xref: /freebsd/sys/dev/netmap/netmap_freebsd.c (revision f0483545503a78e16e256d46d458a2faae2f07ea)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *   1. Redistributions of source code must retain the above copyright
10  *      notice, this list of conditions and the following disclaimer.
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* $FreeBSD$ */
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 
32 #include <sys/param.h>
33 #include <sys/module.h>
34 #include <sys/errno.h>
35 #include <sys/jail.h>
36 #include <sys/poll.h>  /* POLLIN, POLLOUT */
37 #include <sys/kernel.h> /* types used in module initialization */
38 #include <sys/conf.h>	/* DEV_MODULE_ORDERED */
39 #include <sys/endian.h>
40 #include <sys/syscallsubr.h> /* kern_ioctl() */
41 
42 #include <sys/rwlock.h>
43 
44 #include <vm/vm.h>      /* vtophys */
45 #include <vm/pmap.h>    /* vtophys */
46 #include <vm/vm_param.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_page.h>
49 #include <vm/vm_pager.h>
50 #include <vm/uma.h>
51 
52 
53 #include <sys/malloc.h>
54 #include <sys/socket.h> /* sockaddrs */
55 #include <sys/selinfo.h>
56 #include <sys/kthread.h> /* kthread_add() */
57 #include <sys/proc.h> /* PROC_LOCK() */
58 #include <sys/unistd.h> /* RFNOWAIT */
59 #include <sys/sched.h> /* sched_bind() */
60 #include <sys/smp.h> /* mp_maxid */
61 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_types.h> /* IFT_ETHER */
65 #include <net/ethernet.h> /* ether_ifdetach */
66 #include <net/if_dl.h> /* LLADDR */
67 #include <machine/bus.h>        /* bus_dmamap_* */
68 #include <netinet/in.h>		/* in6_cksum_pseudo() */
69 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
70 
71 #include <net/netmap.h>
72 #include <dev/netmap/netmap_kern.h>
73 #include <net/netmap_virt.h>
74 #include <dev/netmap/netmap_mem2.h>
75 
76 
77 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
78 
79 static void
80 nm_kqueue_notify(void *opaque, int pending)
81 {
82 	struct nm_selinfo *si = opaque;
83 
84 	/* We use a non-zero hint to distinguish this notification call
85 	 * from the call done in kqueue_scan(), which uses hint=0.
86 	 */
87 	KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
88 }
89 
90 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
91 	int err;
92 
93 	TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
94 	si->ntfytq = taskqueue_create(name, M_NOWAIT,
95 	    taskqueue_thread_enqueue, &si->ntfytq);
96 	if (si->ntfytq == NULL)
97 		return -ENOMEM;
98 	err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
99 	if (err) {
100 		taskqueue_free(si->ntfytq);
101 		si->ntfytq = NULL;
102 		return err;
103 	}
104 
105 	snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
106 	mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
107 	knlist_init_mtx(&si->si.si_note, &si->m);
108 
109 	return (0);
110 }
111 
112 void
113 nm_os_selinfo_uninit(NM_SELINFO_T *si)
114 {
115 	if (si->ntfytq == NULL) {
116 		return;	/* si was not initialized */
117 	}
118 	taskqueue_drain(si->ntfytq, &si->ntfytask);
119 	taskqueue_free(si->ntfytq);
120 	si->ntfytq = NULL;
121 	knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
122 	knlist_destroy(&si->si.si_note);
123 	/* now we don't need the mutex anymore */
124 	mtx_destroy(&si->m);
125 }
126 
127 void *
128 nm_os_malloc(size_t size)
129 {
130 	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
131 }
132 
133 void *
134 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
135 {
136 	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
137 }
138 
139 void
140 nm_os_free(void *addr)
141 {
142 	free(addr, M_DEVBUF);
143 }
144 
145 void
146 nm_os_ifnet_lock(void)
147 {
148 	IFNET_RLOCK();
149 }
150 
151 void
152 nm_os_ifnet_unlock(void)
153 {
154 	IFNET_RUNLOCK();
155 }
156 
157 static int netmap_use_count = 0;
158 
159 void
160 nm_os_get_module(void)
161 {
162 	netmap_use_count++;
163 }
164 
165 void
166 nm_os_put_module(void)
167 {
168 	netmap_use_count--;
169 }
170 
171 static void
172 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
173 {
174 	netmap_undo_zombie(ifp);
175 }
176 
177 static void
178 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
179 {
180 	netmap_make_zombie(ifp);
181 }
182 
183 static eventhandler_tag nm_ifnet_ah_tag;
184 static eventhandler_tag nm_ifnet_dh_tag;
185 
186 int
187 nm_os_ifnet_init(void)
188 {
189 	nm_ifnet_ah_tag =
190 		EVENTHANDLER_REGISTER(ifnet_arrival_event,
191 				netmap_ifnet_arrival_handler,
192 				NULL, EVENTHANDLER_PRI_ANY);
193 	nm_ifnet_dh_tag =
194 		EVENTHANDLER_REGISTER(ifnet_departure_event,
195 				netmap_ifnet_departure_handler,
196 				NULL, EVENTHANDLER_PRI_ANY);
197 	return 0;
198 }
199 
200 void
201 nm_os_ifnet_fini(void)
202 {
203 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
204 			nm_ifnet_ah_tag);
205 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
206 			nm_ifnet_dh_tag);
207 }
208 
209 unsigned
210 nm_os_ifnet_mtu(struct ifnet *ifp)
211 {
212 #if __FreeBSD_version < 1100030
213 	return ifp->if_data.ifi_mtu;
214 #else /* __FreeBSD_version >= 1100030 */
215 	return ifp->if_mtu;
216 #endif
217 }
218 
219 rawsum_t
220 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
221 {
222 	/* TODO XXX please use the FreeBSD implementation for this. */
223 	uint16_t *words = (uint16_t *)data;
224 	int nw = len / 2;
225 	int i;
226 
227 	for (i = 0; i < nw; i++)
228 		cur_sum += be16toh(words[i]);
229 
230 	if (len & 1)
231 		cur_sum += (data[len-1] << 8);
232 
233 	return cur_sum;
234 }
235 
236 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
237  * return value is in network byte order.
