1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/eventhandler.h> 36 #include <sys/jail.h> 37 #include <sys/poll.h> /* POLLIN, POLLOUT */ 38 #include <sys/kernel.h> /* types used in module initialization */ 39 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 40 #include <sys/endian.h> 41 #include <sys/syscallsubr.h> /* kern_ioctl() */ 42 43 #include <sys/rwlock.h> 44 45 #include <vm/vm.h> /* vtophys */ 46 #include <vm/pmap.h> /* vtophys */ 47 #include <vm/vm_param.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_pager.h> 51 #include <vm/uma.h> 52 53 54 #include <sys/malloc.h> 55 #include <sys/socket.h> /* sockaddrs */ 56 #include <sys/selinfo.h> 57 #include <sys/kthread.h> /* kthread_add() */ 58 #include <sys/proc.h> /* PROC_LOCK() */ 59 #include <sys/unistd.h> /* RFNOWAIT */ 60 #include <sys/sched.h> /* sched_bind() */ 61 #include <sys/smp.h> /* mp_maxid */ 62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> /* IFT_ETHER */ 66 #include <net/ethernet.h> /* ether_ifdetach */ 67 #include <net/if_dl.h> /* LLADDR */ 68 #include <machine/bus.h> /* bus_dmamap_* */ 69 #include <netinet/in.h> /* in6_cksum_pseudo() */ 70 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 71 72 #include <net/netmap.h> 73 #include <dev/netmap/netmap_kern.h> 74 #include <net/netmap_virt.h> 75 #include <dev/netmap/netmap_mem2.h> 76 77 78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 79 80 static void 81 nm_kqueue_notify(void *opaque, int pending) 82 { 83 struct nm_selinfo *si = opaque; 84 85 /* We use a non-zero hint to distinguish this notification call 86 * from the call done in kqueue_scan(), which uses hint=0. 87 */ 88 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 89 } 90 91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 92 int err; 93 94 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 95 si->ntfytq = taskqueue_create(name, M_NOWAIT, 96 taskqueue_thread_enqueue, &si->ntfytq); 97 if (si->ntfytq == NULL) 98 return -ENOMEM; 99 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 100 if (err) { 101 taskqueue_free(si->ntfytq); 102 si->ntfytq = NULL; 103 return err; 104 } 105 106 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 107 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 108 knlist_init_mtx(&si->si.si_note, &si->m); 109 si->kqueue_users = 0; 110 111 return (0); 112 } 113 114 void 115 nm_os_selinfo_uninit(NM_SELINFO_T *si) 116 { 117 if (si->ntfytq == NULL) { 118 return; /* si was not initialized */ 119 } 120 taskqueue_drain(si->ntfytq, &si->ntfytask); 121 taskqueue_free(si->ntfytq); 122 si->ntfytq = NULL; 123 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 124 knlist_destroy(&si->si.si_note); 125 /* now we don't need the mutex anymore */ 126 mtx_destroy(&si->m); 127 } 128 129 void * 130 nm_os_malloc(size_t size) 131 { 132 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 133 } 134 135 void * 136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 137 { 138 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 139 } 140 141 void 142 nm_os_free(void *addr) 143 { 144 free(addr, M_DEVBUF); 145 } 146 147 void 148 nm_os_ifnet_lock(void) 149 { 150 IFNET_RLOCK(); 151 } 152 153 void 154 nm_os_ifnet_unlock(void) 155 { 156 IFNET_RUNLOCK(); 157 } 158 159 static int netmap_use_count = 0; 160 161 void 162 nm_os_get_module(void) 163 { 164 netmap_use_count++; 165 } 166 167 void 168 nm_os_put_module(void) 169 { 170 netmap_use_count--; 171 } 172 173 static void 174 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp) 175 { 176 netmap_undo_zombie(ifp); 177 } 178 179 static void 180 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp) 