xref: /freebsd/sys/dev/netmap/netmap_freebsd.c (revision f0cfa1b168014f56c02b83e5f28412cc5f78d117)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *   1. Redistributions of source code must retain the above copyright
10  *      notice, this list of conditions and the following disclaimer.
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* $FreeBSD$ */
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 
32 #include <sys/param.h>
33 #include <sys/module.h>
34 #include <sys/errno.h>
35 #include <sys/jail.h>
36 #include <sys/poll.h>  /* POLLIN, POLLOUT */
37 #include <sys/kernel.h> /* types used in module initialization */
38 #include <sys/conf.h>	/* DEV_MODULE_ORDERED */
39 #include <sys/endian.h>
40 #include <sys/syscallsubr.h> /* kern_ioctl() */
41 
42 #include <sys/rwlock.h>
43 
44 #include <vm/vm.h>      /* vtophys */
45 #include <vm/pmap.h>    /* vtophys */
46 #include <vm/vm_param.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_page.h>
49 #include <vm/vm_pager.h>
50 #include <vm/uma.h>
51 
52 
53 #include <sys/malloc.h>
54 #include <sys/socket.h> /* sockaddrs */
55 #include <sys/selinfo.h>
56 #include <sys/kthread.h> /* kthread_add() */
57 #include <sys/proc.h> /* PROC_LOCK() */
58 #include <sys/unistd.h> /* RFNOWAIT */
59 #include <sys/sched.h> /* sched_bind() */
60 #include <sys/smp.h> /* mp_maxid */
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_types.h> /* IFT_ETHER */
64 #include <net/ethernet.h> /* ether_ifdetach */
65 #include <net/if_dl.h> /* LLADDR */
66 #include <machine/bus.h>        /* bus_dmamap_* */
67 #include <netinet/in.h>		/* in6_cksum_pseudo() */
68 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
69 
70 #include <net/netmap.h>
71 #include <dev/netmap/netmap_kern.h>
72 #include <net/netmap_virt.h>
73 #include <dev/netmap/netmap_mem2.h>
74 
75 
76 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
77 
78 void nm_os_selinfo_init(NM_SELINFO_T *si) {
79 	struct mtx *m = &si->m;
80 	mtx_init(m, "nm_kn_lock", NULL, MTX_DEF);
81 	knlist_init_mtx(&si->si.si_note, m);
82 }
83 
84 void
85 nm_os_selinfo_uninit(NM_SELINFO_T *si)
86 {
87 	/* XXX kqueue(9) needed; these will mirror knlist_init. */
88 	knlist_delete(&si->si.si_note, curthread, 0 /* not locked */ );
89 	knlist_destroy(&si->si.si_note);
90 	/* now we don't need the mutex anymore */
91 	mtx_destroy(&si->m);
92 }
93 
94 void *
95 nm_os_malloc(size_t size)
96 {
97 	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
98 }
99 
100 void *
101 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
102 {
103 	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
104 }
105 
106 void
107 nm_os_free(void *addr)
108 {
109 	free(addr, M_DEVBUF);
110 }
111 
112 void
113 nm_os_ifnet_lock(void)
114 {
115 	IFNET_RLOCK();
116 }
117 
118 void
119 nm_os_ifnet_unlock(void)
120 {
121 	IFNET_RUNLOCK();
122 }
123 
124 static int netmap_use_count = 0;
125 
126 void
127 nm_os_get_module(void)
128 {
129 	netmap_use_count++;
130 }
131 
132 void
133 nm_os_put_module(void)
134 {
135 	netmap_use_count--;
136 }
137 
138 static void
139 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
140 {
141         netmap_undo_zombie(ifp);
142 }
143 
144 static void
145 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
146 {
147         netmap_make_zombie(ifp);
148 }
149 
150 static eventhandler_tag nm_ifnet_ah_tag;
151 static eventhandler_tag nm_ifnet_dh_tag;
152 
153 int
154 nm_os_ifnet_init(void)
155 {
156         nm_ifnet_ah_tag =
157                 EVENTHANDLER_REGISTER(ifnet_arrival_event,
158                         netmap_ifnet_arrival_handler,
159                         NULL, EVENTHANDLER_PRI_ANY);
160         nm_ifnet_dh_tag =
161                 EVENTHANDLER_REGISTER(ifnet_departure_event,
162                         netmap_ifnet_departure_handler,
163                         NULL, EVENTHANDLER_PRI_ANY);
164         return 0;
165 }
166 
167 void
168 nm_os_ifnet_fini(void)
169 {
170         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
171                 nm_ifnet_ah_tag);
172         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
173                 nm_ifnet_dh_tag);
174 }
175 
176 rawsum_t
177 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
178 {
179 	/* TODO XXX please use the FreeBSD implementation for this. */
180 	uint16_t *words = (uint16_t *)data;
181 	int nw = len / 2;
182 	int i;
183 
184 	for (i = 0; i < nw; i++)
185 		cur_sum += be16toh(words[i]);
186 
187 	if (len & 1)
188 		cur_sum += (data[len-1] << 8);
189 
190 	return cur_sum;
191 }
192 
193 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
194  * return value is in network byte order.
195  */
196 uint16_t
197 nm_os_csum_fold(rawsum_t cur_sum)
198 {
199 	/* TODO XXX please use the FreeBSD implementation for this. */
200 	while (cur_sum >> 16)
201 		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
202 
203 	return htobe16((~cur_sum) & 0xFFFF);
204 }
205 
206 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
207 {
208 #if 0
209 	return in_cksum_hdr((void *)iph);
210 #else
211 	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
212 #endif
213 }
214 
215 void
216 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
217 					size_t datalen, uint16_t *check)
218 {
219 #ifdef INET
220 	uint16_t pseudolen = datalen + iph->protocol;
221 
222 	/* Compute and insert the pseudo-header cheksum. */
223 	*check = in_pseudo(iph->saddr, iph->daddr,
224 				 htobe16(pseudolen));
225 	/* Compute the checksum on TCP/UDP header + payload
226 	 * (includes the pseudo-header).