238  */
239 uint16_t
240 nm_os_csum_fold(rawsum_t cur_sum)
241 {
242 	/* TODO XXX please use the FreeBSD implementation for this. */
243 	while (cur_sum >> 16)
244 		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
245 
246 	return htobe16((~cur_sum) & 0xFFFF);
247 }
248 
249 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
250 {
251 #if 0
252 	return in_cksum_hdr((void *)iph);
253 #else
254 	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
255 #endif
256 }
257 
258 void
259 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
260 					size_t datalen, uint16_t *check)
261 {
262 #ifdef INET
263 	uint16_t pseudolen = datalen + iph->protocol;
264 
265 	/* Compute and insert the pseudo-header cheksum. */
266 	*check = in_pseudo(iph->saddr, iph->daddr,
267 				 htobe16(pseudolen));
268 	/* Compute the checksum on TCP/UDP header + payload
269 	 * (includes the pseudo-header).
270 	 */
271 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
272 #else
273 	static int notsupported = 0;
274 	if (!notsupported) {
275 		notsupported = 1;
276 		nm_prerr("inet4 segmentation not supported");
277 	}
278 #endif
279 }
280 
281 void
282 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
283 					size_t datalen, uint16_t *check)
284 {
285 #ifdef INET6
286 	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
287 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
288 #else
289 	static int notsupported = 0;
290 	if (!notsupported) {
291 		notsupported = 1;
292 		nm_prerr("inet6 segmentation not supported");
293 	}
294 #endif
295 }
296 
297 /* on FreeBSD we send up one packet at a time */
298 void *
299 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
300 {
301 	NA(ifp)->if_input(ifp, m);
302 	return NULL;
303 }
304 
305 int
306 nm_os_mbuf_has_csum_offld(struct mbuf *m)
307 {
308 	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
309 					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
310 					 CSUM_SCTP_IPV6);
311 }
312 
313 int
314 nm_os_mbuf_has_seg_offld(struct mbuf *m)
315 {
316 	return m->m_pkthdr.csum_flags & CSUM_TSO;
317 }
318 
319 static void
320 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
321 {
322 	int stolen;
323 
324 	if (unlikely(!NM_NA_VALID(ifp))) {
325 		nm_prlim(1, "Warning: RX packet intercepted, but no"
326 				" emulated adapter");
327 		return;
328 	}
329 
330 	stolen = generic_rx_handler(ifp, m);
331 	if (!stolen) {
332 		struct netmap_generic_adapter *gna =
333 				(struct netmap_generic_adapter *)NA(ifp);
334 		gna->save_if_input(ifp, m);
335 	}
336 }
337 
338 /*
339  * Intercept the rx routine in the standard device driver.
340  * Second argument is non-zero to intercept, 0 to restore
341  */
342 int
343 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
344 {
345 	struct netmap_adapter *na = &gna->up.up;
346 	struct ifnet *ifp = na->ifp;
347 	int ret = 0;
348 
349 	nm_os_ifnet_lock();
350 	if (intercept) {
351 		if (gna->save_if_input) {
352 			nm_prerr("RX on %s already intercepted", na->name);
353 			ret = EBUSY; /* already set */
354 			goto out;
355 		}
356 		gna->save_if_input = ifp->if_input;
357 		ifp->if_input = freebsd_generic_rx_handler;
358 	} else {
359 		if (!gna->save_if_input) {
360 			nm_prerr("Failed to undo RX intercept on %s",
361 				na->name);
362 			ret = EINVAL;  /* not saved */
363 			goto out;
364 		}
365 		ifp->if_input = gna->save_if_input;
366 		gna->save_if_input = NULL;
367 	}
368 out:
369 	nm_os_ifnet_unlock();
370 
371 	return ret;
372 }
373 
374 
375 /*
376  * Intercept the packet steering routine in the tx path,
377  * so that we can decide which queue is used for an mbuf.
378  * Second argument is non-zero to intercept, 0 to restore.
379  * On freebsd we just intercept if_transmit.
380  */
381 int
382 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
383 {
384 	struct netmap_adapter *na = &gna->up.up;
385 	struct ifnet *ifp = netmap_generic_getifp(gna);
386 
387 	nm_os_ifnet_lock();
388 	if (intercept) {
389 		na->if_transmit = ifp->if_transmit;
390 		ifp->if_transmit = netmap_transmit;
391 	} else {
392 		ifp->if_transmit = na->if_transmit;
393 	}
394 	nm_os_ifnet_unlock();
395 
396 	return 0;
397 }
398 
399 
400 /*
401  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
402  * and non-zero on error (which may be packet drops or other errors).
403  * addr and len identify the netmap buffer, m is the (preallocated)
404  * mbuf to use for transmissions.
405  *
406  * We should add a reference to the mbuf so the m_freem() at the end
407  * of the transmission does not consume resources.
408  *
409  * On FreeBSD, and on multiqueue cards, we can force the queue using
410  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
411  *              i = m->m_pkthdr.flowid % adapter->num_queues;
412  *      else
413  *              i = curcpu % adapter->num_queues;
414  *
415  */
416 int
417 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
418 {
419 	int ret;
420 	u_int len = a->len;
421 	struct ifnet *ifp = a->ifp;
422 	struct mbuf *m = a->m;
423 
424 #if __FreeBSD_version < 1100000
425 	/*
426 	 * Old FreeBSD versions. The mbuf has a cluster attached,
427 	 * we need to copy from the cluster to the netmap buffer.
