ports (vale, pipes, monitor) 1343 */ 1344 int netmap_attach(struct netmap_adapter *); 1345 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); 1346 void netmap_detach(if_t); 1347 int netmap_transmit(if_t, struct mbuf *); 1348 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 1349 enum txrx tx, u_int n, u_int new_cur); 1350 int netmap_ring_reinit(struct netmap_kring *); 1351 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); 1352 1353 /* Return codes for netmap_*x_irq. */ 1354 enum { 1355 /* Driver should do normal interrupt processing, e.g. because 1356 * the interface is not in netmap mode. */ 1357 NM_IRQ_PASS = 0, 1358 /* Port is in netmap mode, and the interrupt work has been 1359 * completed. The driver does not have to notify netmap 1360 * again before the next interrupt. */ 1361 NM_IRQ_COMPLETED = -1, 1362 /* Port is in netmap mode, but the interrupt work has not been 1363 * completed. The driver has to make sure netmap will be 1364 * notified again soon, even if no more interrupts come (e.g. 1365 * on Linux the driver should not call napi_complete()). */ 1366 NM_IRQ_RESCHED = -2, 1367 }; 1368 1369 /* default functions to handle rx/tx interrupts */ 1370 int netmap_rx_irq(if_t, u_int, u_int *); 1371 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 1372 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); 1373 1374 1375 #ifdef WITH_VALE 1376 /* functions used by external modules to interface with VALE */ 1377 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 1378 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 1379 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 1380 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 1381 const char *netmap_bdg_name(struct netmap_vp_adapter *); 1382 #else /* !WITH_VALE */ 1383 #define netmap_vp_to_ifp(_vp) NULL 1384 #define netmap_ifp_to_vp(_ifp) NULL 1385 #define netmap_ifp_to_host_vp(_ifp) NULL 1386 #define netmap_bdg_idx(_vp) -1 1387 #endif /* WITH_VALE */ 1388 1389 static inline int 1390 nm_netmap_on(struct netmap_adapter *na) 1391 { 1392 return na && na->na_flags & NAF_NETMAP_ON; 1393 } 1394 1395 static inline int 1396 nm_native_on(struct netmap_adapter *na) 1397 { 1398 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 1399 } 1400 1401 static inline struct netmap_kring * 1402 netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t) 1403 { 1404 struct netmap_kring *kring = NULL; 1405 1406 if (!nm_native_on(na)) 1407 return NULL; 1408 1409 if (t == NR_RX && q < na->num_rx_rings) 1410 kring = na->rx_rings[q]; 1411 else if (t == NR_TX && q < na->num_tx_rings) 1412 kring = na->tx_rings[q]; 1413 else 1414 return NULL; 1415 1416 return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL; 1417 } 1418 1419 static inline int 1420 nm_iszombie(struct netmap_adapter *na) 1421 { 1422 return na == NULL || (na->na_flags & NAF_ZOMBIE); 1423 } 1424 1425 void nm_set_native_flags(struct netmap_adapter *); 1426 void nm_clear_native_flags(struct netmap_adapter *); 1427 1428 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff); 1429 1430 /* 1431 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap 1432 * kthreads. 1433 * We need netmap_ring* parameter, because in ptnetmap it is decoupled 1434 * from host kring. 1435 * The user-space ring pointers (head/cur/tail) are shared through 1436 * CSB between host and guest. 1437 */ 1438 1439 /* 1440 * validates parameters in the ring/kring, returns a value for head 1441 * If any error, returns ring_size to force a reinit. 1442 */ 1443 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); 1444 1445 1446 /* 1447 * validates parameters in the ring/kring, returns a value for head 1448 * If any error, returns ring_size lim to force a reinit. 1449 */ 1450 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); 1451 1452 1453 /* check/fix address and len in tx rings */ 1454 #if 1 /* debug version */ 1455 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1456 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1457 nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1458 kring->ring_id, nm_i, slot->buf_idx, len); \ 1459 if (_l > NETMAP_BUF_SIZE(_na)) \ 1460 _l = NETMAP_BUF_SIZE(_na); \ 1461 } } while (0) 1462 #else /* no debug version */ 1463 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1464 if (_l > NETMAP_BUF_SIZE(_na)) \ 1465 _l = NETMAP_BUF_SIZE(_na); \ 1466 } while (0) 1467 #endif 1468 1469 #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do { \ 1470 if ((l_) + (o_) < (l_) || \ 1471 (l_) + (o_) > NETMAP_BUF_SIZE(na_)) { \ 1472 (l_) = NETMAP_BUF_SIZE(na_) - (o_); \ 1473 } } while (0) 1474 1475 1476 /*---------------------------------------------------------------*/ 1477 /* 1478 * Support routines used by netmap subsystems 1479 * (native drivers, VALE, generic, pipes, monitors, ...) 