227 	 */
228 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
229 #else
230 	static int notsupported = 0;
231 	if (!notsupported) {
232 		notsupported = 1;
233 		D("inet4 segmentation not supported");
234 	}
235 #endif
236 }
237 
238 void
239 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
240 					size_t datalen, uint16_t *check)
241 {
242 #ifdef INET6
243 	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
244 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
245 #else
246 	static int notsupported = 0;
247 	if (!notsupported) {
248 		notsupported = 1;
249 		D("inet6 segmentation not supported");
250 	}
251 #endif
252 }
253 
254 /* on FreeBSD we send up one packet at a time */
255 void *
256 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
257 {
258 	NA(ifp)->if_input(ifp, m);
259 	return NULL;
260 }
261 
262 int
263 nm_os_mbuf_has_offld(struct mbuf *m)
264 {
265 	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
266 					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
267 					 CSUM_SCTP_IPV6 | CSUM_TSO);
268 }
269 
270 static void
271 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
272 {
273 	int stolen;
274 
275 	if (!NM_NA_VALID(ifp)) {
276 		RD(1, "Warning: got RX packet for invalid emulated adapter");
277 		return;
278 	}
279 
280 	stolen = generic_rx_handler(ifp, m);
281 	if (!stolen) {
282 		struct netmap_generic_adapter *gna =
283 				(struct netmap_generic_adapter *)NA(ifp);
284 		gna->save_if_input(ifp, m);
285 	}
286 }
287 
288 /*
289  * Intercept the rx routine in the standard device driver.
290  * Second argument is non-zero to intercept, 0 to restore
291  */
292 int
293 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
294 {
295 	struct netmap_adapter *na = &gna->up.up;
296 	struct ifnet *ifp = na->ifp;
297 
298 	if (intercept) {
299 		if (gna->save_if_input) {
300 			D("cannot intercept again");
301 			return EINVAL; /* already set */
302 		}
303 		gna->save_if_input = ifp->if_input;
304 		ifp->if_input = freebsd_generic_rx_handler;
305 	} else {
306 		if (!gna->save_if_input){
307 			D("cannot restore");
308 			return EINVAL;  /* not saved */
309 		}
310 		ifp->if_input = gna->save_if_input;
311 		gna->save_if_input = NULL;
312 	}
313 
314 	return 0;
315 }
316 
317 
318 /*
319  * Intercept the packet steering routine in the tx path,
320  * so that we can decide which queue is used for an mbuf.
321  * Second argument is non-zero to intercept, 0 to restore.
322  * On freebsd we just intercept if_transmit.
323  */
324 int
325 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
326 {
327 	struct netmap_adapter *na = &gna->up.up;
328 	struct ifnet *ifp = netmap_generic_getifp(gna);
329 
330 	if (intercept) {
331 		na->if_transmit = ifp->if_transmit;
332 		ifp->if_transmit = netmap_transmit;
333 	} else {
334 		ifp->if_transmit = na->if_transmit;
335 	}
336 
337 	return 0;
338 }
339 
340 
341 /*
342  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
343  * and non-zero on error (which may be packet drops or other errors).
344  * addr and len identify the netmap buffer, m is the (preallocated)
345  * mbuf to use for transmissions.
346  *
347  * We should add a reference to the mbuf so the m_freem() at the end
348  * of the transmission does not consume resources.
349  *
350  * On FreeBSD, and on multiqueue cards, we can force the queue using
351  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
352  *              i = m->m_pkthdr.flowid % adapter->num_queues;
353  *      else
354  *              i = curcpu % adapter->num_queues;
355  *
356  */
357 int
358 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
359 {
360 	int ret;
361 	u_int len = a->len;
362 	struct ifnet *ifp = a->ifp;
363 	struct mbuf *m = a->m;
364 
365 #if __FreeBSD_version < 1100000
366 	/*
367 	 * Old FreeBSD versions. The mbuf has a cluster attached,
368 	 * we need to copy from the cluster to the netmap buffer.
369 	 */
370 	if (MBUF_REFCNT(m) != 1) {
371 		D("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
372 		panic("in generic_xmit_frame");
373 	}
374 	if (m->m_ext.ext_size < len) {
375 		RD(5, "size %d < len %d", m->m_ext.ext_size, len);
376 		len = m->m_ext.ext_size;
377 	}
378 	bcopy(a->addr, m->m_data, len);
379 #else  /* __FreeBSD_version >= 1100000 */
380 	/* New FreeBSD versions. Link the external storage to
381 	 * the netmap buffer, so that no copy is necessary. */
382 	m->m_ext.ext_buf = m->m_data = a->addr;
383 	m->m_ext.ext_size = len;
384 #endif /* __FreeBSD_version >= 1100000 */
385 
386 	m->m_len = m->m_pkthdr.len = len;
387 
388 	/* mbuf refcnt is not contended, no need to use atomic
389 	 * (a memory barrier is enough). */
390 	SET_MBUF_REFCNT(m, 2);
391 	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
392 	m->m_pkthdr.flowid = a->ring_nr;
393 	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
394 	ret = NA(ifp)->if_transmit(ifp, m);
395 	return ret ? -1 : 0;
396 }
397 
398 
399 #if __FreeBSD_version >= 1100005
400 struct netmap_adapter *
401 netmap_getna(if_t ifp)
402 {
403 	return (NA((struct ifnet *)ifp));
404 }
405 #endif /* __FreeBSD_version >= 1100005 */
406 
407 /*
408  * The following two functions are empty until we have a generic
409  * way to extract the info from the ifp
410  */
411 int
412 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
413 {
414 	return 0;
415 }
416 
417 
418 void
419 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
420 {
421 	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
422 
423 	*txq = num_rings;
424 	*rxq = num_rings;
425 }
426 
427 void
428 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
429 {
430 
431 	gna->rxsg = 1; /* Supported through m_copydata. */
432 	gna->txqdisc = 0; /* Not supported. */
433 }
434 
435 void
436 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
437 {
438 	ND("called");
439 	mit->mit_pending = 0;
440 	mit->mit_ring_idx = idx;
441 	mit->mit_na = na;
442 }
443 
444 
445 void
446 nm_os_mitigation_start(struct nm_generic_mit *mit)
447 {
448 	ND("called");
449 }
450 
451 
452 void
453 nm_os_mitigation_restart(struct nm_generic_mit *mit)
454 {
455 	ND("called");
456 }
457 
458 
459 int
460 nm_os_mitigation_active(struct nm_generic_mit *mit)
461 {
462 	ND("called");
463 	return 0;
464 }
465 
466 
467 void
468 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
469 {
470 	ND("called");
471 }
472 
473 static int
474 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
475 {
476 	return EINVAL;
477 }
478 
479 static void
480 nm_vi_start(struct ifnet *ifp)
481 {
482 	panic("nm_vi_start() must not be called");
483 }
484 
485 /*
486  * Index manager of persistent virtual interfaces.
