xref: /freebsd/sys/dev/netmap/netmap_kern.h (revision 19fae0f66023a97a9b464b3beeeabb2081f575b3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5  * Copyright (C) 2013-2016 Universita` di Pisa
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * $FreeBSD$
32  *
33  * The header contains the definitions of constants and function
34  * prototypes used only in kernelspace.
35  */
36 
37 #ifndef _NET_NETMAP_KERN_H_
38 #define _NET_NETMAP_KERN_H_
39 
40 #if defined(linux)
41 
42 #if defined(CONFIG_NETMAP_EXTMEM)
43 #define WITH_EXTMEM
44 #endif
45 #if  defined(CONFIG_NETMAP_VALE)
46 #define WITH_VALE
47 #endif
48 #if defined(CONFIG_NETMAP_PIPE)
49 #define WITH_PIPES
50 #endif
51 #if defined(CONFIG_NETMAP_MONITOR)
52 #define WITH_MONITOR
53 #endif
54 #if defined(CONFIG_NETMAP_GENERIC)
55 #define WITH_GENERIC
56 #endif
57 #if defined(CONFIG_NETMAP_PTNETMAP)
58 #define WITH_PTNETMAP
59 #endif
60 #if defined(CONFIG_NETMAP_SINK)
61 #define WITH_SINK
62 #endif
63 #if defined(CONFIG_NETMAP_NULL)
64 #define WITH_NMNULL
65 #endif
66 
67 #elif defined (_WIN32)
68 #define WITH_VALE	// comment out to disable VALE support
69 #define WITH_PIPES
70 #define WITH_MONITOR
71 #define WITH_GENERIC
72 #define WITH_NMNULL
73 
74 #else	/* neither linux nor windows */
75 #define WITH_VALE	// comment out to disable VALE support
76 #define WITH_PIPES
77 #define WITH_MONITOR
78 #define WITH_GENERIC
79 #define WITH_EXTMEM
80 #define WITH_NMNULL
81 #endif
82 
83 #if defined(__FreeBSD__)
84 #include <sys/selinfo.h>
85 
86 #define likely(x)	__builtin_expect((long)!!(x), 1L)
87 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
88 #define __user
89 
90 #define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
91 
92 #define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
93 #define NM_MTX_INIT(m)		sx_init(&(m), #m)
94 #define NM_MTX_DESTROY(m)	sx_destroy(&(m))
95 #define NM_MTX_LOCK(m)		sx_xlock(&(m))
96 #define NM_MTX_SPINLOCK(m)	while (!sx_try_xlock(&(m))) ;
97 #define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
98 #define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
99 
100 #define	NM_SELINFO_T	struct nm_selinfo
101 #define NM_SELRECORD_T	struct thread
102 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
103 #define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
104 #define MBUF_TRANSMIT(na, ifp, m)	((na)->if_transmit(ifp, m))
105 #define	GEN_TX_MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
106 
107 #define NM_ATOMIC_T	volatile int /* required by atomic/bitops.h */
108 /* atomic operations */
109 #include <machine/atomic.h>
110 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
111 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
112 
113 struct netmap_adapter *netmap_getna(if_t ifp);
114 
115 #define MBUF_REFCNT(m)		((m)->m_ext.ext_count)
116 #define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
117 
118 #define MBUF_QUEUED(m)		1
119 
120 struct nm_selinfo {
121 	/* Support for select(2) and poll(2). */
122 	struct selinfo si;
123 	/* Support for kqueue(9). See comments in netmap_freebsd.c */
124 	struct taskqueue *ntfytq;
125 	struct task ntfytask;
126 	struct mtx m;
127 	char mtxname[32];
128 	int kqueue_users;
129 };
130 
131 
132 struct hrtimer {
133     /* Not used in FreeBSD. */
134 };
135 
136 #define NM_BNS_GET(b)
137 #define NM_BNS_PUT(b)
138 
139 #elif defined (linux)
140 
141 #define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
142 #define	NM_SELINFO_T	wait_queue_head_t
143 #define	MBUF_LEN(m)	((m)->len)
144 #define MBUF_TRANSMIT(na, ifp, m)							\
145 	({										\
146 		/* Avoid infinite recursion with generic. */				\
147 		m->priority = NM_MAGIC_PRIORITY_TX;					\
148 		(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp));	\
149 		0;									\
150 	})
151 
152 /* See explanation in nm_os_generic_xmit_frame. */
153 #define	GEN_TX_MBUF_IFP(m)	((if_t)skb_shinfo(m)->destructor_arg)
154 
155 #define NM_ATOMIC_T	volatile long unsigned int
156 
157 #define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
158 #define NM_MTX_INIT(m)	mutex_init(&(m))
159 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
160 #define NM_MTX_LOCK(m)		mutex_lock(&(m))
161 #define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
162 #define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
163 
164 #ifndef DEV_NETMAP
165 #define DEV_NETMAP
166 #endif /* DEV_NETMAP */
167 
168 #elif defined (__APPLE__)
169 
170 #warning apple support is incomplete.
171 #define likely(x)	__builtin_expect(!!(x), 1)
172 #define unlikely(x)	__builtin_expect(!!(x), 0)
173 #define	NM_LOCK_T	IOLock *
174 #define	NM_SELINFO_T	struct selinfo
175 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
176 
177 #elif defined (_WIN32)
178 #include "../../../WINDOWS/win_glue.h"
179 
180 #define NM_SELRECORD_T		IO_STACK_LOCATION
181 #define NM_SELINFO_T		win_SELINFO		// see win_glue.h
182 #define NM_LOCK_T		win_spinlock_t	// see win_glue.h
183 #define NM_MTX_T		KGUARDED_MUTEX	/* OS-specific mutex (sleepable) */
184 
185 #define NM_MTX_INIT(m)		KeInitializeGuardedMutex(&m);
186 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
187 #define NM_MTX_LOCK(m)		KeAcquireGuardedMutex(&(m))
188 #define NM_MTX_UNLOCK(m)	KeReleaseGuardedMutex(&(m))
189 #define NM_MTX_ASSERT(m)	assert(&m.Count>0)
190 
191 //These linknames are for the NDIS driver
192 #define NETMAP_NDIS_LINKNAME_STRING             L"\\DosDevices\\NMAPNDIS"
193 #define NETMAP_NDIS_NTDEVICE_STRING             L"\\Device\\NMAPNDIS"
194 
195 //Definition of internal driver-to-driver ioctl codes
196 #define NETMAP_KERNEL_XCHANGE_POINTERS		_IO('i', 180)
197 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL	_IO_direct('i', 195)
198 
199 typedef struct hrtimer{
200 	KTIMER timer;
201 	BOOLEAN active;
202 	KDPC deferred_proc;
203 };
204 
205 /* MSVC does not have likely/unlikely support */
206 #ifdef _MSC_VER
207 #define likely(x)	(x)
208 #define unlikely(x)	(x)
209 #else
210 #define likely(x)	__builtin_expect((long)!!(x), 1L)
211 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
212 #endif //_MSC_VER
213 
214 #else
215 
216 #error unsupported platform
217 
218 #endif /* end - platform-specific code */
219 
220 #ifndef _WIN32 /* support for emulated sysctl */
221 #define SYSBEGIN(x)
222 #define SYSEND
223 #endif /* _WIN32 */
224 
225 #define NM_ACCESS_ONCE(x)	(*(volatile __typeof__(x) *)&(x))
226 
227 #define	NMG_LOCK_T		NM_MTX_T
228 #define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
229 #define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
230 #define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
231 #define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
232 #define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
233 
234 #if defined(__FreeBSD__)
235 #define nm_prerr_int	printf
236 #define nm_prinf_int	printf
237 #elif defined (_WIN32)
238 #define nm_prerr_int	DbgPrint
239 #define nm_prinf_int	DbgPrint
240 #elif defined(linux)
241 #define nm_prerr_int(fmt, arg...)    printk(KERN_ERR fmt, ##arg)
242 #define nm_prinf_int(fmt, arg...)    printk(KERN_INFO fmt, ##arg)
243 #endif
244 
245 #define nm_prinf(format, ...)					\
246 	do {							\
247 		struct timeval __xxts;				\
248 		microtime(&__xxts);				\
249 		nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
250 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
251 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
252 	} while (0)
253 
254 #define nm_prerr(format, ...)					\
255 	do {							\
256 		struct timeval __xxts;				\
257 		microtime(&__xxts);				\
258 		nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
259 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
260 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
261 	} while (0)
262 
263 /* Disabled printf (used to be nm_prdis). */
264 #define nm_prdis(format, ...)
265 
266 /* Rate limited, lps indicates how many per second. */
267 #define nm_prlim(lps, format, ...)				\
268 	do {							\
269 		static int t0, __cnt;				\
270 		if (t0 != time_second) {			\
271 			t0 = time_second;			\
272 			__cnt = 0;				\
273 		}						\
274 		if (__cnt++ < lps)				\
275 			nm_prinf(format, ##__VA_ARGS__);	\
276 	} while (0)
277 
278 struct netmap_adapter;
279 struct nm_bdg_fwd;
280 struct nm_bridge;
281 struct netmap_priv_d;
282 struct nm_bdg_args;
283 
284 /* os-specific NM_SELINFO_T initialization/destruction functions */
285 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
286 void nm_os_selinfo_uninit(NM_SELINFO_T *);
287 
288 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
289 
290 void nm_os_selwakeup(NM_SELINFO_T *si);
291 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
292 
293 int nm_os_ifnet_init(void);
294 void nm_os_ifnet_fini(void);
295 void nm_os_ifnet_lock(void);
296 void nm_os_ifnet_unlock(void);
297 
298 unsigned nm_os_ifnet_mtu(if_t ifp);
299 
300 void nm_os_get_module(void);
301 void nm_os_put_module(void);
302 
303 void netmap_make_zombie(if_t);
304 void netmap_undo_zombie(if_t);
305 
306 /* os independent alloc/realloc/free */
307 void *nm_os_malloc(size_t);
308 void *nm_os_vmalloc(size_t);
309 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
310 void nm_os_free(void *);
311 void nm_os_vfree(void *);
312 
313 /* os specific attach/detach enter/exit-netmap-mode routines */
314 void nm_os_onattach(if_t);
315 void nm_os_ondetach(if_t);
316 void nm_os_onenter(if_t);
317 void nm_os_onexit(if_t);
318 
319 /* passes a packet up to the host stack.
320  * If the packet is sent (or dropped) immediately it returns NULL,
321  * otherwise it links the packet to prev and returns m.
322  * In this case, a final call with m=NULL and prev != NULL will send up
323  * the entire chain to the host stack.
