1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/eventhandler.h> 36 #include <sys/jail.h> 37 #include <sys/poll.h> /* POLLIN, POLLOUT */ 38 #include <sys/kernel.h> /* types used in module initialization */ 39 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 40 #include <sys/endian.h> 41 #include <sys/syscallsubr.h> /* kern_ioctl() */ 42 43 #include <sys/rwlock.h> 44 45 #include <vm/vm.h> /* vtophys */ 46 #include <vm/pmap.h> /* vtophys */ 47 #include <vm/vm_param.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_pager.h> 51 #include <vm/uma.h> 52 53 54 #include <sys/malloc.h> 55 #include <sys/socket.h> /* sockaddrs */ 56 #include <sys/selinfo.h> 57 #include <sys/kthread.h> /* kthread_add() */ 58 #include <sys/proc.h> /* PROC_LOCK() */ 59 #include <sys/unistd.h> /* RFNOWAIT */ 60 #include <sys/sched.h> /* sched_bind() */ 61 #include <sys/smp.h> /* mp_maxid */ 62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> /* IFT_ETHER */ 66 #include <net/ethernet.h> /* ether_ifdetach */ 67 #include <net/if_dl.h> /* LLADDR */ 68 #include <machine/bus.h> /* bus_dmamap_* */ 69 #include <netinet/in.h> /* in6_cksum_pseudo() */ 70 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 71 72 #include <net/netmap.h> 73 #include <dev/netmap/netmap_kern.h> 74 #include <net/netmap_virt.h> 75 #include <dev/netmap/netmap_mem2.h> 76 77 78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 79 80 static void 81 nm_kqueue_notify(void *opaque, int pending) 82 { 83 struct nm_selinfo *si = opaque; 84 85 /* We use a non-zero hint to distinguish this notification call 86 * from the call done in kqueue_scan(), which uses hint=0. 87 */ 88 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 89 } 90 91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 92 int err; 93 94 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 95 si->ntfytq = taskqueue_create(name, M_NOWAIT, 96 taskqueue_thread_enqueue, &si->ntfytq); 97 if (si->ntfytq == NULL) 98 return -ENOMEM; 99 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 100 if (err) { 101 taskqueue_free(si->ntfytq); 102 si->ntfytq = NULL; 103 return err; 104 } 105 106 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 107 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 108 knlist_init_mtx(&si->si.si_note, &si->m); 109 si->kqueue_users = 0; 110 111 return (0); 112 } 113 114 void 115 nm_os_selinfo_uninit(NM_SELINFO_T *si) 116 { 117 if (si->ntfytq == NULL) { 118 return; /* si was not initialized */ 119 } 120 taskqueue_drain(si->ntfytq, &si->ntfytask); 121 taskqueue_free(si->ntfytq); 122 si->ntfytq = NULL; 123 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 124 knlist_destroy(&si->si.si_note); 125 /* now we don't need the mutex anymore */ 126 mtx_destroy(&si->m); 127 } 128 129 void * 130 nm_os_malloc(size_t size) 131 { 132 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 133 } 134 135 void * 136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 137 { 138 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 139 } 140 141 void 142 nm_os_free(void *addr) 143 { 144 free(addr, M_DEVBUF); 145 } 146 147 void 148 nm_os_ifnet_lock(void) 149 { 150 IFNET_RLOCK(); 151 } 152 153 void 154 nm_os_ifnet_unlock(void) 155 { 156 IFNET_RUNLOCK(); 157 } 158 159 static int netmap_use_count = 0; 160 161 void 162 nm_os_get_module(void) 163 { 164 netmap_use_count++; 165 } 166 167 void 168 nm_os_put_module(void) 169 { 170 netmap_use_count--; 171 } 172 173 static void 174 netmap_ifnet_arrival_handler(void *arg __unused, if_t ifp) 175 { 176 netmap_undo_zombie(ifp); 177 } 178 179 static void 180 netmap_ifnet_departure_handler(void *arg __unused, if_t ifp) 181 { 182 netmap_make_zombie(ifp); 183 } 184 185 static eventhandler_tag nm_ifnet_ah_tag; 186 static eventhandler_tag nm_ifnet_dh_tag; 187 188 int 189 nm_os_ifnet_init(void) 190 { 191 nm_ifnet_ah_tag = 192 EVENTHANDLER_REGISTER(ifnet_arrival_event, 193 netmap_ifnet_arrival_handler, 194 NULL, EVENTHANDLER_PRI_ANY); 195 nm_ifnet_dh_tag = 196 EVENTHANDLER_REGISTER(ifnet_departure_event, 197 netmap_ifnet_departure_handler, 198 NULL, EVENTHANDLER_PRI_ANY); 199 return 0; 200 } 201 202 void 203 nm_os_ifnet_fini(void) 204 { 205 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 206 nm_ifnet_ah_tag); 207 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 208 nm_ifnet_dh_tag); 209 } 210 211 unsigned 212 nm_os_ifnet_mtu(if_t ifp) 213 { 214 return if_getmtu(ifp); 215 } 216 217 rawsum_t 218 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 219 { 220 /* TODO XXX please use the FreeBSD implementation for this. */ 221 uint16_t *words = (uint16_t *)data; 222 int nw = len / 2; 223 int i; 224 225 for (i = 0; i < nw; i++) 226 cur_sum += be16toh(words[i]); 227 228 if (len & 1) 229 cur_sum += (data[len-1] << 8); 230 231 return cur_sum; 232 } 233 234 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 235 * return value is in network byte order. 