428 	 */
429 	if (MBUF_REFCNT(m) != 1) {
430 		nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
431 		panic("in generic_xmit_frame");
432 	}
433 	if (m->m_ext.ext_size < len) {
434 		nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len);
435 		len = m->m_ext.ext_size;
436 	}
437 	bcopy(a->addr, m->m_data, len);
438 #else  /* __FreeBSD_version >= 1100000 */
439 	/* New FreeBSD versions. Link the external storage to
440 	 * the netmap buffer, so that no copy is necessary. */
441 	m->m_ext.ext_buf = m->m_data = a->addr;
442 	m->m_ext.ext_size = len;
443 #endif /* __FreeBSD_version >= 1100000 */
444 
445 	m->m_len = m->m_pkthdr.len = len;
446 
447 	/* mbuf refcnt is not contended, no need to use atomic
448 	 * (a memory barrier is enough). */
449 	SET_MBUF_REFCNT(m, 2);
450 	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
451 	m->m_pkthdr.flowid = a->ring_nr;
452 	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
453 	ret = NA(ifp)->if_transmit(ifp, m);
454 	return ret ? -1 : 0;
455 }
456 
457 
458 #if __FreeBSD_version >= 1100005
459 struct netmap_adapter *
460 netmap_getna(if_t ifp)
461 {
462 	return (NA((struct ifnet *)ifp));
463 }
464 #endif /* __FreeBSD_version >= 1100005 */
465 
466 /*
467  * The following two functions are empty until we have a generic
468  * way to extract the info from the ifp
469  */
470 int
471 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
472 {
473 	return 0;
474 }
475 
476 
477 void
478 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
479 {
480 	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
481 
482 	*txq = num_rings;
483 	*rxq = num_rings;
484 }
485 
486 void
487 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
488 {
489 
490 	gna->rxsg = 1; /* Supported through m_copydata. */
491 	gna->txqdisc = 0; /* Not supported. */
492 }
493 
494 void
495 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
496 {
497 	mit->mit_pending = 0;
498 	mit->mit_ring_idx = idx;
499 	mit->mit_na = na;
500 }
501 
502 
503 void
504 nm_os_mitigation_start(struct nm_generic_mit *mit)
505 {
506 }
507 
508 
509 void
510 nm_os_mitigation_restart(struct nm_generic_mit *mit)
511 {
512 }
513 
514 
515 int
516 nm_os_mitigation_active(struct nm_generic_mit *mit)
517 {
518 
519 	return 0;
520 }
521 
522 
523 void
524 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
525 {
526 }
527 
528 static int
529 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
530 {
531 
532 	return EINVAL;
533 }
534 
535 static void
536 nm_vi_start(struct ifnet *ifp)
537 {
538 	panic("nm_vi_start() must not be called");
539 }
540 
541 /*
542  * Index manager of persistent virtual interfaces.
543  * It is used to decide the lowest byte of the MAC address.
544  * We use the same algorithm with management of bridge port index.
545  */
546 #define NM_VI_MAX	255
547 static struct {
548 	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
549 	uint8_t active;
550 	struct mtx lock;
551 } nm_vi_indices;
552 
553 void
554 nm_os_vi_init_index(void)
555 {
556 	int i;
557 	for (i = 0; i < NM_VI_MAX; i++)
558 		nm_vi_indices.index[i] = i;
559 	nm_vi_indices.active = 0;
560 	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
561 }
562 
563 /* return -1 if no index available */
564 static int
565 nm_vi_get_index(void)
566 {
567 	int ret;
568 
569 	mtx_lock(&nm_vi_indices.lock);
570 	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
571 		nm_vi_indices.index[nm_vi_indices.active++];
572 	mtx_unlock(&nm_vi_indices.lock);
573 	return ret;
574 }
575 
576 static void
577 nm_vi_free_index(uint8_t val)
578 {
579 	int i, lim;
580 
581 	mtx_lock(&nm_vi_indices.lock);
582 	lim = nm_vi_indices.active;
583 	for (i = 0; i < lim; i++) {
584 		if (nm_vi_indices.index[i] == val) {
585 			/* swap index[lim-1] and j */
586 			int tmp = nm_vi_indices.index[lim-1];
587 			nm_vi_indices.index[lim-1] = val;
588 			nm_vi_indices.index[i] = tmp;
589 			nm_vi_indices.active--;
590 			break;
591 		}
592 	}
593 	if (lim == nm_vi_indices.active)
594 		nm_prerr("Index %u not found", val);
595 	mtx_unlock(&nm_vi_indices.lock);
596 }
597 #undef NM_VI_MAX
598 
599 /*
600  * Implementation of a netmap-capable virtual interface that
601  * registered to the system.
602  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
603  *
604  * Note: Linux sets refcount to 0 on allocation of net_device,
605  * then increments it on registration to the system.
606  * FreeBSD sets refcount to 1 on if_alloc(), and does not
607  * increment this refcount on if_attach().