1480 */ 1481 1482 1483 /* common routine for all functions that create a netmap adapter. It performs 1484 * two main tasks: 1485 * - if the na points to an ifp, mark the ifp as netmap capable 1486 * using na as its native adapter; 1487 * - provide defaults for the setup callbacks and the memory allocator 1488 */ 1489 int netmap_attach_common(struct netmap_adapter *); 1490 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1491 * coming from a struct nmreq_register 1492 */ 1493 int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr); 1494 /* update the ring parameters (number and size of tx and rx rings). 1495 * It calls the nm_config callback, if available. 1496 */ 1497 int netmap_update_config(struct netmap_adapter *na); 1498 /* create and initialize the common fields of the krings array. 1499 * using the information that must be already available in the na. 1500 * tailroom can be used to request the allocation of additional 1501 * tailroom bytes after the krings array. This is used by 1502 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1503 * leasing-related data structures 1504 */ 1505 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1506 /* deletes the kring array of the adapter. The array must have 1507 * been created using netmap_krings_create 1508 */ 1509 void netmap_krings_delete(struct netmap_adapter *na); 1510 1511 int netmap_hw_krings_create(struct netmap_adapter *na); 1512 void netmap_hw_krings_delete(struct netmap_adapter *na); 1513 1514 /* set the stopped/enabled status of ring 1515 * When stopping, they also wait for all current activity on the ring to 1516 * terminate. The status change is then notified using the na nm_notify 1517 * callback. 1518 */ 1519 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1520 /* set the stopped/enabled status of all rings of the adapter. */ 1521 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1522 /* convenience wrappers for netmap_set_all_rings */ 1523 void netmap_disable_all_rings(if_t); 1524 void netmap_enable_all_rings(if_t); 1525 1526 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); 1527 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1528 struct nmreq_header *); 1529 void netmap_do_unregif(struct netmap_priv_d *priv); 1530 1531 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1532 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1533 if_t *ifp, struct netmap_mem_d *nmd, int create); 1534 void netmap_unget_na(struct netmap_adapter *na, if_t ifp); 1535 int netmap_get_hw_na(if_t ifp, 1536 struct netmap_mem_d *nmd, struct netmap_adapter **na); 1537 void netmap_mem_restore(struct netmap_adapter *na); 1538 1539 #ifdef WITH_VALE 1540 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1541 struct netmap_vp_adapter *, void *private_data); 1542 1543 /* these are redefined in case of no VALE support */ 1544 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1545 struct netmap_mem_d *nmd, int create); 1546 void *netmap_vale_create(const char *bdg_name, int *return_status); 1547 int netmap_vale_destroy(const char *bdg_name, void *auth_token); 1548 1549 extern unsigned int vale_max_bridges; 1550 1551 #else /* !WITH_VALE */ 1552 #define netmap_bdg_learning(_1, _2, _3, _4) 0 1553 #define netmap_get_vale_na(_1, _2, _3, _4) 0 1554 #define netmap_bdg_create(_1, _2) NULL 1555 #define netmap_bdg_destroy(_1, _2) 0 1556 #define vale_max_bridges 1 1557 #endif /* !WITH_VALE */ 1558 1559 #ifdef WITH_PIPES 1560 /* max number of pipes per device */ 1561 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ 1562 void netmap_pipe_dealloc(struct netmap_adapter *); 1563 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1564 struct netmap_mem_d *nmd, int create); 1565 #else /* !WITH_PIPES */ 1566 #define NM_MAXPIPES 0 1567 #define netmap_pipe_alloc(_1, _2) 0 1568 #define netmap_pipe_dealloc(_1) 1569 #define netmap_get_pipe_na(hdr, _2, _3, _4) \ 1570 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) 1571 #endif 1572 1573 #ifdef WITH_MONITOR 1574 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1575 struct netmap_mem_d *nmd, int create); 1576 void netmap_monitor_stop(struct netmap_adapter *na); 1577 #else 1578 #define netmap_get_monitor_na(hdr, _2, _3, _4) \ 1579 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1580 #endif 1581 1582 #ifdef WITH_NMNULL 1583 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1584 struct netmap_mem_d *nmd, int create); 1585 #else /* !WITH_NMNULL */ 1586 #define netmap_get_null_na(hdr, _2, _3, _4) \ 1587 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1588 #endif /* WITH_NMNULL */ 1589 1590 #ifdef CONFIG_NET_NS 1591 struct net *netmap_bns_get(void); 1592 void netmap_bns_put(struct net *); 1593 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1594 #else 1595 extern struct nm_bridge *nm_bridges; 1596 #define netmap_bns_get() 1597 #define netmap_bns_put(_1) 1598 #define netmap_bns_getbridges(b, n) \ 1599 do { *b = nm_bridges; *n = vale_max_bridges; } while (0) 1600 #endif 1601 1602 /* Various prototypes */ 1603 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); 1604 int netmap_init(void); 1605 void netmap_fini(void); 1606 int netmap_get_memory(struct netmap_priv_d* p); 1607 void netmap_dtor(void *data); 1608 1609 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1610 struct thread *, int nr_body_is_user); 1611 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1612 struct thread *td); 1613 size_t nmreq_size_by_type(uint16_t nr_reqtype); 1614 1615 /* netmap_adapter creation/destruction */ 1616 1617 // #define NM_DEBUG_PUTGET 1 1618 1619 #ifdef NM_DEBUG_PUTGET 1620 1621 #define NM_DBG(f) __##f 1622 1623 void __netmap_adapter_get(struct netmap_adapter *na); 1624 1625 #define netmap_adapter_get(na) \ 1626 do { \ 1627 struct netmap_adapter *__na = na; \ 1628 __netmap_adapter_get(__na); \ 1629 nm_prinf("getting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount); \ 1630 } while (0) 1631 1632 int __netmap_adapter_put(struct netmap_adapter *na); 1633 1634 #define netmap_adapter_put(na) \ 1635 ({ \ 1636 struct netmap_adapter *__na = na; \ 1637 if (__na == NULL) \ 1638 nm_prinf("putting NULL"); \ 1639 else \ 1640 nm_prinf("putting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount - 1); \ 1641 __netmap_adapter_put(__na); \ 1642 }) 1643 1644 #else /* !NM_DEBUG_PUTGET */ 1645 1646 #define NM_DBG(f) f 1647 void netmap_adapter_get(struct netmap_adapter *na); 1648 int netmap_adapter_put(struct netmap_adapter *na); 1649 1650 #endif /* !NM_DEBUG_PUTGET */ 1651 1652 1653 /* 1654 * module variables 1655 */ 1656 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) 1657 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) 1658 extern int netmap_no_pendintr; 1659 extern int netmap_verbose; 1660 #ifdef CONFIG_NETMAP_DEBUG 1661 extern int netmap_debug; /* for debugging */ 1662 #else /* !CONFIG_NETMAP_DEBUG */ 1663 #define netmap_debug (0) 1664 #endif /* !CONFIG_NETMAP_DEBUG */ 1665 enum { /* debug flags */ 1666 NM_DEBUG_ON = 1, /* generic debug messages */ 1667 NM_DEBUG_HOST = 0x2, /* debug host stack */ 1668 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ 1669 NM_DEBUG_TXSYNC = 0x20, 1670 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ 1671 NM_DEBUG_TXINTR = 0x200, 1672 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ 1673 NM_DEBUG_NIC_TXSYNC = 0x2000, 1674 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ 1675 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ 1676 NM_DEBUG_BDG = NM_DEBUG_VALE, 1677 }; 1678 1679 extern int netmap_txsync_retry; 1680 extern int netmap_generic_hwcsum; 1681 extern int netmap_generic_mit; 1682 extern int netmap_generic_ringsize; 1683 extern int netmap_generic_rings; 1684 #ifdef linux 1685 extern int netmap_generic_txqdisc; 1686 #endif 1687 1688 /* 1689 * NA returns a pointer to the struct netmap adapter from the ifp. 1690 * The if_getnetmapadapter() and if_setnetmapadapter() helpers are 1691 * os-specific and must be defined in glue code. 1692 */ 1693 #define NA(_ifp) (if_getnetmapadapter(_ifp)) 1694 1695 /* 1696 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA 1697 * based on the if_setnetmapadapter() setter function. 1698 * Glue code may override this by defining its own NM_ATTACH_NA 1699 */ 1700 #ifndef NM_ATTACH_NA 1701 /* 1702 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we 1703 * overload another pointer in the netdev. 1704 * 1705 * We check if NA(ifp) is set and its first element has a related 1706 * magic value. The capenable is within the struct netmap_adapter. 1707 */ 1708 #define NETMAP_MAGIC 0x52697a7a 1709 1710 #define NM_NA_VALID(ifp) (NA(ifp) && \ 1711 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1712 1713 #define NM_ATTACH_NA(ifp, na) do { \ 1714 if_setnetmapadapter(ifp, na); \ 1715 if (NA(ifp)) \ 1716 NA(ifp)->magic = \ 1717 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ 1718 } while(0) 1719 #define NM_RESTORE_NA(ifp, na) if_setnetmapadapter(ifp, na); 1720 1721 #define NM_DETACH_NA(ifp) do { if_setnetmapadapter(ifp, NULL); } while (0) 1722 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) 1723 #endif /* !NM_ATTACH_NA */ 1724 1725 1726 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) 1727 1728 #if defined(__FreeBSD__) 1729 1730 /* Assigns the device IOMMU domain to an allocator. 