181 { 182 netmap_make_zombie(ifp); 183 } 184 185 static eventhandler_tag nm_ifnet_ah_tag; 186 static eventhandler_tag nm_ifnet_dh_tag; 187 188 int 189 nm_os_ifnet_init(void) 190 { 191 nm_ifnet_ah_tag = 192 EVENTHANDLER_REGISTER(ifnet_arrival_event, 193 netmap_ifnet_arrival_handler, 194 NULL, EVENTHANDLER_PRI_ANY); 195 nm_ifnet_dh_tag = 196 EVENTHANDLER_REGISTER(ifnet_departure_event, 197 netmap_ifnet_departure_handler, 198 NULL, EVENTHANDLER_PRI_ANY); 199 return 0; 200 } 201 202 void 203 nm_os_ifnet_fini(void) 204 { 205 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 206 nm_ifnet_ah_tag); 207 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 208 nm_ifnet_dh_tag); 209 } 210 211 unsigned 212 nm_os_ifnet_mtu(struct ifnet *ifp) 213 { 214 #if __FreeBSD_version < 1100030 215 return ifp->if_data.ifi_mtu; 216 #else /* __FreeBSD_version >= 1100030 */ 217 return ifp->if_mtu; 218 #endif 219 } 220 221 rawsum_t 222 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 223 { 224 /* TODO XXX please use the FreeBSD implementation for this. */ 225 uint16_t *words = (uint16_t *)data; 226 int nw = len / 2; 227 int i; 228 229 for (i = 0; i < nw; i++) 230 cur_sum += be16toh(words[i]); 231 232 if (len & 1) 233 cur_sum += (data[len-1] << 8); 234 235 return cur_sum; 236 } 237 238 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 239 * return value is in network byte order. 240 */ 241 uint16_t 242 nm_os_csum_fold(rawsum_t cur_sum) 243 { 244 /* TODO XXX please use the FreeBSD implementation for this. */ 245 while (cur_sum >> 16) 246 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 247 248 return htobe16((~cur_sum) & 0xFFFF); 249 } 250 251 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 252 { 253 #if 0 254 return in_cksum_hdr((void *)iph); 255 #else 256 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 257 #endif 258 } 259 260 void 261 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 262 size_t datalen, uint16_t *check) 263 { 264 #ifdef INET 265 uint16_t pseudolen = datalen + iph->protocol; 266 267 /* Compute and insert the pseudo-header cheksum. */ 268 *check = in_pseudo(iph->saddr, iph->daddr, 269 htobe16(pseudolen)); 270 /* Compute the checksum on TCP/UDP header + payload 271 * (includes the pseudo-header). 272 */ 273 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 274 #else 275 static int notsupported = 0; 276 if (!notsupported) { 277 notsupported = 1; 278 nm_prerr("inet4 segmentation not supported"); 279 } 280 #endif 281 } 282 283 void 284 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 285 size_t datalen, uint16_t *check) 286 { 287 #ifdef INET6 288 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 289 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 290 #else 291 static int notsupported = 0; 292 if (!notsupported) { 293 notsupported = 1; 294 nm_prerr("inet6 segmentation not supported"); 295 } 296 #endif 297 } 298 299 /* on FreeBSD we send up one packet at a time */ 300 void * 301 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev) 302 { 303 NA(ifp)->if_input(ifp, m); 304 return NULL; 305 } 306 307 int 308 nm_os_mbuf_has_csum_offld(struct mbuf *m) 309 { 310 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 311 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 312 CSUM_SCTP_IPV6); 313 } 314 315 int 316 nm_os_mbuf_has_seg_offld(struct mbuf *m) 317 { 318 return m->m_pkthdr.csum_flags & CSUM_TSO; 319 } 320 321 static void 322 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 323 { 324 int stolen; 325 326 if (unlikely(!NM_NA_VALID(ifp))) { 327 nm_prlim(1, "Warning: RX packet intercepted, but no" 328 " emulated adapter"); 329 return; 330 } 331 332 stolen = generic_rx_handler(ifp, m); 333 if (!stolen) { 334 struct netmap_generic_adapter *gna = 335 (struct netmap_generic_adapter *)NA(ifp); 336 gna->save_if_input(ifp, m); 337 } 338 } 339 340 /* 341 * Intercept the rx routine in the standard device driver. 