487  * It is used to decide the lowest byte of the MAC address.
488  * We use the same algorithm with management of bridge port index.
489  */
490 #define NM_VI_MAX	255
491 static struct {
492 	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
493 	uint8_t active;
494 	struct mtx lock;
495 } nm_vi_indices;
496 
497 void
498 nm_os_vi_init_index(void)
499 {
500 	int i;
501 	for (i = 0; i < NM_VI_MAX; i++)
502 		nm_vi_indices.index[i] = i;
503 	nm_vi_indices.active = 0;
504 	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
505 }
506 
507 /* return -1 if no index available */
508 static int
509 nm_vi_get_index(void)
510 {
511 	int ret;
512 
513 	mtx_lock(&nm_vi_indices.lock);
514 	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
515 		nm_vi_indices.index[nm_vi_indices.active++];
516 	mtx_unlock(&nm_vi_indices.lock);
517 	return ret;
518 }
519 
520 static void
521 nm_vi_free_index(uint8_t val)
522 {
523 	int i, lim;
524 
525 	mtx_lock(&nm_vi_indices.lock);
526 	lim = nm_vi_indices.active;
527 	for (i = 0; i < lim; i++) {
528 		if (nm_vi_indices.index[i] == val) {
529 			/* swap index[lim-1] and j */
530 			int tmp = nm_vi_indices.index[lim-1];
531 			nm_vi_indices.index[lim-1] = val;
532 			nm_vi_indices.index[i] = tmp;
533 			nm_vi_indices.active--;
534 			break;
535 		}
536 	}
537 	if (lim == nm_vi_indices.active)
538 		D("funny, index %u didn't found", val);
539 	mtx_unlock(&nm_vi_indices.lock);
540 }
541 #undef NM_VI_MAX
542 
543 /*
544  * Implementation of a netmap-capable virtual interface that
545  * registered to the system.
546  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
547  *
548  * Note: Linux sets refcount to 0 on allocation of net_device,
549  * then increments it on registration to the system.
550  * FreeBSD sets refcount to 1 on if_alloc(), and does not
551  * increment this refcount on if_attach().
552  */
553 int
554 nm_os_vi_persist(const char *name, struct ifnet **ret)
555 {
556 	struct ifnet *ifp;
557 	u_short macaddr_hi;
558 	uint32_t macaddr_mid;
559 	u_char eaddr[6];
560 	int unit = nm_vi_get_index(); /* just to decide MAC address */
561 
562 	if (unit < 0)
563 		return EBUSY;
564 	/*
565 	 * We use the same MAC address generation method with tap
566 	 * except for the highest octet is 00:be instead of 00:bd
567 	 */
568 	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
569 	macaddr_mid = (uint32_t) ticks;
570 	bcopy(&macaddr_hi, eaddr, sizeof(short));
571 	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
572 	eaddr[5] = (uint8_t)unit;
573 
574 	ifp = if_alloc(IFT_ETHER);
575 	if (ifp == NULL) {
576 		D("if_alloc failed");
577 		return ENOMEM;
578 	}
579 	if_initname(ifp, name, IF_DUNIT_NONE);
580 	ifp->if_mtu = 65536;
581 	ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
582 	ifp->if_init = (void *)nm_vi_dummy;
583 	ifp->if_ioctl = nm_vi_dummy;
584 	ifp->if_start = nm_vi_start;
585 	ifp->if_mtu = ETHERMTU;
586 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
587 	ifp->if_capabilities |= IFCAP_LINKSTATE;
588 	ifp->if_capenable |= IFCAP_LINKSTATE;
589 
590 	ether_ifattach(ifp, eaddr);
591 	*ret = ifp;
592 	return 0;
593 }
594 
595 /* unregister from the system and drop the final refcount */
596 void
597 nm_os_vi_detach(struct ifnet *ifp)
598 {
599 	nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
600 	ether_ifdetach(ifp);
601 	if_free(ifp);
602 }
603 
604 /* ======================== PTNETMAP SUPPORT ========================== */
605 
606 #ifdef WITH_PTNETMAP_GUEST
607 #include <sys/bus.h>
608 #include <sys/rman.h>
609 #include <machine/bus.h>        /* bus_dmamap_* */
610 #include <machine/resource.h>
611 #include <dev/pci/pcivar.h>
612 #include <dev/pci/pcireg.h>
613 /*
614  * ptnetmap memory device (memdev) for freebsd guest,
615  * ssed to expose host netmap memory to the guest through a PCI BAR.