1731 * Returns -ENOMEM in case the domain is different */ 1732 #define nm_iommu_group_id(dev) (-1) 1733 1734 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1735 static void netmap_dmamap_cb(__unused void *arg, 1736 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1737 { 1738 } 1739 1740 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1741 * XXX can we do it without a callback ? 1742 */ 1743 static inline int 1744 netmap_load_map(struct netmap_adapter *na, 1745 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1746 { 1747 if (map) 1748 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1749 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1750 return 0; 1751 } 1752 1753 static inline void 1754 netmap_unload_map(struct netmap_adapter *na, 1755 bus_dma_tag_t tag, bus_dmamap_t map) 1756 { 1757 if (map) 1758 bus_dmamap_unload(tag, map); 1759 } 1760 1761 #define netmap_sync_map(na, tag, map, sz, t) 1762 1763 /* update the map when a buffer changes. */ 1764 static inline void 1765 netmap_reload_map(struct netmap_adapter *na, 1766 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1767 { 1768 if (map) { 1769 bus_dmamap_unload(tag, map); 1770 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1771 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1772 } 1773 } 1774 1775 #elif defined(_WIN32) 1776 1777 #else /* linux */ 1778 1779 int nm_iommu_group_id(bus_dma_tag_t dev); 1780 #include <linux/dma-mapping.h> 1781 1782 /* 1783 * on linux we need 1784 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1785 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) 1786 */ 1787 #if 0 1788 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1789 /* set time_stamp *before* dma to help avoid a possible race */ 1790 buffer_info->time_stamp = jiffies; 1791 buffer_info->mapped_as_page = false; 1792 buffer_info->length = len; 1793 //buffer_info->next_to_watch = l; 1794 /* reload dma map */ 1795 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1796 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1797 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1798 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1799 1800 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1801 nm_prerr("dma mapping error"); 1802 /* goto dma_error; See e1000_put_txbuf() */ 1803 /* XXX reset */ 1804 } 1805 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1806 1807 #endif 1808 1809 static inline int 1810 netmap_load_map(struct netmap_adapter *na, 1811 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) 1812 { 1813 if (map) { 1814 *map = dma_map_single(na->pdev, buf, size, 1815 DMA_BIDIRECTIONAL); 1816 if (dma_mapping_error(na->pdev, *map)) { 1817 *map = 0; 1818 return ENOMEM; 1819 } 1820 } 1821 return 0; 1822 } 1823 1824 static inline void 1825 netmap_unload_map(struct netmap_adapter *na, 1826 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) 1827 { 1828 if (*map) { 1829 dma_unmap_single(na->pdev, *map, sz, 1830 DMA_BIDIRECTIONAL); 1831 } 1832 } 1833 1834 #ifdef NETMAP_LINUX_HAVE_DMASYNC 1835 static inline void 1836 netmap_sync_map_cpu(struct netmap_adapter *na, 1837 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1838 { 1839 if (*map) { 1840 dma_sync_single_for_cpu(na->pdev, *map, sz, 1841 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1842 } 1843 } 1844 1845 static inline void 1846 netmap_sync_map_dev(struct netmap_adapter *na, 1847 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1848 { 1849 if (*map) { 1850 dma_sync_single_for_device(na->pdev, *map, sz, 1851 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1852 } 1853 } 1854 1855 static inline void 1856 netmap_reload_map(struct netmap_adapter *na, 1857 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1858 { 1859 u_int sz = NETMAP_BUF_SIZE(na); 1860 1861 if (*map) { 1862 dma_unmap_single(na->pdev, *map, sz, 1863 DMA_BIDIRECTIONAL); 1864 } 1865 1866 *map = dma_map_single(na->pdev, buf, sz, 1867 DMA_BIDIRECTIONAL); 1868 } 1869 #else /* !NETMAP_LINUX_HAVE_DMASYNC */ 1870 #define netmap_sync_map_cpu(na, tag, map, sz, t) 1871 #define netmap_sync_map_dev(na, tag, map, sz, t) 1872 #endif /* NETMAP_LINUX_HAVE_DMASYNC */ 1873 1874 #endif /* linux */ 1875 1876 1877 /* 1878 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1879 */ 1880 static inline int 1881 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1882 { 1883 int n = kr->nkr_num_slots; 1884 1885 if (likely(kr->nkr_hwofs == 0)) { 1886 return idx; 1887 } 1888 1889 idx += kr->nkr_hwofs; 1890 if (idx < 0) 1891 return idx + n; 1892 else if (idx < n) 1893 return idx; 1894 else 1895 return idx - n; 1896 } 1897 1898 1899 