1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/jail.h> 36 #include <sys/poll.h> /* POLLIN, POLLOUT */ 37 #include <sys/kernel.h> /* types used in module initialization */ 38 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 39 #include <sys/endian.h> 40 #include <sys/syscallsubr.h> /* kern_ioctl() */ 41 42 #include <sys/rwlock.h> 43 44 #include <vm/vm.h> /* vtophys */ 45 #include <vm/pmap.h> /* vtophys */ 46 #include <vm/vm_param.h> 47 #include <vm/vm_object.h> 48 #include <vm/vm_page.h> 49 #include <vm/vm_pager.h> 50 #include <vm/uma.h> 51 52 53 #include <sys/malloc.h> 54 #include <sys/socket.h> /* sockaddrs */ 55 #include <sys/selinfo.h> 56 #include <sys/kthread.h> /* kthread_add() */ 57 #include <sys/proc.h> /* PROC_LOCK() */ 58 #include <sys/unistd.h> /* RFNOWAIT */ 59 #include <sys/sched.h> /* sched_bind() */ 60 #include <sys/smp.h> /* mp_maxid */ 61 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_types.h> /* IFT_ETHER */ 65 #include <net/ethernet.h> /* ether_ifdetach */ 66 #include <net/if_dl.h> /* LLADDR */ 67 #include <machine/bus.h> /* bus_dmamap_* */ 68 #include <netinet/in.h> /* in6_cksum_pseudo() */ 69 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 70 71 #include <net/netmap.h> 72 #include <dev/netmap/netmap_kern.h> 73 #include <net/netmap_virt.h> 74 #include <dev/netmap/netmap_mem2.h> 75 76 77 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 78 79 static void 80 nm_kqueue_notify(void *opaque, int pending) 81 { 82 struct nm_selinfo *si = opaque; 83 84 /* We use a non-zero hint to distinguish this notification call 85 * from the call done in kqueue_scan(), which uses hint=0. 86 */ 87 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 88 } 89 90 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 91 int err; 92 93 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 94 si->ntfytq = taskqueue_create(name, M_NOWAIT, 95 taskqueue_thread_enqueue, &si->ntfytq); 96 if (si->ntfytq == NULL) 97 return -ENOMEM; 98 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 99 if (err) { 100 taskqueue_free(si->ntfytq); 101 si->ntfytq = NULL; 102 return err; 103 } 104 105 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 106 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 107 knlist_init_mtx(&si->si.si_note, &si->m); 108 109 return (0); 110 } 111 112 void 113 nm_os_selinfo_uninit(NM_SELINFO_T *si) 114 { 115 if (si->ntfytq == NULL) { 116 return; /* si was not initialized */ 117 } 118 taskqueue_drain(si->ntfytq, &si->ntfytask); 119 taskqueue_free(si->ntfytq); 120 si->ntfytq = NULL; 121 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 122 knlist_destroy(&si->si.si_note); 123 /* now we don't need the mutex anymore */ 124 mtx_destroy(&si->m); 125 } 126 127 void * 128 nm_os_malloc(size_t size) 129 { 130 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 131 } 132 133 void * 134 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 135 { 136 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 137 } 138 139 void 140 nm_os_free(void *addr) 141 { 142 free(addr, M_DEVBUF); 143 } 144 145 void 146 nm_os_ifnet_lock(void) 147 { 148 IFNET_RLOCK(); 149 } 150 151 void 152 nm_os_ifnet_unlock(void) 153 { 154 IFNET_RUNLOCK(); 155 } 156 157 static int netmap_use_count = 0; 158 159 void 160 nm_os_get_module(void) 161 { 162 netmap_use_count++; 163 } 164 165 void 166 nm_os_put_module(void) 167 { 168 netmap_use_count--; 169 } 170 171 static void 172 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp) 173 { 174 netmap_undo_zombie(ifp); 175 } 176 177 static void 178 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp) 179 { 180 netmap_make_zombie(ifp); 181 } 182 183 static eventhandler_tag nm_ifnet_ah_tag; 184 static eventhandler_tag nm_ifnet_dh_tag; 185 186 int 187 nm_os_ifnet_init(void) 188 { 189 nm_ifnet_ah_tag = 190 EVENTHANDLER_REGISTER(ifnet_arrival_event, 191 netmap_ifnet_arrival_handler, 192 NULL, EVENTHANDLER_PRI_ANY); 193 nm_ifnet_dh_tag = 194 EVENTHANDLER_REGISTER(ifnet_departure_event, 195 netmap_ifnet_departure_handler, 196 NULL, EVENTHANDLER_PRI_ANY); 197 return 0; 198 } 199 200 void 201 nm_os_ifnet_fini(void) 202 { 203 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 204 nm_ifnet_ah_tag); 205 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 206 nm_ifnet_dh_tag); 207 } 208 209 unsigned 210 nm_os_ifnet_mtu(struct ifnet *ifp) 211 { 212 #if __FreeBSD_version < 1100030 213 return ifp->if_data.ifi_mtu; 214 #else /* __FreeBSD_version >= 1100030 */ 215 return ifp->if_mtu; 216 #endif 217 } 218 219 rawsum_t 220 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 221 { 222 /* TODO XXX please use the FreeBSD implementation for this. */ 223 uint16_t *words = (uint16_t *)data; 224 int nw = len / 2; 225 int i; 226 227 for (i = 0; i < nw; i++) 228 cur_sum += be16toh(words[i]); 229 230 if (len & 1) 231 cur_sum += (data[len-1] << 8); 232 233 return cur_sum; 234 } 235 236 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 237 * return value is in network byte order. 