616  */
617 
618 /*
619  * ptnetmap memdev private data structure
620  */
621 struct ptnetmap_memdev {
622 	device_t dev;
623 	struct resource *pci_io;
624 	struct resource *pci_mem;
625 	struct netmap_mem_d *nm_mem;
626 };
627 
628 static int	ptn_memdev_probe(device_t);
629 static int	ptn_memdev_attach(device_t);
630 static int	ptn_memdev_detach(device_t);
631 static int	ptn_memdev_shutdown(device_t);
632 
633 static device_method_t ptn_memdev_methods[] = {
634 	DEVMETHOD(device_probe, ptn_memdev_probe),
635 	DEVMETHOD(device_attach, ptn_memdev_attach),
636 	DEVMETHOD(device_detach, ptn_memdev_detach),
637 	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
638 	DEVMETHOD_END
639 };
640 
641 static driver_t ptn_memdev_driver = {
642 	PTNETMAP_MEMDEV_NAME,
643 	ptn_memdev_methods,
644 	sizeof(struct ptnetmap_memdev),
645 };
646 
647 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
648  * below. */
649 static devclass_t ptnetmap_devclass;
650 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
651 		      NULL, NULL, SI_ORDER_MIDDLE + 1);
652 
653 /*
654  * Map host netmap memory through PCI-BAR in the guest OS,
655  * returning physical (nm_paddr) and virtual (nm_addr) addresses
656  * of the netmap memory mapped in the guest.
657  */
658 int
659 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
660 		      void **nm_addr, uint64_t *mem_size)
661 {
662 	int rid;
663 
664 	D("ptn_memdev_driver iomap");
665 
666 	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
667 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
668 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
669 			(*mem_size << 32);
670 
671 	/* map memory allocator */
672 	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
673 			&rid, 0, ~0, *mem_size, RF_ACTIVE);
674 	if (ptn_dev->pci_mem == NULL) {
675 		*nm_paddr = 0;
676 		*nm_addr = NULL;
677 		return ENOMEM;
678 	}
679 
680 	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
681 	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
682 
683 	D("=== BAR %d start %lx len %lx mem_size %lx ===",
684 			PTNETMAP_MEM_PCI_BAR,
685 			(unsigned long)(*nm_paddr),
686 			(unsigned long)rman_get_size(ptn_dev->pci_mem),
687 			(unsigned long)*mem_size);
688 	return (0);
689 }
690 
691 uint32_t
692 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
693 {
694 	return bus_read_4(ptn_dev->pci_io, reg);
695 }
696 
697 /* Unmap host netmap memory. */
698 void
699 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
700 {
701 	D("ptn_memdev_driver iounmap");
702 
703 	if (ptn_dev->pci_mem) {
704 		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
705 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
706 		ptn_dev->pci_mem = NULL;
707 	}
708 }
709 
710 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
711  * positive on failure */
712 static int
713 ptn_memdev_probe(device_t dev)
714 {
715 	char desc[256];
716 
717 	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
718 		return (ENXIO);
719 	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
720 		return (ENXIO);
721 
722 	snprintf(desc, sizeof(desc), "%s PCI adapter",
723 			PTNETMAP_MEMDEV_NAME);
724 	device_set_desc_copy(dev, desc);
725 
726 	return (BUS_PROBE_DEFAULT);
727 }
728 
729 /* Device initialization routine. */
730 static int
731 ptn_memdev_attach(device_t dev)
732 {
733 	struct ptnetmap_memdev *ptn_dev;
734 	int rid;
735 	uint16_t mem_id;
736 
737 	D("ptn_memdev_driver attach");
738 
739 	ptn_dev = device_get_softc(dev);
740 	ptn_dev->dev = dev;
741 
742 	pci_enable_busmaster(dev);
743 
744 	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
745 	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
746 						 RF_ACTIVE);
747 	if (ptn_dev->pci_io == NULL) {
748 	        device_printf(dev, "cannot map I/O space\n");
749 	        return (ENXIO);
750 	}
751 
752 	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
753 
754 	/* create guest allocator */
755 	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
756 	if (ptn_dev->nm_mem == NULL) {
757 		ptn_memdev_detach(dev);
758 	        return (ENOMEM);
759 	}
760 	netmap_mem_get(ptn_dev->nm_mem);
761 
762 	D("ptn_memdev_driver probe OK - host_mem_id: %d", mem_id);
763 
764 	return (0);
765 }
766 
767 /* Device removal routine. */
768 static int
769 ptn_memdev_detach(device_t dev)
770 {
771 	struct ptnetmap_memdev *ptn_dev;
772 
773 	D("ptn_memdev_driver detach");
774 	ptn_dev = device_get_softc(dev);
775 
776 	if (ptn_dev->nm_mem) {
777 		netmap_mem_put(ptn_dev->nm_mem);
778 		ptn_dev->nm_mem = NULL;
779 	}
780 	if (ptn_dev->pci_mem) {
781 		bus_release_resource(dev, SYS_RES_MEMORY,
782 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
783 		ptn_dev->pci_mem = NULL;
784 	}
785 	if (ptn_dev->pci_io) {
786 		bus_release_resource(dev, SYS_RES_IOPORT,
787 			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
788 		ptn_dev->pci_io = NULL;
789 	}
790 
791 	return (0);
792 }
793 
794 static int
795 ptn_memdev_shutdown(device_t dev)
796 {
797 	D("ptn_memdev_driver shutdown");
798 	return bus_generic_shutdown(dev);
799 }
800 
801 #endif /* WITH_PTNETMAP_GUEST */
802 
803 /*
804  * In order to track whether pages are still mapped, we hook into
805  * the standard cdev_pager and intercept the constructor and
806  * destructor.
