xref: /freebsd/sys/dev/netmap/netmap_freebsd.c (revision d9a42747950146bf03cda7f6e25d219253f8a57a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *   1. Redistributions of source code must retain the above copyright
10  *      notice, this list of conditions and the following disclaimer.
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* $FreeBSD$ */
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 
32 #include <sys/param.h>
33 #include <sys/module.h>
34 #include <sys/errno.h>
35 #include <sys/eventhandler.h>
36 #include <sys/jail.h>
37 #include <sys/poll.h>  /* POLLIN, POLLOUT */
38 #include <sys/kernel.h> /* types used in module initialization */
39 #include <sys/conf.h>	/* DEV_MODULE_ORDERED */
40 #include <sys/endian.h>
41 #include <sys/syscallsubr.h> /* kern_ioctl() */
42 
43 #include <sys/rwlock.h>
44 
45 #include <vm/vm.h>      /* vtophys */
46 #include <vm/pmap.h>    /* vtophys */
47 #include <vm/vm_param.h>
48 #include <vm/vm_object.h>
49 #include <vm/vm_page.h>
50 #include <vm/vm_pager.h>
51 #include <vm/uma.h>
52 
53 
54 #include <sys/malloc.h>
55 #include <sys/socket.h> /* sockaddrs */
56 #include <sys/selinfo.h>
57 #include <sys/kthread.h> /* kthread_add() */
58 #include <sys/proc.h> /* PROC_LOCK() */
59 #include <sys/unistd.h> /* RFNOWAIT */
60 #include <sys/sched.h> /* sched_bind() */
61 #include <sys/smp.h> /* mp_maxid */
62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_types.h> /* IFT_ETHER */
66 #include <net/ethernet.h> /* ether_ifdetach */
67 #include <net/if_dl.h> /* LLADDR */
68 #include <machine/bus.h>        /* bus_dmamap_* */
69 #include <netinet/in.h>		/* in6_cksum_pseudo() */
70 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
71 
72 #include <net/netmap.h>
73 #include <dev/netmap/netmap_kern.h>
74 #include <net/netmap_virt.h>
75 #include <dev/netmap/netmap_mem2.h>
76 
77 
78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
79 
80 static void
81 nm_kqueue_notify(void *opaque, int pending)
82 {
83 	struct nm_selinfo *si = opaque;
84 
85 	/* We use a non-zero hint to distinguish this notification call
86 	 * from the call done in kqueue_scan(), which uses hint=0.
87 	 */
88 	KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
89 }
90 
91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
92 	int err;
93 
94 	TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
95 	si->ntfytq = taskqueue_create(name, M_NOWAIT,
96 	    taskqueue_thread_enqueue, &si->ntfytq);
97 	if (si->ntfytq == NULL)
98 		return -ENOMEM;
99 	err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
100 	if (err) {
101 		taskqueue_free(si->ntfytq);
102 		si->ntfytq = NULL;
103 		return err;
104 	}
105 
106 	snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
107 	mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
108 	knlist_init_mtx(&si->si.si_note, &si->m);
109 	si->kqueue_users = 0;
110 
111 	return (0);
112 }
113 
114 void
115 nm_os_selinfo_uninit(NM_SELINFO_T *si)
116 {
117 	if (si->ntfytq == NULL) {
118 		return;	/* si was not initialized */
119 	}
120 	taskqueue_drain(si->ntfytq, &si->ntfytask);
121 	taskqueue_free(si->ntfytq);
122 	si->ntfytq = NULL;
123 	knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
124 	knlist_destroy(&si->si.si_note);
125 	/* now we don't need the mutex anymore */
126 	mtx_destroy(&si->m);
127 }
128 
129 void *
130 nm_os_malloc(size_t size)
131 {
132 	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
133 }
134 
135 void *
136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
137 {
138 	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
139 }
140 
141 void
142 nm_os_free(void *addr)
143 {
144 	free(addr, M_DEVBUF);
145 }
146 
147 void
148 nm_os_ifnet_lock(void)
149 {
150 	IFNET_RLOCK();
151 }
152 
153 void
154 nm_os_ifnet_unlock(void)
155 {
156 	IFNET_RUNLOCK();
157 }
158 
159 static int netmap_use_count = 0;
160 
161 void
162 nm_os_get_module(void)
163 {
164 	netmap_use_count++;
165 }
166 
167 void
168 nm_os_put_module(void)
169 {
170 	netmap_use_count--;
171 }
172 
173 static void
174 netmap_ifnet_arrival_handler(void *arg __unused, if_t ifp)
175 {
176 	netmap_undo_zombie(ifp);
177 }
178 
179 static void
180 netmap_ifnet_departure_handler(void *arg __unused, if_t ifp)
181 {
182 	netmap_make_zombie(ifp);
183 }
184 
185 static eventhandler_tag nm_ifnet_ah_tag;
186 static eventhandler_tag nm_ifnet_dh_tag;
187 
188 int
189 nm_os_ifnet_init(void)
190 {
191 	nm_ifnet_ah_tag =
192 		EVENTHANDLER_REGISTER(ifnet_arrival_event,
193 				netmap_ifnet_arrival_handler,
194 				NULL, EVENTHANDLER_PRI_ANY);
195 	nm_ifnet_dh_tag =
196 		EVENTHANDLER_REGISTER(ifnet_departure_event,
197 				netmap_ifnet_departure_handler,
198 				NULL, EVENTHANDLER_PRI_ANY);
199 	return 0;
200 }
201 
202 void
203 nm_os_ifnet_fini(void)
204 {
205 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
206 			nm_ifnet_ah_tag);
207 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
208 			nm_ifnet_dh_tag);
209 }
210 
211 unsigned
212 nm_os_ifnet_mtu(if_t ifp)
213 {
214 	return if_getmtu(ifp);
215 }
216 
217 rawsum_t
218 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
219 {
220 	/* TODO XXX please use the FreeBSD implementation for this. */
221 	uint16_t *words = (uint16_t *)data;
222 	int nw = len / 2;
223 	int i;
224 
225 	for (i = 0; i < nw; i++)
226 		cur_sum += be16toh(words[i]);
227 
228 	if (len & 1)
229 		cur_sum += (data[len-1] << 8);
230 
231 	return cur_sum;
232 }
233 
234 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
235  * return value is in network byte order.