238 */ 239 uint16_t 240 nm_os_csum_fold(rawsum_t cur_sum) 241 { 242 /* TODO XXX please use the FreeBSD implementation for this. */ 243 while (cur_sum >> 16) 244 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 245 246 return htobe16((~cur_sum) & 0xFFFF); 247 } 248 249 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 250 { 251 #if 0 252 return in_cksum_hdr((void *)iph); 253 #else 254 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 255 #endif 256 } 257 258 void 259 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 260 size_t datalen, uint16_t *check) 261 { 262 #ifdef INET 263 uint16_t pseudolen = datalen + iph->protocol; 264 265 /* Compute and insert the pseudo-header cheksum. */ 266 *check = in_pseudo(iph->saddr, iph->daddr, 267 htobe16(pseudolen)); 268 /* Compute the checksum on TCP/UDP header + payload 269 * (includes the pseudo-header). 270 */ 271 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 272 #else 273 static int notsupported = 0; 274 if (!notsupported) { 275 notsupported = 1; 276 nm_prerr("inet4 segmentation not supported"); 277 } 278 #endif 279 } 280 281 void 282 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 283 size_t datalen, uint16_t *check) 284 { 285 #ifdef INET6 286 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 287 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 288 #else 289 static int notsupported = 0; 290 if (!notsupported) { 291 notsupported = 1; 292 nm_prerr("inet6 segmentation not supported"); 293 } 294 #endif 295 } 296 297 /* on FreeBSD we send up one packet at a time */ 298 void * 299 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev) 300 { 301 NA(ifp)->if_input(ifp, m); 302 return NULL; 303 } 304 305 int 306 nm_os_mbuf_has_csum_offld(struct mbuf *m) 307 { 308 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 309 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 310 CSUM_SCTP_IPV6); 311 } 312 313 int 314 nm_os_mbuf_has_seg_offld(struct mbuf *m) 315 { 316 return m->m_pkthdr.csum_flags & CSUM_TSO; 317 } 318 319 static void 320 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 321 { 322 int stolen; 323 324 if (unlikely(!NM_NA_VALID(ifp))) { 325 nm_prlim(1, "Warning: RX packet intercepted, but no" 326 " emulated adapter"); 327 return; 328 } 329 330 stolen = generic_rx_handler(ifp, m); 331 if (!stolen) { 332 struct netmap_generic_adapter *gna = 333 (struct netmap_generic_adapter *)NA(ifp); 334 gna->save_if_input(ifp, m); 335 } 336 } 337 338 /* 339 * Intercept the rx routine in the standard device driver. 340 * Second argument is non-zero to intercept, 0 to restore 341 */ 342 int 343 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 344 { 345 struct netmap_adapter *na = &gna->up.up; 346 struct ifnet *ifp = na->ifp; 347 int ret = 0; 348 349 nm_os_ifnet_lock(); 350 if (intercept) { 351 if (gna->save_if_input) { 352 nm_prerr("RX on %s already intercepted", na->name); 353 ret = EBUSY; /* already set */ 354 goto out; 355 } 356 gna->save_if_input = ifp->if_input; 357 ifp->if_input = freebsd_generic_rx_handler; 358 } else { 359 if (!gna->save_if_input) { 360 nm_prerr("Failed to undo RX intercept on %s", 361 na->name); 362 ret = EINVAL; /* not saved */ 363 goto out; 364 } 365 ifp->if_input = gna->save_if_input; 366 gna->save_if_input = NULL; 367 } 368 out: 369 nm_os_ifnet_unlock(); 370 371 return ret; 372 } 373 374 375 /* 376 * Intercept the packet steering routine in the tx path, 377 * so that we can decide which queue is used for an mbuf. 378 * Second argument is non-zero to intercept, 0 to restore. 379 * On freebsd we just intercept if_transmit. 380 */ 381 int 382 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 383 { 384 struct netmap_adapter *na = &gna->up.up; 385 struct ifnet *ifp = netmap_generic_getifp(gna); 386 387 nm_os_ifnet_lock(); 388 if (intercept) { 389 na->if_transmit = ifp->if_transmit; 390 ifp->if_transmit = netmap_transmit; 391 } else { 392 ifp->if_transmit = na->if_transmit; 393 } 394 nm_os_ifnet_unlock(); 395 396 return 0; 397 } 398 399 400 /* 401 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 402 * and non-zero on error (which may be packet drops or other errors). 403 * addr and len identify the netmap buffer, m is the (preallocated) 404 * mbuf to use for transmissions. 405 * 406 * We should add a reference to the mbuf so the m_freem() at the end 407 * of the transmission does not consume resources. 408 * 409 * On FreeBSD, and on multiqueue cards, we can force the queue using 410 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 411 * i = m->m_pkthdr.flowid % adapter->num_queues; 412 * else 413 * i = curcpu % adapter->num_queues; 414 * 415 */ 416 int 417 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 418 { 419 int ret; 420 u_int len = a->len; 421 struct ifnet *ifp = a->ifp; 422 struct mbuf *m = a->m; 423 424 #if __FreeBSD_version < 1100000 425 /* 426 * Old FreeBSD versions. The mbuf has a cluster attached, 427 * we need to copy from the cluster to the netmap buffer. 