807  */
808 
809 struct netmap_vm_handle_t {
810 	struct cdev 		*dev;
811 	struct netmap_priv_d	*priv;
812 };
813 
814 
815 static int
816 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
817     vm_ooffset_t foff, struct ucred *cred, u_short *color)
818 {
819 	struct netmap_vm_handle_t *vmh = handle;
820 
821 	if (netmap_verbose)
822 		D("handle %p size %jd prot %d foff %jd",
823 			handle, (intmax_t)size, prot, (intmax_t)foff);
824 	if (color)
825 		*color = 0;
826 	dev_ref(vmh->dev);
827 	return 0;
828 }
829 
830 
831 static void
832 netmap_dev_pager_dtor(void *handle)
833 {
834 	struct netmap_vm_handle_t *vmh = handle;
835 	struct cdev *dev = vmh->dev;
836 	struct netmap_priv_d *priv = vmh->priv;
837 
838 	if (netmap_verbose)
839 		D("handle %p", handle);
840 	netmap_dtor(priv);
841 	free(vmh, M_DEVBUF);
842 	dev_rel(dev);
843 }
844 
845 
846 static int
847 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
848 	int prot, vm_page_t *mres)
849 {
850 	struct netmap_vm_handle_t *vmh = object->handle;
851 	struct netmap_priv_d *priv = vmh->priv;
852 	struct netmap_adapter *na = priv->np_na;
853 	vm_paddr_t paddr;
854 	vm_page_t page;
855 	vm_memattr_t memattr;
856 	vm_pindex_t pidx;
857 
858 	ND("object %p offset %jd prot %d mres %p",
859 			object, (intmax_t)offset, prot, mres);
860 	memattr = object->memattr;
861 	pidx = OFF_TO_IDX(offset);
862 	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
863 	if (paddr == 0)
864 		return VM_PAGER_FAIL;
865 
866 	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
867 		/*
868 		 * If the passed in result page is a fake page, update it with
869 		 * the new physical address.
870 		 */
871 		page = *mres;
872 		vm_page_updatefake(page, paddr, memattr);
873 	} else {
874 		/*
875 		 * Replace the passed in reqpage page with our own fake page and
876 		 * free up the all of the original pages.
877 		 */
878 #ifndef VM_OBJECT_WUNLOCK	/* FreeBSD < 10.x */
879 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
880 #define VM_OBJECT_WLOCK	VM_OBJECT_LOCK
881 #endif /* VM_OBJECT_WUNLOCK */
882 
883 		VM_OBJECT_WUNLOCK(object);
884 		page = vm_page_getfake(paddr, memattr);
885 		VM_OBJECT_WLOCK(object);
886 		vm_page_lock(*mres);
887 		vm_page_free(*mres);
888 		vm_page_unlock(*mres);
889 		*mres = page;
890 		vm_page_insert(page, object, pidx);
891 	}
892 	page->valid = VM_PAGE_BITS_ALL;
893 	return (VM_PAGER_OK);
894 }
895 
896 
897 static struct cdev_pager_ops netmap_cdev_pager_ops = {
898 	.cdev_pg_ctor = netmap_dev_pager_ctor,
899 	.cdev_pg_dtor = netmap_dev_pager_dtor,
900 	.cdev_pg_fault = netmap_dev_pager_fault,
901 };
902 
903 
904 static int
905 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
906 	vm_size_t objsize,  vm_object_t *objp, int prot)
907 {
908 	int error;
909 	struct netmap_vm_handle_t *vmh;
910 	struct netmap_priv_d *priv;
911 	vm_object_t obj;
912 
913 	if (netmap_verbose)
914 		D("cdev %p foff %jd size %jd objp %p prot %d", cdev,
915 		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
916 
917 	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
918 			      M_NOWAIT | M_ZERO);
919 	if (vmh == NULL)
920 		return ENOMEM;
921 	vmh->dev = cdev;
922 
923 	NMG_LOCK();
924 	error = devfs_get_cdevpriv((void**)&priv);
925 	if (error)
926 		goto err_unlock;
927 	if (priv->np_nifp == NULL) {
928 		error = EINVAL;
929 		goto err_unlock;
930 	}
931 	vmh->priv = priv;
932 	priv->np_refs++;
933 	NMG_UNLOCK();
934 
935 	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
936 		&netmap_cdev_pager_ops, objsize, prot,
937 		*foff, NULL);
938 	if (obj == NULL) {
939 		D("cdev_pager_allocate failed");
940 		error = EINVAL;
941 		goto err_deref;
942 	}
943 
944 	*objp = obj;
945 	return 0;
946 
947 err_deref:
948 	NMG_LOCK();
949 	priv->np_refs--;
950 err_unlock:
951 	NMG_UNLOCK();
952 // err:
953 	free(vmh, M_DEVBUF);
954 	return error;
955 }
956 
957 /*
958  * On FreeBSD the close routine is only called on the last close on
959  * the device (/dev/netmap) so we cannot do anything useful.
960  * To track close() on individual file descriptors we pass netmap_dtor() to
961  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
962  * when the last fd pointing to the device is closed.
963  *
964  * Note that FreeBSD does not even munmap() on close() so we also have
965  * to track mmap() ourselves, and postpone the call to
966  * netmap_dtor() is called when the process has no open fds and no active
967  * memory maps on /dev/netmap, as in linux.