236  */
237 uint16_t
238 nm_os_csum_fold(rawsum_t cur_sum)
239 {
240 	/* TODO XXX please use the FreeBSD implementation for this. */
241 	while (cur_sum >> 16)
242 		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
243 
244 	return htobe16((~cur_sum) & 0xFFFF);
245 }
246 
247 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
248 {
249 #if 0
250 	return in_cksum_hdr((void *)iph);
251 #else
252 	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
253 #endif
254 }
255 
256 void
257 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
258 					size_t datalen, uint16_t *check)
259 {
260 #ifdef INET
261 	uint16_t pseudolen = datalen + iph->protocol;
262 
263 	/* Compute and insert the pseudo-header checksum. */
264 	*check = in_pseudo(iph->saddr, iph->daddr,
265 				 htobe16(pseudolen));
266 	/* Compute the checksum on TCP/UDP header + payload
267 	 * (includes the pseudo-header).
268 	 */
269 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
270 #else
271 	static int notsupported = 0;
272 	if (!notsupported) {
273 		notsupported = 1;
274 		nm_prerr("inet4 segmentation not supported");
275 	}
276 #endif
277 }
278 
279 void
280 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
281 					size_t datalen, uint16_t *check)
282 {
283 #ifdef INET6
284 	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
285 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
286 #else
287 	static int notsupported = 0;
288 	if (!notsupported) {
289 		notsupported = 1;
290 		nm_prerr("inet6 segmentation not supported");
291 	}
292 #endif
293 }
294 
295 /* on FreeBSD we send up one packet at a time */
296 void *
297 nm_os_send_up(if_t ifp, struct mbuf *m, struct mbuf *prev)
298 {
299 	NA(ifp)->if_input(ifp, m);
300 	return NULL;
301 }
302 
303 int
304 nm_os_mbuf_has_csum_offld(struct mbuf *m)
305 {
306 	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
307 					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
308 					 CSUM_SCTP_IPV6);
309 }
310 
311 int
312 nm_os_mbuf_has_seg_offld(struct mbuf *m)
313 {
314 	return m->m_pkthdr.csum_flags & CSUM_TSO;
315 }
316 
317 static void
318 freebsd_generic_rx_handler(if_t ifp, struct mbuf *m)
319 {
320 	int stolen;
321 
322 	if (unlikely(!NM_NA_VALID(ifp))) {
323 		nm_prlim(1, "Warning: RX packet intercepted, but no"
324 				" emulated adapter");
325 		return;
326 	}
327 
328 	do {
329 		struct mbuf *n;
330 
331 		n = m->m_nextpkt;
332 		m->m_nextpkt = NULL;
333 		stolen = generic_rx_handler(ifp, m);
334 		if (!stolen) {
335 			NA(ifp)->if_input(ifp, m);
336 		}
337 		m = n;
338 	} while (m != NULL);
339 }
340 
341 /*
342  * Intercept the rx routine in the standard device driver.
343  * Second argument is non-zero to intercept, 0 to restore
344  */
345 int
346 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
347 {
348 	struct netmap_adapter *na = &gna->up.up;
349 	if_t ifp = na->ifp;
350 	int ret = 0;
351 
352 	nm_os_ifnet_lock();
353 	if (intercept) {
354 		if_setcapenablebit(ifp, IFCAP_NETMAP, 0);
355 		if_setinputfn(ifp, freebsd_generic_rx_handler);
356 	} else {
357 		if_setcapenablebit(ifp, 0, IFCAP_NETMAP);
358 		if_setinputfn(ifp, na->if_input);
359 	}
360 	nm_os_ifnet_unlock();
361 
362 	return ret;
363 }
364 
365 
366 /*
367  * Intercept the packet steering routine in the tx path,
368  * so that we can decide which queue is used for an mbuf.
369  * Second argument is non-zero to intercept, 0 to restore.
370  * On freebsd we just intercept if_transmit.
371  */
372 int
373 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
374 {
375 	struct netmap_adapter *na = &gna->up.up;
376 	if_t ifp = netmap_generic_getifp(gna);
377 
378 	nm_os_ifnet_lock();
379 	if (intercept) {
380 		na->if_transmit = if_gettransmitfn(ifp);
381 		if_settransmitfn(ifp, netmap_transmit);
382 	} else {
383 		if_settransmitfn(ifp, na->if_transmit);
384 	}
385 	nm_os_ifnet_unlock();
386 
387 	return 0;
388 }
389 
390 
391 /*
392  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
393  * and non-zero on error (which may be packet drops or other errors).
394  * addr and len identify the netmap buffer, m is the (preallocated)
395  * mbuf to use for transmissions.
396  *
397  * Zero-copy transmission is possible if netmap is attached directly to a
398  * hardware interface: when cleaning we simply wait for the mbuf cluster
399  * refcount to decrement to 1, indicating that the driver has completed
400  * transmission and is done with the buffer.  However, this approach can
401  * lead to queue deadlocks when attaching to software interfaces (e.g.,
402  * if_bridge) since we cannot rely on member ports to promptly reclaim
403  * transmitted mbufs.  Since there is no easy way to distinguish these
404  * cases, we currently always copy the buffer.