428 */ 429 if (MBUF_REFCNT(m) != 1) { 430 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 431 panic("in generic_xmit_frame"); 432 } 433 if (m->m_ext.ext_size < len) { 434 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len); 435 len = m->m_ext.ext_size; 436 } 437 bcopy(a->addr, m->m_data, len); 438 #else /* __FreeBSD_version >= 1100000 */ 439 /* New FreeBSD versions. Link the external storage to 440 * the netmap buffer, so that no copy is necessary. */ 441 m->m_ext.ext_buf = m->m_data = a->addr; 442 m->m_ext.ext_size = len; 443 #endif /* __FreeBSD_version >= 1100000 */ 444 445 m->m_len = m->m_pkthdr.len = len; 446 447 /* mbuf refcnt is not contended, no need to use atomic 448 * (a memory barrier is enough). */ 449 SET_MBUF_REFCNT(m, 2); 450 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 451 m->m_pkthdr.flowid = a->ring_nr; 452 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 453 ret = NA(ifp)->if_transmit(ifp, m); 454 return ret ? -1 : 0; 455 } 456 457 458 #if __FreeBSD_version >= 1100005 459 struct netmap_adapter * 460 netmap_getna(if_t ifp) 461 { 462 return (NA((struct ifnet *)ifp)); 463 } 464 #endif /* __FreeBSD_version >= 1100005 */ 465 466 /* 467 * The following two functions are empty until we have a generic 468 * way to extract the info from the ifp 469 */ 470 int 471 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx) 472 { 473 return 0; 474 } 475 476 477 void 478 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq) 479 { 480 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 481 482 *txq = num_rings; 483 *rxq = num_rings; 484 } 485 486 void 487 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 488 { 489 490 gna->rxsg = 1; /* Supported through m_copydata. */ 491 gna->txqdisc = 0; /* Not supported. */ 492 } 493 494 void 495 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 496 { 497 mit->mit_pending = 0; 498 mit->mit_ring_idx = idx; 499 mit->mit_na = na; 500 } 501 502 503 void 504 nm_os_mitigation_start(struct nm_generic_mit *mit) 505 { 506 } 507 508 509 void 510 nm_os_mitigation_restart(struct nm_generic_mit *mit) 511 { 512 } 513 514 515 int 516 nm_os_mitigation_active(struct nm_generic_mit *mit) 517 { 518 519 return 0; 520 } 521 522 523 void 524 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 525 { 526 } 527 528 static int 529 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr) 530 { 531 532 return EINVAL; 533 } 534 535 static void 536 nm_vi_start(struct ifnet *ifp) 537 { 538 panic("nm_vi_start() must not be called"); 539 } 540 541 /* 542 * Index manager of persistent virtual interfaces. 543 * It is used to decide the lowest byte of the MAC address. 544 * We use the same algorithm with management of bridge port index. 545 */ 546 #define NM_VI_MAX 255 547 static struct { 548 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 549 uint8_t active; 550 struct mtx lock; 551 } nm_vi_indices; 552 553 void 554 nm_os_vi_init_index(void) 555 { 556 int i; 557 for (i = 0; i < NM_VI_MAX; i++) 558 nm_vi_indices.index[i] = i; 559 nm_vi_indices.active = 0; 560 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 561 } 562 563 /* return -1 if no index available */ 564 static int 565 nm_vi_get_index(void) 566 { 567 int ret; 568 569 mtx_lock(&nm_vi_indices.lock); 570 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 571 nm_vi_indices.index[nm_vi_indices.active++]; 572 mtx_unlock(&nm_vi_indices.lock); 573 return ret; 574 } 575 576 static void 577 nm_vi_free_index(uint8_t val) 578 { 579 int i, lim; 580 581 mtx_lock(&nm_vi_indices.lock); 582 lim = nm_vi_indices.active; 583 for (i = 0; i < lim; i++) { 584 if (nm_vi_indices.index[i] == val) { 585 /* swap index[lim-1] and j */ 586 int tmp = nm_vi_indices.index[lim-1]; 587 nm_vi_indices.index[lim-1] = val; 588 nm_vi_indices.index[i] = tmp; 589 nm_vi_indices.active--; 590 break; 591 } 592 } 593 if (lim == nm_vi_indices.active) 594 nm_prerr("Index %u not found", val); 595 mtx_unlock(&nm_vi_indices.lock); 596 } 597 #undef NM_VI_MAX 598 599 /* 600 * Implementation of a netmap-capable virtual interface that 601 * registered to the system. 602 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 603 * 604 * Note: Linux sets refcount to 0 on allocation of net_device, 605 * then increments it on registration to the system. 606 * FreeBSD sets refcount to 1 on if_alloc(), and does not 607 * increment this refcount on if_attach(). 608 */ 609 int 610 nm_os_vi_persist(const char *name, struct ifnet **ret) 611 { 612 struct ifnet *ifp; 613 u_short macaddr_hi; 614 uint32_t macaddr_mid; 615 u_char eaddr[6]; 616 int unit = nm_vi_get_index(); /* just to decide MAC address */ 617 618 if (unit < 0) 619 return EBUSY; 620 /* 621 * We use the same MAC address generation method with tap 622 * except for the highest octet is 00:be instead of 00:bd 623 */ 624 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 625 macaddr_mid = (uint32_t) ticks; 626 bcopy(&macaddr_hi, eaddr, sizeof(short)); 627 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 628 eaddr[5] = (uint8_t)unit; 629 630 ifp = if_alloc(IFT_ETHER); 631 if (ifp == NULL) { 632 nm_prerr("if_alloc failed"); 633 return ENOMEM; 634 } 635 if_initname(ifp, name, IF_DUNIT_NONE); 636 ifp->if_mtu = 65536; 637 ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST; 638 ifp->if_init = (void *)nm_vi_dummy; 639 ifp->if_ioctl = nm_vi_dummy; 640 ifp->if_start = nm_vi_start; 641 ifp->if_mtu = ETHERMTU; 642 