324  */
325 void *nm_os_send_up(if_t, struct mbuf *m, struct mbuf *prev);
326 
327 int nm_os_mbuf_has_seg_offld(struct mbuf *m);
328 int nm_os_mbuf_has_csum_offld(struct mbuf *m);
329 
330 #include "netmap_mbq.h"
331 
332 extern NMG_LOCK_T	netmap_global_lock;
333 
334 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
335 
336 static __inline const char*
337 nm_txrx2str(enum txrx t)
338 {
339 	return (t== NR_RX ? "RX" : "TX");
340 }
341 
342 static __inline enum txrx
343 nm_txrx_swap(enum txrx t)
344 {
345 	return (t== NR_RX ? NR_TX : NR_RX);
346 }
347 
348 #define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
349 
350 #ifdef WITH_MONITOR
351 struct netmap_zmon_list {
352 	struct netmap_kring *next;
353 	struct netmap_kring *prev;
354 };
355 #endif /* WITH_MONITOR */
356 
357 /*
358  * private, kernel view of a ring. Keeps track of the status of
359  * a ring across system calls.
360  *
361  *	nr_hwcur	index of the next buffer to refill.
362  *			It corresponds to ring->head
363  *			at the time the system call returns.
364  *
365  *	nr_hwtail	index of the first buffer owned by the kernel.
366  *			On RX, hwcur->hwtail are receive buffers
367  *			not yet released. hwcur is advanced following
368  *			ring->head, hwtail is advanced on incoming packets,
369  *			and a wakeup is generated when hwtail passes ring->cur
370  *			    On TX, hwcur->rcur have been filled by the sender
371  *			but not sent yet to the NIC; rcur->hwtail are available
372  *			for new transmissions, and hwtail->hwcur-1 are pending
373  *			transmissions not yet acknowledged.
374  *
375  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
376  * This is so that, on a reset, buffers owned by userspace are not
377  * modified by the kernel. In particular:
378  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
379  * 	the next empty buffer as known by the hardware (next_to_check or so).
380  * TX rings: hwcur + hwofs coincides with next_to_send
381  *
382  * The following fields are used to implement lock-free copy of packets
383  * from input to output ports in VALE switch:
384  *	nkr_hwlease	buffer after the last one being copied.
385  *			A writer in nm_bdg_flush reserves N buffers
386  *			from nr_hwlease, advances it, then does the
387  *			copy outside the lock.
388  *			In RX rings (used for VALE ports),
389  *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
390  *			In TX rings (used for NIC or host stack ports)
391  *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
392  *	nkr_leases	array of nkr_num_slots where writers can report
393  *			completion of their block. NR_NOSLOT (~0) indicates
394  *			that the writer has not finished yet
395  *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
396  *
397  * The kring is manipulated by txsync/rxsync and generic netmap function.
398  *
399  * Concurrent rxsync or txsync on the same ring are prevented through
400  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
401  * for NIC rings, and for TX rings attached to the host stack.
402  *
403  * RX rings attached to the host stack use an mbq (rx_queue) on both
404  * rxsync_from_host() and netmap_transmit(). The mbq is protected
405  * by its internal lock.
406  *
407  * RX rings attached to the VALE switch are accessed by both senders
408  * and receiver. They are protected through the q_lock on the RX ring.
409  */
410 struct netmap_kring {
411 	struct netmap_ring	*ring;
412 
413 	uint32_t	nr_hwcur;  /* should be nr_hwhead */
414 	uint32_t	nr_hwtail;
415 
416 	/*
417 	 * Copies of values in user rings, so we do not need to look
418 	 * at the ring (which could be modified). These are set in the
419 	 * *sync_prologue()/finalize() routines.
420 	 */
421 	uint32_t	rhead;
422 	uint32_t	rcur;
423 	uint32_t	rtail;
424 
425 	uint32_t	nr_kflags;	/* private driver flags */
426 #define NKR_PENDINTR	0x1		// Pending interrupt.
427 #define NKR_EXCLUSIVE	0x2		/* exclusive binding */
428 #define NKR_FORWARD	0x4		/* (host ring only) there are
429 					   packets to forward
430 					 */
431 #define NKR_NEEDRING	0x8		/* ring needed even if users==0
432 					 * (used internally by pipes and
433 					 *  by ptnetmap host ports)
434 					 */
435 #define NKR_NOINTR      0x10            /* don't use interrupts on this ring */
436 #define NKR_FAKERING	0x20		/* don't allocate/free buffers */
437 
438 	uint32_t	nr_mode;
439 	uint32_t	nr_pending_mode;
440 #define NKR_NETMAP_OFF	0x0
441 #define NKR_NETMAP_ON	0x1
442 
443 	uint32_t	nkr_num_slots;
444 
445 	/*
446 	 * On a NIC reset, the NIC ring indexes may be reset but the
447 	 * indexes in the netmap rings remain the same. nkr_hwofs
448 	 * keeps track of the offset between the two.
449 	 *
450 	 * Moreover, during reset, we can restore only the subset of
451 	 * the NIC ring that corresponds to the kernel-owned part of
452 	 * the netmap ring. The rest of the slots must be restored
453 	 * by the *sync routines when the user releases more slots.
454 	 * The nkr_to_refill field keeps track of the number of slots
455 	 * that still need to be restored.
456 	 */
457 	int32_t		nkr_hwofs;
458 	int32_t		nkr_to_refill;
459 
460 	/* last_reclaim is opaque marker to help reduce the frequency
461 	 * of operations such as reclaiming tx buffers. A possible use
462 	 * is set it to ticks and do the reclaim only once per tick.
463 	 */
464 	uint64_t	last_reclaim;
465 
466 
467 	NM_SELINFO_T	si;		/* poll/select wait queue */
468 	NM_LOCK_T	q_lock;		/* protects kring and ring. */
469 	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
470 
471 	/* the adapter the owns this kring */
472 	struct netmap_adapter *na;
473 
474 	/* the adapter that wants to be notified when this kring has
475 	 * new slots available. This is usually the same as the above,
476 	 * but wrappers may let it point to themselves
477 	 */
478 	struct netmap_adapter *notify_na;
479 
480 	/* The following fields are for VALE switch support */
481 	struct nm_bdg_fwd *nkr_ft;
482 	uint32_t	*nkr_leases;
483 #define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
484 	uint32_t	nkr_hwlease;
485 	uint32_t	nkr_lease_idx;
486 
487 	/* while nkr_stopped is set, no new [tr]xsync operations can
488 	 * be started on this kring.
489 	 * This is used by netmap_disable_all_rings()
490 	 * to find a synchronization point where critical data
491 	 * structures pointed to by the kring can be added or removed
492 	 */
493 	volatile int nkr_stopped;
494 
495 	/* Support for adapters without native netmap support.
496 	 * On tx rings we preallocate an array of tx buffers
497 	 * (same size as the netmap ring), on rx rings we
498 	 * store incoming mbufs in a queue that is drained by
499 	 * a rxsync.
500 	 */
501 	struct mbuf	**tx_pool;
502 	struct mbuf	*tx_event;	/* TX event used as a notification */
503 	NM_LOCK_T	tx_event_lock;	/* protects the tx_event mbuf */
504 #ifdef __FreeBSD__
505 	struct callout	tx_event_callout;
506 #endif
507 	struct mbq	rx_queue;       /* intercepted rx mbufs. */
508 
509 	uint32_t	users;		/* existing bindings for this ring */
510 
511 	uint32_t	ring_id;	/* kring identifier */
512 	enum txrx	tx;		/* kind of ring (tx or rx) */
513 	char name[64];			/* diagnostic */
514 
515 	/* [tx]sync callback for this kring.
516 	 * The default nm_kring_create callback (netmap_krings_create)
517 	 * sets the nm_sync callback of each hardware tx(rx) kring to
518 	 * the corresponding nm_txsync(nm_rxsync) taken from the
519 	 * netmap_adapter; moreover, it sets the sync callback
520 	 * of the host tx(rx) ring to netmap_txsync_to_host
521 	 * (netmap_rxsync_from_host).
522 	 *
523 	 * Overrides: the above configuration is not changed by
524 	 * any of the nm_krings_create callbacks.
525 	 */
526 	int (*nm_sync)(struct netmap_kring *kring, int flags);
527 	int (*nm_notify)(struct netmap_kring *kring, int flags);
528 
529 #ifdef WITH_PIPES
530 	struct netmap_kring *pipe;	/* if this is a pipe ring,
531 					 * pointer to the other end
532 					 */
533 	uint32_t pipe_tail;		/* hwtail updated by the other end */
534 #endif /* WITH_PIPES */
535 
536 	/* mask for the offset-related part of the ptr field in the slots */
537 	uint64_t offset_mask;
538 	/* maximum user-specified offset, as stipulated at bind time.
539 	 * Larger offset requests will be silently capped to offset_max.
540 	 */
541 	uint64_t offset_max;
542 	/* minimum gap between two consecutive offsets into the same
543 	 * buffer, as stipulated at bind time. This is used to choose
544 	 * the hwbuf_len, but is not otherwise checked for compliance
545 	 * at runtime.
546 	 */
547 	uint64_t offset_gap;
548 
549 	/* size of hardware buffer. This may be less than the size of
550 	 * the netmap buffers because of non-zero offsets, or because
551 	 * the netmap buffer size exceeds the capability of the hardware.
552 	 */
553 	uint64_t hwbuf_len;
554 
555 	/* required alignment (in bytes) for the buffers used by this ring.
556 	 * Netmap buffers are aligned to cachelines, which should suffice
557 	 * for most NICs. If the user is passing offsets, though, we need
558 	 * to check that the resulting buf address complies with any
559 	 * alignment restriction.
560 	 */
561 	uint64_t buf_align;
562 
563 	/* hardware specific logic for the selection of the hwbuf_len */
564 	int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target);
565 
566 	int (*save_notify)(struct netmap_kring *kring, int flags);
567 
568 #ifdef WITH_MONITOR
569 	/* array of krings that are monitoring this kring */
570 	struct netmap_kring **monitors;
571 	uint32_t max_monitors; /* current size of the monitors array */
572 	uint32_t n_monitors;	/* next unused entry in the monitor array */
573 	uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
574 	uint32_t mon_tail;  /* last seen slot on rx */
575 
576 	/* circular list of zero-copy monitors */
577 	struct netmap_zmon_list zmon_list[NR_TXRX];
578 
579 	/*
580 	 * Monitors work by intercepting the sync and notify callbacks of the
581 	 * monitored krings. This is implemented by replacing the pointers
582 	 * above and saving the previous ones in mon_* pointers below
583 	 */
584 	int (*mon_sync)(struct netmap_kring *kring, int flags);
585 	int (*mon_notify)(struct netmap_kring *kring, int flags);
586 
587 #endif
588 }
589 #ifdef _WIN32
590 __declspec(align(64));
591 #else
592 __attribute__((__aligned__(64)));
593 #endif
594 
595 /* return 1 iff the kring needs to be turned on */
596 static inline int
597 nm_kring_pending_on(struct netmap_kring *kring)
598 {
599 	return kring->nr_pending_mode == NKR_NETMAP_ON &&
600 	       kring->nr_mode == NKR_NETMAP_OFF;
601 }
602 
603 /* return 1 iff the kring needs to be turned off */
604 static inline int
605 nm_kring_pending_off(struct netmap_kring *kring)
606 {
607 	return kring->nr_pending_mode == NKR_NETMAP_OFF &&
608 	       kring->nr_mode == NKR_NETMAP_ON;
609 }
610 
611 /* return the next index, with wraparound */
612 static inline uint32_t
613 nm_next(uint32_t i, uint32_t lim)
614 {
615 	return unlikely (i == lim) ? 0 : i + 1;
616 }
617 
618 
619 /* return the previous index, with wraparound */
620 static inline uint32_t
621 nm_prev(uint32_t i, uint32_t lim)
622 {
623 	return unlikely (i == 0) ? lim : i - 1;
624 }
625 
626 
627 /*
628  *
629  * Here is the layout for the Rx and Tx rings.