static inline int 1900 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1901 { 1902 int n = kr->nkr_num_slots; 1903 1904 if (likely(kr->nkr_hwofs == 0)) { 1905 return idx; 1906 } 1907 1908 idx -= kr->nkr_hwofs; 1909 if (idx < 0) 1910 return idx + n; 1911 else if (idx < n) 1912 return idx; 1913 else 1914 return idx - n; 1915 } 1916 1917 1918 /* Entries of the look-up table. */ 1919 #ifdef __FreeBSD__ 1920 struct lut_entry { 1921 void *vaddr; /* virtual address. */ 1922 vm_paddr_t paddr; /* physical address. */ 1923 }; 1924 #else /* linux & _WIN32 */ 1925 /* dma-mapping in linux can assign a buffer a different address 1926 * depending on the device, so we need to have a separate 1927 * physical-address look-up table for each na. 1928 * We can still share the vaddrs, though, therefore we split 1929 * the lut_entry structure. 1930 */ 1931 struct lut_entry { 1932 void *vaddr; /* virtual address. */ 1933 }; 1934 1935 struct plut_entry { 1936 vm_paddr_t paddr; /* physical address. */ 1937 }; 1938 #endif /* linux & _WIN32 */ 1939 1940 struct netmap_obj_pool; 1941 1942 /* alignment for netmap buffers */ 1943 #define NM_BUF_ALIGN 64 1944 1945 /* 1946 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1947 * PNMB also fills the physical address 1948 */ 1949 static inline void * 1950 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1951 { 1952 struct lut_entry *lut = na->na_lut.lut; 1953 uint32_t i = slot->buf_idx; 1954 return (unlikely(i >= na->na_lut.objtotal)) ? 1955 lut[0].vaddr : lut[i].vaddr; 1956 } 1957 1958 static inline void * 1959 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1960 { 1961 uint32_t i = slot->buf_idx; 1962 struct lut_entry *lut = na->na_lut.lut; 1963 struct plut_entry *plut = na->na_lut.plut; 1964 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1965 1966 #ifdef _WIN32 1967 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; 1968 #else 1969 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; 1970 #endif 1971 return ret; 1972 } 1973 1974 static inline void 1975 nm_write_offset(struct netmap_kring *kring, 1976 struct netmap_slot *slot, uint64_t offset) 1977 { 1978 slot->ptr = (slot->ptr & ~kring->offset_mask) | 1979 (offset & kring->offset_mask); 1980 } 1981 1982 static inline uint64_t 1983 nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot) 1984 { 1985 uint64_t offset = (slot->ptr & kring->offset_mask); 1986 if (unlikely(offset > kring->offset_max)) 1987 offset = kring->offset_max; 1988 return offset; 1989 } 1990 1991 static inline void * 1992 NMB_O(struct netmap_kring *kring, struct netmap_slot *slot) 1993 { 1994 void *addr = NMB(kring->na, slot); 1995 return (char *)addr + nm_get_offset(kring, slot); 1996 } 1997 1998 static inline void * 1999 PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp) 2000 { 2001 void *addr = PNMB(kring->na, slot, pp); 2002 uint64_t offset = nm_get_offset(kring, slot); 2003 addr = (char *)addr + offset; 2004 *pp += offset; 2005 return addr; 2006 } 2007 2008 2009 /* 2010 * Structure associated to each netmap file descriptor. 2011 * It is created on open and left unbound (np_nifp == NULL). 2012 * A successful NIOCREGIF will set np_nifp and the first few fields; 2013 * this is protected by a global lock (NMG_LOCK) due to low contention. 2014 * 2015 * np_refs counts the number of references to the structure: one for the fd, 2016 * plus (on FreeBSD) one for each active mmap which we track ourselves 2017 * (linux automatically tracks them, but FreeBSD does not). 2018 * np_refs is protected by NMG_LOCK. 2019 * 2020 * Read access to the structure is lock free, because ni_nifp once set 2021 * can only go to 0 when nobody is using the entry anymore. Readers 2022 * must check that np_nifp != NULL before using the other fields. 2023 */ 2024 struct netmap_priv_d { 2025 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 2026 2027 struct netmap_adapter *np_na; 2028 if_t np_ifp; 2029 uint32_t np_flags; /* from the ioctl */ 2030 u_int np_qfirst[NR_TXRX], 2031 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 2032 uint16_t np_txpoll; 2033 uint16_t np_kloop_state; /* use with NMG_LOCK held */ 2034 #define NM_SYNC_KLOOP_RUNNING (1 << 0) 2035 #define NM_SYNC_KLOOP_STOPPING (1 << 1) 2036 int np_sync_flags; /* to be passed to nm_sync */ 2037 2038 int np_refs; /* use with NMG_LOCK held */ 2039 2040 /* pointers to the selinfo to be used for selrecord. 2041 * Either the local or the global one depending on the 2042 * number of rings. 2043 */ 2044 NM_SELINFO_T *np_si[NR_TXRX]; 2045 2046 /* In the optional CSB mode, the user must specify the start address 2047 * of two arrays of Communication Status Block (CSB) entries, for the 2048 * two directions (kernel read application write, and kernel write 2049 * application read). 