405  *
406  * On multiqueue cards, we can force the queue using
407  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
408  *              i = m->m_pkthdr.flowid % adapter->num_queues;
409  *      else
410  *              i = curcpu % adapter->num_queues;
411  */
412 int
413 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
414 {
415 	int ret;
416 	u_int len = a->len;
417 	if_t ifp = a->ifp;
418 	struct mbuf *m = a->m;
419 
420 	M_ASSERTPKTHDR(m);
421 	KASSERT((m->m_flags & M_EXT) != 0,
422 	    ("%s: mbuf %p has no cluster", __func__, m));
423 
424 	if (MBUF_REFCNT(m) != 1) {
425 		nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
426 		panic("in generic_xmit_frame");
427 	}
428 	if (unlikely(m->m_ext.ext_size < len)) {
429 		nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len);
430 		len = m->m_ext.ext_size;
431 	}
432 
433 	m_copyback(m, 0, len, a->addr);
434 	m->m_len = m->m_pkthdr.len = len;
435 	SET_MBUF_REFCNT(m, 2);
436 	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
437 	m->m_pkthdr.flowid = a->ring_nr;
438 	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
439 	CURVNET_SET(if_getvnet(ifp));
440 	ret = NA(ifp)->if_transmit(ifp, m);
441 	CURVNET_RESTORE();
442 	return ret ? -1 : 0;
443 }
444 
445 struct netmap_adapter *
446 netmap_getna(if_t ifp)
447 {
448 	return (NA(ifp));
449 }
450 
451 /*
452  * The following two functions are empty until we have a generic
453  * way to extract the info from the ifp
454  */
455 int
456 nm_os_generic_find_num_desc(if_t ifp, unsigned int *tx, unsigned int *rx)
457 {
458 	return 0;
459 }
460 
461 
462 void
463 nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq)
464 {
465 	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
466 
467 	*txq = num_rings;
468 	*rxq = num_rings;
469 }
470 
471 void
472 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
473 {
474 
475 	gna->rxsg = 1; /* Supported through m_copydata. */
476 	gna->txqdisc = 0; /* Not supported. */
477 }
478 
479 void
480 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
481 {
482 	mit->mit_pending = 0;
483 	mit->mit_ring_idx = idx;
484 	mit->mit_na = na;
485 }
486 
487 
488 void
489 nm_os_mitigation_start(struct nm_generic_mit *mit)
490 {
491 }
492 
493 
494 void
495 nm_os_mitigation_restart(struct nm_generic_mit *mit)
496 {
497 }
498 
499 
500 int
501 nm_os_mitigation_active(struct nm_generic_mit *mit)
502 {
503 
504 	return 0;
505 }
506 
507 
508 void
509 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
510 {
511 }
512 
513 static int
514 nm_vi_dummy(if_t ifp, u_long cmd, caddr_t addr)
515 {
516 
517 	return EINVAL;
518 }
519 
520 static void
521 nm_vi_start(if_t ifp)
522 {
523 	panic("nm_vi_start() must not be called");
524 }
525 
526 /*
527  * Index manager of persistent virtual interfaces.
528  * It is used to decide the lowest byte of the MAC address.
529  * We use the same algorithm with management of bridge port index.
530  */
531 #define NM_VI_MAX	255
532 static struct {
533 	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
534 	uint8_t active;
535 	struct mtx lock;
536 } nm_vi_indices;
537 
538 void
539 nm_os_vi_init_index(void)
540 {
541 	int i;
542 	for (i = 0; i < NM_VI_MAX; i++)
543 		nm_vi_indices.index[i] = i;
544 	nm_vi_indices.active = 0;
545 	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
546 }
547 
548 /* return -1 if no index available */
549 static int
550 nm_vi_get_index(void)
551 {
552 	int ret;
553 
554 	mtx_lock(&nm_vi_indices.lock);
555 	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
556 		nm_vi_indices.index[nm_vi_indices.active++];
557 	mtx_unlock(&nm_vi_indices.lock);
558 	return ret;
559 }
560 
561 static void
562 nm_vi_free_index(uint8_t val)
563 {
564 	int i, lim;
565 
566 	mtx_lock(&nm_vi_indices.lock);
567 	lim = nm_vi_indices.active;
568 	for (i = 0; i < lim; i++) {
569 		if (nm_vi_indices.index[i] == val) {
570 			/* swap index[lim-1] and j */
571 			int tmp = nm_vi_indices.index[lim-1];
572 			nm_vi_indices.index[lim-1] = val;
573 			nm_vi_indices.index[i] = tmp;
574 			nm_vi_indices.active--;
575 			break;
576 		}
577 	}
578 	if (lim == nm_vi_indices.active)
579 		nm_prerr("Index %u not found", val);
580 	mtx_unlock(&nm_vi_indices.lock);
581 }
582 #undef NM_VI_MAX
583 
584 /*
585  * Implementation of a netmap-capable virtual interface that
586  * registered to the system.
587  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
588  *
589  * Note: Linux sets refcount to 0 on allocation of net_device,
590  * then increments it on registration to the system.
591  * FreeBSD sets refcount to 1 on if_alloc(), and does not
592  * increment this refcount on if_attach().