342 * Second argument is non-zero to intercept, 0 to restore 343 */ 344 int 345 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 346 { 347 struct netmap_adapter *na = &gna->up.up; 348 struct ifnet *ifp = na->ifp; 349 int ret = 0; 350 351 nm_os_ifnet_lock(); 352 if (intercept) { 353 if (gna->save_if_input) { 354 nm_prerr("RX on %s already intercepted", na->name); 355 ret = EBUSY; /* already set */ 356 goto out; 357 } 358 gna->save_if_input = ifp->if_input; 359 ifp->if_input = freebsd_generic_rx_handler; 360 } else { 361 if (!gna->save_if_input) { 362 nm_prerr("Failed to undo RX intercept on %s", 363 na->name); 364 ret = EINVAL; /* not saved */ 365 goto out; 366 } 367 ifp->if_input = gna->save_if_input; 368 gna->save_if_input = NULL; 369 } 370 out: 371 nm_os_ifnet_unlock(); 372 373 return ret; 374 } 375 376 377 /* 378 * Intercept the packet steering routine in the tx path, 379 * so that we can decide which queue is used for an mbuf. 380 * Second argument is non-zero to intercept, 0 to restore. 381 * On freebsd we just intercept if_transmit. 382 */ 383 int 384 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 385 { 386 struct netmap_adapter *na = &gna->up.up; 387 struct ifnet *ifp = netmap_generic_getifp(gna); 388 389 nm_os_ifnet_lock(); 390 if (intercept) { 391 na->if_transmit = ifp->if_transmit; 392 ifp->if_transmit = netmap_transmit; 393 } else { 394 ifp->if_transmit = na->if_transmit; 395 } 396 nm_os_ifnet_unlock(); 397 398 return 0; 399 } 400 401 402 /* 403 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 404 * and non-zero on error (which may be packet drops or other errors). 405 * addr and len identify the netmap buffer, m is the (preallocated) 406 * mbuf to use for transmissions. 407 * 408 * We should add a reference to the mbuf so the m_freem() at the end 409 * of the transmission does not consume resources. 410 * 411 * On FreeBSD, and on multiqueue cards, we can force the queue using 412 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 413 * i = m->m_pkthdr.flowid % adapter->num_queues; 414 * else 415 * i = curcpu % adapter->num_queues; 416 * 417 */ 418 int 419 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 420 { 421 int ret; 422 u_int len = a->len; 423 struct ifnet *ifp = a->ifp; 424 struct mbuf *m = a->m; 425 426 #if __FreeBSD_version < 1100000 427 /* 428 * Old FreeBSD versions. The mbuf has a cluster attached, 429 * we need to copy from the cluster to the netmap buffer. 430 */ 431 if (MBUF_REFCNT(m) != 1) { 432 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 433 panic("in generic_xmit_frame"); 434 } 435 if (m->m_ext.ext_size < len) { 436 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len); 437 len = m->m_ext.ext_size; 438 } 439 bcopy(a->addr, m->m_data, len); 440 #else /* __FreeBSD_version >= 1100000 */ 441 /* New FreeBSD versions. Link the external storage to 442 * the netmap buffer, so that no copy is necessary. */ 443 m->m_ext.ext_buf = m->m_data = a->addr; 444 m->m_ext.ext_size = len; 445 #endif /* __FreeBSD_version >= 1100000 */ 446 447 m->m_len = m->m_pkthdr.len = len; 448 449 /* mbuf refcnt is not contended, no need to use atomic 450 * (a memory barrier is enough). */ 451 SET_MBUF_REFCNT(m, 2); 452 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 453 m->m_pkthdr.flowid = a->ring_nr; 454 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 