236 */ 237 uint16_t 238 nm_os_csum_fold(rawsum_t cur_sum) 239 { 240 /* TODO XXX please use the FreeBSD implementation for this. */ 241 while (cur_sum >> 16) 242 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 243 244 return htobe16((~cur_sum) & 0xFFFF); 245 } 246 247 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 248 { 249 #if 0 250 return in_cksum_hdr((void *)iph); 251 #else 252 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 253 #endif 254 } 255 256 void 257 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 258 size_t datalen, uint16_t *check) 259 { 260 #ifdef INET 261 uint16_t pseudolen = datalen + iph->protocol; 262 263 /* Compute and insert the pseudo-header checksum. */ 264 *check = in_pseudo(iph->saddr, iph->daddr, 265 htobe16(pseudolen)); 266 /* Compute the checksum on TCP/UDP header + payload 267 * (includes the pseudo-header). 268 */ 269 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 270 #else 271 static int notsupported = 0; 272 if (!notsupported) { 273 notsupported = 1; 274 nm_prerr("inet4 segmentation not supported"); 275 } 276 #endif 277 } 278 279 void 280 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 281 size_t datalen, uint16_t *check) 282 { 283 #ifdef INET6 284 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 285 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 286 #else 287 static int notsupported = 0; 288 if (!notsupported) { 289 notsupported = 1; 290 nm_prerr("inet6 segmentation not supported"); 291 } 292 #endif 293 } 294 295 /* on FreeBSD we send up one packet at a time */ 296 void * 297 nm_os_send_up(if_t ifp, struct mbuf *m, struct mbuf *prev) 298 { 299 NA(ifp)->if_input(ifp, m); 300 return NULL; 301 } 302 303 int 304 nm_os_mbuf_has_csum_offld(struct mbuf *m) 305 { 306 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 307 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 308 CSUM_SCTP_IPV6); 309 } 310 311 int 312 nm_os_mbuf_has_seg_offld(struct mbuf *m) 313 { 314 return m->m_pkthdr.csum_flags & CSUM_TSO; 315 } 316 317 static void 318 freebsd_generic_rx_handler(if_t ifp, struct mbuf *m) 319 { 320 int stolen; 321 322 if (unlikely(!NM_NA_VALID(ifp))) { 323 nm_prlim(1, "Warning: RX packet intercepted, but no" 324 " emulated adapter"); 325 return; 326 } 327 328 do { 329 struct mbuf *n; 330 331 n = m->m_nextpkt; 332 m->m_nextpkt = NULL; 333 stolen = generic_rx_handler(ifp, m); 334 if (!stolen) { 335 NA(ifp)->if_input(ifp, m); 336 } 337 m = n; 338 } while (m != NULL); 339 } 340 341 /* 342 * Intercept the rx routine in the standard device driver. 343 * Second argument is non-zero to intercept, 0 to restore 344 */ 345 int 346 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 347 { 348 struct netmap_adapter *na = &gna->up.up; 349 if_t ifp = na->ifp; 350 int ret = 0; 351 352 nm_os_ifnet_lock(); 353 if (intercept) { 354 if_setcapenablebit(ifp, IFCAP_NETMAP, 0); 355 if_setinputfn(ifp, freebsd_generic_rx_handler); 356 } else { 357 if_setcapenablebit(ifp, 0, IFCAP_NETMAP); 358 if_setinputfn(ifp, na->if_input); 359 } 360 nm_os_ifnet_unlock(); 361 362 return ret; 363 } 364 365 366 /* 367 * Intercept the packet steering routine in the tx path, 368 * so that we can decide which queue is used for an mbuf. 369 * Second argument is non-zero to intercept, 0 to restore. 370 * On freebsd we just intercept if_transmit. 371 */ 372 int 373 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 374 { 375 struct netmap_adapter *na = &gna->up.up; 376 if_t ifp = netmap_generic_getifp(gna); 377 378 nm_os_ifnet_lock(); 379 if (intercept) { 380 na->if_transmit = if_gettransmitfn(ifp); 381 if_settransmitfn(ifp, netmap_transmit); 382 } else { 383 if_settransmitfn(ifp, na->if_transmit); 384 } 385 nm_os_ifnet_unlock(); 386 387 return 0; 388 } 389 390 391 /* 392 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 393 * and non-zero on error (which may be packet drops or other errors). 394 * addr and len identify the netmap buffer, m is the (preallocated) 395 * mbuf to use for transmissions. 396 * 397 * Zero-copy transmission is possible if netmap is attached directly to a 398 * hardware interface: when cleaning we simply wait for the mbuf cluster 399 * refcount to decrement to 1, indicating that the driver has completed 400 * transmission and is done with the buffer. However, this approach can 401 * lead to queue deadlocks when attaching to software interfaces (e.g., 402 * if_bridge) since we cannot rely on member ports to promptly reclaim 403 * transmitted mbufs. Since there is no easy way to distinguish these 404 * cases, we currently always copy the buffer. 