593  */
594 int
595 nm_os_vi_persist(const char *name, if_t *ret)
596 {
597 	if_t ifp;
598 	u_short macaddr_hi;
599 	uint32_t macaddr_mid;
600 	u_char eaddr[6];
601 	int unit = nm_vi_get_index(); /* just to decide MAC address */
602 
603 	if (unit < 0)
604 		return EBUSY;
605 	/*
606 	 * We use the same MAC address generation method with tap
607 	 * except for the highest octet is 00:be instead of 00:bd
608 	 */
609 	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
610 	macaddr_mid = (uint32_t) ticks;
611 	bcopy(&macaddr_hi, eaddr, sizeof(short));
612 	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
613 	eaddr[5] = (uint8_t)unit;
614 
615 	ifp = if_alloc(IFT_ETHER);
616 	if (ifp == NULL) {
617 		nm_prerr("if_alloc failed");
618 		return ENOMEM;
619 	}
620 	if_initname(ifp, name, IF_DUNIT_NONE);
621 	if_setflags(ifp, IFF_UP | IFF_SIMPLEX | IFF_MULTICAST);
622 	if_setinitfn(ifp, (void *)nm_vi_dummy);
623 	if_setioctlfn(ifp, nm_vi_dummy);
624 	if_setstartfn(ifp, nm_vi_start);
625 	if_setmtu(ifp, ETHERMTU);
626 	if_setsendqlen(ifp, ifqmaxlen);
627 	if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0);
628 	if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0);
629 
630 	ether_ifattach(ifp, eaddr);
631 	*ret = ifp;
632 	return 0;
633 }
634 
635 /* unregister from the system and drop the final refcount */
636 void
637 nm_os_vi_detach(if_t ifp)
638 {
639 	nm_vi_free_index(((char *)if_getlladdr(ifp))[5]);
640 	ether_ifdetach(ifp);
641 	if_free(ifp);
642 }
643 
644 #ifdef WITH_EXTMEM
645 #include <vm/vm_map.h>
646 #include <vm/vm_extern.h>
647 #include <vm/vm_kern.h>
648 struct nm_os_extmem {
649 	vm_object_t obj;
650 	vm_offset_t kva;
651 	vm_offset_t size;
652 	uintptr_t scan;
653 };
654 
655 void
656 nm_os_extmem_delete(struct nm_os_extmem *e)
657 {
658 	nm_prinf("freeing %zx bytes", (size_t)e->size);
659 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
660 	nm_os_free(e);
661 }
662 
663 char *
664 nm_os_extmem_nextpage(struct nm_os_extmem *e)
665 {
666 	char *rv = NULL;
667 	if (e->scan < e->kva + e->size) {
668 		rv = (char *)e->scan;
669 		e->scan += PAGE_SIZE;
670 	}
671 	return rv;
672 }
673 
674 int
675 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
676 {
677 	return (e1->obj == e2->obj);
678 }
679 
680 int
681 nm_os_extmem_nr_pages(struct nm_os_extmem *e)
682 {
683 	return e->size >> PAGE_SHIFT;
684 }
685 
686 struct nm_os_extmem *
687 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
688 {
689 	vm_map_t map;
690 	vm_map_entry_t entry;
691 	vm_object_t obj;
692 	vm_prot_t prot;
693 	vm_pindex_t index;
694 	boolean_t wired;
695 	struct nm_os_extmem *e = NULL;
696 	int rv, error = 0;
697 
698 	e = nm_os_malloc(sizeof(*e));
699 	if (e == NULL) {
700 		error = ENOMEM;
701 		goto out;
702 	}
703 
704 	map = &curthread->td_proc->p_vmspace->vm_map;
705 	rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
706 			&obj, &index, &prot, &wired);
707 	if (rv != KERN_SUCCESS) {
708 		nm_prerr("address %lx not found", p);
709 		error = vm_mmap_to_errno(rv);
710 		goto out_free;
711 	}
712 	vm_object_reference(obj);
713 
714 	/* check that we are given the whole vm_object ? */
715 	vm_map_lookup_done(map, entry);
716 
717 	e->obj = obj;
718 	/* Wire the memory and add the vm_object to the kernel map,
719 	 * to make sure that it is not freed even if all the processes
720 	 * that are mmap()ing should munmap() it.
721 	 */
722 	e->kva = vm_map_min(kernel_map);
723 	e->size = obj->size << PAGE_SHIFT;
724 	rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
725 			VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
726 			VM_PROT_READ | VM_PROT_WRITE, 0);
727 	if (rv != KERN_SUCCESS) {
728 		nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
729 		error = vm_mmap_to_errno(rv);
730 		goto out_rel;
731 	}
732 	rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
733 			VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
734 	if (rv != KERN_SUCCESS) {
735 		nm_prerr("vm_map_wire failed");
736 		error = vm_mmap_to_errno(rv);
737 		goto out_rem;
738 	}
739 
740 	e->scan = e->kva;
741 
742 	return e;
743 
744 out_rem:
745 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
746 out_rel:
747 	vm_object_deallocate(e->obj);
748 	e->obj = NULL;
749 out_free:
750 	nm_os_free(e);
751 out:
752 	if (perror)
753 		*perror = error;
754 	return NULL;
755 }
756 #endif /* WITH_EXTMEM */
757 
758 /* ================== PTNETMAP GUEST SUPPORT ==================== */
759 
760 #ifdef WITH_PTNETMAP
761 #include <sys/bus.h>
762 #include <sys/rman.h>
763 #include <machine/bus.h>        /* bus_dmamap_* */
764 #include <machine/resource.h>
765 #include <dev/pci/pcivar.h>
766 #include <dev/pci/pcireg.h>
767 /*
768  * ptnetmap memory device (memdev) for freebsd guest,
769  * ssed to expose host netmap memory to the guest through a PCI BAR.
770  */
771 
772 /*
773  * ptnetmap memdev private data structure
774  */
775 struct ptnetmap_memdev {
776 	device_t dev;
777 	struct resource *pci_io;
778 	struct resource *pci_mem;
779 	struct netmap_mem_d *nm_mem;
780 };
781 
782 static int	ptn_memdev_probe(device_t);
783 static int	ptn_memdev_attach(device_t);
784 static int	ptn_memdev_detach(device_t);
785 static int	ptn_memdev_shutdown(device_t);
786 
787 static device_method_t ptn_memdev_methods[] = {
788 	DEVMETHOD(device_probe, ptn_memdev_probe),
789 	DEVMETHOD(device_attach, ptn_memdev_attach),
790 	DEVMETHOD(device_detach, ptn_memdev_detach),
791 	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
792 	DEVMETHOD_END
793 };
794 
795 static driver_t ptn_memdev_driver = {
796 	PTNETMAP_MEMDEV_NAME,
797 	ptn_memdev_methods,
798 	sizeof(struct ptnetmap_memdev),
799 };
800 
801 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
802  * below. */
803 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL,
804 		      SI_ORDER_MIDDLE + 1);
805 
806 /*
807  * Map host netmap memory through PCI-BAR in the guest OS,
808  * returning physical (nm_paddr) and virtual (nm_addr) addresses
809  * of the netmap memory mapped in the guest.