455 ret = NA(ifp)->if_transmit(ifp, m); 456 return ret ? -1 : 0; 457 } 458 459 460 #if __FreeBSD_version >= 1100005 461 struct netmap_adapter * 462 netmap_getna(if_t ifp) 463 { 464 return (NA((struct ifnet *)ifp)); 465 } 466 #endif /* __FreeBSD_version >= 1100005 */ 467 468 /* 469 * The following two functions are empty until we have a generic 470 * way to extract the info from the ifp 471 */ 472 int 473 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx) 474 { 475 return 0; 476 } 477 478 479 void 480 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq) 481 { 482 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 483 484 *txq = num_rings; 485 *rxq = num_rings; 486 } 487 488 void 489 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 490 { 491 492 gna->rxsg = 1; /* Supported through m_copydata. */ 493 gna->txqdisc = 0; /* Not supported. */ 494 } 495 496 void 497 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 498 { 499 mit->mit_pending = 0; 500 mit->mit_ring_idx = idx; 501 mit->mit_na = na; 502 } 503 504 505 void 506 nm_os_mitigation_start(struct nm_generic_mit *mit) 507 { 508 } 509 510 511 void 512 nm_os_mitigation_restart(struct nm_generic_mit *mit) 513 { 514 } 515 516 517 int 518 nm_os_mitigation_active(struct nm_generic_mit *mit) 519 { 520 521 return 0; 522 } 523 524 525 void 526 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 527 { 528 } 529 530 static int 531 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr) 532 { 533 534 return EINVAL; 535 } 536 537 static void 538 nm_vi_start(struct ifnet *ifp) 539 { 540 panic("nm_vi_start() must not be called"); 541 } 542 543 /* 544 * Index manager of persistent virtual interfaces. 545 * It is used to decide the lowest byte of the MAC address. 546 * We use the same algorithm with management of bridge port index. 547 */ 548 #define NM_VI_MAX 255 549 static struct { 550 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 551 uint8_t active; 552 struct mtx lock; 553 } nm_vi_indices; 554 555 void 556 nm_os_vi_init_index(void) 557 { 558 int i; 559 for (i = 0; i < NM_VI_MAX; i++) 560 nm_vi_indices.index[i] = i; 561 nm_vi_indices.active = 0; 562 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 563 } 564 565 /* return -1 if no index available */ 566 static int 567 nm_vi_get_index(void) 568 { 569 int ret; 570 571 mtx_lock(&nm_vi_indices.lock); 572 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 573 nm_vi_indices.index[nm_vi_indices.active++]; 574 mtx_unlock(&nm_vi_indices.lock); 575 return ret; 576 } 577 578 static void 579 nm_vi_free_index(uint8_t val) 580 { 581 int i, lim; 582 583 mtx_lock(&nm_vi_indices.lock); 584 lim = nm_vi_indices.active; 585 for (i = 0; i < lim; i++) { 586 if (nm_vi_indices.index[i] == val) { 587 /* swap index[lim-1] and j */ 588 int tmp = nm_vi_indices.index[lim-1]; 589 nm_vi_indices.index[lim-1] = val; 590 nm_vi_indices.index[i] = tmp; 591 nm_vi_indices.active--; 592 break; 593 } 594 } 595 if (lim == nm_vi_indices.active) 596 nm_prerr("Index %u not found", val); 597 mtx_unlock(&nm_vi_indices.lock); 598 } 599 #undef NM_VI_MAX 600 601 /* 602 * Implementation of a netmap-capable virtual interface that 603 * registered to the system. 604 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 605 * 606 * Note: Linux sets refcount to 0 on allocation of net_device, 607 * then increments it on registration to the system. 608 * FreeBSD sets refcount to 1 on if_alloc(), and does not 609 * increment this refcount on if_attach(). 