405 * 406 * On multiqueue cards, we can force the queue using 407 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 408 * i = m->m_pkthdr.flowid % adapter->num_queues; 409 * else 410 * i = curcpu % adapter->num_queues; 411 */ 412 int 413 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 414 { 415 int ret; 416 u_int len = a->len; 417 if_t ifp = a->ifp; 418 struct mbuf *m = a->m; 419 420 M_ASSERTPKTHDR(m); 421 KASSERT((m->m_flags & M_EXT) != 0, 422 ("%s: mbuf %p has no cluster", __func__, m)); 423 424 if (MBUF_REFCNT(m) != 1) { 425 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 426 panic("in generic_xmit_frame"); 427 } 428 if (unlikely(m->m_ext.ext_size < len)) { 429 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len); 430 len = m->m_ext.ext_size; 431 } 432 433 m_copyback(m, 0, len, a->addr); 434 m->m_len = m->m_pkthdr.len = len; 435 SET_MBUF_REFCNT(m, 2); 436 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 437 m->m_pkthdr.flowid = a->ring_nr; 438 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 439 CURVNET_SET(if_getvnet(ifp)); 440 ret = NA(ifp)->if_transmit(ifp, m); 441 CURVNET_RESTORE(); 442 return ret ? -1 : 0; 443 } 444 445 struct netmap_adapter * 446 netmap_getna(if_t ifp) 447 { 448 return (NA(ifp)); 449 } 450 451 /* 452 * The following two functions are empty until we have a generic 453 * way to extract the info from the ifp 454 */ 455 int 456 nm_os_generic_find_num_desc(if_t ifp, unsigned int *tx, unsigned int *rx) 457 { 458 return 0; 459 } 460 461 462 void 463 nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq) 464 { 465 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 466 467 *txq = num_rings; 468 *rxq = num_rings; 469 } 470 471 void 472 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 473 { 474 475 gna->rxsg = 1; /* Supported through m_copydata. */ 476 gna->txqdisc = 0; /* Not supported. */ 477 } 478 479 void 480 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 481 { 482 mit->mit_pending = 0; 483 mit->mit_ring_idx = idx; 484 mit->mit_na = na; 485 } 486 487 488 void 489 nm_os_mitigation_start(struct nm_generic_mit *mit) 490 { 491 } 492 493 494 void 495 nm_os_mitigation_restart(struct nm_generic_mit *mit) 496 { 497 } 498 499 500 int 501 nm_os_mitigation_active(struct nm_generic_mit *mit) 502 { 503 504 return 0; 505 } 506 507 508 void 509 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 510 { 511 } 512 513 static int 514 nm_vi_dummy(if_t ifp, u_long cmd, caddr_t addr) 515 { 516 517 return EINVAL; 518 } 519 520 static void 521 nm_vi_start(if_t ifp) 522 { 523 panic("nm_vi_start() must not be called"); 524 } 525 526 /* 527 * Index manager of persistent virtual interfaces. 528 * It is used to decide the lowest byte of the MAC address. 529 * We use the same algorithm with management of bridge port index. 530 */ 531 #define NM_VI_MAX 255 532 static struct { 533 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 534 uint8_t active; 535 struct mtx lock; 536 } nm_vi_indices; 537 538 void 539 nm_os_vi_init_index(void) 540 { 541 int i; 542 for (i = 0; i < NM_VI_MAX; i++) 543 nm_vi_indices.index[i] = i; 544 nm_vi_indices.active = 0; 545 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 546 } 547 548 /* return -1 if no index available */ 549 static int 550 nm_vi_get_index(void) 551 { 552 int ret; 553 554 mtx_lock(&nm_vi_indices.lock); 555 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 556 nm_vi_indices.index[nm_vi_indices.active++]; 557 mtx_unlock(&nm_vi_indices.lock); 558 return ret; 559 } 560 561 static void 562 nm_vi_free_index(uint8_t val) 563 { 564 int i, lim; 565 566 mtx_lock(&nm_vi_indices.lock); 567 lim = nm_vi_indices.active; 568 for (i = 0; i < lim; i++) { 569 if (nm_vi_indices.index[i] == val) { 570 /* swap index[lim-1] and j */ 571 int tmp = nm_vi_indices.index[lim-1]; 572 nm_vi_indices.index[lim-1] = val; 573 nm_vi_indices.index[i] = tmp; 574 nm_vi_indices.active--; 575 break; 576 } 577 } 578 if (lim == nm_vi_indices.active) 579 nm_prerr("Index %u not found", val); 580 mtx_unlock(&nm_vi_indices.lock); 581 } 582 #undef NM_VI_MAX 583 584 /* 585 * Implementation of a netmap-capable virtual interface that 586 * registered to the system. 587 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 588 * 589 * Note: Linux sets refcount to 0 on allocation of net_device, 590 * then increments it on registration to the system. 591 * FreeBSD sets refcount to 1 on if_alloc(), and does not 592 * increment this refcount on if_attach(). 593 */ 594 int 595 nm_os_vi_persist(const char *name, if_t *ret) 596 { 597 if_t ifp; 598 u_short macaddr_hi; 599 uint32_t macaddr_mid; 600 u_char eaddr[6]; 601 int unit = nm_vi_get_index(); /* just to decide MAC address */ 602 603 if (unit < 0) 604 return EBUSY; 605 /* 606 * We use the same MAC address generation method with tap 607 * except for the highest octet is 00:be instead of 00:bd 608 */ 609 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 610 macaddr_mid = (uint32_t) ticks; 611 bcopy(&macaddr_hi, eaddr, sizeof(short)); 612 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 613 eaddr[5] = (uint8_t)unit; 614 615 ifp = if_alloc(IFT_ETHER); 616 if (ifp == NULL) { 617 nm_prerr("if_alloc failed"); 618 return ENOMEM; 619 } 620 if_initname(ifp, name, IF_DUNIT_NONE); 621 if_setflags(ifp, IFF_UP | IFF_SIMPLEX | IFF_MULTICAST); 622 if_setinitfn(ifp, (void *)nm_vi_dummy); 623 if_setioctlfn(ifp, nm_vi_dummy); 624 if_setstartfn(ifp, nm_vi_start); 625 if_setmtu(ifp, ETHERMTU); 626 if_setsendqlen(ifp, ifqmaxlen); 627 if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0); 628 if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0); 629 630 ether_ifattach(ifp, eaddr); 631 *ret = ifp; 632 return 0; 633 } 634 635 /* unregister from the system and drop the final refcount */ 636 void 