810  */
811 int
812 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
813 		      void **nm_addr, uint64_t *mem_size)
814 {
815 	int rid;
816 
817 	nm_prinf("ptn_memdev_driver iomap");
818 
819 	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
820 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
821 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
822 			(*mem_size << 32);
823 
824 	/* map memory allocator */
825 	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
826 			&rid, 0, ~0, *mem_size, RF_ACTIVE);
827 	if (ptn_dev->pci_mem == NULL) {
828 		*nm_paddr = 0;
829 		*nm_addr = NULL;
830 		return ENOMEM;
831 	}
832 
833 	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
834 	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
835 
836 	nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
837 			PTNETMAP_MEM_PCI_BAR,
838 			(unsigned long)(*nm_paddr),
839 			(unsigned long)rman_get_size(ptn_dev->pci_mem),
840 			(unsigned long)*mem_size);
841 	return (0);
842 }
843 
844 uint32_t
845 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
846 {
847 	return bus_read_4(ptn_dev->pci_io, reg);
848 }
849 
850 /* Unmap host netmap memory. */
851 void
852 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
853 {
854 	nm_prinf("ptn_memdev_driver iounmap");
855 
856 	if (ptn_dev->pci_mem) {
857 		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
858 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
859 		ptn_dev->pci_mem = NULL;
860 	}
861 }
862 
863 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
864  * positive on failure */
865 static int
866 ptn_memdev_probe(device_t dev)
867 {
868 	char desc[256];
869 
870 	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
871 		return (ENXIO);
872 	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
873 		return (ENXIO);
874 
875 	snprintf(desc, sizeof(desc), "%s PCI adapter",
876 			PTNETMAP_MEMDEV_NAME);
877 	device_set_desc_copy(dev, desc);
878 
879 	return (BUS_PROBE_DEFAULT);
880 }
881 
882 /* Device initialization routine. */
883 static int
884 ptn_memdev_attach(device_t dev)
885 {
886 	struct ptnetmap_memdev *ptn_dev;
887 	int rid;
888 	uint16_t mem_id;
889 
890 	ptn_dev = device_get_softc(dev);
891 	ptn_dev->dev = dev;
892 
893 	pci_enable_busmaster(dev);
894 
895 	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
896 	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
897 						 RF_ACTIVE);
898 	if (ptn_dev->pci_io == NULL) {
899 	        device_printf(dev, "cannot map I/O space\n");
900 	        return (ENXIO);
901 	}
902 
903 	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
904 
905 	/* create guest allocator */
906 	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
907 	if (ptn_dev->nm_mem == NULL) {
908 		ptn_memdev_detach(dev);
909 	        return (ENOMEM);
910 	}
911 	netmap_mem_get(ptn_dev->nm_mem);
912 
913 	nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
914 
915 	return (0);
916 }
917 
918 /* Device removal routine. */
919 static int
920 ptn_memdev_detach(device_t dev)
921 {
922 	struct ptnetmap_memdev *ptn_dev;
923 
924 	ptn_dev = device_get_softc(dev);
925 
926 	if (ptn_dev->nm_mem) {
927 		nm_prinf("ptnetmap memdev detached, host memid %u",
928 			netmap_mem_get_id(ptn_dev->nm_mem));
929 		netmap_mem_put(ptn_dev->nm_mem);
930 		ptn_dev->nm_mem = NULL;
931 	}
932 	if (ptn_dev->pci_mem) {
933 		bus_release_resource(dev, SYS_RES_MEMORY,
934 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
935 		ptn_dev->pci_mem = NULL;
936 	}
937 	if (ptn_dev->pci_io) {
938 		bus_release_resource(dev, SYS_RES_IOPORT,
939 			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
940 		ptn_dev->pci_io = NULL;
941 	}
942 
943 	return (0);
944 }
945 
946 static int
947 ptn_memdev_shutdown(device_t dev)
948 {
949 	return bus_generic_shutdown(dev);
950 }
951 
952 #endif /* WITH_PTNETMAP */
953 
954 /*
955  * In order to track whether pages are still mapped, we hook into
956  * the standard cdev_pager and intercept the constructor and
957  * destructor.
958  */
959 
960 struct netmap_vm_handle_t {
961 	struct cdev 		*dev;
962 	struct netmap_priv_d	*priv;
963 };
964 
965 
966 static int
967 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
968 		vm_ooffset_t foff, struct ucred *cred, u_short *color)
969 {
970 	struct netmap_vm_handle_t *vmh = handle;
971 
972 	if (netmap_verbose)
973 		nm_prinf("handle %p size %jd prot %d foff %jd",
974 			handle, (intmax_t)size, prot, (intmax_t)foff);
975 	if (color)
976 		*color = 0;
977 	dev_ref(vmh->dev);
978 	return 0;
979 }
980 
981 
982 static void
983 netmap_dev_pager_dtor(void *handle)
984 {
985 	struct netmap_vm_handle_t *vmh = handle;
986 	struct cdev *dev = vmh->dev;
987 	struct netmap_priv_d *priv = vmh->priv;
988 
989 	if (netmap_verbose)
990 		nm_prinf("handle %p", handle);
991 	netmap_dtor(priv);
992 	free(vmh, M_DEVBUF);
993 	dev_rel(dev);
994 }
995 
996 
997 static int
998 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
999 	int prot, vm_page_t *mres)
1000 {
1001 	struct netmap_vm_handle_t *vmh = object->handle;
1002 	struct netmap_priv_d *priv = vmh->priv;
1003 	struct netmap_adapter *na = priv->np_na;
1004 	vm_paddr_t paddr;
1005 	vm_page_t page;
1006 	vm_memattr_t memattr;
1007 
1008 	nm_prdis("object %p offset %jd prot %d mres %p",
1009 			object, (intmax_t)offset, prot, mres);
1010 	memattr = object->memattr;
1011 	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
1012 	if (paddr == 0)
1013 		return VM_PAGER_FAIL;
1014 
1015 	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
1016 		/*
1017 		 * If the passed in result page is a fake page, update it with
1018 		 * the new physical address.