968  */
969 static int
970 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
971 {
972 	if (netmap_verbose)
973 		D("dev %p fflag 0x%x devtype %d td %p",
974 			dev, fflag, devtype, td);
975 	return 0;
976 }
977 
978 
979 static int
980 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
981 {
982 	struct netmap_priv_d *priv;
983 	int error;
984 
985 	(void)dev;
986 	(void)oflags;
987 	(void)devtype;
988 	(void)td;
989 
990 	NMG_LOCK();
991 	priv = netmap_priv_new();
992 	if (priv == NULL) {
993 		error = ENOMEM;
994 		goto out;
995 	}
996 	error = devfs_set_cdevpriv(priv, netmap_dtor);
997 	if (error) {
998 		netmap_priv_delete(priv);
999 	}
1000 out:
1001 	NMG_UNLOCK();
1002 	return error;
1003 }
1004 
1005 /******************** kthread wrapper ****************/
1006 #include <sys/sysproto.h>
1007 u_int
1008 nm_os_ncpus(void)
1009 {
1010 	return mp_maxid + 1;
1011 }
1012 
1013 struct nm_kctx_ctx {
1014 	struct thread *user_td;		/* thread user-space (kthread creator) to send ioctl */
1015 	struct ptnetmap_cfgentry_bhyve	cfg;
1016 
1017 	/* worker function and parameter */
1018 	nm_kctx_worker_fn_t worker_fn;
1019 	void *worker_private;
1020 
1021 	struct nm_kctx *nmk;
1022 
1023 	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1024 	long type;
1025 };
1026 
1027 struct nm_kctx {
1028 	struct thread *worker;
1029 	struct mtx worker_lock;
1030 	uint64_t scheduled; 		/* pending wake_up request */
1031 	struct nm_kctx_ctx worker_ctx;
1032 	int run;			/* used to stop kthread */
1033 	int attach_user;		/* kthread attached to user_process */
1034 	int affinity;
1035 };
1036 
1037 void inline
1038 nm_os_kctx_worker_wakeup(struct nm_kctx *nmk)
1039 {
1040 	/*
1041 	 * There may be a race between FE and BE,
1042 	 * which call both this function, and worker kthread,
1043 	 * that reads nmk->scheduled.
1044 	 *
1045 	 * For us it is not important the counter value,
1046 	 * but simply that it has changed since the last
1047 	 * time the kthread saw it.
1048 	 */
1049 	mtx_lock(&nmk->worker_lock);
1050 	nmk->scheduled++;
1051 	if (nmk->worker_ctx.cfg.wchan) {
1052 		wakeup((void *)(uintptr_t)nmk->worker_ctx.cfg.wchan);
1053 	}
1054 	mtx_unlock(&nmk->worker_lock);
1055 }
1056 
1057 void inline
1058 nm_os_kctx_send_irq(struct nm_kctx *nmk)
1059 {
1060 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1061 	int err;
1062 
1063 	if (ctx->user_td && ctx->cfg.ioctl_fd > 0) {
1064 		err = kern_ioctl(ctx->user_td, ctx->cfg.ioctl_fd, ctx->cfg.ioctl_cmd,
1065 				 (caddr_t)&ctx->cfg.ioctl_data);
1066 		if (err) {
1067 			D("kern_ioctl error: %d ioctl parameters: fd %d com %lu data %p",
1068 				err, ctx->cfg.ioctl_fd, (unsigned long)ctx->cfg.ioctl_cmd,
1069 				&ctx->cfg.ioctl_data);
1070 		}
1071 	}
1072 }
1073 
1074 static void
1075 nm_kctx_worker(void *data)
1076 {
1077 	struct nm_kctx *nmk = data;
1078 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1079 	uint64_t old_scheduled = nmk->scheduled;
1080 
1081 	if (nmk->affinity >= 0) {
1082 		thread_lock(curthread);
1083 		sched_bind(curthread, nmk->affinity);
1084 		thread_unlock(curthread);
1085 	}
1086 
1087 	while (nmk->run) {
1088 		/*
1089 		 * check if the parent process dies
1090 		 * (when kthread is attached to user process)
1091 		 */
1092 		if (ctx->user_td) {
1093 			PROC_LOCK(curproc);
1094 			thread_suspend_check(0);
1095 			PROC_UNLOCK(curproc);
1096 		} else {
1097 			kthread_suspend_check();
1098 		}
1099 
1100 		/*
1101 		 * if wchan is not defined, we don't have notification
1102 		 * mechanism and we continually execute worker_fn()
1103 		 */
1104 		if (!ctx->cfg.wchan) {
1105 			ctx->worker_fn(ctx->worker_private, 1); /* worker body */
1106 		} else {
1107 			/* checks if there is a pending notification */
1108 			mtx_lock(&nmk->worker_lock);
1109 			if (likely(nmk->scheduled != old_scheduled)) {
1110 				old_scheduled = nmk->scheduled;
1111 				mtx_unlock(&nmk->worker_lock);
1112 
1113 				ctx->worker_fn(ctx->worker_private, 1); /* worker body */
1114 
1115 				continue;
1116 			} else if (nmk->run) {
1117 				/* wait on event with one second timeout */
1118 				msleep((void *)(uintptr_t)ctx->cfg.wchan, &nmk->worker_lock,
1119 					0, "nmk_ev", hz);
1120 				nmk->scheduled++;
1121 			}
1122 			mtx_unlock(&nmk->worker_lock);
1123 		}
1124 	}
1125 
1126 	kthread_exit();
1127 }
1128 
1129 void
1130 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1131 {
1132 	nmk->affinity = affinity;
1133 }
1134 
1135 struct nm_kctx *
1136 nm_os_kctx_create(struct nm_kctx_cfg *cfg, unsigned int cfgtype,
1137 		     void *opaque)
1138 {
1139 	struct nm_kctx *nmk = NULL;
1140 
1141 	if (cfgtype != PTNETMAP_CFGTYPE_BHYVE) {
1142 		D("Unsupported cfgtype %u", cfgtype);
1143 		return NULL;
1144 	}
1145 