637 nm_os_vi_detach(if_t ifp) 638 { 639 nm_vi_free_index(((char *)if_getlladdr(ifp))[5]); 640 ether_ifdetach(ifp); 641 if_free(ifp); 642 } 643 644 #ifdef WITH_EXTMEM 645 #include <vm/vm_map.h> 646 #include <vm/vm_extern.h> 647 #include <vm/vm_kern.h> 648 struct nm_os_extmem { 649 vm_object_t obj; 650 vm_offset_t kva; 651 vm_offset_t size; 652 uintptr_t scan; 653 }; 654 655 void 656 nm_os_extmem_delete(struct nm_os_extmem *e) 657 { 658 nm_prinf("freeing %zx bytes", (size_t)e->size); 659 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 660 nm_os_free(e); 661 } 662 663 char * 664 nm_os_extmem_nextpage(struct nm_os_extmem *e) 665 { 666 char *rv = NULL; 667 if (e->scan < e->kva + e->size) { 668 rv = (char *)e->scan; 669 e->scan += PAGE_SIZE; 670 } 671 return rv; 672 } 673 674 int 675 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 676 { 677 return (e1->obj == e2->obj); 678 } 679 680 int 681 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 682 { 683 return e->size >> PAGE_SHIFT; 684 } 685 686 struct nm_os_extmem * 687 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 688 { 689 vm_map_t map; 690 vm_map_entry_t entry; 691 vm_object_t obj; 692 vm_prot_t prot; 693 vm_pindex_t index; 694 boolean_t wired; 695 struct nm_os_extmem *e = NULL; 696 int rv, error = 0; 697 698 e = nm_os_malloc(sizeof(*e)); 699 if (e == NULL) { 700 error = ENOMEM; 701 goto out; 702 } 703 704 map = &curthread->td_proc->p_vmspace->vm_map; 705 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 706 &obj, &index, &prot, &wired); 707 if (rv != KERN_SUCCESS) { 708 nm_prerr("address %lx not found", p); 709 error = vm_mmap_to_errno(rv); 710 goto out_free; 711 } 712 vm_object_reference(obj); 713 714 /* check that we are given the whole vm_object ? */ 715 vm_map_lookup_done(map, entry); 716 717 e->obj = obj; 718 /* Wire the memory and add the vm_object to the kernel map, 719 * to make sure that it is not freed even if all the processes 720 * that are mmap()ing should munmap() it. 721 */ 722 e->kva = vm_map_min(kernel_map); 723 e->size = obj->size << PAGE_SHIFT; 724 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 725 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 726 VM_PROT_READ | VM_PROT_WRITE, 0); 727 if (rv != KERN_SUCCESS) { 728 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 729 error = vm_mmap_to_errno(rv); 730 goto out_rel; 731 } 732 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 733 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 734 if (rv != KERN_SUCCESS) { 735 nm_prerr("vm_map_wire failed"); 736 error = vm_mmap_to_errno(rv); 737 goto out_rem; 738 } 739 740 e->scan = e->kva; 741 742 return e; 743 744 out_rem: 745 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 746 out_rel: 747 vm_object_deallocate(e->obj); 748 e->obj = NULL; 749 out_free: 750 nm_os_free(e); 751 out: 752 if (perror) 753 *perror = error; 754 return NULL; 755 } 756 #endif /* WITH_EXTMEM */ 757 758 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 759 760 #ifdef WITH_PTNETMAP 761 #include <sys/bus.h> 762 #include <sys/rman.h> 763 #include <machine/bus.h> /* bus_dmamap_* */ 764 #include <machine/resource.h> 765 #include <dev/pci/pcivar.h> 766 #include <dev/pci/pcireg.h> 767 /* 768 * ptnetmap memory device (memdev) for freebsd guest, 769 * ssed to expose host netmap memory to the guest through a PCI BAR. 770 */ 771 772 /* 773 * ptnetmap memdev private data structure 774 */ 775 struct ptnetmap_memdev { 776 device_t dev; 777 struct resource *pci_io; 778 struct resource *pci_mem; 779 struct netmap_mem_d *nm_mem; 780 }; 781 782 static int ptn_memdev_probe(device_t); 783 static int ptn_memdev_attach(device_t); 784 static int ptn_memdev_detach(device_t); 785 static int ptn_memdev_shutdown(device_t); 786 787 static device_method_t ptn_memdev_methods[] = { 788 DEVMETHOD(device_probe, ptn_memdev_probe), 789 DEVMETHOD(device_attach, ptn_memdev_attach), 790 DEVMETHOD(device_detach, ptn_memdev_detach), 791 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 792 DEVMETHOD_END 793 }; 794 795 static driver_t ptn_memdev_driver = { 796 PTNETMAP_MEMDEV_NAME, 797 ptn_memdev_methods, 798 sizeof(struct ptnetmap_memdev), 799 }; 800 801 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 802 * below. */ 803 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL, 804 SI_ORDER_MIDDLE + 1); 805 806 /* 807 * Map host netmap memory through PCI-BAR in the guest OS, 808 * returning physical (nm_paddr) and virtual (nm_addr) addresses 809 * of the netmap memory mapped in the guest. 