630 
631        RxRING                            TxRING
632 
633       +-----------------+            +-----------------+
634       |                 |            |                 |
635       |      free       |            |      free       |
636       +-----------------+            +-----------------+
637 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
638       |                 |            | yet             |
639       +-----------------+            |                 |
640  cur->| available to    |            |                 |
641       | user, not read  |            +-----------------+
642       | yet             |       cur->| (being          |
643       |                 |            |  prepared)      |
644       |                 |            |                 |
645       +-----------------+            +     ------      +
646 tail->|                 |<-hwtail    |                 |<-hwlease
647       | (being          | ...        |                 | ...
648       |  prepared)      | ...        |                 | ...
649       +-----------------+ ...        |                 | ...
650       |                 |<-hwlease   +-----------------+
651       |                 |      tail->|                 |<-hwtail
652       |                 |            |                 |
653       |                 |            |                 |
654       |                 |            |                 |
655       +-----------------+            +-----------------+
656 
657  * The cur/tail (user view) and hwcur/hwtail (kernel view)
658  * are used in the normal operation of the card.
659  *
660  * When a ring is the output of a switch port (Rx ring for
661  * a VALE port, Tx ring for the host stack or NIC), slots
662  * are reserved in blocks through 'hwlease' which points
663  * to the next unused slot.
664  * On an Rx ring, hwlease is always after hwtail,
665  * and completions cause hwtail to advance.
666  * On a Tx ring, hwlease is always between cur and hwtail,
667  * and completions cause cur to advance.
668  *
669  * nm_kr_space() returns the maximum number of slots that
670  * can be assigned.
671  * nm_kr_lease() reserves the required number of buffers,
672  *    advances nkr_hwlease and also returns an entry in
673  *    a circular array where completions should be reported.
674  */
675 
676 struct lut_entry;
677 #ifdef __FreeBSD__
678 #define plut_entry lut_entry
679 #endif
680 
681 struct netmap_lut {
682 	struct lut_entry *lut;
683 	struct plut_entry *plut;
684 	uint32_t objtotal;	/* max buffer index */
685 	uint32_t objsize;	/* buffer size */
686 };
687 
688 struct netmap_vp_adapter; // forward
689 struct nm_bridge;
690 
691 /* Struct to be filled by nm_config callbacks. */
692 struct nm_config_info {
693 	unsigned num_tx_rings;
694 	unsigned num_rx_rings;
695 	unsigned num_tx_descs;
696 	unsigned num_rx_descs;
697 	unsigned rx_buf_maxsize;
698 };
699 
700 /*
701  * default type for the magic field.
702  * May be overridden in glue code.
703  */
704 #ifndef NM_OS_MAGIC
705 #define NM_OS_MAGIC uint32_t
706 #endif /* !NM_OS_MAGIC */
707 
708 /*
709  * The "struct netmap_adapter" extends the "struct adapter"
710  * (or equivalent) device descriptor.
711  * It contains all base fields needed to support netmap operation.
712  * There are in fact different types of netmap adapters
713  * (native, generic, VALE switch...) so a netmap_adapter is
714  * just the first field in the derived type.
715  */
716 struct netmap_adapter {
717 	/*
718 	 * On linux we do not have a good way to tell if an interface
719 	 * is netmap-capable. So we always use the following trick:
720 	 * NA(ifp) points here, and the first entry (which hopefully
721 	 * always exists and is at least 32 bits) contains a magic
722 	 * value which we can use to detect that the interface is good.
723 	 */
724 	NM_OS_MAGIC magic;
725 	uint32_t na_flags;	/* enabled, and other flags */
726 #define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
727 				 * useful during initialization
728 				 */
729 #define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
730 #define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
731 				 * forwarding packets coming from this
732 				 * interface
733 				 */
734 #define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
735 				 * that cannot be changed
736 				 */
737 #define NAF_NATIVE      16      /* the adapter is native.
738 				 * Virtual ports (non persistent vale ports,
739 				 * pipes, monitors...) should never use
740 				 * this flag.
741 				 */
742 #define	NAF_NETMAP_ON	32	/* netmap is active (either native or
743 				 * emulated). Where possible (e.g. FreeBSD)
744 				 * IFCAP_NETMAP also mirrors this flag.
745 				 */
746 #define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
747 #define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
748 /* free */
749 #define NAF_MOREFRAG	512	/* the adapter supports NS_MOREFRAG */
750 #define NAF_OFFSETS	1024	/* the adapter supports the slot offsets */
751 #define NAF_HOST_ALL	2048	/* the adapter wants as many host rings as hw */
752 #define NAF_ZOMBIE	(1U<<30) /* the nic driver has been unloaded */
753 #define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
754 				  * cannot be registered from userspace
755 				  */
756 	int active_fds; /* number of user-space descriptors using this
757 			 interface, which is equal to the number of
758 			 struct netmap_if objs in the mapped region. */
759 
760 	u_int num_rx_rings; /* number of adapter receive rings */
761 	u_int num_tx_rings; /* number of adapter transmit rings */
762 	u_int num_host_rx_rings; /* number of host receive rings */
763 	u_int num_host_tx_rings; /* number of host transmit rings */
764 
765 	u_int num_tx_desc;  /* number of descriptor in each queue */
766 	u_int num_rx_desc;
767 
768 	/* tx_rings and rx_rings are private but allocated as a
769 	 * contiguous chunk of memory. Each array has N+K entries,
770 	 * N for the hardware rings and K for the host rings.
771 	 */
772 	struct netmap_kring **tx_rings; /* array of TX rings. */
773 	struct netmap_kring **rx_rings; /* array of RX rings. */
774 
775 	void *tailroom;		       /* space below the rings array */
776 				       /* (used for leases) */
777 
778 
779 	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
780 
781 	/* count users of the global wait queues */
782 	int si_users[NR_TXRX];
783 
784 	void *pdev; /* used to store pci device */
785 
786 	/* copy of if_qflush and if_transmit pointers, to intercept
787 	 * packets from the network stack when netmap is active.
788 	 */
789 	int     (*if_transmit)(if_t, struct mbuf *);
790 
791 	/* copy of if_input for netmap_send_up() */
792 	void     (*if_input)(if_t, struct mbuf *);
793 
794 	/* Back reference to the parent ifnet struct. Used for
795 	 * hardware ports (emulated netmap included). */
796 	if_t ifp; /* adapter is if_getsoftc(ifp) */
797 
798 	/*---- callbacks for this netmap adapter -----*/
799 	/*
800 	 * nm_dtor() is the cleanup routine called when destroying
801 	 *	the adapter.
802 	 *	Called with NMG_LOCK held.
803 	 *
804 	 * nm_register() is called on NIOCREGIF and close() to enter
805 	 *	or exit netmap mode on the NIC
806 	 *	Called with NNG_LOCK held.
807 	 *
808 	 * nm_txsync() pushes packets to the underlying hw/switch
809 	 *
810 	 * nm_rxsync() collects packets from the underlying hw/switch
811 	 *
812 	 * nm_config() returns configuration information from the OS
813 	 *	Called with NMG_LOCK held.
814 	 *
815 	 * nm_bufcfg()
816 	 *      the purpose of this callback is to fill the kring->hwbuf_len
817 	 *      (l) and kring->buf_align fields. The l value is most important
818 	 *      for RX rings, where we want to disallow writes outside of the
819 	 *      netmap buffer. The l value must be computed taking into account
820 	 *      the stipulated max_offset (o), possibly increased if there are
821 	 *      alignment constraints, the maxframe (m), if known, and the
822 	 *      current NETMAP_BUF_SIZE (b) of the memory region used by the
823 	 *      adapter. We want the largest supported l such that o + l <= b.
824 	 *      If m is known to be <= b - o, the callback may also choose the
825 	 *      largest l <= m, ignoring the offset.  The buf_align field is
826 	 *      most important for TX rings when there are offsets.  The user
827 	 *      will see this value in the ring->buf_align field.  Misaligned
828 	 *      offsets will cause the corresponding packets to be silently
829 	 *      dropped.
830 	 *
831 	 * nm_krings_create() create and init the tx_rings and
832 	 * 	rx_rings arrays of kring structures. In particular,
833 	 * 	set the nm_sync callbacks for each ring.
834 	 * 	There is no need to also allocate the corresponding
835 	 * 	netmap_rings, since netmap_mem_rings_create() will always
836 	 * 	be called to provide the missing ones.
837 	 *	Called with NNG_LOCK held.
838 	 *
839 	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
840 	 * 	arrays
841 	 *	Called with NMG_LOCK held.
842 	 *
843 	 * nm_notify() is used to act after data have become available
844 	 * 	(or the stopped state of the ring has changed)
845 	 *	For hw devices this is typically a selwakeup(),
846 	 *	but for NIC/host ports attached to a switch (or vice-versa)
847 	 *	we also need to invoke the 'txsync' code downstream.
848 	 *      This callback pointer is actually used only to initialize
849 	 *      kring->nm_notify.
850 	 *      Return values are the same as for netmap_rx_irq().
851 	 */
852 	void (*nm_dtor)(struct netmap_adapter *);
853 
854 	int (*nm_register)(struct netmap_adapter *, int onoff);
855 	void (*nm_intr)(struct netmap_adapter *, int onoff);
856 
857 	int (*nm_txsync)(struct netmap_kring *kring, int flags);
858 	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
859 	int (*nm_notify)(struct netmap_kring *kring, int flags);
860 	int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target);
861 #define NAF_FORCE_READ      1
862 #define NAF_FORCE_RECLAIM   2
863 #define NAF_CAN_FORWARD_DOWN 4
864 	/* return configuration information */
865 	int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
866 	int (*nm_krings_create)(struct netmap_adapter *);
867 	void (*nm_krings_delete)(struct netmap_adapter *);
868 	/*
869 	 * nm_bdg_attach() initializes the na_vp field to point
870 	 *      to an adapter that can be attached to a VALE switch. If the
871 	 *      current adapter is already a VALE port, na_vp is simply a cast;
872 	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
873 	 *      If applicable, this callback also initializes na_hostvp,
874 	 *      that can be used to connect the adapter host rings to the
875 	 *      switch.
876 	 *      Called with NMG_LOCK held.
877 	 *
878 	 * nm_bdg_ctl() is called on the actual attach/detach to/from
879 	 *      to/from the switch, to perform adapter-specific
880 	 *      initializations
881 	 *      Called with NMG_LOCK held.