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 643 ifp->if_capabilities |= IFCAP_LINKSTATE; 644 ifp->if_capenable |= IFCAP_LINKSTATE; 645 646 ether_ifattach(ifp, eaddr); 647 *ret = ifp; 648 return 0; 649 } 650 651 /* unregister from the system and drop the final refcount */ 652 void 653 nm_os_vi_detach(struct ifnet *ifp) 654 { 655 nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]); 656 ether_ifdetach(ifp); 657 if_free(ifp); 658 } 659 660 #ifdef WITH_EXTMEM 661 #include <vm/vm_map.h> 662 #include <vm/vm_kern.h> 663 struct nm_os_extmem { 664 vm_object_t obj; 665 vm_offset_t kva; 666 vm_offset_t size; 667 uintptr_t scan; 668 }; 669 670 void 671 nm_os_extmem_delete(struct nm_os_extmem *e) 672 { 673 nm_prinf("freeing %zx bytes", (size_t)e->size); 674 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 675 nm_os_free(e); 676 } 677 678 char * 679 nm_os_extmem_nextpage(struct nm_os_extmem *e) 680 { 681 char *rv = NULL; 682 if (e->scan < e->kva + e->size) { 683 rv = (char *)e->scan; 684 e->scan += PAGE_SIZE; 685 } 686 return rv; 687 } 688 689 int 690 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 691 { 692 return (e1->obj == e2->obj); 693 } 694 695 int 696 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 697 { 698 return e->size >> PAGE_SHIFT; 699 } 700 701 struct nm_os_extmem * 702 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 703 { 704 vm_map_t map; 705 vm_map_entry_t entry; 706 vm_object_t obj; 707 vm_prot_t prot; 708 vm_pindex_t index; 709 boolean_t wired; 710 struct nm_os_extmem *e = NULL; 711 int rv, error = 0; 712 713 e = nm_os_malloc(sizeof(*e)); 714 if (e == NULL) { 715 error = ENOMEM; 716 goto out; 717 } 718 719 map = &curthread->td_proc->p_vmspace->vm_map; 720 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 721 &obj, &index, &prot, &wired); 722 if (rv != KERN_SUCCESS) { 723 nm_prerr("address %lx not found", p); 724 goto out_free; 725 } 726 /* check that we are given the whole vm_object ? */ 727 vm_map_lookup_done(map, entry); 728 729 // XXX can we really use obj after releasing the map lock? 730 e->obj = obj; 731 vm_object_reference(obj); 732 /* wire the memory and add the vm_object to the kernel map, 733 * to make sure that it is not fred even if the processes that 734 * are mmap()ing it all exit 735 */ 736 e->kva = vm_map_min(kernel_map); 737 e->size = obj->size << PAGE_SHIFT; 738 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 739 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 740 VM_PROT_READ | VM_PROT_WRITE, 0); 741 if (rv != KERN_SUCCESS) { 742 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 743 goto out_rel; 744 } 745 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 746 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 747 if (rv != KERN_SUCCESS) { 748 nm_prerr("vm_map_wire failed"); 749 goto out_rem; 750 } 751 752 e->scan = e->kva; 753 754 return e; 755 756 out_rem: 757 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 758 e->obj = NULL; 759 out_rel: 760 vm_object_deallocate(e->obj); 761 out_free: 762 nm_os_free(e); 763 out: 764 if (perror) 765 *perror = error; 766 return NULL; 767 } 768 #endif /* WITH_EXTMEM */ 769 770 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 771 772 #ifdef WITH_PTNETMAP 773 #include <sys/bus.h> 774 #include <sys/rman.h> 775 #include <machine/bus.h> /* bus_dmamap_* */ 776 #include <machine/resource.h> 777 #include <dev/pci/pcivar.h> 778 #include <dev/pci/pcireg.h> 779 /* 780 * ptnetmap memory device (memdev) for freebsd guest, 781 * ssed to expose host netmap memory to the guest through a PCI BAR. 782 */ 783 784 /* 785 * ptnetmap memdev private data structure 786 */ 787 struct ptnetmap_memdev { 788 device_t dev; 789 struct resource *pci_io; 790 struct resource *pci_mem; 791 struct netmap_mem_d *nm_mem; 792 }; 793 794 static int ptn_memdev_probe(device_t); 795 static int ptn_memdev_attach(device_t); 796 static int ptn_memdev_detach(device_t); 797 static int ptn_memdev_shutdown(device_t); 798 799 static device_method_t ptn_memdev_methods[] = { 800 DEVMETHOD(device_probe, ptn_memdev_probe), 801 DEVMETHOD(device_attach, ptn_memdev_attach), 802 DEVMETHOD(device_detach, ptn_memdev_detach), 803 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 804 DEVMETHOD_END 805 }; 806 807 static driver_t ptn_memdev_driver = { 808 PTNETMAP_MEMDEV_NAME, 809 ptn_memdev_methods, 810 sizeof(struct ptnetmap_memdev), 811 }; 812 813 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 814 * below. */ 815 static devclass_t ptnetmap_devclass; 816 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass, 817 NULL, NULL, SI_ORDER_MIDDLE + 1); 818 819 /* 820 * Map host netmap memory through PCI-BAR in the guest OS, 821 * returning physical (nm_paddr) and virtual (nm_addr) addresses 822 * of the netmap memory mapped in the guest. 