810 */ 811 int 812 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 813 void **nm_addr, uint64_t *mem_size) 814 { 815 int rid; 816 817 nm_prinf("ptn_memdev_driver iomap"); 818 819 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 820 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 821 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 822 (*mem_size << 32); 823 824 /* map memory allocator */ 825 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 826 &rid, 0, ~0, *mem_size, RF_ACTIVE); 827 if (ptn_dev->pci_mem == NULL) { 828 *nm_paddr = 0; 829 *nm_addr = NULL; 830 return ENOMEM; 831 } 832 833 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 834 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 835 836 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 837 PTNETMAP_MEM_PCI_BAR, 838 (unsigned long)(*nm_paddr), 839 (unsigned long)rman_get_size(ptn_dev->pci_mem), 840 (unsigned long)*mem_size); 841 return (0); 842 } 843 844 uint32_t 845 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 846 { 847 return bus_read_4(ptn_dev->pci_io, reg); 848 } 849 850 /* Unmap host netmap memory. */ 851 void 852 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 853 { 854 nm_prinf("ptn_memdev_driver iounmap"); 855 856 if (ptn_dev->pci_mem) { 857 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 858 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 859 ptn_dev->pci_mem = NULL; 860 } 861 } 862 863 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 864 * positive on failure */ 865 static int 866 ptn_memdev_probe(device_t dev) 867 { 868 char desc[256]; 869 870 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 871 return (ENXIO); 872 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 873 return (ENXIO); 874 875 snprintf(desc, sizeof(desc), "%s PCI adapter", 876 PTNETMAP_MEMDEV_NAME); 877 device_set_desc_copy(dev, desc); 878 879 return (BUS_PROBE_DEFAULT); 880 } 881 882 /* Device initialization routine. */ 883 static int 884 ptn_memdev_attach(device_t dev) 885 { 886 struct ptnetmap_memdev *ptn_dev; 887 int rid; 888 uint16_t mem_id; 889 890 ptn_dev = device_get_softc(dev); 891 ptn_dev->dev = dev; 892 893 pci_enable_busmaster(dev); 894 895 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 896 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 897 RF_ACTIVE); 898 if (ptn_dev->pci_io == NULL) { 899 device_printf(dev, "cannot map I/O space\n"); 900 return (ENXIO); 901 } 902 903 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 904 905 /* create guest allocator */ 906 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 907 if (ptn_dev->nm_mem == NULL) { 908 ptn_memdev_detach(dev); 909 return (ENOMEM); 910 } 911 netmap_mem_get(ptn_dev->nm_mem); 912 913 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 914 915 return (0); 916 } 917 918 /* Device removal routine. */ 919 static int 920 ptn_memdev_detach(device_t dev) 921 { 922 struct ptnetmap_memdev *ptn_dev; 923 924 ptn_dev = device_get_softc(dev); 925 926 if (ptn_dev->nm_mem) { 927 nm_prinf("ptnetmap memdev detached, host memid %u", 928 netmap_mem_get_id(ptn_dev->nm_mem)); 929 netmap_mem_put(ptn_dev->nm_mem); 930 ptn_dev->nm_mem = NULL; 931 } 932 if (ptn_dev->pci_mem) { 933 bus_release_resource(dev, SYS_RES_MEMORY, 934 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 935 ptn_dev->pci_mem = NULL; 936 } 937 if (ptn_dev->pci_io) { 938 bus_release_resource(dev, SYS_RES_IOPORT, 939 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 940 ptn_dev->pci_io = NULL; 941 } 942 943 return (0); 944 } 945 946 static int 947 ptn_memdev_shutdown(device_t dev) 948 { 949 return bus_generic_shutdown(dev); 950 } 951 952 #endif /* WITH_PTNETMAP */ 953 954 /* 955 * In order to track whether pages are still mapped, we hook into 956 * the standard cdev_pager and intercept the constructor and 957 * destructor. 958 */ 959 960 struct netmap_vm_handle_t { 961 struct cdev *dev; 962 struct netmap_priv_d *priv; 963 }; 964 965 966 static int 967 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 968 vm_ooffset_t foff, struct ucred *cred, u_short *color) 969 { 970 struct netmap_vm_handle_t *vmh = handle; 971 972 if (netmap_verbose) 973 nm_prinf("handle %p size %jd prot %d foff %jd", 974 handle, (intmax_t)size, prot, (intmax_t)foff); 975 if (color) 976 *color = 0; 977 dev_ref(vmh->dev); 978 return 0; 979 } 980 981 982 static void 983 netmap_dev_pager_dtor(void *handle) 984 { 985 struct netmap_vm_handle_t *vmh = handle; 986 struct cdev *dev = vmh->dev; 987 struct netmap_priv_d *priv = vmh->priv; 988 989 if (netmap_verbose) 990 nm_prinf("handle %p", handle); 991 netmap_dtor(priv); 992 free(vmh, M_DEVBUF); 993 dev_rel(dev); 994 } 995 996 997 static int 998 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 999 int prot, vm_page_t *mres) 1000 { 1001 struct netmap_vm_handle_t *vmh = object->handle; 1002 struct netmap_priv_d *priv = vmh->priv; 1003 struct netmap_adapter *na = priv->np_na; 1004 vm_paddr_t paddr; 1005 vm_page_t page; 1006 vm_memattr_t memattr; 1007 1008 nm_prdis("object %p offset %jd prot %d mres %p", 1009 object, (intmax_t)offset, prot, mres); 1010 memattr = object->memattr; 1011 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1012 if (paddr == 0) 1013 return VM_PAGER_FAIL; 1014 1015 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1016 /* 1017 * If the passed in result page is a fake page, update it with 1018 * the new physical address. 1019 */ 1020 page = *mres; 1021 vm_page_updatefake(page, paddr, memattr); 1022 } else { 1023 /* 1024 * Replace the passed in reqpage page with our own fake page and 1025 * free up the all of the original pages. 