608  */
609 int
610 nm_os_vi_persist(const char *name, struct ifnet **ret)
611 {
612 	struct ifnet *ifp;
613 	u_short macaddr_hi;
614 	uint32_t macaddr_mid;
615 	u_char eaddr[6];
616 	int unit = nm_vi_get_index(); /* just to decide MAC address */
617 
618 	if (unit < 0)
619 		return EBUSY;
620 	/*
621 	 * We use the same MAC address generation method with tap
622 	 * except for the highest octet is 00:be instead of 00:bd
623 	 */
624 	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
625 	macaddr_mid = (uint32_t) ticks;
626 	bcopy(&macaddr_hi, eaddr, sizeof(short));
627 	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
628 	eaddr[5] = (uint8_t)unit;
629 
630 	ifp = if_alloc(IFT_ETHER);
631 	if (ifp == NULL) {
632 		nm_prerr("if_alloc failed");
633 		return ENOMEM;
634 	}
635 	if_initname(ifp, name, IF_DUNIT_NONE);
636 	ifp->if_mtu = 65536;
637 	ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
638 	ifp->if_init = (void *)nm_vi_dummy;
639 	ifp->if_ioctl = nm_vi_dummy;
640 	ifp->if_start = nm_vi_start;
641 	ifp->if_mtu = ETHERMTU;
642 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
643 	ifp->if_capabilities |= IFCAP_LINKSTATE;
644 	ifp->if_capenable |= IFCAP_LINKSTATE;
645 
646 	ether_ifattach(ifp, eaddr);
647 	*ret = ifp;
648 	return 0;
649 }
650 
651 /* unregister from the system and drop the final refcount */
652 void
653 nm_os_vi_detach(struct ifnet *ifp)
654 {
655 	nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
656 	ether_ifdetach(ifp);
657 	if_free(ifp);
658 }
659 
660 #ifdef WITH_EXTMEM
661 #include <vm/vm_map.h>
662 #include <vm/vm_kern.h>
663 struct nm_os_extmem {
664 	vm_object_t obj;
665 	vm_offset_t kva;
666 	vm_offset_t size;
667 	uintptr_t scan;
668 };
669 
670 void
671 nm_os_extmem_delete(struct nm_os_extmem *e)
672 {
673 	nm_prinf("freeing %zx bytes", (size_t)e->size);
674 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
675 	nm_os_free(e);
676 }
677 
678 char *
679 nm_os_extmem_nextpage(struct nm_os_extmem *e)
680 {
681 	char *rv = NULL;
682 	if (e->scan < e->kva + e->size) {
683 		rv = (char *)e->scan;
684 		e->scan += PAGE_SIZE;
685 	}
686 	return rv;
687 }
688 
689 int
690 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
691 {
692 	return (e1->obj == e2->obj);
693 }
694 
695 int
696 nm_os_extmem_nr_pages(struct nm_os_extmem *e)
697 {
698 	return e->size >> PAGE_SHIFT;
699 }
700 
701 struct nm_os_extmem *
702 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
703 {
704 	vm_map_t map;
705 	vm_map_entry_t entry;
706 	vm_object_t obj;
707 	vm_prot_t prot;
708 	vm_pindex_t index;
709 	boolean_t wired;
710 	struct nm_os_extmem *e = NULL;
711 	int rv, error = 0;
712 
713 	e = nm_os_malloc(sizeof(*e));
714 	if (e == NULL) {
715 		error = ENOMEM;
716 		goto out;
717 	}
718 
719 	map = &curthread->td_proc->p_vmspace->vm_map;
720 	rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
721 			&obj, &index, &prot, &wired);
722 	if (rv != KERN_SUCCESS) {
723 		nm_prerr("address %lx not found", p);
724 		goto out_free;
725 	}
726 	/* check that we are given the whole vm_object ? */
727 	vm_map_lookup_done(map, entry);
728 
729 	// XXX can we really use obj after releasing the map lock?
730 	e->obj = obj;
731 	vm_object_reference(obj);
732 	/* wire the memory and add the vm_object to the kernel map,
733 	 * to make sure that it is not fred even if the processes that
734 	 * are mmap()ing it all exit
735 	 */
736 	e->kva = vm_map_min(kernel_map);
737 	e->size = obj->size << PAGE_SHIFT;
738 	rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
739 			VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
740 			VM_PROT_READ | VM_PROT_WRITE, 0);
741 	if (rv != KERN_SUCCESS) {
742 		nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
743 		goto out_rel;
744 	}
745 	rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
746 			VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
747 	if (rv != KERN_SUCCESS) {
748 		nm_prerr("vm_map_wire failed");
749 		goto out_rem;
750 	}
751 
752 	e->scan = e->kva;
753 
754 	return e;
755 
756 out_rem:
757 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
758 	e->obj = NULL;
759 out_rel:
760 	vm_object_deallocate(e->obj);
761 out_free:
762 	nm_os_free(e);
763 out:
764 	if (perror)
765 		*perror = error;
766 	return NULL;
767 }
768 #endif /* WITH_EXTMEM */
769 
770 /* ================== PTNETMAP GUEST SUPPORT ==================== */
771 
772 #ifdef WITH_PTNETMAP
773 #include <sys/bus.h>
774 #include <sys/rman.h>
775 #include <machine/bus.h>        /* bus_dmamap_* */
776 #include <machine/resource.h>
777 #include <dev/pci/pcivar.h>
778 #include <dev/pci/pcireg.h>
779 /*
780  * ptnetmap memory device (memdev) for freebsd guest,
781  * ssed to expose host netmap memory to the guest through a PCI BAR.
782  */
783 
784 /*
785  * ptnetmap memdev private data structure
786  */
787 struct ptnetmap_memdev {
788 	device_t dev;
789 	struct resource *pci_io;
790 	struct resource *pci_mem;
791 	struct netmap_mem_d *nm_mem;
792 };
793 
794 static int	ptn_memdev_probe(device_t);
795 static int	ptn_memdev_attach(device_t);
796 static int	ptn_memdev_detach(device_t);
797 static int	ptn_memdev_shutdown(device_t);
798 
799 static device_method_t ptn_memdev_methods[] = {
800 	DEVMETHOD(device_probe, ptn_memdev_probe),
801 	DEVMETHOD(device_attach, ptn_memdev_attach),
802 	DEVMETHOD(device_detach, ptn_memdev_detach),
803 	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
804 	DEVMETHOD_END
805 };
806 
807 static driver_t ptn_memdev_driver = {
808 	PTNETMAP_MEMDEV_NAME,
809 	ptn_memdev_methods,
810 	sizeof(struct ptnetmap_memdev),
811 };
812 
813 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
814  * below. */
815 static devclass_t ptnetmap_devclass;
816 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
817 		      NULL, NULL, SI_ORDER_MIDDLE + 1);
818 
819 /*
820  * Map host netmap memory through PCI-BAR in the guest OS,
821  * returning physical (nm_paddr) and virtual (nm_addr) addresses
822  * of the netmap memory mapped in the guest.