882 	 */
883 	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
884 			struct nm_bridge *);
885 	int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
886 
887 	/* adapter used to attach this adapter to a VALE switch (if any) */
888 	struct netmap_vp_adapter *na_vp;
889 	/* adapter used to attach the host rings of this adapter
890 	 * to a VALE switch (if any) */
891 	struct netmap_vp_adapter *na_hostvp;
892 
893 	/* standard refcount to control the lifetime of the adapter
894 	 * (it should be equal to the lifetime of the corresponding ifp)
895 	 */
896 	int na_refcount;
897 
898 	/* memory allocator (opaque)
899 	 * We also cache a pointer to the lut_entry for translating
900 	 * buffer addresses, the total number of buffers and the buffer size.
901 	 */
902  	struct netmap_mem_d *nm_mem;
903 	struct netmap_mem_d *nm_mem_prev;
904 	struct netmap_lut na_lut;
905 
906 	/* additional information attached to this adapter
907 	 * by other netmap subsystems. Currently used by
908 	 * bwrap, LINUX/v1000 and ptnetmap
909 	 */
910 	void *na_private;
911 
912 	/* array of pipes that have this adapter as a parent */
913 	struct netmap_pipe_adapter **na_pipes;
914 	int na_next_pipe;	/* next free slot in the array */
915 	int na_max_pipes;	/* size of the array */
916 
917 	/* Offset of ethernet header for each packet. */
918 	u_int virt_hdr_len;
919 
920 	/* Max number of bytes that the NIC can store in the buffer
921 	 * referenced by each RX descriptor. This translates to the maximum
922 	 * bytes that a single netmap slot can reference. Larger packets
923 	 * require NS_MOREFRAG support. */
924 	unsigned rx_buf_maxsize;
925 
926 	char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
927 
928 #ifdef WITH_MONITOR
929 	unsigned long	monitor_id;	/* debugging */
930 #endif
931 };
932 
933 static __inline u_int
934 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
935 {
936 	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
937 }
938 
939 static __inline void
940 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
941 {
942 	if (t == NR_TX)
943 		na->num_tx_desc = v;
944 	else
945 		na->num_rx_desc = v;
946 }
947 
948 static __inline u_int
949 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
950 {
951 	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
952 }
953 
954 static __inline u_int
955 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
956 {
957 	return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
958 }
959 
960 static __inline void
961 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
962 {
963 	if (t == NR_TX)
964 		na->num_tx_rings = v;
965 	else
966 		na->num_rx_rings = v;
967 }
968 
969 static __inline void
970 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
971 {
972 	if (t == NR_TX)
973 		na->num_host_tx_rings = v;
974 	else
975 		na->num_host_rx_rings = v;
976 }
977 
978 static __inline struct netmap_kring**
979 NMR(struct netmap_adapter *na, enum txrx t)
980 {
981 	return (t == NR_TX ? na->tx_rings : na->rx_rings);
982 }
983 
984 int nma_intr_enable(struct netmap_adapter *na, int onoff);
985 
986 /*
987  * If the NIC is owned by the kernel
988  * (i.e., bridge), neither another bridge nor user can use it;
989  * if the NIC is owned by a user, only users can share it.
990  * Evaluation must be done under NMG_LOCK().
991  */
992 #define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
993 #define NETMAP_OWNED_BY_ANY(na) \
994 	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
995 
996 /*
997  * derived netmap adapters for various types of ports
998  */
999 struct netmap_vp_adapter {	/* VALE software port */
1000 	struct netmap_adapter up;
1001 
1002 	/*
1003 	 * Bridge support:
1004 	 *
1005 	 * bdg_port is the port number used in the bridge;
1006 	 * na_bdg points to the bridge this NA is attached to.
1007 	 */
1008 	int bdg_port;
1009 	struct nm_bridge *na_bdg;
1010 	int retry;
1011 	int autodelete; /* remove the ifp on last reference */
1012 
1013 	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
1014 	u_int mfs;
1015 	/* Last source MAC on this port */
1016 	uint64_t last_smac;
1017 };
1018 
1019 
1020 struct netmap_hw_adapter {	/* physical device */
1021 	struct netmap_adapter up;
1022 
1023 #ifdef linux
1024 	struct net_device_ops nm_ndo;
1025 	struct ethtool_ops    nm_eto;
1026 #endif
1027 	const struct ethtool_ops*   save_ethtool;
1028 
1029 	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
1030 };
1031 
1032 #ifdef WITH_GENERIC
1033 /* Mitigation support. */
1034 struct nm_generic_mit {
1035 	struct hrtimer mit_timer;
1036 	int mit_pending;
1037 	int mit_ring_idx;  /* index of the ring being mitigated */
1038 	struct netmap_adapter *mit_na;  /* backpointer */
1039 };
1040 
1041 struct netmap_generic_adapter {	/* emulated device */
1042 	struct netmap_hw_adapter up;
1043 
1044 	/* Pointer to a previously used netmap adapter. */
1045 	struct netmap_adapter *prev;
1046 
1047 	/* Emulated netmap adapters support:
1048 	 *  - mit implements rx interrupt mitigation;
1049 	 */
1050 	struct nm_generic_mit *mit;
1051 #ifdef linux
1052         netdev_tx_t (*save_start_xmit)(struct mbuf *, if_t);
1053 #endif
1054 	/* Is the adapter able to use multiple RX slots to scatter
1055 	 * each packet pushed up by the driver? */
1056 	int rxsg;
1057 
1058 	/* Is the transmission path controlled by a netmap-aware
1059 	 * device queue (i.e. qdisc on linux)? */
1060 	int txqdisc;
1061 };
1062 #endif  /* WITH_GENERIC */
1063 
1064 static __inline u_int
1065 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
1066 {
1067 	return nma_get_nrings(na, t) +
1068 		!!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
1069 }
1070 
1071 /* account for fake rings */
1072 static __inline u_int
1073 netmap_all_rings(struct netmap_adapter *na, enum txrx t)
1074 {
1075 	return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
1076 }
1077 
1078 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
1079 		struct nm_bridge *);
1080 struct nm_bdg_polling_state;
1081 /*
1082  * Bridge wrapper for non VALE ports attached to a VALE switch.
1083  *
1084  * The real device must already have its own netmap adapter (hwna).
1085  * The bridge wrapper and the hwna adapter share the same set of
1086  * netmap rings and buffers, but they have two separate sets of
1087  * krings descriptors, with tx/rx meanings swapped:
1088  *
1089  *                                  netmap
1090  *           bwrap     krings       rings      krings      hwna
1091  *         +------+   +------+     +-----+    +------+   +------+
1092  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
1093  *         |      |   +------+ \ / +-----+    +------+   |      |
1094  *         |      |             X                        |      |
1095  *         |      |            / \                       |      |
1096  *         |      |   +------+/   \+-----+    +------+   |      |
1097  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
1098  *         |      |   +------+     +-----+    +------+   |      |
1099  *         +------+                                      +------+
1100  *
1101  * - packets coming from the bridge go to the brwap rx rings,
1102  *   which are also the hwna tx rings.  The bwrap notify callback
1103  *   will then complete the hwna tx (see netmap_bwrap_notify).
1104  *
1105  * - packets coming from the outside go to the hwna rx rings,
1106  *   which are also the bwrap tx rings.  The (overwritten) hwna
1107  *   notify method will then complete the bridge tx
1108  *   (see netmap_bwrap_intr_notify).
1109  *
1110  *   The bridge wrapper may optionally connect the hwna 'host' rings
1111  *   to the bridge. This is done by using a second port in the
1112  *   bridge and connecting it to the 'host' netmap_vp_adapter
1113  *   contained in the netmap_bwrap_adapter. The brwap host adapter
1114  *   cross-links the hwna host rings in the same way as shown above.
1115  *
1116  * - packets coming from the bridge and directed to the host stack
1117  *   are handled by the bwrap host notify callback
1118  *   (see netmap_bwrap_host_notify)
1119  *
1120  * - packets coming from the host stack are still handled by the
1121  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
1122  *   but are diverted to the host adapter depending on the ring number.
1123  *
1124  */
1125 struct netmap_bwrap_adapter {
1126 	struct netmap_vp_adapter up;
1127 	struct netmap_vp_adapter host;  /* for host rings */
1128 	struct netmap_adapter *hwna;	/* the underlying device */
1129 
1130 	/*
1131 	 * When we attach a physical interface to the bridge, we
1132 	 * allow the controlling process to terminate, so we need
1133 	 * a place to store the n_detmap_priv_d data structure.
1134 	 * This is only done when physical interfaces
1135 	 * are attached to a bridge.
1136 	 */
1137 	struct netmap_priv_d *na_kpriv;
1138 	struct nm_bdg_polling_state *na_polling_state;
1139 	/* we overwrite the hwna->na_vp pointer, so we save
1140 	 * here its original value, to be restored at detach
1141 	 */
1142 	struct netmap_vp_adapter *saved_na_vp;
1143 	int (*nm_intr_notify)(struct netmap_kring *kring, int flags);
1144 };
1145 int nm_is_bwrap(struct netmap_adapter *na);
1146 int nm_bdg_polling(struct nmreq_header *hdr);
1147 
1148 int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token);
1149 int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token);
1150 #ifdef WITH_VALE
1151 int netmap_vale_list(struct nmreq_header *hdr);
1152 int netmap_vi_create(struct nmreq_header *hdr, int);
1153 int nm_vi_create(struct nmreq_header *);
1154 int nm_vi_destroy(const char *name);
1155 #else /* !WITH_VALE */
1156 #define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1157 #endif /* WITH_VALE */
1158 
1159 #ifdef WITH_PIPES
1160 
1161 #define NM_MAXPIPES 	64	/* max number of pipes per adapter */
1162 
1163 struct netmap_pipe_adapter {
1164 	/* pipe identifier is up.name */
1165 	struct netmap_adapter up;
1166 
1167 #define NM_PIPE_ROLE_MASTER	0x1
1168 #define NM_PIPE_ROLE_SLAVE	0x2
1169 	int role;	/* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1170 
1171 	struct netmap_adapter *parent; /* adapter that owns the memory */
1172 	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1173 	int peer_ref;		/* 1 iff we are holding a ref to the peer */
1174 	if_t parent_ifp;	/* maybe null */
1175 
1176 	u_int parent_slot; /* index in the parent pipe array */
1177 };
1178 
1179 #endif /* WITH_PIPES */
1180 
1181 #ifdef WITH_NMNULL
1182 struct netmap_null_adapter {
1183 	struct netmap_adapter up;
1184 };
1185 #endif /* WITH_NMNULL */
1186 
1187 
1188 /* return slots reserved to rx clients; used in drivers */
1189 static inline uint32_t
1190 nm_kr_rxspace(struct netmap_kring *k)
1191 {
1192 	int space = k->nr_hwtail - k->nr_hwcur;
1193 	if (space < 0)
1194 		space += k->nkr_num_slots;
1195 	nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1196 
1197 	return space;
1198 }
1199 
1200 /* return slots reserved to tx clients */
1201 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1202 
1203 
1204 /* True if no space in the tx ring, only valid after txsync_prologue */
1205 static inline int
1206 nm_kr_txempty(struct netmap_kring *kring)
1207 {
1208 	return kring->rhead == kring->nr_hwtail;
1209 }
1210 
1211 /* True if no more completed slots in the rx ring, only valid after
1212  * rxsync_prologue */
1213 #define nm_kr_rxempty(_k)	nm_kr_txempty(_k)
1214 
1215 /* True if the application needs to wait for more space on the ring
1216  * (more received packets or more free tx slots).