1146 	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1147 	if (!nmk)
1148 		return NULL;
1149 
1150 	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1151 	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1152 	nmk->worker_ctx.worker_private = cfg->worker_private;
1153 	nmk->worker_ctx.type = cfg->type;
1154 	nmk->affinity = -1;
1155 
1156 	/* attach kthread to user process (ptnetmap) */
1157 	nmk->attach_user = cfg->attach_user;
1158 
1159 	/* store kick/interrupt configuration */
1160 	if (opaque) {
1161 		nmk->worker_ctx.cfg = *((struct ptnetmap_cfgentry_bhyve *)opaque);
1162 	}
1163 
1164 	return nmk;
1165 }
1166 
1167 int
1168 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1169 {
1170 	struct proc *p = NULL;
1171 	int error = 0;
1172 
1173 	if (nmk->worker) {
1174 		return EBUSY;
1175 	}
1176 
1177 	/* check if we want to attach kthread to user process */
1178 	if (nmk->attach_user) {
1179 		nmk->worker_ctx.user_td = curthread;
1180 		p = curthread->td_proc;
1181 	}
1182 
1183 	/* enable kthread main loop */
1184 	nmk->run = 1;
1185 	/* create kthread */
1186 	if((error = kthread_add(nm_kctx_worker, nmk, p,
1187 			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1188 			nmk->worker_ctx.type))) {
1189 		goto err;
1190 	}
1191 
1192 	D("nm_kthread started td %p", nmk->worker);
1193 
1194 	return 0;
1195 err:
1196 	D("nm_kthread start failed err %d", error);
1197 	nmk->worker = NULL;
1198 	return error;
1199 }
1200 
1201 void
1202 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1203 {
1204 	if (!nmk->worker) {
1205 		return;
1206 	}
1207 	/* tell to kthread to exit from main loop */
1208 	nmk->run = 0;
1209 
1210 	/* wake up kthread if it sleeps */
1211 	kthread_resume(nmk->worker);
1212 	nm_os_kctx_worker_wakeup(nmk);
1213 
1214 	nmk->worker = NULL;
1215 }
1216 
1217 void
1218 nm_os_kctx_destroy(struct nm_kctx *nmk)
1219 {
1220 	if (!nmk)
1221 		return;
1222 	if (nmk->worker) {
1223 		nm_os_kctx_worker_stop(nmk);
1224 	}
1225 
1226 	memset(&nmk->worker_ctx.cfg, 0, sizeof(nmk->worker_ctx.cfg));
1227 
1228 	free(nmk, M_DEVBUF);
1229 }
1230 
1231 /******************** kqueue support ****************/
1232 
1233 /*
1234  * nm_os_selwakeup also needs to issue a KNOTE_UNLOCKED.
1235  * We use a non-zero argument to distinguish the call from the one
1236  * in kevent_scan() which instead also needs to run netmap_poll().
1237  * The knote uses a global mutex for the time being. We might
1238  * try to reuse the one in the si, but it is not allocated
1239  * permanently so it might be a bit tricky.
1240  *
1241  * The *kqfilter function registers one or another f_event
1242  * depending on read or write mode.
1243  * In the call to f_event() td_fpop is NULL so any child function
1244  * calling devfs_get_cdevpriv() would fail - and we need it in
1245  * netmap_poll(). As a workaround we store priv into kn->kn_hook
1246  * and pass it as first argument to netmap_poll(), which then
1247  * uses the failure to tell that we are called from f_event()
1248  * and do not need the selrecord().
1249  */
1250 
1251 
1252 void
1253 nm_os_selwakeup(struct nm_selinfo *si)
1254 {
1255 	if (netmap_verbose)
1256 		D("on knote %p", &si->si.si_note);
1257 	selwakeuppri(&si->si, PI_NET);
1258 	/* use a non-zero hint to tell the notification from the
1259 	 * call done in kqueue_scan() which uses 0
1260 	 */
1261 	KNOTE_UNLOCKED(&si->si.si_note, 0x100 /* notification */);
1262 }
1263 
1264 void
1265 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1266 {
1267 	selrecord(td, &si->si);
1268 }
1269 
1270 static void
1271 netmap_knrdetach(struct knote *kn)
1272 {
1273 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1274 	struct selinfo *si = &priv->np_si[NR_RX]->si;
1275 
1276 	D("remove selinfo %p", si);
1277 	knlist_remove(&si->si_note, kn, 0);
1278 }
1279 
1280 static void
1281 netmap_knwdetach(struct knote *kn)
1282 {
1283 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1284 	struct selinfo *si = &priv->np_si[NR_TX]->si;
1285 
1286 	D("remove selinfo %p", si);
1287 	knlist_remove(&si->si_note, kn, 0);
1288 }
1289 
1290 /*
1291  * callback from notifies (generated externally) and our
1292  * calls to kevent(). The former we just return 1 (ready)
1293  * since we do not know better.
1294  * In the latter we call netmap_poll and return 0/1 accordingly.
1295  */
1296 static int
1297 netmap_knrw(struct knote *kn, long hint, int events)
1298 {
1299 	struct netmap_priv_d *priv;
1300 	int revents;
1301 
1302 	if (hint != 0) {
1303 		ND(5, "call from notify");
1304 		return 1; /* assume we are ready */
1305 	}
1306 	priv = kn->kn_hook;
1307 	/* the notification may come from an external thread,
1308 	 * in which case we do not want to run the netmap_poll
1309 	 * This should be filtered above, but check just in case.