823  */
824 int
825 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
826 		      void **nm_addr, uint64_t *mem_size)
827 {
828 	int rid;
829 
830 	nm_prinf("ptn_memdev_driver iomap");
831 
832 	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
833 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
834 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
835 			(*mem_size << 32);
836 
837 	/* map memory allocator */
838 	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
839 			&rid, 0, ~0, *mem_size, RF_ACTIVE);
840 	if (ptn_dev->pci_mem == NULL) {
841 		*nm_paddr = 0;
842 		*nm_addr = NULL;
843 		return ENOMEM;
844 	}
845 
846 	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
847 	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
848 
849 	nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
850 			PTNETMAP_MEM_PCI_BAR,
851 			(unsigned long)(*nm_paddr),
852 			(unsigned long)rman_get_size(ptn_dev->pci_mem),
853 			(unsigned long)*mem_size);
854 	return (0);
855 }
856 
857 uint32_t
858 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
859 {
860 	return bus_read_4(ptn_dev->pci_io, reg);
861 }
862 
863 /* Unmap host netmap memory. */
864 void
865 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
866 {
867 	nm_prinf("ptn_memdev_driver iounmap");
868 
869 	if (ptn_dev->pci_mem) {
870 		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
871 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
872 		ptn_dev->pci_mem = NULL;
873 	}
874 }
875 
876 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
877  * positive on failure */
878 static int
879 ptn_memdev_probe(device_t dev)
880 {
881 	char desc[256];
882 
883 	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
884 		return (ENXIO);
885 	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
886 		return (ENXIO);
887 
888 	snprintf(desc, sizeof(desc), "%s PCI adapter",
889 			PTNETMAP_MEMDEV_NAME);
890 	device_set_desc_copy(dev, desc);
891 
892 	return (BUS_PROBE_DEFAULT);
893 }
894 
895 /* Device initialization routine. */
896 static int
897 ptn_memdev_attach(device_t dev)
898 {
899 	struct ptnetmap_memdev *ptn_dev;
900 	int rid;
901 	uint16_t mem_id;
902 
903 	ptn_dev = device_get_softc(dev);
904 	ptn_dev->dev = dev;
905 
906 	pci_enable_busmaster(dev);
907 
908 	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
909 	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
910 						 RF_ACTIVE);
911 	if (ptn_dev->pci_io == NULL) {
912 	        device_printf(dev, "cannot map I/O space\n");
913 	        return (ENXIO);
914 	}
915 
916 	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
917 
918 	/* create guest allocator */
919 	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
920 	if (ptn_dev->nm_mem == NULL) {
921 		ptn_memdev_detach(dev);
922 	        return (ENOMEM);
923 	}
924 	netmap_mem_get(ptn_dev->nm_mem);
925 
926 	nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
927 
928 	return (0);
929 }
930 
931 /* Device removal routine. */
932 static int
933 ptn_memdev_detach(device_t dev)
934 {
935 	struct ptnetmap_memdev *ptn_dev;
936 
937 	ptn_dev = device_get_softc(dev);
938 
939 	if (ptn_dev->nm_mem) {
940 		nm_prinf("ptnetmap memdev detached, host memid %u",
941 			netmap_mem_get_id(ptn_dev->nm_mem));
942 		netmap_mem_put(ptn_dev->nm_mem);
943 		ptn_dev->nm_mem = NULL;
944 	}
945 	if (ptn_dev->pci_mem) {
946 		bus_release_resource(dev, SYS_RES_MEMORY,
947 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
948 		ptn_dev->pci_mem = NULL;
949 	}
950 	if (ptn_dev->pci_io) {
951 		bus_release_resource(dev, SYS_RES_IOPORT,
952 			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
953 		ptn_dev->pci_io = NULL;
954 	}
955 
956 	return (0);
957 }
958 
959 static int
960 ptn_memdev_shutdown(device_t dev)
961 {
962 	return bus_generic_shutdown(dev);
963 }
964 
965 #endif /* WITH_PTNETMAP */
966 
967 /*
968  * In order to track whether pages are still mapped, we hook into
969  * the standard cdev_pager and intercept the constructor and
970  * destructor.
971  */
972 
973 struct netmap_vm_handle_t {
974 	struct cdev 		*dev;
975 	struct netmap_priv_d	*priv;
976 };
977 
978 
979 static int
980 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
981 		vm_ooffset_t foff, struct ucred *cred, u_short *color)
982 {
983 	struct netmap_vm_handle_t *vmh = handle;
984 
985 	if (netmap_verbose)
986 		nm_prinf("handle %p size %jd prot %d foff %jd",
987 			handle, (intmax_t)size, prot, (intmax_t)foff);
988 	if (color)
989 		*color = 0;
990 	dev_ref(vmh->dev);
991 	return 0;
992 }
993 
994 
995 static void
996 netmap_dev_pager_dtor(void *handle)
997 {
998 	struct netmap_vm_handle_t *vmh = handle;
999 	struct cdev *dev = vmh->dev;
1000 	struct netmap_priv_d *priv = vmh->priv;
1001 
1002 	if (netmap_verbose)
1003 		nm_prinf("handle %p", handle);
1004 	netmap_dtor(priv);
1005 	free(vmh, M_DEVBUF);
1006 	dev_rel(dev);
1007 }
1008 
1009 
1010 static int
1011 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
1012 	int prot, vm_page_t *mres)
1013 {
1014 	struct netmap_vm_handle_t *vmh = object->handle;
1015 	struct netmap_priv_d *priv = vmh->priv;
1016 	struct netmap_adapter *na = priv->np_na;
1017 	vm_paddr_t paddr;
1018 	vm_page_t page;
1019 	vm_memattr_t memattr;
1020 	vm_pindex_t pidx;
1021 
1022 	nm_prdis("object %p offset %jd prot %d mres %p",
1023 			object, (intmax_t)offset, prot, mres);
1024 	memattr = object->memattr;
1025 	pidx = OFF_TO_IDX(offset);
1026 	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
1027 	if (paddr == 0)
1028 		return VM_PAGER_FAIL;
1029 
1030 	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
1031 		/*
1032 		 * If the passed in result page is a fake page, update it with
1033 		 * the new physical address.
1034 		 */
1035 		page = *mres;
1036 		vm_page_updatefake(page, paddr, memattr);
1037 	} else {
1038 		/*
1039 		 * Replace the passed in reqpage page with our own fake page and
1040 		 * free up the all of the original pages.