1217  * Only valid after *xsync_prologue. */
1218 static inline int
1219 nm_kr_wouldblock(struct netmap_kring *kring)
1220 {
1221 	return kring->rcur == kring->nr_hwtail;
1222 }
1223 
1224 /*
1225  * protect against multiple threads using the same ring.
1226  * also check that the ring has not been stopped or locked
1227  */
1228 #define NM_KR_BUSY	1	/* some other thread is syncing the ring */
1229 #define NM_KR_STOPPED	2	/* unbounded stop (ifconfig down or driver unload) */
1230 #define NM_KR_LOCKED	3	/* bounded, brief stop for mutual exclusion */
1231 
1232 
1233 /* release the previously acquired right to use the *sync() methods of the ring */
1234 static __inline void nm_kr_put(struct netmap_kring *kr)
1235 {
1236 	NM_ATOMIC_CLEAR(&kr->nr_busy);
1237 }
1238 
1239 
1240 /* true if the ifp that backed the adapter has disappeared (e.g., the
1241  * driver has been unloaded)
1242  */
1243 static inline int nm_iszombie(struct netmap_adapter *na);
1244 
1245 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1246  * The right is obtained and must be later relinquished via nm_kr_put() if and
1247  * only if nm_kr_tryget() returns 0.
1248  * If can_sleep is 1 there are only two other possible outcomes:
1249  * - the function returns NM_KR_BUSY
1250  * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1251  *   (if non-null)
1252  * In both cases the caller will typically skip the ring, possibly collecting
1253  * errors along the way.
1254  * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1255  * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1256  * untouched: ideally, the caller should try again at a later time.
1257  */
1258 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1259 {
1260 	int busy = 1, stopped;
1261 	/* check a first time without taking the lock
1262 	 * to avoid starvation for nm_kr_get()
1263 	 */
1264 retry:
1265 	stopped = kr->nkr_stopped;
1266 	if (unlikely(stopped)) {
1267 		goto stop;
1268 	}
1269 	busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1270 	/* we should not return NM_KR_BUSY if the ring was
1271 	 * actually stopped, so check another time after
1272 	 * the barrier provided by the atomic operation
1273 	 */
1274 	stopped = kr->nkr_stopped;
1275 	if (unlikely(stopped)) {
1276 		goto stop;
1277 	}
1278 
1279 	if (unlikely(nm_iszombie(kr->na))) {
1280 		stopped = NM_KR_STOPPED;
1281 		goto stop;
1282 	}
1283 
1284 	return unlikely(busy) ? NM_KR_BUSY : 0;
1285 
1286 stop:
1287 	if (!busy)
1288 		nm_kr_put(kr);
1289 	if (stopped == NM_KR_STOPPED) {
1290 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1291  * Otherwise, any non-zero value will do.
1292  */
1293 #ifdef POLLERR
1294 #define NM_POLLERR POLLERR
1295 #else
1296 #define NM_POLLERR 1
1297 #endif /* POLLERR */
1298 		if (perr)
1299 			*perr |= NM_POLLERR;
1300 #undef NM_POLLERR
1301 	} else if (can_sleep) {
1302 		tsleep(kr, 0, "NM_KR_TRYGET", 4);
1303 		goto retry;
1304 	}
1305 	return stopped;
1306 }
1307 
1308 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1309  * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1310  */
1311 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1312 {
1313 	kr->nkr_stopped = stopped;
1314 	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1315 		tsleep(kr, 0, "NM_KR_GET", 4);
1316 }
1317 
1318 /* restart a ring after a stop */
1319 static __inline void nm_kr_start(struct netmap_kring *kr)
1320 {
1321 	kr->nkr_stopped = 0;
1322 	nm_kr_put(kr);
1323 }
1324 
1325 
1326 /*
1327  * The following functions are used by individual drivers to
1328  * support netmap operation.
1329  *
1330  * netmap_attach() initializes a struct netmap_adapter, allocating the
1331  * 	struct netmap_ring's and the struct selinfo.
1332  *
1333  * netmap_detach() frees the memory allocated by netmap_attach().
1334  *
1335  * netmap_transmit() replaces the if_transmit routine of the interface,
1336  *	and is used to intercept packets coming from the stack.
1337  *
1338  * netmap_load_map/netmap_reload_map are helper routines to set/reset
1339  *	the dmamap for a packet buffer
1340  *
1341  * netmap_reset() is a helper routine to be called in the hw driver
1342  *	when reinitializing a ring. It should not be called by
1343  *	virtual ports (vale, pipes, monitor)
1344  */
1345 int netmap_attach(struct netmap_adapter *);
1346 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1347 void netmap_detach(if_t);
1348 int netmap_transmit(if_t, struct mbuf *);
1349 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1350 	enum txrx tx, u_int n, u_int new_cur);
1351 int netmap_ring_reinit(struct netmap_kring *);
1352 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1353 
1354 /* Return codes for netmap_*x_irq. */
1355 enum {
1356 	/* Driver should do normal interrupt processing, e.g. because
1357 	 * the interface is not in netmap mode. */
1358 	NM_IRQ_PASS = 0,
1359 	/* Port is in netmap mode, and the interrupt work has been
1360 	 * completed. The driver does not have to notify netmap
1361 	 * again before the next interrupt. */
1362 	NM_IRQ_COMPLETED = -1,
1363 	/* Port is in netmap mode, but the interrupt work has not been
1364 	 * completed. The driver has to make sure netmap will be
1365 	 * notified again soon, even if no more interrupts come (e.g.
1366 	 * on Linux the driver should not call napi_complete()). */
1367 	NM_IRQ_RESCHED = -2,
1368 };
1369 
1370 /* default functions to handle rx/tx interrupts */
1371 int netmap_rx_irq(if_t, u_int, u_int *);
1372 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1373 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1374 
1375 
1376 #ifdef WITH_VALE
1377 /* functions used by external modules to interface with VALE */
1378 #define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
1379 #define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
1380 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1381 #define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
1382 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1383 #else /* !WITH_VALE */
1384 #define netmap_vp_to_ifp(_vp)	NULL
1385 #define netmap_ifp_to_vp(_ifp)	NULL
1386 #define netmap_ifp_to_host_vp(_ifp) NULL
1387 #define netmap_bdg_idx(_vp)	-1
1388 #endif /* WITH_VALE */
1389 
1390 static inline int
1391 nm_netmap_on(struct netmap_adapter *na)
1392 {
1393 	return na && na->na_flags & NAF_NETMAP_ON;
1394 }
1395 
1396 static inline int
1397 nm_native_on(struct netmap_adapter *na)
1398 {
1399 	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1400 }
1401 
1402 static inline struct netmap_kring *
1403 netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t)
1404 {
1405 	struct netmap_kring *kring = NULL;
1406 
1407 	if (!nm_native_on(na))
1408 		return NULL;
1409 
1410 	if (t == NR_RX && q < na->num_rx_rings)
1411 		kring = na->rx_rings[q];
1412 	else if (t == NR_TX && q < na->num_tx_rings)
1413 		kring = na->tx_rings[q];
1414 	else
1415 		return NULL;
1416 
1417 	return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL;
1418 }
1419 
1420 static inline int
1421 nm_iszombie(struct netmap_adapter *na)
1422 {
1423 	return na == NULL || (na->na_flags & NAF_ZOMBIE);
1424 }
1425 
1426 void nm_set_native_flags(struct netmap_adapter *);
1427 void nm_clear_native_flags(struct netmap_adapter *);
1428 
1429 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff);
1430 
1431 /*
1432  * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1433  * kthreads.
1434  * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1435  * from host kring.
1436  * The user-space ring pointers (head/cur/tail) are shared through
1437  * CSB between host and guest.
1438  */
1439 
1440 /*
1441  * validates parameters in the ring/kring, returns a value for head
1442  * If any error, returns ring_size to force a reinit.
1443  */
1444 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1445 
1446 
1447 /*
1448  * validates parameters in the ring/kring, returns a value for head
1449  * If any error, returns ring_size lim to force a reinit.
1450  */
1451 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1452 
1453 
1454 /* check/fix address and len in tx rings */
1455 #if 1 /* debug version */
1456 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1457 	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1458 		nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1459 			kring->ring_id, nm_i, slot->buf_idx, len);	\
1460 		if (_l > NETMAP_BUF_SIZE(_na))				\
1461 			_l = NETMAP_BUF_SIZE(_na);			\
1462 	} } while (0)
1463 #else /* no debug version */
1464 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1465 		if (_l > NETMAP_BUF_SIZE(_na))				\
1466 			_l = NETMAP_BUF_SIZE(_na);			\
1467 	} while (0)
1468 #endif
1469 
1470 #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do {				\
1471 	if ((l_) + (o_) < (l_) || 					\
1472 	    (l_) + (o_) > NETMAP_BUF_SIZE(na_)) {			\
1473 		(l_) = NETMAP_BUF_SIZE(na_) - (o_);			\
1474 	} } while (0)
1475 
1476 
1477 /*---------------------------------------------------------------*/
1478 /*
1479  * Support routines used by netmap subsystems
1480  * (native drivers, VALE, generic, pipes, monitors, ...)
1481  */
1482 
1483 
1484 /* common routine for all functions that create a netmap adapter. It performs
1485  * two main tasks:
1486  * - if the na points to an ifp, mark the ifp as netmap capable
1487  *   using na as its native adapter;
1488  * - provide defaults for the setup callbacks and the memory allocator
1489  */
1490 int netmap_attach_common(struct netmap_adapter *);
1491 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1492  * coming from a struct nmreq_register
1493  */
1494 int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr);
1495 /* update the ring parameters (number and size of tx and rx rings).
1496  * It calls the nm_config callback, if available.
1497  */
1498 int netmap_update_config(struct netmap_adapter *na);
1499 /* create and initialize the common fields of the krings array.
1500  * using the information that must be already available in the na.
1501  * tailroom can be used to request the allocation of additional
1502  * tailroom bytes after the krings array. This is used by
1503  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1504  * leasing-related data structures
1505  */
1506 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1507 /* deletes the kring array of the adapter. The array must have
1508  * been created using netmap_krings_create
1509  */
1510 void netmap_krings_delete(struct netmap_adapter *na);
1511 
1512 int netmap_hw_krings_create(struct netmap_adapter *na);
1513 void netmap_hw_krings_delete(struct netmap_adapter *na);
1514 
1515 /* set the stopped/enabled status of ring
1516  * When stopping, they also wait for all current activity on the ring to
1517  * terminate. The status change is then notified using the na nm_notify
1518  * callback.