610 */ 611 int 612 nm_os_vi_persist(const char *name, struct ifnet **ret) 613 { 614 struct ifnet *ifp; 615 u_short macaddr_hi; 616 uint32_t macaddr_mid; 617 u_char eaddr[6]; 618 int unit = nm_vi_get_index(); /* just to decide MAC address */ 619 620 if (unit < 0) 621 return EBUSY; 622 /* 623 * We use the same MAC address generation method with tap 624 * except for the highest octet is 00:be instead of 00:bd 625 */ 626 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 627 macaddr_mid = (uint32_t) ticks; 628 bcopy(&macaddr_hi, eaddr, sizeof(short)); 629 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 630 eaddr[5] = (uint8_t)unit; 631 632 ifp = if_alloc(IFT_ETHER); 633 if (ifp == NULL) { 634 nm_prerr("if_alloc failed"); 635 return ENOMEM; 636 } 637 if_initname(ifp, name, IF_DUNIT_NONE); 638 ifp->if_mtu = 65536; 639 ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST; 640 ifp->if_init = (void *)nm_vi_dummy; 641 ifp->if_ioctl = nm_vi_dummy; 642 ifp->if_start = nm_vi_start; 643 ifp->if_mtu = ETHERMTU; 644 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 645 ifp->if_capabilities |= IFCAP_LINKSTATE; 646 ifp->if_capenable |= IFCAP_LINKSTATE; 647 648 ether_ifattach(ifp, eaddr); 649 *ret = ifp; 650 return 0; 651 } 652 653 /* unregister from the system and drop the final refcount */ 654 void 655 nm_os_vi_detach(struct ifnet *ifp) 656 { 657 nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]); 658 ether_ifdetach(ifp); 659 if_free(ifp); 660 } 661 662 #ifdef WITH_EXTMEM 663 #include <vm/vm_map.h> 664 #include <vm/vm_kern.h> 665 struct nm_os_extmem { 666 vm_object_t obj; 667 vm_offset_t kva; 668 vm_offset_t size; 669 uintptr_t scan; 670 }; 671 672 void 673 nm_os_extmem_delete(struct nm_os_extmem *e) 674 { 675 nm_prinf("freeing %zx bytes", (size_t)e->size); 676 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 677 nm_os_free(e); 678 } 679 680 char * 681 nm_os_extmem_nextpage(struct nm_os_extmem *e) 682 { 683 char *rv = NULL; 684 if (e->scan < e->kva + e->size) { 685 rv = (char *)e->scan; 686 e->scan += PAGE_SIZE; 687 } 688 return rv; 689 } 690 691 int 692 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 693 { 694 return (e1->obj == e2->obj); 695 } 696 697 int 698 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 699 { 700 return e->size >> PAGE_SHIFT; 701 } 702 703 struct nm_os_extmem * 704 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 705 { 706 vm_map_t map; 707 vm_map_entry_t entry; 708 vm_object_t obj; 709 vm_prot_t prot; 710 vm_pindex_t index; 711 boolean_t wired; 712 struct nm_os_extmem *e = NULL; 713 int rv, error = 0; 714 715 e = nm_os_malloc(sizeof(*e)); 716 if (e == NULL) { 717 error = ENOMEM; 718 goto out; 719 } 720 721 map = &curthread->td_proc->p_vmspace->vm_map; 722 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 723 &obj, &index, &prot, &wired); 724 if (rv != KERN_SUCCESS) { 725 nm_prerr("address %lx not found", p); 726 goto out_free; 727 } 728 /* check that we are given the whole vm_object ? */ 729 vm_map_lookup_done(map, entry); 730 731 // XXX can we really use obj after releasing the map lock? 732 e->obj = obj; 733 vm_object_reference(obj); 734 /* wire the memory and add the vm_object to the kernel map, 735 * to make sure that it is not fred even if the processes that 736 * are mmap()ing it all exit 737 */ 738 e->kva = vm_map_min(kernel_map); 739 e->size = obj->size << PAGE_SHIFT; 740 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 741 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 742 VM_PROT_READ | VM_PROT_WRITE, 0); 743 if (rv != KERN_SUCCESS) { 744 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 745 goto out_rel; 746 } 747 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 748 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 