2050 * The number of entries must agree with the number of rings bound to 2051 * the netmap file descriptor. The entries corresponding to the TX 2052 * rings are laid out before the ones corresponding to the RX rings. 2053 * 2054 * Array of CSB entries for application --> kernel communication 2055 * (N entries). */ 2056 struct nm_csb_atok *np_csb_atok_base; 2057 /* Array of CSB entries for kernel --> application communication 2058 * (N entries). */ 2059 struct nm_csb_ktoa *np_csb_ktoa_base; 2060 2061 #ifdef linux 2062 struct file *np_filp; /* used by sync kloop */ 2063 #endif /* linux */ 2064 }; 2065 2066 struct netmap_priv_d *netmap_priv_new(void); 2067 void netmap_priv_delete(struct netmap_priv_d *); 2068 2069 static inline int nm_kring_pending(struct netmap_priv_d *np) 2070 { 2071 struct netmap_adapter *na = np->np_na; 2072 enum txrx t; 2073 int i; 2074 2075 for_rx_tx(t) { 2076 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { 2077 struct netmap_kring *kring = NMR(na, t)[i]; 2078 if (kring->nr_mode != kring->nr_pending_mode) { 2079 return 1; 2080 } 2081 } 2082 } 2083 return 0; 2084 } 2085 2086 /* call with NMG_LOCK held */ 2087 static __inline int 2088 nm_si_user(struct netmap_priv_d *priv, enum txrx t) 2089 { 2090 return (priv->np_na != NULL && 2091 (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); 2092 } 2093 2094 #ifdef WITH_PIPES 2095 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); 2096 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); 2097 int netmap_pipe_krings_create_both(struct netmap_adapter *na, 2098 struct netmap_adapter *ona); 2099 void netmap_pipe_krings_delete_both(struct netmap_adapter *na, 2100 struct netmap_adapter *ona); 2101 int netmap_pipe_reg_both(struct netmap_adapter *na, 2102 struct netmap_adapter *ona); 2103 #endif /* WITH_PIPES */ 2104 2105 #ifdef WITH_MONITOR 2106 2107 struct netmap_monitor_adapter { 2108 struct netmap_adapter up; 2109 2110 struct netmap_priv_d priv; 2111 uint32_t flags; 2112 }; 2113 2114 #endif /* WITH_MONITOR */ 2115 2116 2117 #ifdef WITH_GENERIC 2118 /* 2119 * generic netmap emulation for devices that do not have 2120 * native netmap support. 2121 */ 2122 int generic_netmap_attach(if_t ifp); 2123 int generic_rx_handler(if_t ifp, struct mbuf *m); 2124 2125 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); 2126 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); 2127 2128 int na_is_generic(struct netmap_adapter *na); 2129 2130 /* 2131 * the generic transmit routine is passed a structure to optionally 2132 * build a queue of descriptors, in an OS-specific way. 2133 * The payload is at addr, if non-null, and the routine should send or queue 2134 * the packet, returning 0 if successful, 1 on failure. 2135 * 2136 * At the end, if head is non-null, there will be an additional call 2137 * to the function with addr = NULL; this should tell the OS-specific 2138 * routine to send the queue and free any resources. Failure is ignored. 2139 */ 2140 struct nm_os_gen_arg { 2141 if_t ifp; 2142 void *m; /* os-specific mbuf-like object */ 2143 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ 2144 void *addr; /* payload of current packet */ 2145 u_int len; /* packet length */ 2146 u_int ring_nr; /* transmit ring index */ 2147 u_int qevent; /* in txqdisc mode, place an event on this mbuf */ 2148 }; 2149 2150 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); 2151 int nm_os_generic_find_num_desc(if_t ifp, u_int *tx, u_int *rx); 2152 void nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq); 2153 void nm_os_generic_set_features(struct netmap_generic_adapter *gna); 2154 2155 static inline if_t 2156 netmap_generic_getifp(struct netmap_generic_adapter *gna) 2157 { 2158 if (gna->prev) 2159 return gna->prev->ifp; 2160 2161 return gna->up.up.ifp; 2162 } 2163 2164 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); 2165 2166 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 2167 #ifdef RATE_GENERIC 2168 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 2169 #else 2170 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 2171 #endif 2172 2173 /* 2174 * netmap_mitigation API. This is used by the generic adapter 2175 * to reduce the number of interrupt requests/selwakeup 2176 * to clients on incoming packets. 