1519  */
1520 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1521 /* set the stopped/enabled status of all rings of the adapter. */
1522 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1523 /* convenience wrappers for netmap_set_all_rings */
1524 void netmap_disable_all_rings(if_t);
1525 void netmap_enable_all_rings(if_t);
1526 
1527 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
1528 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1529 		struct nmreq_header *);
1530 void netmap_do_unregif(struct netmap_priv_d *priv);
1531 
1532 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1533 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1534 		if_t *ifp, struct netmap_mem_d *nmd, int create);
1535 void netmap_unget_na(struct netmap_adapter *na, if_t ifp);
1536 int netmap_get_hw_na(if_t ifp,
1537 		struct netmap_mem_d *nmd, struct netmap_adapter **na);
1538 void netmap_mem_restore(struct netmap_adapter *na);
1539 
1540 #ifdef WITH_VALE
1541 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1542 		struct netmap_vp_adapter *, void *private_data);
1543 
1544 /* these are redefined in case of no VALE support */
1545 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1546 		struct netmap_mem_d *nmd, int create);
1547 void *netmap_vale_create(const char *bdg_name, int *return_status);
1548 int netmap_vale_destroy(const char *bdg_name, void *auth_token);
1549 
1550 extern unsigned int vale_max_bridges;
1551 
1552 #else /* !WITH_VALE */
1553 #define netmap_bdg_learning(_1, _2, _3, _4)	0
1554 #define	netmap_get_vale_na(_1, _2, _3, _4)	0
1555 #define netmap_bdg_create(_1, _2)	NULL
1556 #define netmap_bdg_destroy(_1, _2)	0
1557 #define vale_max_bridges		1
1558 #endif /* !WITH_VALE */
1559 
1560 #ifdef WITH_PIPES
1561 /* max number of pipes per device */
1562 #define NM_MAXPIPES	64	/* XXX this should probably be a sysctl */
1563 void netmap_pipe_dealloc(struct netmap_adapter *);
1564 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1565 			struct netmap_mem_d *nmd, int create);
1566 #else /* !WITH_PIPES */
1567 #define NM_MAXPIPES	0
1568 #define netmap_pipe_alloc(_1, _2) 	0
1569 #define netmap_pipe_dealloc(_1)
1570 #define netmap_get_pipe_na(hdr, _2, _3, _4)	\
1571 	((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1572 #endif
1573 
1574 #ifdef WITH_MONITOR
1575 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1576 		struct netmap_mem_d *nmd, int create);
1577 void netmap_monitor_stop(struct netmap_adapter *na);
1578 #else
1579 #define netmap_get_monitor_na(hdr, _2, _3, _4) \
1580 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1581 #endif
1582 
1583 #ifdef WITH_NMNULL
1584 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1585 		struct netmap_mem_d *nmd, int create);
1586 #else /* !WITH_NMNULL */
1587 #define netmap_get_null_na(hdr, _2, _3, _4) \
1588 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1589 #endif /* WITH_NMNULL */
1590 
1591 #ifdef CONFIG_NET_NS
1592 struct net *netmap_bns_get(void);
1593 void netmap_bns_put(struct net *);
1594 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1595 #else
1596 extern struct nm_bridge *nm_bridges;
1597 #define netmap_bns_get()
1598 #define netmap_bns_put(_1)
1599 #define netmap_bns_getbridges(b, n) \
1600 	do { *b = nm_bridges; *n = vale_max_bridges; } while (0)
1601 #endif
1602 
1603 /* Various prototypes */
1604 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1605 int netmap_init(void);
1606 void netmap_fini(void);
1607 int netmap_get_memory(struct netmap_priv_d* p);
1608 void netmap_dtor(void *data);
1609 
1610 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1611 		struct thread *, int nr_body_is_user);
1612 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1613 			struct thread *td);
1614 size_t nmreq_size_by_type(uint16_t nr_reqtype);
1615 
1616 /* netmap_adapter creation/destruction */
1617 
1618 // #define NM_DEBUG_PUTGET 1
1619 
1620 #ifdef NM_DEBUG_PUTGET
1621 
1622 #define NM_DBG(f) __##f
1623 
1624 void __netmap_adapter_get(struct netmap_adapter *na);
1625 
1626 #define netmap_adapter_get(na) 				\
1627 	do {						\
1628 		struct netmap_adapter *__na = na;	\
1629 		__netmap_adapter_get(__na);		\
1630 		nm_prinf("getting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount);	\
1631 	} while (0)
1632 
1633 int __netmap_adapter_put(struct netmap_adapter *na);
1634 
1635 #define netmap_adapter_put(na)				\
1636 	({						\
1637 		struct netmap_adapter *__na = na;	\
1638 		if (__na == NULL)			\
1639 			nm_prinf("putting NULL");	\
1640 		else					\
1641 			nm_prinf("putting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount - 1);	\
1642 		__netmap_adapter_put(__na);	\
1643 	})
1644 
1645 #else /* !NM_DEBUG_PUTGET */
1646 
1647 #define NM_DBG(f) f
1648 void netmap_adapter_get(struct netmap_adapter *na);
1649 int netmap_adapter_put(struct netmap_adapter *na);
1650 
1651 #endif /* !NM_DEBUG_PUTGET */
1652 
1653 
1654 /*
1655  * module variables
1656  */
1657 #define NETMAP_BUF_BASE(_na)	((_na)->na_lut.lut[0].vaddr)
1658 #define NETMAP_BUF_SIZE(_na)	((_na)->na_lut.objsize)
1659 extern int netmap_no_pendintr;
1660 extern int netmap_verbose;
1661 #ifdef CONFIG_NETMAP_DEBUG
1662 extern int netmap_debug;		/* for debugging */
1663 #else /* !CONFIG_NETMAP_DEBUG */
1664 #define netmap_debug (0)
1665 #endif /* !CONFIG_NETMAP_DEBUG */
1666 enum {                                  /* debug flags */
1667 	NM_DEBUG_ON = 1,		/* generic debug messages */
1668 	NM_DEBUG_HOST = 0x2,            /* debug host stack */
1669 	NM_DEBUG_RXSYNC = 0x10,         /* debug on rxsync/txsync */
1670 	NM_DEBUG_TXSYNC = 0x20,
1671 	NM_DEBUG_RXINTR = 0x100,        /* debug on rx/tx intr (driver) */
1672 	NM_DEBUG_TXINTR = 0x200,
1673 	NM_DEBUG_NIC_RXSYNC = 0x1000,   /* debug on rx/tx intr (driver) */
1674 	NM_DEBUG_NIC_TXSYNC = 0x2000,
1675 	NM_DEBUG_MEM = 0x4000,		/* verbose memory allocations/deallocations */
1676 	NM_DEBUG_VALE = 0x8000,		/* debug messages from memory allocators */
1677 	NM_DEBUG_BDG = NM_DEBUG_VALE,
1678 };
1679 
1680 extern int netmap_txsync_retry;
1681 extern int netmap_generic_hwcsum;
1682 extern int netmap_generic_mit;
1683 extern int netmap_generic_ringsize;
1684 extern int netmap_generic_rings;
1685 #ifdef linux
1686 extern int netmap_generic_txqdisc;
1687 #endif
1688 
1689 /*
1690  * NA returns a pointer to the struct netmap adapter from the ifp.
1691  * The if_getnetmapadapter() and if_setnetmapadapter() helpers are
1692  * os-specific and must be defined in glue code.
1693  */
1694 #define	NA(_ifp)	(if_getnetmapadapter(_ifp))
1695 
1696 /*
1697  * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
1698  * based on the if_setnetmapadapter() setter function.
1699  * Glue code may override this by defining its own NM_ATTACH_NA
1700  */
1701 #ifndef NM_ATTACH_NA
1702 /*
1703  * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1704  * overload another pointer in the netdev.
1705  *
1706  * We check if NA(ifp) is set and its first element has a related
1707  * magic value. The capenable is within the struct netmap_adapter.
1708  */
1709 #define	NETMAP_MAGIC	0x52697a7a
1710 
1711 #define NM_NA_VALID(ifp)	(NA(ifp) &&		\
1712 	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1713 
1714 #define	NM_ATTACH_NA(ifp, na) do {					\
1715 	if_setnetmapadapter(ifp, na);					\
1716 	if (NA(ifp))							\
1717 		NA(ifp)->magic = 					\
1718 			((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC;	\
1719 } while(0)
1720 #define NM_RESTORE_NA(ifp, na) 	if_setnetmapadapter(ifp, na);
1721 
1722 #define NM_DETACH_NA(ifp)	do { if_setnetmapadapter(ifp, NULL); } while (0)
1723 #define NM_NA_CLASH(ifp)	(NA(ifp) && !NM_NA_VALID(ifp))
1724 #endif /* !NM_ATTACH_NA */
1725 
1726 
1727 #define NM_IS_NATIVE(ifp)	(NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1728 
1729 #if defined(__FreeBSD__)
1730 
1731 /* Assigns the device IOMMU domain to an allocator.
1732  * Returns -ENOMEM in case the domain is different */
1733 #define nm_iommu_group_id(dev) (-1)
1734 
1735 /* Callback invoked by the dma machinery after a successful dmamap_load */
1736 static void netmap_dmamap_cb(__unused void *arg,
1737     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1738 {
1739 }
1740 
1741 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1742  * XXX can we do it without a callback ?