823 */ 824 int 825 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 826 void **nm_addr, uint64_t *mem_size) 827 { 828 int rid; 829 830 nm_prinf("ptn_memdev_driver iomap"); 831 832 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 833 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 834 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 835 (*mem_size << 32); 836 837 /* map memory allocator */ 838 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 839 &rid, 0, ~0, *mem_size, RF_ACTIVE); 840 if (ptn_dev->pci_mem == NULL) { 841 *nm_paddr = 0; 842 *nm_addr = NULL; 843 return ENOMEM; 844 } 845 846 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 847 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 848 849 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 850 PTNETMAP_MEM_PCI_BAR, 851 (unsigned long)(*nm_paddr), 852 (unsigned long)rman_get_size(ptn_dev->pci_mem), 853 (unsigned long)*mem_size); 854 return (0); 855 } 856 857 uint32_t 858 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 859 { 860 return bus_read_4(ptn_dev->pci_io, reg); 861 } 862 863 /* Unmap host netmap memory. */ 864 void 865 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 866 { 867 nm_prinf("ptn_memdev_driver iounmap"); 868 869 if (ptn_dev->pci_mem) { 870 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 871 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 872 ptn_dev->pci_mem = NULL; 873 } 874 } 875 876 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 877 * positive on failure */ 878 static int 879 ptn_memdev_probe(device_t dev) 880 { 881 char desc[256]; 882 883 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 884 return (ENXIO); 885 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 886 return (ENXIO); 887 888 snprintf(desc, sizeof(desc), "%s PCI adapter", 889 PTNETMAP_MEMDEV_NAME); 890 device_set_desc_copy(dev, desc); 891 892 return (BUS_PROBE_DEFAULT); 893 } 894 895 /* Device initialization routine. */ 896 static int 897 ptn_memdev_attach(device_t dev) 898 { 899 struct ptnetmap_memdev *ptn_dev; 900 int rid; 901 uint16_t mem_id; 902 903 ptn_dev = device_get_softc(dev); 904 ptn_dev->dev = dev; 905 906 pci_enable_busmaster(dev); 907 908 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 909 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 910 RF_ACTIVE); 911 if (ptn_dev->pci_io == NULL) { 912 device_printf(dev, "cannot map I/O space\n"); 913 return (ENXIO); 914 } 915 916 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 917 918 /* create guest allocator */ 919 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 920 if (ptn_dev->nm_mem == NULL) { 921 ptn_memdev_detach(dev); 922 return (ENOMEM); 923 } 924 netmap_mem_get(ptn_dev->nm_mem); 925 926 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 927 928 return (0); 929 } 930 931 /* Device removal routine. */ 932 static int 933 ptn_memdev_detach(device_t dev) 934 { 935 struct ptnetmap_memdev *ptn_dev; 936 937 ptn_dev = device_get_softc(dev); 938 939 if (ptn_dev->nm_mem) { 940 nm_prinf("ptnetmap memdev detached, host memid %u", 941 netmap_mem_get_id(ptn_dev->nm_mem)); 942 netmap_mem_put(ptn_dev->nm_mem); 943 ptn_dev->nm_mem = NULL; 944 } 945 if (ptn_dev->pci_mem) { 946 bus_release_resource(dev, SYS_RES_MEMORY, 947 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 948 ptn_dev->pci_mem = NULL; 949 } 950 if (ptn_dev->pci_io) { 951 bus_release_resource(dev, SYS_RES_IOPORT, 952 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 953 ptn_dev->pci_io = NULL; 954 } 955 956 return (0); 957 } 958 959 static int 960 ptn_memdev_shutdown(device_t dev) 961 { 962 return bus_generic_shutdown(dev); 963 } 964 965 #endif /* WITH_PTNETMAP */ 966 967 /* 968 * In order to track whether pages are still mapped, we hook into 969 * the standard cdev_pager and intercept the constructor and 970 * destructor. 971 */ 972 973 struct netmap_vm_handle_t { 974 struct cdev *dev; 975 struct netmap_priv_d *priv; 976 }; 977 978 979 static int 980 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 981 vm_ooffset_t foff, struct ucred *cred, u_short *color) 982 { 983 struct netmap_vm_handle_t *vmh = handle; 984 985 if (netmap_verbose) 986 nm_prinf("handle %p size %jd prot %d foff %jd", 987 handle, (intmax_t)size, prot, (intmax_t)foff); 988 if (color) 989 *color = 0; 990 dev_ref(vmh->dev); 991 return 0; 992 } 993 994 995 static void 996 netmap_dev_pager_dtor(void *handle) 997 { 998 struct netmap_vm_handle_t *vmh = handle; 999 struct cdev *dev = vmh->dev; 1000 struct netmap_priv_d *priv = vmh->priv; 1001 1002 if (netmap_verbose) 1003 nm_prinf("handle %p", handle); 1004 netmap_dtor(priv); 1005 free(vmh, M_DEVBUF); 1006 dev_rel(dev); 1007 } 1008 1009 1010 static int 1011 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 1012 int prot, vm_page_t *mres) 1013 { 1014 struct netmap_vm_handle_t *vmh = object->handle; 1015 struct netmap_priv_d *priv = vmh->priv; 1016 struct netmap_adapter *na = priv->np_na; 1017 vm_paddr_t paddr; 1018 vm_page_t page; 1019 vm_memattr_t memattr; 1020 vm_pindex_t pidx; 1021 1022 nm_prdis("object %p offset %jd prot %d mres %p", 1023 object, (intmax_t)offset, prot, mres); 1024 memattr = object->memattr; 1025 pidx = OFF_TO_IDX(offset); 1026 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1027 if (paddr == 0) 1028 return VM_PAGER_FAIL; 1029 1030 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1031 /* 1032 * If the passed in result page is a fake page, update it with 1033 * the new physical address. 