1041 		 */
1042 #ifndef VM_OBJECT_WUNLOCK	/* FreeBSD < 10.x */
1043 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
1044 #define VM_OBJECT_WLOCK	VM_OBJECT_LOCK
1045 #endif /* VM_OBJECT_WUNLOCK */
1046 
1047 		VM_OBJECT_WUNLOCK(object);
1048 		page = vm_page_getfake(paddr, memattr);
1049 		VM_OBJECT_WLOCK(object);
1050 		vm_page_lock(*mres);
1051 		vm_page_free(*mres);
1052 		vm_page_unlock(*mres);
1053 		*mres = page;
1054 		vm_page_insert(page, object, pidx);
1055 	}
1056 	page->valid = VM_PAGE_BITS_ALL;
1057 	return (VM_PAGER_OK);
1058 }
1059 
1060 
1061 static struct cdev_pager_ops netmap_cdev_pager_ops = {
1062 	.cdev_pg_ctor = netmap_dev_pager_ctor,
1063 	.cdev_pg_dtor = netmap_dev_pager_dtor,
1064 	.cdev_pg_fault = netmap_dev_pager_fault,
1065 };
1066 
1067 
1068 static int
1069 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1070 	vm_size_t objsize,  vm_object_t *objp, int prot)
1071 {
1072 	int error;
1073 	struct netmap_vm_handle_t *vmh;
1074 	struct netmap_priv_d *priv;
1075 	vm_object_t obj;
1076 
1077 	if (netmap_verbose)
1078 		nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1079 		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1080 
1081 	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1082 			      M_NOWAIT | M_ZERO);
1083 	if (vmh == NULL)
1084 		return ENOMEM;
1085 	vmh->dev = cdev;
1086 
1087 	NMG_LOCK();
1088 	error = devfs_get_cdevpriv((void**)&priv);
1089 	if (error)
1090 		goto err_unlock;
1091 	if (priv->np_nifp == NULL) {
1092 		error = EINVAL;
1093 		goto err_unlock;
1094 	}
1095 	vmh->priv = priv;
1096 	priv->np_refs++;
1097 	NMG_UNLOCK();
1098 
1099 	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1100 		&netmap_cdev_pager_ops, objsize, prot,
1101 		*foff, NULL);
1102 	if (obj == NULL) {
1103 		nm_prerr("cdev_pager_allocate failed");
1104 		error = EINVAL;
1105 		goto err_deref;
1106 	}
1107 
1108 	*objp = obj;
1109 	return 0;
1110 
1111 err_deref:
1112 	NMG_LOCK();
1113 	priv->np_refs--;
1114 err_unlock:
1115 	NMG_UNLOCK();
1116 // err:
1117 	free(vmh, M_DEVBUF);
1118 	return error;
1119 }
1120 
1121 /*
1122  * On FreeBSD the close routine is only called on the last close on
1123  * the device (/dev/netmap) so we cannot do anything useful.
1124  * To track close() on individual file descriptors we pass netmap_dtor() to
1125  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1126  * when the last fd pointing to the device is closed.
1127  *
1128  * Note that FreeBSD does not even munmap() on close() so we also have
1129  * to track mmap() ourselves, and postpone the call to
1130  * netmap_dtor() is called when the process has no open fds and no active
1131  * memory maps on /dev/netmap, as in linux.
1132  */
1133 static int
1134 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1135 {
1136 	if (netmap_verbose)
1137 		nm_prinf("dev %p fflag 0x%x devtype %d td %p",
1138 			dev, fflag, devtype, td);
1139 	return 0;
1140 }
1141 
1142 
1143 static int
1144 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1145 {
1146 	struct netmap_priv_d *priv;
1147 	int error;
1148 
1149 	(void)dev;
1150 	(void)oflags;
1151 	(void)devtype;
1152 	(void)td;
1153 
1154 	NMG_LOCK();
1155 	priv = netmap_priv_new();
1156 	if (priv == NULL) {
1157 		error = ENOMEM;
1158 		goto out;
1159 	}
1160 	error = devfs_set_cdevpriv(priv, netmap_dtor);
1161 	if (error) {
1162 		netmap_priv_delete(priv);
1163 	}
1164 out:
1165 	NMG_UNLOCK();
1166 	return error;
1167 }
1168 
1169 /******************** kthread wrapper ****************/
1170 #include <sys/sysproto.h>
1171 u_int
1172 nm_os_ncpus(void)
1173 {
1174 	return mp_maxid + 1;
1175 }
1176 
1177 struct nm_kctx_ctx {
1178 	/* Userspace thread (kthread creator). */
1179 	struct thread *user_td;
1180 
1181 	/* worker function and parameter */
1182 	nm_kctx_worker_fn_t worker_fn;
1183 	void *worker_private;
1184 
1185 	struct nm_kctx *nmk;
1186 
1187 	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1188 	long type;
1189 };
1190 
1191 struct nm_kctx {
1192 	struct thread *worker;
1193 	struct mtx worker_lock;
1194 	struct nm_kctx_ctx worker_ctx;
1195 	int run;			/* used to stop kthread */
1196 	int attach_user;		/* kthread attached to user_process */
1197 	int affinity;
1198 };
1199 
1200 static void
1201 nm_kctx_worker(void *data)
1202 {
1203 	struct nm_kctx *nmk = data;
1204 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1205 
1206 	if (nmk->affinity >= 0) {
1207 		thread_lock(curthread);
1208 		sched_bind(curthread, nmk->affinity);
1209 		thread_unlock(curthread);
1210 	}
1211 
1212 	while (nmk->run) {
1213 		/*
1214 		 * check if the parent process dies
1215 		 * (when kthread is attached to user process)
1216 		 */
1217 		if (ctx->user_td) {
1218 			PROC_LOCK(curproc);
1219 			thread_suspend_check(0);
1220 			PROC_UNLOCK(curproc);
1221 		} else {
1222 			kthread_suspend_check();
1223 		}
1224 
1225 		/* Continuously execute worker process. */
1226 		ctx->worker_fn(ctx->worker_private); /* worker body */
1227 	}
1228 
1229 	kthread_exit();
1230 }
1231 
1232 void