2177 */ 2178 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, 2179 struct netmap_adapter *na); 2180 void nm_os_mitigation_start(struct nm_generic_mit *mit); 2181 void nm_os_mitigation_restart(struct nm_generic_mit *mit); 2182 int nm_os_mitigation_active(struct nm_generic_mit *mit); 2183 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); 2184 #else /* !WITH_GENERIC */ 2185 #define generic_netmap_attach(ifp) (EOPNOTSUPP) 2186 #define na_is_generic(na) (0) 2187 #endif /* WITH_GENERIC */ 2188 2189 /* Shared declarations for the VALE switch. */ 2190 2191 /* 2192 * Each transmit queue accumulates a batch of packets into 2193 * a structure before forwarding. Packets to the same 2194 * destination are put in a list using ft_next as a link field. 2195 * ft_frags and ft_next are valid only on the first fragment. 2196 */ 2197 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 2198 void *ft_buf; /* netmap or indirect buffer */ 2199 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 2200 uint16_t ft_offset; /* dst port (unused) */ 2201 uint16_t ft_flags; /* flags, e.g. indirect */ 2202 uint16_t ft_len; /* src fragment len */ 2203 uint16_t ft_next; /* next packet to same destination */ 2204 }; 2205 2206 /* struct 'virtio_net_hdr' from linux. */ 2207 struct nm_vnet_hdr { 2208 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 2209 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 2210 uint8_t flags; 2211 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 2212 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 2213 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 2214 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 2215 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 2216 uint8_t gso_type; 2217 uint16_t hdr_len; 2218 uint16_t gso_size; 2219 uint16_t csum_start; 2220 uint16_t csum_offset; 2221 }; 2222 2223 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 2224 2225 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 2226 2227 struct nm_iphdr { 2228 uint8_t version_ihl; 2229 uint8_t tos; 2230 uint16_t tot_len; 2231 uint16_t id; 2232 uint16_t frag_off; 2233 uint8_t ttl; 2234 uint8_t protocol; 2235 uint16_t check; 2236 uint32_t saddr; 2237 uint32_t daddr; 2238 /*The options start here. */ 2239 }; 2240 2241 struct nm_tcphdr { 2242 uint16_t source; 2243 uint16_t dest; 2244 uint32_t seq; 2245 uint32_t ack_seq; 2246 uint8_t doff; /* Data offset + Reserved */ 2247 uint8_t flags; 2248 uint16_t window; 2249 uint16_t check; 2250 uint16_t urg_ptr; 2251 }; 2252 2253 struct nm_udphdr { 2254 uint16_t source; 2255 uint16_t dest; 2256 uint16_t len; 2257 uint16_t check; 2258 }; 2259 2260 struct nm_ipv6hdr { 2261 uint8_t priority_version; 2262 uint8_t flow_lbl[3]; 2263 2264 uint16_t payload_len; 2265 uint8_t nexthdr; 2266 uint8_t hop_limit; 2267 2268 uint8_t saddr[16]; 2269 uint8_t daddr[16]; 2270 }; 2271 2272 /* Type used to store a checksum (in host byte order) that hasn't been 2273 * folded yet. 2274 */ 2275 #define rawsum_t uint32_t 2276 2277 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 2278 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); 2279 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 2280 size_t datalen, uint16_t *check); 2281 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 2282 size_t datalen, uint16_t *check); 2283 uint16_t nm_os_csum_fold(rawsum_t cur_sum); 2284 2285 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 2286 struct netmap_vp_adapter *dst_na, 2287 const struct nm_bdg_fwd *ft_p, 2288 struct netmap_ring *dst_ring, 2289 u_int *j, u_int lim, u_int *howmany); 2290 2291 /* persistent virtual port routines */ 2292 int nm_os_vi_persist(const char *, if_t *); 2293 void nm_os_vi_detach(if_t); 2294 void nm_os_vi_init_index(void); 2295 2296 /* 2297 * kernel thread routines 2298 */ 2299 struct nm_kctx; /* OS-specific kernel context - opaque */ 2300 typedef void (*nm_kctx_worker_fn_t)(void *data); 2301 2302 /* kthread configuration */ 2303 struct nm_kctx_cfg { 2304 long type; /* kthread type/identifier */ 2305 nm_kctx_worker_fn_t worker_fn; /* worker function */ 2306 void *worker_private;/* worker parameter */ 2307 int attach_user; /* attach kthread to user process */ 2308 }; 2309 /* kthread configuration */ 2310 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, 2311 void *opaque); 2312 int nm_os_kctx_worker_start(struct nm_kctx *); 2313 void nm_os_kctx_worker_stop(struct nm_kctx *); 2314 void nm_os_kctx_destroy(struct nm_kctx *); 2315 void nm_os_kctx_worker_setaff(struct nm_kctx *, int); 2316 u_int nm_os_ncpus(void); 2317 2318 int netmap_sync_kloop(struct netmap_priv_d *priv, 2319 struct nmreq_header *hdr); 2320 int netmap_sync_kloop_stop(struct netmap_priv_d *priv); 2321 2322 #ifdef WITH_PTNETMAP 2323 /* ptnetmap guest routines */ 2324 2325 /* 2326 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver 2327 */ 2328 struct ptnetmap_memdev; 2329 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, 2330 uint64_t *); 2331 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); 2332 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); 2333 2334 /* 2335 * netmap adapter for guest ptnetmap ports 2336 */ 2337 struct netmap_pt_guest_adapter { 2338 /* The netmap adapter to be used by netmap applications. 