1034 */ 1035 page = *mres; 1036 vm_page_updatefake(page, paddr, memattr); 1037 } else { 1038 /* 1039 * Replace the passed in reqpage page with our own fake page and 1040 * free up the all of the original pages. 1041 */ 1042 #ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */ 1043 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK 1044 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK 1045 #endif /* VM_OBJECT_WUNLOCK */ 1046 1047 VM_OBJECT_WUNLOCK(object); 1048 page = vm_page_getfake(paddr, memattr); 1049 VM_OBJECT_WLOCK(object); 1050 vm_page_lock(*mres); 1051 vm_page_free(*mres); 1052 vm_page_unlock(*mres); 1053 *mres = page; 1054 vm_page_insert(page, object, pidx); 1055 } 1056 page->valid = VM_PAGE_BITS_ALL; 1057 return (VM_PAGER_OK); 1058 } 1059 1060 1061 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1062 .cdev_pg_ctor = netmap_dev_pager_ctor, 1063 .cdev_pg_dtor = netmap_dev_pager_dtor, 1064 .cdev_pg_fault = netmap_dev_pager_fault, 1065 }; 1066 1067 1068 static int 1069 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1070 vm_size_t objsize, vm_object_t *objp, int prot) 1071 { 1072 int error; 1073 struct netmap_vm_handle_t *vmh; 1074 struct netmap_priv_d *priv; 1075 vm_object_t obj; 1076 1077 if (netmap_verbose) 1078 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1079 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1080 1081 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1082 M_NOWAIT | M_ZERO); 1083 if (vmh == NULL) 1084 return ENOMEM; 1085 vmh->dev = cdev; 1086 1087 NMG_LOCK(); 1088 error = devfs_get_cdevpriv((void**)&priv); 1089 if (error) 1090 goto err_unlock; 1091 if (priv->np_nifp == NULL) { 1092 error = EINVAL; 1093 goto err_unlock; 1094 } 1095 vmh->priv = priv; 1096 priv->np_refs++; 1097 NMG_UNLOCK(); 1098 1099 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1100 &netmap_cdev_pager_ops, objsize, prot, 1101 *foff, NULL); 1102 if (obj == NULL) { 1103 nm_prerr("cdev_pager_allocate failed"); 1104 error = EINVAL; 1105 goto err_deref; 1106 } 1107 1108 *objp = obj; 1109 return 0; 1110 1111 err_deref: 1112 NMG_LOCK(); 1113 priv->np_refs--; 1114 err_unlock: 1115 NMG_UNLOCK(); 1116 // err: 1117 free(vmh, M_DEVBUF); 1118 return error; 1119 } 1120 1121 /* 1122 * On FreeBSD the close routine is only called on the last close on 1123 * the device (/dev/netmap) so we cannot do anything useful. 1124 * To track close() on individual file descriptors we pass netmap_dtor() to 1125 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1126 * when the last fd pointing to the device is closed. 1127 * 1128 * Note that FreeBSD does not even munmap() on close() so we also have 1129 * to track mmap() ourselves, and postpone the call to 1130 * netmap_dtor() is called when the process has no open fds and no active 1131 * memory maps on /dev/netmap, as in linux. 1132 */ 1133 static int 1134 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1135 { 1136 if (netmap_verbose) 1137 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1138 dev, fflag, devtype, td); 1139 return 0; 1140 } 1141 1142 1143 static int 1144 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1145 { 1146 struct netmap_priv_d *priv; 1147 int error; 1148 1149 (void)dev; 1150 (void)oflags; 1151 (void)devtype; 1152 (void)td; 1153 1154 NMG_LOCK(); 1155 priv = netmap_priv_new(); 1156 if (priv == NULL) { 1157 error = ENOMEM; 1158 goto out; 1159 } 1160 error = devfs_set_cdevpriv(priv, netmap_dtor); 1161 if (error) { 1162 netmap_priv_delete(priv); 1163 } 1164 out: 1165 NMG_UNLOCK(); 1166 return error; 1167 } 1168 1169 /******************** kthread wrapper ****************/ 1170 #include <sys/sysproto.h> 1171 u_int 1172 nm_os_ncpus(void) 1173 { 1174 return mp_maxid + 1; 1175 } 1176 1177 struct nm_kctx_ctx { 1178 /* Userspace thread (kthread creator). */ 1179 struct thread *user_td; 1180 1181 /* worker function and parameter */ 1182 nm_kctx_worker_fn_t worker_fn; 1183 void *worker_private; 1184 1185 struct nm_kctx *nmk; 1186 1187 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1188 long type; 1189 }; 1190 1191 struct nm_kctx { 1192 struct thread *worker; 1193 struct mtx worker_lock; 1194 struct nm_kctx_ctx worker_ctx; 1195 int run; /* used to stop kthread */ 1196 int attach_user; /* kthread attached to user_process */ 1197 int affinity; 1198 }; 1199 1200 static void 1201 nm_kctx_worker(void *data) 1202 { 1203 struct nm_kctx *nmk = data; 1204 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1205 1206 if (nmk->affinity >= 0) { 1207 thread_lock(curthread); 1208 sched_bind(curthread, nmk->affinity); 1209 thread_unlock(curthread); 1210 } 1211 1212 while (nmk->run) { 1213 /* 1214 * check if the parent process dies 1215 * (when kthread is attached to user process) 1216 */ 1217 if (ctx->user_td) { 1218 PROC_LOCK(curproc); 1219 thread_suspend_check(0); 1220 PROC_UNLOCK(curproc); 1221 } else { 1222 kthread_suspend_check(); 1223 } 1224 1225 /* Continuously execute worker process. */ 1226 ctx->worker_fn(ctx->worker_private); /* worker body */ 1227 } 1228 1229 kthread_exit(); 1230 } 1231 1232 void 1233 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1234 { 1235 nmk->affinity = affinity; 1236 } 1237 1238 struct nm_kctx * 1239 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1240 { 1241 struct nm_kctx *nmk = NULL; 1242 1243 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1244 if (!nmk) 1245 return NULL; 1246 1247 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1248 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1249 nmk->worker_ctx.worker_private = cfg->worker_private; 1250 nmk->worker_ctx.type = cfg->type; 1251 nmk->affinity = -1; 1252 1253 /* attach kthread to user process (ptnetmap) */ 1254 nmk->attach_user = cfg->attach_user; 1255 1256 return nmk; 1257 } 1258 1259 int 1260 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1261 { 1262 struct proc *p = NULL; 1263 int error = 0; 1264 1265 /* Temporarily disable this function as it is currently broken 1266 * and causes kernel crashes. The failure can be triggered by 1267 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1268 return EOPNOTSUPP; 1269 1270 if (nmk->worker) 1271 return EBUSY; 1272 1273 /* check if we want to attach kthread to user process */ 1274 if (nmk->attach_user) { 1275 nmk->worker_ctx.user_td = curthread; 1276 p = curthread->td_proc; 1277 } 1278 1279 /* enable kthread main loop */ 1280 nmk->run = 1; 1281 /* create kthread */ 1282 if((error = kthread_add(nm_kctx_worker, nmk, p, 1283 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1284 nmk->worker_ctx.type))) { 1285 goto err; 1286 } 1287 1288 nm_prinf("nm_kthread started td %p", nmk->worker); 1289 1290 return 0; 1291 err: 1292 nm_prerr("nm_kthread start failed err %d", error); 1293 nmk->worker = NULL; 1294 return error; 1295 } 1296 1297 void 1298 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1299 { 1300 if (!nmk->worker) 1301 return; 1302 1303 /* tell to kthread to exit from main loop */ 1304 nmk->run = 0; 1305 1306 /* wake up kthread if it sleeps */ 1307 kthread_resume(nmk->worker); 1308 1309 nmk->worker = NULL; 1310 } 1311 1312 void 1313 nm_os_kctx_destroy(struct nm_kctx *nmk) 1314 { 1315 if (!nmk) 1316 return; 1317 1318 if (nmk->worker) 1319 nm_os_kctx_worker_stop(nmk); 1320 1321 free(nmk, M_DEVBUF); 1322 } 1323 1324 /******************** kqueue support ****************/ 1325 1326 /* 1327 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1328 * needs to call knote() to wake up kqueue listeners. 1329 * This operation is deferred to a taskqueue in order to avoid possible 1330 * lock order reversals; these may happen because knote() grabs a 1331 * private lock associated to the 'si' (see struct selinfo, 1332 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1333 * can be called while holding the lock associated to a different 1334 * 'si'. 1335 * When calling knote() we use a non-zero 'hint' argument to inform 1336 * the netmap_knrw() function that it is being called from 1337 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1338 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1339 * call netmap_poll(). 1340 * 1341 * The netmap_kqfilter() function registers one or another f_event 1342 * depending on read or write mode. A pointer to the struct 1343 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1344 * be passed to netmap_poll(). We pass NULL as a third argument to 1345 * netmap_poll(), so that the latter only runs the txsync/rxsync 1346 * (if necessary), and skips the nm_os_selrecord() calls. 1347 */ 1348 1349 1350 void 1351 nm_os_selwakeup(struct nm_selinfo *si) 1352 { 1353 selwakeuppri(&si->si, PI_NET); 1354 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1355 } 1356 1357 void 1358 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1359 { 1360 selrecord(td, &si->si); 1361 } 1362 1363 static void 1364 netmap_knrdetach(struct knote *kn) 1365 { 1366 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1367 struct selinfo *si = &priv->np_si[NR_RX]->si; 1368 1369 nm_prinf("remove selinfo %p", si); 1370 knlist_remove(&si->si_note, kn, /*islocked=*/0); 1371 } 1372 1373 static void 1374 netmap_knwdetach(struct knote *kn) 1375 { 1376 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1377 struct selinfo *si = &priv->np_si[NR_TX]->si; 1378 1379 nm_prinf("remove selinfo %p", si); 1380 knlist_remove(&si->si_note, kn, /*islocked=*/0); 1381 } 1382 1383 /* 1384 * Callback triggered by netmap notifications (see netmap_notify()), 1385 * and by the application calling kevent(). In the former case we 1386 * just return 1 (events ready), since we are not able to do better. 1387 * In the latter case we use netmap_poll() to see which events are 1388 * ready. 1389 */ 1390 static int 1391 netmap_knrw(struct knote *kn, long hint, int events) 1392 { 1393 struct netmap_priv_d *priv; 1394 int revents; 1395 1396 if (hint != 0) { 1397 /* Called from netmap_notify(), typically from a 1398 * thread different from the one issuing kevent(). 1399 * Assume we are ready. */ 1400 return 1; 1401 } 1402 1403 /* Called from kevent(). */ 1404 priv = kn->kn_hook; 1405 revents = netmap_poll(priv, events, /*thread=*/NULL); 1406 1407 return (events & revents) ? 