1743  */
1744 static inline int
1745 netmap_load_map(struct netmap_adapter *na,
1746 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1747 {
1748 	if (map)
1749 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1750 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1751 	return 0;
1752 }
1753 
1754 static inline void
1755 netmap_unload_map(struct netmap_adapter *na,
1756         bus_dma_tag_t tag, bus_dmamap_t map)
1757 {
1758 	if (map)
1759 		bus_dmamap_unload(tag, map);
1760 }
1761 
1762 #define netmap_sync_map(na, tag, map, sz, t)
1763 
1764 /* update the map when a buffer changes. */
1765 static inline void
1766 netmap_reload_map(struct netmap_adapter *na,
1767 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1768 {
1769 	if (map) {
1770 		bus_dmamap_unload(tag, map);
1771 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1772 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1773 	}
1774 }
1775 
1776 #elif defined(_WIN32)
1777 
1778 #else /* linux */
1779 
1780 int nm_iommu_group_id(bus_dma_tag_t dev);
1781 #include <linux/dma-mapping.h>
1782 
1783 /*
1784  * on linux we need
1785  *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1786  *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1787  */
1788 #if 0
1789 	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1790 	/* set time_stamp *before* dma to help avoid a possible race */
1791 	buffer_info->time_stamp = jiffies;
1792 	buffer_info->mapped_as_page = false;
1793 	buffer_info->length = len;
1794 	//buffer_info->next_to_watch = l;
1795 	/* reload dma map */
1796 	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1797 			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1798 	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1799 			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1800 
1801 	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1802 		nm_prerr("dma mapping error");
1803 		/* goto dma_error; See e1000_put_txbuf() */
1804 		/* XXX reset */
1805 	}
1806 	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1807 
1808 #endif
1809 
1810 static inline int
1811 netmap_load_map(struct netmap_adapter *na,
1812 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1813 {
1814 	if (map) {
1815 		*map = dma_map_single(na->pdev, buf, size,
1816 				      DMA_BIDIRECTIONAL);
1817 		if (dma_mapping_error(na->pdev, *map)) {
1818 			*map = 0;
1819 			return ENOMEM;
1820 		}
1821 	}
1822 	return 0;
1823 }
1824 
1825 static inline void
1826 netmap_unload_map(struct netmap_adapter *na,
1827 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1828 {
1829 	if (*map) {
1830 		dma_unmap_single(na->pdev, *map, sz,
1831 				 DMA_BIDIRECTIONAL);
1832 	}
1833 }
1834 
1835 #ifdef NETMAP_LINUX_HAVE_DMASYNC
1836 static inline void
1837 netmap_sync_map_cpu(struct netmap_adapter *na,
1838 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1839 {
1840 	if (*map) {
1841 		dma_sync_single_for_cpu(na->pdev, *map, sz,
1842 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1843 	}
1844 }
1845 
1846 static inline void
1847 netmap_sync_map_dev(struct netmap_adapter *na,
1848 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1849 {
1850 	if (*map) {
1851 		dma_sync_single_for_device(na->pdev, *map, sz,
1852 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1853 	}
1854 }
1855 
1856 static inline void
1857 netmap_reload_map(struct netmap_adapter *na,
1858 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1859 {
1860 	u_int sz = NETMAP_BUF_SIZE(na);
1861 
1862 	if (*map) {
1863 		dma_unmap_single(na->pdev, *map, sz,
1864 				DMA_BIDIRECTIONAL);
1865 	}
1866 
1867 	*map = dma_map_single(na->pdev, buf, sz,
1868 				DMA_BIDIRECTIONAL);
1869 }
1870 #else /* !NETMAP_LINUX_HAVE_DMASYNC */
1871 #define netmap_sync_map_cpu(na, tag, map, sz, t)
1872 #define netmap_sync_map_dev(na, tag, map, sz, t)
1873 #endif /* NETMAP_LINUX_HAVE_DMASYNC */
1874 
1875 #endif /* linux */
1876 
1877 
1878 /*
1879  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1880  */
1881 static inline int
1882 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1883 {
1884 	int n = kr->nkr_num_slots;
1885 
1886 	if (likely(kr->nkr_hwofs == 0)) {
1887 		return idx;
1888 	}
1889 
1890 	idx += kr->nkr_hwofs;
1891 	if (idx < 0)
1892 		return idx + n;
1893 	else if (idx < n)
1894 		return idx;
1895 	else
1896 		return idx - n;
1897 }
1898 
1899 
1900 static inline int
1901 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1902 {
1903 	int n = kr->nkr_num_slots;
1904 
1905 	if (likely(kr->nkr_hwofs == 0)) {
1906 		return idx;
1907 	}
1908 
1909 	idx -= kr->nkr_hwofs;
1910 	if (idx < 0)
1911 		return idx + n;
1912 	else if (idx < n)
1913 		return idx;
1914 	else
1915 		return idx - n;
1916 }
1917 
1918 
1919 /* Entries of the look-up table. */
1920 #ifdef __FreeBSD__
1921 struct lut_entry {
1922 	void *vaddr;		/* virtual address. */
1923 	vm_paddr_t paddr;	/* physical address. */
1924 };
1925 #else /* linux & _WIN32 */
1926 /* dma-mapping in linux can assign a buffer a different address
1927  * depending on the device, so we need to have a separate
1928  * physical-address look-up table for each na.
1929  * We can still share the vaddrs, though, therefore we split
1930  * the lut_entry structure.
1931  */
1932 struct lut_entry {
1933 	void *vaddr;		/* virtual address. */
1934 };
1935 
1936 struct plut_entry {
1937 	vm_paddr_t paddr;	/* physical address. */
1938 };
1939 #endif /* linux & _WIN32 */
1940 
1941 struct netmap_obj_pool;
1942 
1943 /* alignment for netmap buffers */
1944 #define NM_BUF_ALIGN	64
1945 
1946 /*
1947  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1948  * PNMB also fills the physical address
1949  */
1950 static inline void *
1951 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1952 {
1953 	struct lut_entry *lut = na->na_lut.lut;
1954 	uint32_t i = slot->buf_idx;
1955 	return (unlikely(i >= na->na_lut.objtotal)) ?
1956 		lut[0].vaddr : lut[i].vaddr;
1957 }
1958 
1959 static inline void *
1960 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1961 {
1962 	uint32_t i = slot->buf_idx;
1963 	struct lut_entry *lut = na->na_lut.lut;
1964 	struct plut_entry *plut = na->na_lut.plut;
1965 	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1966 
1967 #ifdef _WIN32
1968 	*pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1969 #else
1970 	*pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1971 #endif
1972 	return ret;
1973 }
1974 
1975 static inline void
1976 nm_write_offset(struct netmap_kring *kring,
1977 		struct netmap_slot *slot, uint64_t offset)
1978 {
1979 	slot->ptr = (slot->ptr & ~kring->offset_mask) |
1980 		(offset & kring->offset_mask);
1981 }
1982 
1983 static inline uint64_t
1984 nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot)
1985 {
1986 	uint64_t offset = (slot->ptr & kring->offset_mask);
1987 	if (unlikely(offset > kring->offset_max))
1988 		offset = kring->offset_max;
1989 	return offset;
1990 }
1991 
1992 static inline void *
1993 NMB_O(struct netmap_kring *kring, struct netmap_slot *slot)
1994 {
1995 	void *addr = NMB(kring->na, slot);
1996 	return (char *)addr + nm_get_offset(kring, slot);
1997 }
1998 
1999 static inline void *
2000 PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp)
2001 {
2002 	void *addr = PNMB(kring->na, slot, pp);
2003 	uint64_t offset = nm_get_offset(kring, slot);
2004 	addr = (char *)addr + offset;
2005 	*pp += offset;
2006 	return addr;
2007 }
2008 
2009 
2010 /*
2011  * Structure associated to each netmap file descriptor.
2012  * It is created on open and left unbound (np_nifp == NULL).
2013  * A successful NIOCREGIF will set np_nifp and the first few fields;
2014  * this is protected by a global lock (NMG_LOCK) due to low contention.
2015  *
2016  * np_refs counts the number of references to the structure: one for the fd,
2017  * plus (on FreeBSD) one for each active mmap which we track ourselves
2018  * (linux automatically tracks them, but FreeBSD does not).
2019  * np_refs is protected by NMG_LOCK.
2020  *
2021  * Read access to the structure is lock free, because ni_nifp once set
2022  * can only go to 0 when nobody is using the entry anymore. Readers
2023  * must check that np_nifp != NULL before using the other fields.
2024  */
2025 struct netmap_priv_d {
2026 	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
2027 
2028 	struct netmap_adapter	*np_na;
2029 	if_t		np_ifp;
2030 	uint32_t	np_flags;	/* from the ioctl */
2031 	u_int		np_qfirst[NR_TXRX],
2032 			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
2033 	uint16_t	np_txpoll;
2034 	uint16_t        np_kloop_state;	/* use with NMG_LOCK held */
2035 #define NM_SYNC_KLOOP_RUNNING	(1 << 0)
2036 #define NM_SYNC_KLOOP_STOPPING	(1 << 1)
2037 	int             np_sync_flags; /* to be passed to nm_sync */
2038 
2039 	int		np_refs;	/* use with NMG_LOCK held */
2040 
2041 	/* pointers to the selinfo to be used for selrecord.
2042 	 * Either the local or the global one depending on the
2043 	 * number of rings.
2044 	 */
2045 	NM_SELINFO_T *np_si[NR_TXRX];
2046 
2047 	/* In the optional CSB mode, the user must specify the start address
2048 	 * of two arrays of Communication Status Block (CSB) entries, for the
2049 	 * two directions (kernel read application write, and kernel write
2050 	 * application read).
2051 	 * The number of entries must agree with the number of rings bound to
2052 	 * the netmap file descriptor. The entries corresponding to the TX
2053 	 * rings are laid out before the ones corresponding to the RX rings.
2054 	 *
2055 	 * Array of CSB entries for application --> kernel communication
2056 	 * (N entries). */
2057 	struct nm_csb_atok	*np_csb_atok_base;
2058 	/* Array of CSB entries for kernel --> application communication
2059 	 * (N entries). */
2060 	struct nm_csb_ktoa	*np_csb_ktoa_base;
2061 
2062 #ifdef linux
2063 	struct file	*np_filp;  /* used by sync kloop */
2064 #endif /* linux */
2065 };
2066 
2067 struct netmap_priv_d *netmap_priv_new(void);
2068 void netmap_priv_delete(struct netmap_priv_d *);
2069 
2070 static inline int nm_kring_pending(struct netmap_priv_d *np)
2071 {
2072 	struct netmap_adapter *na = np->np_na;
2073 	enum txrx t;
2074 	int i;
2075 
2076 	for_rx_tx(t) {
2077 		for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
2078 			struct netmap_kring *kring = NMR(na, t)[i];
2079 			if (kring->nr_mode != kring->nr_pending_mode) {
2080 				return 1;
2081 			}
2082 		}
2083 	}
2084 	return 0;
2085 }
2086 
2087 /* call with NMG_LOCK held */
2088 static __inline int
2089 nm_si_user(struct netmap_priv_d *priv, enum txrx t)
2090 {
2091 	return (priv->np_na != NULL &&
2092 		(priv->np_qlast[t] - priv->np_qfirst[t] > 1));
2093 }
2094 
2095 #ifdef WITH_PIPES
2096 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
2097 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
2098 int netmap_pipe_krings_create_both(struct netmap_adapter *na,
2099 				  struct netmap_adapter *ona);
2100 void netmap_pipe_krings_delete_both(struct netmap_adapter *na,
2101 				    struct netmap_adapter *ona);
2102 int netmap_pipe_reg_both(struct netmap_adapter *na,
2103 			 struct netmap_adapter *ona);
2104 #endif /* WITH_PIPES */
2105 
2106 #ifdef WITH_MONITOR
2107 
2108 struct netmap_monitor_adapter {
2109 	struct netmap_adapter up;
2110 
2111 	struct netmap_priv_d priv;
2112 	uint32_t flags;
2113 };
2114 
2115 #endif /* WITH_MONITOR */
2116 
2117 
2118 #ifdef WITH_GENERIC
2119 /*
2120  * generic netmap emulation for devices that do not have
2121  * native netmap support.
2122  */
2123 int generic_netmap_attach(if_t ifp);
2124 int generic_rx_handler(if_t ifp, struct mbuf *m);
2125 
2126 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
2127 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
2128 
2129 int na_is_generic(struct netmap_adapter *na);
2130 
2131 /*
2132  * the generic transmit routine is passed a structure to optionally
2133  * build a queue of descriptors, in an OS-specific way.
2134  * The payload is at addr, if non-null, and the routine should send or queue
2135  * the packet, returning 0 if successful, 1 on failure.
2136  *
2137  * At the end, if head is non-null, there will be an additional call
2138  * to the function with addr = NULL; this should tell the OS-specific
2139  * routine to send the queue and free any resources. Failure is ignored.