2339 * This field must be the first, to allow upcast. */ 2340 struct netmap_hw_adapter hwup; 2341 2342 /* The netmap adapter to be used by the driver. */ 2343 struct netmap_hw_adapter dr; 2344 2345 /* Reference counter to track users of backend netmap port: the 2346 * network stack and netmap clients. 2347 * Used to decide when we need (de)allocate krings/rings and 2348 * start (stop) ptnetmap kthreads. */ 2349 int backend_users; 2350 2351 }; 2352 2353 int netmap_pt_guest_attach(struct netmap_adapter *na, 2354 unsigned int nifp_offset, 2355 unsigned int memid); 2356 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, 2357 struct nm_csb_ktoa *ktoa, 2358 struct netmap_kring *kring, int flags); 2359 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, 2360 struct nm_csb_ktoa *ktoa, 2361 struct netmap_kring *kring, int flags); 2362 int ptnet_nm_krings_create(struct netmap_adapter *na); 2363 void ptnet_nm_krings_delete(struct netmap_adapter *na); 2364 void ptnet_nm_dtor(struct netmap_adapter *na); 2365 2366 /* Helper function wrapping nm_sync_kloop_appl_read(). */ 2367 static inline void 2368 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) 2369 { 2370 struct netmap_ring *ring = kring->ring; 2371 2372 /* Update hwcur and hwtail as known by the host. */ 2373 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); 2374 2375 /* nm_sync_finalize */ 2376 ring->tail = kring->rtail = kring->nr_hwtail; 2377 } 2378 #endif /* WITH_PTNETMAP */ 2379 2380 #ifdef __FreeBSD__ 2381 /* 2382 * FreeBSD mbuf allocator/deallocator in emulation mode: 2383 * 2384 * We allocate mbufs with m_gethdr(), since the mbuf header is needed 2385 * by the driver. We also attach a customly-provided external storage, 2386 * which in this case is a netmap buffer. 2387 * 2388 * The dtor function does nothing, however we need it since mb_free_ext() 2389 * has a KASSERT(), checking that the mbuf dtor function is not NULL. 2390 */ 2391 2392 static inline void 2393 nm_generic_mbuf_dtor(struct mbuf *m) 2394 { 2395 uma_zfree(zone_clust, m->m_ext.ext_buf); 2396 } 2397 2398 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2399 (m)->m_ext.ext_free = (fn != NULL) ? \ 2400 (void *)fn : (void *)nm_generic_mbuf_dtor; \ 2401 } while (0) 2402 2403 static inline struct mbuf * 2404 nm_os_get_mbuf(if_t ifp __unused, int len) 2405 { 2406 struct mbuf *m; 2407 void *buf; 2408 2409 KASSERT(len <= MCLBYTES, ("%s: len %d", __func__, len)); 2410 2411 m = m_gethdr(M_NOWAIT, MT_DATA); 2412 if (__predict_false(m == NULL)) 2413 return (NULL); 2414 buf = uma_zalloc(zone_clust, M_NOWAIT); 2415 if (__predict_false(buf == NULL)) { 2416 m_free(m); 2417 return (NULL); 2418 } 2419 m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0, 2420 EXT_NET_DRV); 2421 return (m); 2422 } 2423 2424 static inline void 2425 nm_os_mbuf_reinit(struct mbuf *m) 2426 { 2427 void *buf; 2428 2429 KASSERT((m->m_flags & M_EXT) != 0, 2430 ("%s: mbuf %p has no external storage", __func__, m)); 2431 KASSERT(m->m_ext.ext_size == MCLBYTES, 2432 ("%s: mbuf %p has wrong external storage size %u", __func__, m, 2433 m->m_ext.ext_size)); 2434 2435 buf = m->m_ext.ext_buf; 2436 m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR); 2437 m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0, 2438 EXT_NET_DRV); 2439 } 2440 2441 #endif /* __FreeBSD__ */ 2442 2443 struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t); 2444 2445 int netmap_init_bridges(void); 2446 void netmap_uninit_bridges(void); 2447 2448 /* Functions to read and write CSB fields from the kernel. */ 2449 #if defined (linux) 2450 #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) 2451 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) 2452 #else /* ! linux */ 2453 #define CSB_READ(csb, field, r) do { \ 2454 int32_t v __diagused; \ 2455 \ 2456 v = fuword32(&csb->field); \ 2457 KASSERT(v != -1, ("%s: fuword32 failed", __func__)); \ 2458 r = v; \ 2459 } while (0) 2460 #define CSB_WRITE(csb, field, v) do { \ 2461 int error __diagused; \ 2462 \ 2463 error = suword32(&csb->field, v); \ 2464 KASSERT(error == 0, ("%s: suword32 failed", __func__)); \ 2465 } while (0) 2466 #endif /* ! linux */ 2467 2468 /* some macros that may not be defined */ 2469 #ifndef ETH_HLEN 2470 #define ETH_HLEN 6 2471 #endif 2472 #ifndef ETH_FCS_LEN 2473 #define ETH_FCS_LEN 4 2474 #endif 2475 #ifndef VLAN_HLEN 2476 #define VLAN_HLEN 4 2477 #endif 2478 2479 #endif /* _NET_NETMAP_KERN_H_ */ 2480