1233 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1234 {
1235 	nmk->affinity = affinity;
1236 }
1237 
1238 struct nm_kctx *
1239 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1240 {
1241 	struct nm_kctx *nmk = NULL;
1242 
1243 	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1244 	if (!nmk)
1245 		return NULL;
1246 
1247 	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1248 	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1249 	nmk->worker_ctx.worker_private = cfg->worker_private;
1250 	nmk->worker_ctx.type = cfg->type;
1251 	nmk->affinity = -1;
1252 
1253 	/* attach kthread to user process (ptnetmap) */
1254 	nmk->attach_user = cfg->attach_user;
1255 
1256 	return nmk;
1257 }
1258 
1259 int
1260 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1261 {
1262 	struct proc *p = NULL;
1263 	int error = 0;
1264 
1265 	/* Temporarily disable this function as it is currently broken
1266 	 * and causes kernel crashes. The failure can be triggered by
1267 	 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
1268 	return EOPNOTSUPP;
1269 
1270 	if (nmk->worker)
1271 		return EBUSY;
1272 
1273 	/* check if we want to attach kthread to user process */
1274 	if (nmk->attach_user) {
1275 		nmk->worker_ctx.user_td = curthread;
1276 		p = curthread->td_proc;
1277 	}
1278 
1279 	/* enable kthread main loop */
1280 	nmk->run = 1;
1281 	/* create kthread */
1282 	if((error = kthread_add(nm_kctx_worker, nmk, p,
1283 			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1284 			nmk->worker_ctx.type))) {
1285 		goto err;
1286 	}
1287 
1288 	nm_prinf("nm_kthread started td %p", nmk->worker);
1289 
1290 	return 0;
1291 err:
1292 	nm_prerr("nm_kthread start failed err %d", error);
1293 	nmk->worker = NULL;
1294 	return error;
1295 }
1296 
1297 void
1298 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1299 {
1300 	if (!nmk->worker)
1301 		return;
1302 
1303 	/* tell to kthread to exit from main loop */
1304 	nmk->run = 0;
1305 
1306 	/* wake up kthread if it sleeps */
1307 	kthread_resume(nmk->worker);
1308 
1309 	nmk->worker = NULL;
1310 }
1311 
1312 void
1313 nm_os_kctx_destroy(struct nm_kctx *nmk)
1314 {
1315 	if (!nmk)
1316 		return;
1317 
1318 	if (nmk->worker)
1319 		nm_os_kctx_worker_stop(nmk);
1320 
1321 	free(nmk, M_DEVBUF);
1322 }
1323 
1324 /******************** kqueue support ****************/
1325 
1326 /*
1327  * In addition to calling selwakeuppri(), nm_os_selwakeup() also
1328  * needs to call knote() to wake up kqueue listeners.
1329  * This operation is deferred to a taskqueue in order to avoid possible
1330  * lock order reversals; these may happen because knote() grabs a
1331  * private lock associated to the 'si' (see struct selinfo,
1332  * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
1333  * can be called while holding the lock associated to a different
1334  * 'si'.
1335  * When calling knote() we use a non-zero 'hint' argument to inform
1336  * the netmap_knrw() function that it is being called from
1337  * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
1338  * called by the kevent subsystem (i.e. kevent_scan()) we also need to
1339  * call netmap_poll().
1340  *
1341  * The netmap_kqfilter() function registers one or another f_event
1342  * depending on read or write mode. A pointer to the struct
1343  * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
1344  * be passed to netmap_poll(). We pass NULL as a third argument to
1345  * netmap_poll(), so that the latter only runs the txsync/rxsync
1346  * (if necessary), and skips the nm_os_selrecord() calls.
1347  */
1348 
1349 
1350 void
1351 nm_os_selwakeup(struct nm_selinfo *si)
1352 {
1353 	selwakeuppri(&si->si, PI_NET);
1354 	taskqueue_enqueue(si->ntfytq, &si->ntfytask);
1355 }
1356 
1357 void
1358 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1359 {
1360 	selrecord(td, &si->si);
1361 }
1362 
1363 static void
1364 netmap_knrdetach(struct knote *kn)
1365 {
1366 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1367 	struct selinfo *si = &priv->np_si[NR_RX]->si;
1368 
1369 	nm_prinf("remove selinfo %p", si);
1370 	knlist_remove(&si->si_note, kn, /*islocked=*/0);
1371 }
1372 
1373 static void
1374 netmap_knwdetach(struct knote *kn)
1375 {
1376 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1377 	struct selinfo *si = &priv->np_si[NR_TX]->si;
1378 
1379 	nm_prinf("remove selinfo %p", si);
1380 	knlist_remove(&si->si_note, kn, /*islocked=*/0);
1381 }
1382 
1383 /*
1384  * Callback triggered by netmap notifications (see netmap_notify()),
1385  * and by the application calling kevent(). In the former case we
1386  * just return 1 (events ready), since we are not able to do better.
1387  * In the latter case we use netmap_poll() to see which events are
1388  * ready.
1389  */
1390 static int
1391 netmap_knrw(struct knote *kn, long hint, int events)
1392 {
1393 	struct netmap_priv_d *priv;
1394 	int revents;
1395 
1396 	if (hint != 0) {
1397 		/* Called from netmap_notify(), typically from a
1398 		 * thread different from the one issuing kevent().