2140  */
2141 struct nm_os_gen_arg {
2142 	if_t ifp;
2143 	void *m;	/* os-specific mbuf-like object */
2144 	void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
2145 	void *addr;	/* payload of current packet */
2146 	u_int len;	/* packet length */
2147 	u_int ring_nr;	/* transmit ring index */
2148 	u_int qevent;   /* in txqdisc mode, place an event on this mbuf */
2149 };
2150 
2151 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
2152 int nm_os_generic_find_num_desc(if_t ifp, u_int *tx, u_int *rx);
2153 void nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq);
2154 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
2155 
2156 static inline if_t
2157 netmap_generic_getifp(struct netmap_generic_adapter *gna)
2158 {
2159         if (gna->prev)
2160             return gna->prev->ifp;
2161 
2162         return gna->up.up.ifp;
2163 }
2164 
2165 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
2166 
2167 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
2168 #ifdef RATE_GENERIC
2169 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
2170 #else
2171 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
2172 #endif
2173 
2174 /*
2175  * netmap_mitigation API. This is used by the generic adapter
2176  * to reduce the number of interrupt requests/selwakeup
2177  * to clients on incoming packets.
2178  */
2179 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2180                                 struct netmap_adapter *na);
2181 void nm_os_mitigation_start(struct nm_generic_mit *mit);
2182 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2183 int nm_os_mitigation_active(struct nm_generic_mit *mit);
2184 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2185 #else /* !WITH_GENERIC */
2186 #define generic_netmap_attach(ifp)	(EOPNOTSUPP)
2187 #define na_is_generic(na)		(0)
2188 #endif /* WITH_GENERIC */
2189 
2190 /* Shared declarations for the VALE switch. */
2191 
2192 /*
2193  * Each transmit queue accumulates a batch of packets into
2194  * a structure before forwarding. Packets to the same
2195  * destination are put in a list using ft_next as a link field.
2196  * ft_frags and ft_next are valid only on the first fragment.
2197  */
2198 struct nm_bdg_fwd {	/* forwarding entry for a bridge */
2199 	void *ft_buf;		/* netmap or indirect buffer */
2200 	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
2201 	uint16_t ft_offset;	/* dst port (unused) */
2202 	uint16_t ft_flags;	/* flags, e.g. indirect */
2203 	uint16_t ft_len;	/* src fragment len */
2204 	uint16_t ft_next;	/* next packet to same destination */
2205 };
2206 
2207 /* struct 'virtio_net_hdr' from linux. */
2208 struct nm_vnet_hdr {
2209 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
2210 #define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
2211     uint8_t flags;
2212 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
2213 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
2214 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
2215 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
2216 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
2217     uint8_t gso_type;
2218     uint16_t hdr_len;
2219     uint16_t gso_size;
2220     uint16_t csum_start;
2221     uint16_t csum_offset;
2222 };
2223 
2224 #define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
2225 
2226 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2227 
2228 struct nm_iphdr {
2229 	uint8_t		version_ihl;
2230 	uint8_t		tos;
2231 	uint16_t	tot_len;
2232 	uint16_t	id;
2233 	uint16_t	frag_off;
2234 	uint8_t		ttl;
2235 	uint8_t		protocol;
2236 	uint16_t	check;
2237 	uint32_t	saddr;
2238 	uint32_t	daddr;
2239 	/*The options start here. */
2240 };
2241 
2242 struct nm_tcphdr {
2243 	uint16_t	source;
2244 	uint16_t	dest;
2245 	uint32_t	seq;
2246 	uint32_t	ack_seq;
2247 	uint8_t		doff;  /* Data offset + Reserved */
2248 	uint8_t		flags;
2249 	uint16_t	window;
2250 	uint16_t	check;
2251 	uint16_t	urg_ptr;
2252 };
2253 
2254 struct nm_udphdr {
2255 	uint16_t	source;
2256 	uint16_t	dest;
2257 	uint16_t	len;
2258 	uint16_t	check;
2259 };
2260 
2261 struct nm_ipv6hdr {
2262 	uint8_t		priority_version;
2263 	uint8_t		flow_lbl[3];
2264 
2265 	uint16_t	payload_len;
2266 	uint8_t		nexthdr;
2267 	uint8_t		hop_limit;
2268 
2269 	uint8_t		saddr[16];
2270 	uint8_t		daddr[16];
2271 };
2272 
2273 /* Type used to store a checksum (in host byte order) that hasn't been
2274  * folded yet.
2275  */
2276 #define rawsum_t uint32_t
2277 
2278 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2279 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2280 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2281 		      size_t datalen, uint16_t *check);
2282 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2283 		      size_t datalen, uint16_t *check);
2284 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2285 
2286 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2287 			   struct netmap_vp_adapter *dst_na,
2288 			   const struct nm_bdg_fwd *ft_p,
2289 			   struct netmap_ring *dst_ring,
2290 			   u_int *j, u_int lim, u_int *howmany);
2291 
2292 /* persistent virtual port routines */
2293 int nm_os_vi_persist(const char *, if_t *);
2294 void nm_os_vi_detach(if_t);
2295 void nm_os_vi_init_index(void);
2296 
2297 /*
2298  * kernel thread routines
2299  */
2300 struct nm_kctx; /* OS-specific kernel context - opaque */
2301 typedef void (*nm_kctx_worker_fn_t)(void *data);
2302 
2303 /* kthread configuration */
2304 struct nm_kctx_cfg {
2305 	long			type;		/* kthread type/identifier */
2306 	nm_kctx_worker_fn_t	worker_fn;	/* worker function */
2307 	void			*worker_private;/* worker parameter */
2308 	int			attach_user;	/* attach kthread to user process */
2309 };
2310 /* kthread configuration */
2311 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2312 					void *opaque);
2313 int nm_os_kctx_worker_start(struct nm_kctx *);
2314 void nm_os_kctx_worker_stop(struct nm_kctx *);
2315 void nm_os_kctx_destroy(struct nm_kctx *);
2316 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2317 u_int nm_os_ncpus(void);
2318 
2319 int netmap_sync_kloop(struct netmap_priv_d *priv,
2320 		      struct nmreq_header *hdr);
2321 int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
2322 
2323 #ifdef WITH_PTNETMAP
2324 /* ptnetmap guest routines */
2325 
2326 /*
2327  * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
2328  */
2329 struct ptnetmap_memdev;
2330 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
2331                           uint64_t *);
2332 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
2333 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
2334 
2335 /*
2336  * netmap adapter for guest ptnetmap ports
2337  */
2338 struct netmap_pt_guest_adapter {
2339         /* The netmap adapter to be used by netmap applications.
2340 	 * This field must be the first, to allow upcast. */
2341 	struct netmap_hw_adapter hwup;
2342 
2343         /* The netmap adapter to be used by the driver. */
2344         struct netmap_hw_adapter dr;
2345 
2346 	/* Reference counter to track users of backend netmap port: the
2347 	 * network stack and netmap clients.
2348 	 * Used to decide when we need (de)allocate krings/rings and
2349 	 * start (stop) ptnetmap kthreads. */
2350 	int backend_users;
2351 
2352 };
2353 
2354 int netmap_pt_guest_attach(struct netmap_adapter *na,
2355 			unsigned int nifp_offset,
2356 			unsigned int memid);
2357 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
2358 			struct nm_csb_ktoa *ktoa,
2359 			struct netmap_kring *kring, int flags);
2360 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
2361 			struct nm_csb_ktoa *ktoa,
2362 			struct netmap_kring *kring, int flags);
2363 int ptnet_nm_krings_create(struct netmap_adapter *na);
2364 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2365 void ptnet_nm_dtor(struct netmap_adapter *na);
2366 
2367 /* Helper function wrapping nm_sync_kloop_appl_read(). */
2368 static inline void
2369 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
2370 {
2371 	struct netmap_ring *ring = kring->ring;
2372 
2373 	/* Update hwcur and hwtail as known by the host. */
2374         nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
2375 
2376 	/* nm_sync_finalize */
2377 	ring->tail = kring->rtail = kring->nr_hwtail;
2378 }
2379 #endif /* WITH_PTNETMAP */
2380 
2381 #ifdef __FreeBSD__
2382 /*
2383  * FreeBSD mbuf allocator/deallocator in emulation mode:
2384  *
2385  * We allocate mbufs with m_gethdr(), since the mbuf header is needed
2386  * by the driver. We also attach a customly-provided external storage,
2387  * which in this case is a netmap buffer.
2388  *
2389  * The dtor function does nothing, however we need it since mb_free_ext()
2390  * has a KASSERT(), checking that the mbuf dtor function is not NULL.
2391  */
2392 
2393 static inline void
2394 nm_generic_mbuf_dtor(struct mbuf *m)
2395 {
2396 	uma_zfree(zone_clust, m->m_ext.ext_buf);
2397 }
2398 
2399 #define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
2400 	(m)->m_ext.ext_free = (fn != NULL) ?		\
2401 	    (void *)fn : (void *)nm_generic_mbuf_dtor;	\
2402 } while (0)
2403 
2404 static inline struct mbuf *
2405 nm_os_get_mbuf(if_t ifp __unused, int len)
2406 {
2407 	struct mbuf *m;
2408 	void *buf;
2409 
2410 	KASSERT(len <= MCLBYTES, ("%s: len %d", __func__, len));
2411 
2412 	m = m_gethdr(M_NOWAIT, MT_DATA);
2413 	if (__predict_false(m == NULL))
2414 		return (NULL);
2415 	buf = uma_zalloc(zone_clust, M_NOWAIT);
2416 	if (__predict_false(buf == NULL)) {
2417 		m_free(m);
2418 		return (NULL);
2419 	}
2420 	m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0,
2421 	    EXT_NET_DRV);
2422 	return (m);
2423 }
2424 
2425 static inline void
2426 nm_os_mbuf_reinit(struct mbuf *m)
2427 {
2428 	void *buf;
2429 
2430 	KASSERT((m->m_flags & M_EXT) != 0,
2431 	    ("%s: mbuf %p has no external storage", __func__, m));
2432 	KASSERT(m->m_ext.ext_size == MCLBYTES,
2433 	    ("%s: mbuf %p has wrong external storage size %u", __func__, m,
2434 	    m->m_ext.ext_size));
2435 
2436 	buf = m->m_ext.ext_buf;
2437 	m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
2438 	m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0,
2439 	    EXT_NET_DRV);
2440 }
2441 
2442 #endif /* __FreeBSD__ */
2443 
2444 struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t);
2445 
2446 int netmap_init_bridges(void);
2447 void netmap_uninit_bridges(void);
2448 
2449 /* Functions to read and write CSB fields from the kernel. */
2450 #if defined (linux)
2451 #define CSB_READ(csb, field, r) (get_user(r, &csb->field))
2452 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
2453 #else  /* ! linux */
2454 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field))
2455 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v))
2456 #endif /* ! linux */
2457 
2458 /* some macros that may not be defined */
2459 #ifndef ETH_HLEN
2460 #define ETH_HLEN 6
2461 #endif
2462 #ifndef ETH_FCS_LEN
2463 #define ETH_FCS_LEN 4
2464 #endif
2465 #ifndef VLAN_HLEN
2466 #define VLAN_HLEN 4
2467 #endif
2468 
2469 #endif /* _NET_NETMAP_KERN_H_ */
2470