1019 		 */
1020 		page = *mres;
1021 		vm_page_updatefake(page, paddr, memattr);
1022 	} else {
1023 		/*
1024 		 * Replace the passed in reqpage page with our own fake page and
1025 		 * free up the all of the original pages.
1026 		 */
1027 		VM_OBJECT_WUNLOCK(object);
1028 		page = vm_page_getfake(paddr, memattr);
1029 		VM_OBJECT_WLOCK(object);
1030 		vm_page_replace(page, object, (*mres)->pindex, *mres);
1031 		*mres = page;
1032 	}
1033 	page->valid = VM_PAGE_BITS_ALL;
1034 	return (VM_PAGER_OK);
1035 }
1036 
1037 
1038 static struct cdev_pager_ops netmap_cdev_pager_ops = {
1039 	.cdev_pg_ctor = netmap_dev_pager_ctor,
1040 	.cdev_pg_dtor = netmap_dev_pager_dtor,
1041 	.cdev_pg_fault = netmap_dev_pager_fault,
1042 };
1043 
1044 
1045 static int
1046 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1047 	vm_size_t objsize,  vm_object_t *objp, int prot)
1048 {
1049 	int error;
1050 	struct netmap_vm_handle_t *vmh;
1051 	struct netmap_priv_d *priv;
1052 	vm_object_t obj;
1053 
1054 	if (netmap_verbose)
1055 		nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1056 		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1057 
1058 	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1059 			      M_NOWAIT | M_ZERO);
1060 	if (vmh == NULL)
1061 		return ENOMEM;
1062 	vmh->dev = cdev;
1063 
1064 	NMG_LOCK();
1065 	error = devfs_get_cdevpriv((void**)&priv);
1066 	if (error)
1067 		goto err_unlock;
1068 	if (priv->np_nifp == NULL) {
1069 		error = EINVAL;
1070 		goto err_unlock;
1071 	}
1072 	vmh->priv = priv;
1073 	priv->np_refs++;
1074 	NMG_UNLOCK();
1075 
1076 	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1077 		&netmap_cdev_pager_ops, objsize, prot,
1078 		*foff, NULL);
1079 	if (obj == NULL) {
1080 		nm_prerr("cdev_pager_allocate failed");
1081 		error = EINVAL;
1082 		goto err_deref;
1083 	}
1084 
1085 	*objp = obj;
1086 	return 0;
1087 
1088 err_deref:
1089 	NMG_LOCK();
1090 	priv->np_refs--;
1091 err_unlock:
1092 	NMG_UNLOCK();
1093 // err:
1094 	free(vmh, M_DEVBUF);
1095 	return error;
1096 }
1097 
1098 /*
1099  * On FreeBSD the close routine is only called on the last close on
1100  * the device (/dev/netmap) so we cannot do anything useful.
1101  * To track close() on individual file descriptors we pass netmap_dtor() to
1102  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1103  * when the last fd pointing to the device is closed.
1104  *
1105  * Note that FreeBSD does not even munmap() on close() so we also have
1106  * to track mmap() ourselves, and postpone the call to
1107  * netmap_dtor() is called when the process has no open fds and no active
1108  * memory maps on /dev/netmap, as in linux.
1109  */
1110 static int
1111 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1112 {
1113 	if (netmap_verbose)
1114 		nm_prinf("dev %p fflag 0x%x devtype %d td %p",
1115 			dev, fflag, devtype, td);
1116 	return 0;
1117 }
1118 
1119 
1120 static int
1121 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1122 {
1123 	struct netmap_priv_d *priv;
1124 	int error;
1125 
1126 	(void)dev;
1127 	(void)oflags;
1128 	(void)devtype;
1129 	(void)td;
1130 
1131 	NMG_LOCK();
1132 	priv = netmap_priv_new();
1133 	if (priv == NULL) {
1134 		error = ENOMEM;
1135 		goto out;
1136 	}
1137 	error = devfs_set_cdevpriv(priv, netmap_dtor);
1138 	if (error) {
1139 		netmap_priv_delete(priv);
1140 	}
1141 out:
1142 	NMG_UNLOCK();
1143 	return error;
1144 }
1145 
1146 /******************** kthread wrapper ****************/
1147 #include <sys/sysproto.h>
1148 u_int
1149 nm_os_ncpus(void)
1150 {
1151 	return mp_maxid + 1;
1152 }
1153 
1154 struct nm_kctx_ctx {
1155 	/* Userspace thread (kthread creator). */
1156 	struct thread *user_td;
1157 
1158 	/* worker function and parameter */
1159 	nm_kctx_worker_fn_t worker_fn;
1160 	void *worker_private;
1161 
1162 	struct nm_kctx *nmk;
1163 
1164 	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1165 	long type;
1166 };
1167 
1168 struct nm_kctx {
1169 	struct thread *worker;
1170 	struct mtx worker_lock;
1171 	struct nm_kctx_ctx worker_ctx;
1172 	int run;			/* used to stop kthread */
1173 	int attach_user;		/* kthread attached to user_process */
1174 	int affinity;
1175 };
1176 
1177 static void
1178 nm_kctx_worker(void *data)
1179 {
1180 	struct nm_kctx *nmk = data;
1181 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1182 
1183 	if (nmk->affinity >= 0) {
1184 		thread_lock(curthread);
1185 		sched_bind(curthread, nmk->affinity);
1186 		thread_unlock(curthread);
1187 	}
1188 
1189 	while (nmk->run) {
1190 		/*
1191 		 * check if the parent process dies
1192 		 * (when kthread is attached to user process)
1193 		 */
1194 		if (ctx->user_td) {
1195 			PROC_LOCK(curproc);
1196 			thread_suspend_check(0);
1197 			PROC_UNLOCK(curproc);
1198 		} else {
1199 			kthread_suspend_check();
1200 		}
1201 
1202 		/* Continuously execute worker process. */
1203 		ctx->worker_fn(ctx->worker_private); /* worker body */
1204 	}
1205 
1206 	kthread_exit();
1207 }
1208 
1209 void
1210 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1211 {
1212 	nmk->affinity = affinity;
1213 }
1214 
1215 struct nm_kctx *
1216 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1217 {
1218 	struct nm_kctx *nmk = NULL;
1219 
1220 	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1221 	if (!nmk)
1222 		return NULL;
1223 
1224 	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1225 	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1226 	nmk->worker_ctx.worker_private = cfg->worker_private;
1227 	nmk->worker_ctx.type = cfg->type;
1228 	nmk->affinity = -1;
1229 
1230 	/* attach kthread to user process (ptnetmap) */