1026 */ 1027 VM_OBJECT_WUNLOCK(object); 1028 page = vm_page_getfake(paddr, memattr); 1029 VM_OBJECT_WLOCK(object); 1030 vm_page_replace(page, object, (*mres)->pindex, *mres); 1031 *mres = page; 1032 } 1033 page->valid = VM_PAGE_BITS_ALL; 1034 return (VM_PAGER_OK); 1035 } 1036 1037 1038 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1039 .cdev_pg_ctor = netmap_dev_pager_ctor, 1040 .cdev_pg_dtor = netmap_dev_pager_dtor, 1041 .cdev_pg_fault = netmap_dev_pager_fault, 1042 }; 1043 1044 1045 static int 1046 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1047 vm_size_t objsize, vm_object_t *objp, int prot) 1048 { 1049 int error; 1050 struct netmap_vm_handle_t *vmh; 1051 struct netmap_priv_d *priv; 1052 vm_object_t obj; 1053 1054 if (netmap_verbose) 1055 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1056 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1057 1058 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1059 M_NOWAIT | M_ZERO); 1060 if (vmh == NULL) 1061 return ENOMEM; 1062 vmh->dev = cdev; 1063 1064 NMG_LOCK(); 1065 error = devfs_get_cdevpriv((void**)&priv); 1066 if (error) 1067 goto err_unlock; 1068 if (priv->np_nifp == NULL) { 1069 error = EINVAL; 1070 goto err_unlock; 1071 } 1072 vmh->priv = priv; 1073 priv->np_refs++; 1074 NMG_UNLOCK(); 1075 1076 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1077 &netmap_cdev_pager_ops, objsize, prot, 1078 *foff, NULL); 1079 if (obj == NULL) { 1080 nm_prerr("cdev_pager_allocate failed"); 1081 error = EINVAL; 1082 goto err_deref; 1083 } 1084 1085 *objp = obj; 1086 return 0; 1087 1088 err_deref: 1089 NMG_LOCK(); 1090 priv->np_refs--; 1091 err_unlock: 1092 NMG_UNLOCK(); 1093 // err: 1094 free(vmh, M_DEVBUF); 1095 return error; 1096 } 1097 1098 /* 1099 * On FreeBSD the close routine is only called on the last close on 1100 * the device (/dev/netmap) so we cannot do anything useful. 1101 * To track close() on individual file descriptors we pass netmap_dtor() to 1102 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1103 * when the last fd pointing to the device is closed. 1104 * 1105 * Note that FreeBSD does not even munmap() on close() so we also have 1106 * to track mmap() ourselves, and postpone the call to 1107 * netmap_dtor() is called when the process has no open fds and no active 1108 * memory maps on /dev/netmap, as in linux. 1109 */ 1110 static int 1111 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1112 { 1113 if (netmap_verbose) 1114 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1115 dev, fflag, devtype, td); 1116 return 0; 1117 } 1118 1119 1120 static int 1121 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1122 { 1123 struct netmap_priv_d *priv; 1124 int error; 1125 1126 (void)dev; 1127 (void)oflags; 1128 (void)devtype; 1129 (void)td; 1130 1131 NMG_LOCK(); 1132 priv = netmap_priv_new(); 1133 if (priv == NULL) { 1134 error = ENOMEM; 1135 goto out; 1136 } 1137 error = devfs_set_cdevpriv(priv, netmap_dtor); 1138 if (error) { 1139 netmap_priv_delete(priv); 1140 } 1141 out: 1142 NMG_UNLOCK(); 1143 return error; 1144 } 1145 1146 /******************** kthread wrapper ****************/ 1147 #include <sys/sysproto.h> 1148 u_int 1149 nm_os_ncpus(void) 1150 { 1151 return mp_maxid + 1; 1152 } 1153 1154 struct nm_kctx_ctx { 1155 /* Userspace thread (kthread creator). */ 1156 struct thread *user_td; 1157 1158 /* worker function and parameter */ 1159 nm_kctx_worker_fn_t worker_fn; 1160 void *worker_private; 1161 1162 struct nm_kctx *nmk; 1163 1164 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1165 long type; 1166 }; 1167 1168 struct nm_kctx { 1169 struct thread *worker; 1170 struct mtx worker_lock; 1171 struct nm_kctx_ctx worker_ctx; 1172 int run; /* used to stop kthread */ 1173 int attach_user; /* kthread attached to user_process */ 1174 int affinity; 1175 }; 1176 1177 static void 1178 nm_kctx_worker(void *data) 1179 { 1180 struct nm_kctx *nmk = data; 1181 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1182 1183 if (nmk->affinity >= 0) { 1184 thread_lock(curthread); 1185 sched_bind(curthread, nmk->affinity); 1186 thread_unlock(curthread); 1187 } 1188 1189 while (nmk->run) { 1190 /* 1191 * check if the parent process dies 1192 * (when kthread is attached to user process) 1193 */ 1194 if (ctx->user_td) { 1195 PROC_LOCK(curproc); 1196 thread_suspend_check(0); 1197 PROC_UNLOCK(curproc); 1198 } else { 1199 kthread_suspend_check(); 1200 } 1201 1202 /* Continuously execute worker process. */ 1203 ctx->worker_fn(ctx->worker_private); /* worker body */ 1204 } 1205 1206 kthread_exit(); 1207 } 1208 1209 void 1210 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1211 { 1212 nmk->affinity = affinity; 1213 } 1214 1215 struct nm_kctx * 1216 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1217 { 1218 struct nm_kctx *nmk = NULL; 1219 1220 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1221 if (!nmk) 1222 return NULL; 1223 1224 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1225 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1226 nmk->worker_ctx.worker_private = cfg->worker_private; 1227 nmk->worker_ctx.type = cfg->type; 1228 nmk->affinity = -1; 1229 1230 /* attach kthread to user process (ptnetmap) */ 1231 nmk->attach_user = cfg->attach_user; 1232 1233 return nmk; 1234 } 1235 1236 int 1237 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1238 { 1239 struct proc *p = NULL; 1240 int error = 0; 1241 1242 /* Temporarily disable this function as it is currently broken 1243 * and causes kernel crashes. The failure can be triggered by 1244 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1245 return EOPNOTSUPP; 1246 1247 if (nmk->worker) 1248 return EBUSY; 1249 1250 /* check if we want to attach kthread to user process */ 1251 if (nmk->attach_user) { 1252 nmk->worker_ctx.user_td = curthread; 1253 p = curthread->td_proc; 1254 } 1255 1256 /* enable kthread main loop */ 1257 nmk->run = 1; 1258 /* create kthread */ 1259 if((error = kthread_add(nm_kctx_worker, nmk, p, 1260 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1261 nmk->worker_ctx.type))) { 1262 goto err; 1263 } 1264 1265 nm_prinf("nm_kthread started td %p", nmk->worker); 1266 1267 return 0; 1268 err: 1269 nm_prerr("nm_kthread start failed err %d", error); 1270 nmk->worker = NULL; 1271 return error; 1272 } 1273 1274 void 1275 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1276 { 1277 if (!nmk->worker) 1278 return; 1279 1280 /* tell to kthread to exit from main loop */ 1281 nmk->run = 0; 1282 1283 /* wake up kthread if it sleeps */ 1284 kthread_resume(nmk->worker); 1285 1286 nmk->worker = NULL; 1287 } 1288 1289 void 1290 nm_os_kctx_destroy(struct nm_kctx *nmk) 1291 { 1292 if (!nmk) 1293 return; 1294 1295 if (nmk->worker) 1296 nm_os_kctx_worker_stop(nmk); 1297 1298 free(nmk, M_DEVBUF); 1299 } 1300 1301 /******************** kqueue support ****************/ 1302 1303 /* 1304 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1305 * needs to call knote() to wake up kqueue listeners. 1306 * This operation is deferred to a taskqueue in order to avoid possible 1307 * lock order reversals; these may happen because knote() grabs a 1308 * private lock associated to the 'si' (see struct selinfo, 1309 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1310 * can be called while holding the lock associated to a different 1311 * 'si'. 1312 * When calling knote() we use a non-zero 'hint' argument to inform 1313 * the netmap_knrw() function that it is being called from 1314 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1315 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1316 * call netmap_poll(). 1317 * 1318 * The netmap_kqfilter() function registers one or another f_event 1319 * depending on read or write mode. A pointer to the struct 1320 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1321 * be passed to netmap_poll(). We pass NULL as a third argument to 1322 * netmap_poll(), so that the latter only runs the txsync/rxsync 1323 * (if necessary), and skips the nm_os_selrecord() calls. 1324 */ 1325 1326 1327 void 1328 nm_os_selwakeup(struct nm_selinfo *si) 1329 { 1330 selwakeuppri(&si->si, PI_NET); 1331 if (si->kqueue_users > 0) { 1332 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1333 } 1334 } 1335 1336 void 1337 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1338 { 1339 selrecord(td, &si->si); 1340 } 1341 1342 static void 1343 netmap_knrdetach(struct knote *kn) 1344 { 1345 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1346 struct nm_selinfo *si = priv->np_si[NR_RX]; 1347 1348 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1349 NMG_LOCK(); 1350 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1351 si->mtxname)); 1352 si->kqueue_users--; 1353 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1354 NMG_UNLOCK(); 1355 } 1356 1357 static void 1358 netmap_knwdetach(struct knote *kn) 1359 { 1360 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1361 struct nm_selinfo *si = priv->np_si[NR_TX]; 1362 1363 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1364 NMG_LOCK(); 1365 si->kqueue_users--; 1366 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1367 NMG_UNLOCK(); 1368 } 1369 1370 /* 1371 * Callback triggered by netmap notifications (see netmap_notify()), 1372 * and by the application calling kevent(). In the former case we 1373 * just return 1 (events ready), since we are not able to do better. 1374 * In the latter case we use netmap_poll() to see which events are 1375 * ready. 1376 */ 1377 static int 1378 netmap_knrw(struct knote *kn, long hint, int events) 1379 { 1380 struct netmap_priv_d *priv; 1381 int revents; 1382 1383 if (hint != 0) { 1384 /* Called from netmap_notify(), typically from a 1385 * thread different from the one issuing kevent(). 1386 * Assume we are ready. */ 1387 return 1; 1388 } 1389 1390 /* Called from kevent(). */ 1391 priv = kn->kn_hook; 1392 revents = netmap_poll(priv, events, /*thread=*/NULL); 1393 1394 return (events & revents) ? 