1310 	 */
1311 	if (curthread != priv->np_td) { /* should not happen */
1312 		RD(5, "curthread changed %p %p", curthread, priv->np_td);
1313 		return 1;
1314 	} else {
1315 		revents = netmap_poll(priv, events, NULL);
1316 		return (events & revents) ? 1 : 0;
1317 	}
1318 }
1319 
1320 static int
1321 netmap_knread(struct knote *kn, long hint)
1322 {
1323 	return netmap_knrw(kn, hint, POLLIN);
1324 }
1325 
1326 static int
1327 netmap_knwrite(struct knote *kn, long hint)
1328 {
1329 	return netmap_knrw(kn, hint, POLLOUT);
1330 }
1331 
1332 static struct filterops netmap_rfiltops = {
1333 	.f_isfd = 1,
1334 	.f_detach = netmap_knrdetach,
1335 	.f_event = netmap_knread,
1336 };
1337 
1338 static struct filterops netmap_wfiltops = {
1339 	.f_isfd = 1,
1340 	.f_detach = netmap_knwdetach,
1341 	.f_event = netmap_knwrite,
1342 };
1343 
1344 
1345 /*
1346  * This is called when a thread invokes kevent() to record
1347  * a change in the configuration of the kqueue().
1348  * The 'priv' should be the same as in the netmap device.
1349  */
1350 static int
1351 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1352 {
1353 	struct netmap_priv_d *priv;
1354 	int error;
1355 	struct netmap_adapter *na;
1356 	struct nm_selinfo *si;
1357 	int ev = kn->kn_filter;
1358 
1359 	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1360 		D("bad filter request %d", ev);
1361 		return 1;
1362 	}
1363 	error = devfs_get_cdevpriv((void**)&priv);
1364 	if (error) {
1365 		D("device not yet setup");
1366 		return 1;
1367 	}
1368 	na = priv->np_na;
1369 	if (na == NULL) {
1370 		D("no netmap adapter for this file descriptor");
1371 		return 1;
1372 	}
1373 	/* the si is indicated in the priv */
1374 	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1375 	// XXX lock(priv) ?
1376 	kn->kn_fop = (ev == EVFILT_WRITE) ?
1377 		&netmap_wfiltops : &netmap_rfiltops;
1378 	kn->kn_hook = priv;
1379 	knlist_add(&si->si.si_note, kn, 1);
1380 	// XXX unlock(priv)
1381 	ND("register %p %s td %p priv %p kn %p np_nifp %p kn_fp/fpop %s",
1382 		na, na->ifp->if_xname, curthread, priv, kn,
1383 		priv->np_nifp,
1384 		kn->kn_fp == curthread->td_fpop ? "match" : "MISMATCH");
1385 	return 0;
1386 }
1387 
1388 static int
1389 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1390 {
1391 	struct netmap_priv_d *priv;
1392 	if (devfs_get_cdevpriv((void **)&priv)) {
1393 		return POLLERR;
1394 	}
1395 	return netmap_poll(priv, events, td);
1396 }
1397 
1398 static int
1399 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1400         int ffla __unused, struct thread *td)
1401 {
1402 	int error;
1403 	struct netmap_priv_d *priv;
1404 
1405 	CURVNET_SET(TD_TO_VNET(td));
1406 	error = devfs_get_cdevpriv((void **)&priv);
1407 	if (error) {
1408 		/* XXX ENOENT should be impossible, since the priv
1409 		 * is now created in the open */
1410 		if (error == ENOENT)
1411 			error = ENXIO;
1412 		goto out;
1413 	}
1414 	error = netmap_ioctl(priv, cmd, data, td);
1415 out:
1416 	CURVNET_RESTORE();
1417 
1418 	return error;
1419 }
1420 
1421 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1422 struct cdevsw netmap_cdevsw = {
1423 	.d_version = D_VERSION,
1424 	.d_name = "netmap",
1425 	.d_open = netmap_open,
1426 	.d_mmap_single = netmap_mmap_single,
1427 	.d_ioctl = freebsd_netmap_ioctl,
1428 	.d_poll = freebsd_netmap_poll,
1429 	.d_kqfilter = netmap_kqfilter,
1430 	.d_close = netmap_close,
1431 };
1432 /*--- end of kqueue support ----*/
1433 
1434 /*
1435  * Kernel entry point.
1436  *
1437  * Initialize/finalize the module and return.
1438  *
1439  * Return 0 on success, errno on failure.
1440  */
1441 static int
1442 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1443 {
1444 	int error = 0;
1445 
1446 	switch (event) {
1447 	case MOD_LOAD:
1448 		error = netmap_init();
1449 		break;
1450 
1451 	case MOD_UNLOAD:
1452 		/*
1453 		 * if some one is still using netmap,
1454 		 * then the module can not be unloaded.
1455 		 */
1456 		if (netmap_use_count) {
1457 			D("netmap module can not be unloaded - netmap_use_count: %d",
1458 					netmap_use_count);
1459 			error = EBUSY;
1460 			break;
1461 		}
1462 		netmap_fini();
1463 		break;
1464 
1465 	default:
1466 		error = EOPNOTSUPP;
1467 		break;
1468 	}
1469 
1470 	return (error);
1471 }
1472 
1473 #ifdef DEV_MODULE_ORDERED
1474 /*
1475  * The netmap module contains three drivers: (i) the netmap character device
1476  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1477  * device driver. The attach() routines of both (ii) and (iii) need the
1478  * lock of the global allocator, and such lock is initialized in netmap_init(),
1479  * which is part of (i).
1480  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1481  * the 'order' parameter of driver declaration macros. For (i), we specify
1482  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1483  * macros for (ii) and (iii).
1484  */
1485 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1486 #else /* !DEV_MODULE_ORDERED */
1487 DEV_MODULE(netmap, netmap_loader, NULL);
1488 #endif /* DEV_MODULE_ORDERED  */
1489 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1490 MODULE_VERSION(netmap, 1);
1491 /* reduce conditional code */
1492 // linux API, use for the knlist in FreeBSD
1493 /* use a private mutex for the knlist */
1494