1231 	nmk->attach_user = cfg->attach_user;
1232 
1233 	return nmk;
1234 }
1235 
1236 int
1237 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1238 {
1239 	struct proc *p = NULL;
1240 	int error = 0;
1241 
1242 	/* Temporarily disable this function as it is currently broken
1243 	 * and causes kernel crashes. The failure can be triggered by
1244 	 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
1245 	return EOPNOTSUPP;
1246 
1247 	if (nmk->worker)
1248 		return EBUSY;
1249 
1250 	/* check if we want to attach kthread to user process */
1251 	if (nmk->attach_user) {
1252 		nmk->worker_ctx.user_td = curthread;
1253 		p = curthread->td_proc;
1254 	}
1255 
1256 	/* enable kthread main loop */
1257 	nmk->run = 1;
1258 	/* create kthread */
1259 	if((error = kthread_add(nm_kctx_worker, nmk, p,
1260 			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1261 			nmk->worker_ctx.type))) {
1262 		goto err;
1263 	}
1264 
1265 	nm_prinf("nm_kthread started td %p", nmk->worker);
1266 
1267 	return 0;
1268 err:
1269 	nm_prerr("nm_kthread start failed err %d", error);
1270 	nmk->worker = NULL;
1271 	return error;
1272 }
1273 
1274 void
1275 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1276 {
1277 	if (!nmk->worker)
1278 		return;
1279 
1280 	/* tell to kthread to exit from main loop */
1281 	nmk->run = 0;
1282 
1283 	/* wake up kthread if it sleeps */
1284 	kthread_resume(nmk->worker);
1285 
1286 	nmk->worker = NULL;
1287 }
1288 
1289 void
1290 nm_os_kctx_destroy(struct nm_kctx *nmk)
1291 {
1292 	if (!nmk)
1293 		return;
1294 
1295 	if (nmk->worker)
1296 		nm_os_kctx_worker_stop(nmk);
1297 
1298 	free(nmk, M_DEVBUF);
1299 }
1300 
1301 /******************** kqueue support ****************/
1302 
1303 /*
1304  * In addition to calling selwakeuppri(), nm_os_selwakeup() also
1305  * needs to call knote() to wake up kqueue listeners.
1306  * This operation is deferred to a taskqueue in order to avoid possible
1307  * lock order reversals; these may happen because knote() grabs a
1308  * private lock associated to the 'si' (see struct selinfo,
1309  * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
1310  * can be called while holding the lock associated to a different
1311  * 'si'.
1312  * When calling knote() we use a non-zero 'hint' argument to inform
1313  * the netmap_knrw() function that it is being called from
1314  * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
1315  * called by the kevent subsystem (i.e. kevent_scan()) we also need to
1316  * call netmap_poll().
1317  *
1318  * The netmap_kqfilter() function registers one or another f_event
1319  * depending on read or write mode. A pointer to the struct
1320  * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
1321  * be passed to netmap_poll(). We pass NULL as a third argument to
1322  * netmap_poll(), so that the latter only runs the txsync/rxsync
1323  * (if necessary), and skips the nm_os_selrecord() calls.
1324  */
1325 
1326 
1327 void
1328 nm_os_selwakeup(struct nm_selinfo *si)
1329 {
1330 	selwakeuppri(&si->si, PI_NET);
1331 	if (si->kqueue_users > 0) {
1332 		taskqueue_enqueue(si->ntfytq, &si->ntfytask);
1333 	}
1334 }
1335 
1336 void
1337 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1338 {
1339 	selrecord(td, &si->si);
1340 }
1341 
1342 static void
1343 netmap_knrdetach(struct knote *kn)
1344 {
1345 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1346 	struct nm_selinfo *si = priv->np_si[NR_RX];
1347 
1348 	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1349 	NMG_LOCK();
1350 	KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s",
1351 	    si->mtxname));
1352 	si->kqueue_users--;
1353 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1354 	NMG_UNLOCK();
1355 }
1356 
1357 static void
1358 netmap_knwdetach(struct knote *kn)
1359 {
1360 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1361 	struct nm_selinfo *si = priv->np_si[NR_TX];
1362 
1363 	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1364 	NMG_LOCK();
1365 	si->kqueue_users--;
1366 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1367 	NMG_UNLOCK();
1368 }
1369 
1370 /*
1371  * Callback triggered by netmap notifications (see netmap_notify()),
1372  * and by the application calling kevent(). In the former case we
1373  * just return 1 (events ready), since we are not able to do better.
1374  * In the latter case we use netmap_poll() to see which events are
1375  * ready.
1376  */
1377 static int
1378 netmap_knrw(struct knote *kn, long hint, int events)
1379 {
1380 	struct netmap_priv_d *priv;
1381 	int revents;
1382 
1383 	if (hint != 0) {
1384 		/* Called from netmap_notify(), typically from a
1385 		 * thread different from the one issuing kevent().
1386 		 * Assume we are ready. */
1387 		return 1;
1388 	}
1389 
1390 	/* Called from kevent(). */
1391 	priv = kn->kn_hook;
1392 	revents = netmap_poll(priv, events, /*thread=*/NULL);
1393 
1394 	return (events & revents) ? 1 : 0;
1395 }
1396 
1397 static int
1398 netmap_knread(struct knote *kn, long hint)
1399 {
1400 	return netmap_knrw(kn, hint, POLLIN);
1401 }
1402 
1403 static int
1404 netmap_knwrite(struct knote *kn, long hint)
1405 {
1406 	return netmap_knrw(kn, hint, POLLOUT);
1407 }
1408 
1409 static struct filterops netmap_rfiltops = {
1410 	.f_isfd = 1,
1411 	.f_detach = netmap_knrdetach,
1412 	.f_event = netmap_knread,
1413 };
1414 
1415 static struct filterops netmap_wfiltops = {
1416 	.f_isfd = 1,
1417 	.f_detach = netmap_knwdetach,
1418 	.f_event = netmap_knwrite,
1419 };
1420 
1421 
1422 /*
1423  * This is called when a thread invokes kevent() to record
1424  * a change in the configuration of the kqueue().