1 : 0; 1395 } 1396 1397 static int 1398 netmap_knread(struct knote *kn, long hint) 1399 { 1400 return netmap_knrw(kn, hint, POLLIN); 1401 } 1402 1403 static int 1404 netmap_knwrite(struct knote *kn, long hint) 1405 { 1406 return netmap_knrw(kn, hint, POLLOUT); 1407 } 1408 1409 static struct filterops netmap_rfiltops = { 1410 .f_isfd = 1, 1411 .f_detach = netmap_knrdetach, 1412 .f_event = netmap_knread, 1413 }; 1414 1415 static struct filterops netmap_wfiltops = { 1416 .f_isfd = 1, 1417 .f_detach = netmap_knwdetach, 1418 .f_event = netmap_knwrite, 1419 }; 1420 1421 1422 /* 1423 * This is called when a thread invokes kevent() to record 1424 * a change in the configuration of the kqueue(). 1425 * The 'priv' is the one associated to the open netmap device. 1426 */ 1427 static int 1428 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1429 { 1430 struct netmap_priv_d *priv; 1431 int error; 1432 struct netmap_adapter *na; 1433 struct nm_selinfo *si; 1434 int ev = kn->kn_filter; 1435 1436 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1437 nm_prerr("bad filter request %d", ev); 1438 return 1; 1439 } 1440 error = devfs_get_cdevpriv((void**)&priv); 1441 if (error) { 1442 nm_prerr("device not yet setup"); 1443 return 1; 1444 } 1445 na = priv->np_na; 1446 if (na == NULL) { 1447 nm_prerr("no netmap adapter for this file descriptor"); 1448 return 1; 1449 } 1450 /* the si is indicated in the priv */ 1451 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1452 kn->kn_fop = (ev == EVFILT_WRITE) ? 1453 &netmap_wfiltops : &netmap_rfiltops; 1454 kn->kn_hook = priv; 1455 NMG_LOCK(); 1456 si->kqueue_users++; 1457 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1458 NMG_UNLOCK(); 1459 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1460 1461 return 0; 1462 } 1463 1464 static int 1465 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1466 { 1467 struct netmap_priv_d *priv; 1468 if (devfs_get_cdevpriv((void **)&priv)) { 1469 return POLLERR; 1470 } 1471 return netmap_poll(priv, events, td); 1472 } 1473 1474 static int 1475 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1476 int ffla __unused, struct thread *td) 1477 { 1478 int error; 1479 struct netmap_priv_d *priv; 1480 1481 CURVNET_SET(TD_TO_VNET(td)); 1482 error = devfs_get_cdevpriv((void **)&priv); 1483 if (error) { 1484 /* XXX ENOENT should be impossible, since the priv 1485 * is now created in the open */ 1486 if (error == ENOENT) 1487 error = ENXIO; 1488 goto out; 1489 } 1490 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1491 out: 1492 CURVNET_RESTORE(); 1493 1494 return error; 1495 } 1496 1497 void 1498 nm_os_onattach(if_t ifp) 1499 { 1500 if_setcapabilitiesbit(ifp, IFCAP_NETMAP, 0); 1501 } 1502 1503 void 1504 nm_os_onenter(if_t ifp) 1505 { 1506 struct netmap_adapter *na = NA(ifp); 1507 1508 na->if_transmit = if_gettransmitfn(ifp); 1509 if_settransmitfn(ifp, netmap_transmit); 1510 if_setcapenablebit(ifp, IFCAP_NETMAP, 0); 1511 } 1512 1513 void 1514 nm_os_onexit(if_t ifp) 1515 { 1516 struct netmap_adapter *na = NA(ifp); 1517 1518 if_settransmitfn(ifp, na->if_transmit); 1519 if_setcapenablebit(ifp, 0, IFCAP_NETMAP); 1520 } 1521 1522 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1523 struct cdevsw netmap_cdevsw = { 1524 .d_version = D_VERSION, 1525 .d_name = "netmap", 1526 .d_open = netmap_open, 1527 .d_mmap_single = netmap_mmap_single, 1528 .d_ioctl = freebsd_netmap_ioctl, 1529 .d_poll = freebsd_netmap_poll, 1530 .d_kqfilter = netmap_kqfilter, 1531 .d_close = netmap_close, 1532 }; 1533 /*--- end of kqueue support ----*/ 1534 1535 /* 1536 * Kernel entry point. 1537 * 1538 * Initialize/finalize the module and return. 1539 * 1540 * Return 0 on success, errno on failure. 1541 */ 1542 static int 1543 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1544 { 1545 int error = 0; 1546 1547 switch (event) { 1548 case MOD_LOAD: 1549 error = netmap_init(); 1550 break; 1551 1552 case MOD_UNLOAD: 1553 /* 1554 * if some one is still using netmap, 1555 * then the module can not be unloaded. 1556 */ 1557 if (netmap_use_count) { 1558 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1559 netmap_use_count); 1560 error = EBUSY; 1561 break; 1562 } 1563 netmap_fini(); 1564 break; 1565 1566 default: 1567 error = EOPNOTSUPP; 1568 break; 1569 } 1570 1571 return (error); 1572 } 1573 1574 #ifdef DEV_MODULE_ORDERED 1575 /* 1576 * The netmap module contains three drivers: (i) the netmap character device 1577 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1578 * device driver. The attach() routines of both (ii) and (iii) need the 1579 * lock of the global allocator, and such lock is initialized in netmap_init(), 1580 * which is part of (i). 1581 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1582 * the 'order' parameter of driver declaration macros. For (i), we specify 1583 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1584 * macros for (ii) and (iii). 1585 */ 1586 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1587 #else /* !DEV_MODULE_ORDERED */ 1588 DEV_MODULE(netmap, netmap_loader, NULL); 1589 #endif /* DEV_MODULE_ORDERED */ 1590 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1591 MODULE_VERSION(netmap, 1); 1592 /* reduce conditional code */ 1593 // linux API, use for the knlist in FreeBSD 1594 /* use a private mutex for the knlist */ 1595