1 : 0; 1408 } 1409 1410 static int 1411 netmap_knread(struct knote *kn, long hint) 1412 { 1413 return netmap_knrw(kn, hint, POLLIN); 1414 } 1415 1416 static int 1417 netmap_knwrite(struct knote *kn, long hint) 1418 { 1419 return netmap_knrw(kn, hint, POLLOUT); 1420 } 1421 1422 static struct filterops netmap_rfiltops = { 1423 .f_isfd = 1, 1424 .f_detach = netmap_knrdetach, 1425 .f_event = netmap_knread, 1426 }; 1427 1428 static struct filterops netmap_wfiltops = { 1429 .f_isfd = 1, 1430 .f_detach = netmap_knwdetach, 1431 .f_event = netmap_knwrite, 1432 }; 1433 1434 1435 /* 1436 * This is called when a thread invokes kevent() to record 1437 * a change in the configuration of the kqueue(). 1438 * The 'priv' is the one associated to the open netmap device. 1439 */ 1440 static int 1441 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1442 { 1443 struct netmap_priv_d *priv; 1444 int error; 1445 struct netmap_adapter *na; 1446 struct nm_selinfo *si; 1447 int ev = kn->kn_filter; 1448 1449 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1450 nm_prerr("bad filter request %d", ev); 1451 return 1; 1452 } 1453 error = devfs_get_cdevpriv((void**)&priv); 1454 if (error) { 1455 nm_prerr("device not yet setup"); 1456 return 1; 1457 } 1458 na = priv->np_na; 1459 if (na == NULL) { 1460 nm_prerr("no netmap adapter for this file descriptor"); 1461 return 1; 1462 } 1463 /* the si is indicated in the priv */ 1464 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1465 kn->kn_fop = (ev == EVFILT_WRITE) ? 1466 &netmap_wfiltops : &netmap_rfiltops; 1467 kn->kn_hook = priv; 1468 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1469 1470 return 0; 1471 } 1472 1473 static int 1474 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1475 { 1476 struct netmap_priv_d *priv; 1477 if (devfs_get_cdevpriv((void **)&priv)) { 1478 return POLLERR; 1479 } 1480 return netmap_poll(priv, events, td); 1481 } 1482 1483 static int 1484 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1485 int ffla __unused, struct thread *td) 1486 { 1487 int error; 1488 struct netmap_priv_d *priv; 1489 1490 CURVNET_SET(TD_TO_VNET(td)); 1491 error = devfs_get_cdevpriv((void **)&priv); 1492 if (error) { 1493 /* XXX ENOENT should be impossible, since the priv 1494 * is now created in the open */ 1495 if (error == ENOENT) 1496 error = ENXIO; 1497 goto out; 1498 } 1499 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1500 out: 1501 CURVNET_RESTORE(); 1502 1503 return error; 1504 } 1505 1506 void 1507 nm_os_onattach(struct ifnet *ifp) 1508 { 1509 ifp->if_capabilities |= IFCAP_NETMAP; 1510 } 1511 1512 void 1513 nm_os_onenter(struct ifnet *ifp) 1514 { 1515 struct netmap_adapter *na = NA(ifp); 1516 1517 na->if_transmit = ifp->if_transmit; 1518 ifp->if_transmit = netmap_transmit; 1519 ifp->if_capenable |= IFCAP_NETMAP; 1520 } 1521 1522 void 1523 nm_os_onexit(struct ifnet *ifp) 1524 { 1525 struct netmap_adapter *na = NA(ifp); 1526 1527 ifp->if_transmit = na->if_transmit; 1528 ifp->if_capenable &= ~IFCAP_NETMAP; 1529 } 1530 1531 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1532 struct cdevsw netmap_cdevsw = { 1533 .d_version = D_VERSION, 1534 .d_name = "netmap", 1535 .d_open = netmap_open, 1536 .d_mmap_single = netmap_mmap_single, 1537 .d_ioctl = freebsd_netmap_ioctl, 1538 .d_poll = freebsd_netmap_poll, 1539 .d_kqfilter = netmap_kqfilter, 1540 .d_close = netmap_close, 1541 }; 1542 /*--- end of kqueue support ----*/ 1543 1544 /* 1545 * Kernel entry point. 1546 * 1547 * Initialize/finalize the module and return. 1548 * 1549 * Return 0 on success, errno on failure. 1550 */ 1551 static int 1552 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1553 { 1554 int error = 0; 1555 1556 switch (event) { 1557 case MOD_LOAD: 1558 error = netmap_init(); 1559 break; 1560 1561 case MOD_UNLOAD: 1562 /* 1563 * if some one is still using netmap, 1564 * then the module can not be unloaded. 1565 */ 1566 if (netmap_use_count) { 1567 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1568 netmap_use_count); 1569 error = EBUSY; 1570 break; 1571 } 1572 netmap_fini(); 1573 break; 1574 1575 default: 1576 error = EOPNOTSUPP; 1577 break; 1578 } 1579 1580 return (error); 1581 } 1582 1583 #ifdef DEV_MODULE_ORDERED 1584 /* 1585 * The netmap module contains three drivers: (i) the netmap character device 1586 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1587 * device driver. The attach() routines of both (ii) and (iii) need the 1588 * lock of the global allocator, and such lock is initialized in netmap_init(), 1589 * which is part of (i). 1590 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1591 * the 'order' parameter of driver declaration macros. For (i), we specify 1592 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1593 * macros for (ii) and (iii). 1594 */ 1595 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1596 #else /* !DEV_MODULE_ORDERED */ 1597 DEV_MODULE(netmap, netmap_loader, NULL); 1598 #endif /* DEV_MODULE_ORDERED */ 1599 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1600 MODULE_VERSION(netmap, 1); 1601 /* reduce conditional code */ 1602 // linux API, use for the knlist in FreeBSD 1603 /* use a private mutex for the knlist */ 1604