1425  * The 'priv' is the one associated to the open netmap device.
1426  */
1427 static int
1428 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1429 {
1430 	struct netmap_priv_d *priv;
1431 	int error;
1432 	struct netmap_adapter *na;
1433 	struct nm_selinfo *si;
1434 	int ev = kn->kn_filter;
1435 
1436 	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1437 		nm_prerr("bad filter request %d", ev);
1438 		return 1;
1439 	}
1440 	error = devfs_get_cdevpriv((void**)&priv);
1441 	if (error) {
1442 		nm_prerr("device not yet setup");
1443 		return 1;
1444 	}
1445 	na = priv->np_na;
1446 	if (na == NULL) {
1447 		nm_prerr("no netmap adapter for this file descriptor");
1448 		return 1;
1449 	}
1450 	/* the si is indicated in the priv */
1451 	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1452 	kn->kn_fop = (ev == EVFILT_WRITE) ?
1453 		&netmap_wfiltops : &netmap_rfiltops;
1454 	kn->kn_hook = priv;
1455 	NMG_LOCK();
1456 	si->kqueue_users++;
1457 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1458 	NMG_UNLOCK();
1459 	knlist_add(&si->si.si_note, kn, /*islocked=*/0);
1460 
1461 	return 0;
1462 }
1463 
1464 static int
1465 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1466 {
1467 	struct netmap_priv_d *priv;
1468 	if (devfs_get_cdevpriv((void **)&priv)) {
1469 		return POLLERR;
1470 	}
1471 	return netmap_poll(priv, events, td);
1472 }
1473 
1474 static int
1475 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1476 		int ffla __unused, struct thread *td)
1477 {
1478 	int error;
1479 	struct netmap_priv_d *priv;
1480 
1481 	CURVNET_SET(TD_TO_VNET(td));
1482 	error = devfs_get_cdevpriv((void **)&priv);
1483 	if (error) {
1484 		/* XXX ENOENT should be impossible, since the priv
1485 		 * is now created in the open */
1486 		if (error == ENOENT)
1487 			error = ENXIO;
1488 		goto out;
1489 	}
1490 	error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1491 out:
1492 	CURVNET_RESTORE();
1493 
1494 	return error;
1495 }
1496 
1497 void
1498 nm_os_onattach(if_t ifp)
1499 {
1500 	if_setcapabilitiesbit(ifp, IFCAP_NETMAP, 0);
1501 }
1502 
1503 void
1504 nm_os_onenter(if_t ifp)
1505 {
1506 	struct netmap_adapter *na = NA(ifp);
1507 
1508 	na->if_transmit = if_gettransmitfn(ifp);
1509 	if_settransmitfn(ifp, netmap_transmit);
1510 	if_setcapenablebit(ifp, IFCAP_NETMAP, 0);
1511 }
1512 
1513 void
1514 nm_os_onexit(if_t ifp)
1515 {
1516 	struct netmap_adapter *na = NA(ifp);
1517 
1518 	if_settransmitfn(ifp, na->if_transmit);
1519 	if_setcapenablebit(ifp, 0, IFCAP_NETMAP);
1520 }
1521 
1522 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1523 struct cdevsw netmap_cdevsw = {
1524 	.d_version = D_VERSION,
1525 	.d_name = "netmap",
1526 	.d_open = netmap_open,
1527 	.d_mmap_single = netmap_mmap_single,
1528 	.d_ioctl = freebsd_netmap_ioctl,
1529 	.d_poll = freebsd_netmap_poll,
1530 	.d_kqfilter = netmap_kqfilter,
1531 	.d_close = netmap_close,
1532 };
1533 /*--- end of kqueue support ----*/
1534 
1535 /*
1536  * Kernel entry point.
1537  *
1538  * Initialize/finalize the module and return.
1539  *
1540  * Return 0 on success, errno on failure.
1541  */
1542 static int
1543 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1544 {
1545 	int error = 0;
1546 
1547 	switch (event) {
1548 	case MOD_LOAD:
1549 		error = netmap_init();
1550 		break;
1551 
1552 	case MOD_UNLOAD:
1553 		/*
1554 		 * if some one is still using netmap,
1555 		 * then the module can not be unloaded.
1556 		 */
1557 		if (netmap_use_count) {
1558 			nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
1559 					netmap_use_count);
1560 			error = EBUSY;
1561 			break;
1562 		}
1563 		netmap_fini();
1564 		break;
1565 
1566 	default:
1567 		error = EOPNOTSUPP;
1568 		break;
1569 	}
1570 
1571 	return (error);
1572 }
1573 
1574 #ifdef DEV_MODULE_ORDERED
1575 /*
1576  * The netmap module contains three drivers: (i) the netmap character device
1577  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1578  * device driver. The attach() routines of both (ii) and (iii) need the
1579  * lock of the global allocator, and such lock is initialized in netmap_init(),
1580  * which is part of (i).
1581  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1582  * the 'order' parameter of driver declaration macros. For (i), we specify
1583  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1584  * macros for (ii) and (iii).
1585  */
1586 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1587 #else /* !DEV_MODULE_ORDERED */
1588 DEV_MODULE(netmap, netmap_loader, NULL);
1589 #endif /* DEV_MODULE_ORDERED  */
1590 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1591 MODULE_VERSION(netmap, 1);
1592 /* reduce conditional code */
1593 // linux API, use for the knlist in FreeBSD
1594 /* use a private mutex for the knlist */
1595