1399 		 * Assume we are ready. */
1400 		return 1;
1401 	}
1402 
1403 	/* Called from kevent(). */
1404 	priv = kn->kn_hook;
1405 	revents = netmap_poll(priv, events, /*thread=*/NULL);
1406 
1407 	return (events & revents) ? 1 : 0;
1408 }
1409 
1410 static int
1411 netmap_knread(struct knote *kn, long hint)
1412 {
1413 	return netmap_knrw(kn, hint, POLLIN);
1414 }
1415 
1416 static int
1417 netmap_knwrite(struct knote *kn, long hint)
1418 {
1419 	return netmap_knrw(kn, hint, POLLOUT);
1420 }
1421 
1422 static struct filterops netmap_rfiltops = {
1423 	.f_isfd = 1,
1424 	.f_detach = netmap_knrdetach,
1425 	.f_event = netmap_knread,
1426 };
1427 
1428 static struct filterops netmap_wfiltops = {
1429 	.f_isfd = 1,
1430 	.f_detach = netmap_knwdetach,
1431 	.f_event = netmap_knwrite,
1432 };
1433 
1434 
1435 /*
1436  * This is called when a thread invokes kevent() to record
1437  * a change in the configuration of the kqueue().
1438  * The 'priv' is the one associated to the open netmap device.
1439  */
1440 static int
1441 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1442 {
1443 	struct netmap_priv_d *priv;
1444 	int error;
1445 	struct netmap_adapter *na;
1446 	struct nm_selinfo *si;
1447 	int ev = kn->kn_filter;
1448 
1449 	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1450 		nm_prerr("bad filter request %d", ev);
1451 		return 1;
1452 	}
1453 	error = devfs_get_cdevpriv((void**)&priv);
1454 	if (error) {
1455 		nm_prerr("device not yet setup");
1456 		return 1;
1457 	}
1458 	na = priv->np_na;
1459 	if (na == NULL) {
1460 		nm_prerr("no netmap adapter for this file descriptor");
1461 		return 1;
1462 	}
1463 	/* the si is indicated in the priv */
1464 	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1465 	kn->kn_fop = (ev == EVFILT_WRITE) ?
1466 		&netmap_wfiltops : &netmap_rfiltops;
1467 	kn->kn_hook = priv;
1468 	knlist_add(&si->si.si_note, kn, /*islocked=*/0);
1469 
1470 	return 0;
1471 }
1472 
1473 static int
1474 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1475 {
1476 	struct netmap_priv_d *priv;
1477 	if (devfs_get_cdevpriv((void **)&priv)) {
1478 		return POLLERR;
1479 	}
1480 	return netmap_poll(priv, events, td);
1481 }
1482 
1483 static int
1484 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1485 		int ffla __unused, struct thread *td)
1486 {
1487 	int error;
1488 	struct netmap_priv_d *priv;
1489 
1490 	CURVNET_SET(TD_TO_VNET(td));
1491 	error = devfs_get_cdevpriv((void **)&priv);
1492 	if (error) {
1493 		/* XXX ENOENT should be impossible, since the priv
1494 		 * is now created in the open */
1495 		if (error == ENOENT)
1496 			error = ENXIO;
1497 		goto out;
1498 	}
1499 	error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1500 out:
1501 	CURVNET_RESTORE();
1502 
1503 	return error;
1504 }
1505 
1506 void
1507 nm_os_onattach(struct ifnet *ifp)
1508 {
1509 	ifp->if_capabilities |= IFCAP_NETMAP;
1510 }
1511 
1512 void
1513 nm_os_onenter(struct ifnet *ifp)
1514 {
1515 	struct netmap_adapter *na = NA(ifp);
1516 
1517 	na->if_transmit = ifp->if_transmit;
1518 	ifp->if_transmit = netmap_transmit;
1519 	ifp->if_capenable |= IFCAP_NETMAP;
1520 }
1521 
1522 void
1523 nm_os_onexit(struct ifnet *ifp)
1524 {
1525 	struct netmap_adapter *na = NA(ifp);
1526 
1527 	ifp->if_transmit = na->if_transmit;
1528 	ifp->if_capenable &= ~IFCAP_NETMAP;
1529 }
1530 
1531 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1532 struct cdevsw netmap_cdevsw = {
1533 	.d_version = D_VERSION,
1534 	.d_name = "netmap",
1535 	.d_open = netmap_open,
1536 	.d_mmap_single = netmap_mmap_single,
1537 	.d_ioctl = freebsd_netmap_ioctl,
1538 	.d_poll = freebsd_netmap_poll,
1539 	.d_kqfilter = netmap_kqfilter,
1540 	.d_close = netmap_close,
1541 };
1542 /*--- end of kqueue support ----*/
1543 
1544 /*
1545  * Kernel entry point.
1546  *
1547  * Initialize/finalize the module and return.
1548  *
1549  * Return 0 on success, errno on failure.
1550  */
1551 static int
1552 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1553 {
1554 	int error = 0;
1555 
1556 	switch (event) {
1557 	case MOD_LOAD:
1558 		error = netmap_init();
1559 		break;
1560 
1561 	case MOD_UNLOAD:
1562 		/*
1563 		 * if some one is still using netmap,
1564 		 * then the module can not be unloaded.
1565 		 */
1566 		if (netmap_use_count) {
1567 			nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
1568 					netmap_use_count);
1569 			error = EBUSY;
1570 			break;
1571 		}
1572 		netmap_fini();
1573 		break;
1574 
1575 	default:
1576 		error = EOPNOTSUPP;
1577 		break;
1578 	}
1579 
1580 	return (error);
1581 }
1582 
1583 #ifdef DEV_MODULE_ORDERED
1584 /*
1585  * The netmap module contains three drivers: (i) the netmap character device
1586  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1587  * device driver. The attach() routines of both (ii) and (iii) need the
1588  * lock of the global allocator, and such lock is initialized in netmap_init(),
1589  * which is part of (i).
1590  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1591  * the 'order' parameter of driver declaration macros. For (i), we specify
1592  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1593  * macros for (ii) and (iii).
1594  */
1595 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1596 #else /* !DEV_MODULE_ORDERED */
1597 DEV_MODULE(netmap, netmap_loader, NULL);
1598 #endif /* DEV_MODULE_ORDERED  */
1599 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1600 MODULE_VERSION(netmap, 1);
1601 /* reduce conditional code */
1602 // linux API, use for the knlist in FreeBSD
1603 /* use a private mutex for the knlist */
1604