749 if (rv != KERN_SUCCESS) { 750 nm_prerr("vm_map_wire failed"); 751 goto out_rem; 752 } 753 754 e->scan = e->kva; 755 756 return e; 757 758 out_rem: 759 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 760 e->obj = NULL; 761 out_rel: 762 vm_object_deallocate(e->obj); 763 out_free: 764 nm_os_free(e); 765 out: 766 if (perror) 767 *perror = error; 768 return NULL; 769 } 770 #endif /* WITH_EXTMEM */ 771 772 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 773 774 #ifdef WITH_PTNETMAP 775 #include <sys/bus.h> 776 #include <sys/rman.h> 777 #include <machine/bus.h> /* bus_dmamap_* */ 778 #include <machine/resource.h> 779 #include <dev/pci/pcivar.h> 780 #include <dev/pci/pcireg.h> 781 /* 782 * ptnetmap memory device (memdev) for freebsd guest, 783 * ssed to expose host netmap memory to the guest through a PCI BAR. 784 */ 785 786 /* 787 * ptnetmap memdev private data structure 788 */ 789 struct ptnetmap_memdev { 790 device_t dev; 791 struct resource *pci_io; 792 struct resource *pci_mem; 793 struct netmap_mem_d *nm_mem; 794 }; 795 796 static int ptn_memdev_probe(device_t); 797 static int ptn_memdev_attach(device_t); 798 static int ptn_memdev_detach(device_t); 799 static int ptn_memdev_shutdown(device_t); 800 801 static device_method_t ptn_memdev_methods[] = { 802 DEVMETHOD(device_probe, ptn_memdev_probe), 803 DEVMETHOD(device_attach, ptn_memdev_attach), 804 DEVMETHOD(device_detach, ptn_memdev_detach), 805 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 806 DEVMETHOD_END 807 }; 808 809 static driver_t ptn_memdev_driver = { 810 PTNETMAP_MEMDEV_NAME, 811 ptn_memdev_methods, 812 sizeof(struct ptnetmap_memdev), 813 }; 814 815 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 816 * below. */ 817 static devclass_t ptnetmap_devclass; 818 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass, 819 NULL, NULL, SI_ORDER_MIDDLE + 1); 820 821 /* 822 * Map host netmap memory through PCI-BAR in the guest OS, 823 * returning physical (nm_paddr) and virtual (nm_addr) addresses 824 * of the netmap memory mapped in the guest. 825 */ 826 int 827 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 828 void **nm_addr, uint64_t *mem_size) 829 { 830 int rid; 831 832 nm_prinf("ptn_memdev_driver iomap"); 833 834 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 835 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 836 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 837 (*mem_size << 32); 838 839 /* map memory allocator */ 840 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 841 &rid, 0, ~0, *mem_size, RF_ACTIVE); 842 if (ptn_dev->pci_mem == NULL) { 843 *nm_paddr = 0; 844 *nm_addr = NULL; 845 return ENOMEM; 846 } 847 848 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 849 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 850 851 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 852 PTNETMAP_MEM_PCI_BAR, 853 (unsigned long)(*nm_paddr), 854 (unsigned long)rman_get_size(ptn_dev->pci_mem), 855 (unsigned long)*mem_size); 856 return (0); 857 } 858 859 uint32_t 860 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 861 { 862 return bus_read_4(ptn_dev->pci_io, reg); 863 } 864 865 /* Unmap host netmap memory. */ 866 void 867 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 868 { 869 nm_prinf("ptn_memdev_driver iounmap"); 870 871 if (ptn_dev->pci_mem) { 872 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 873 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 874 ptn_dev->pci_mem = NULL; 875 } 876 } 877 878 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 879 * positive on failure */ 880 static int 881 ptn_memdev_probe(device_t dev) 882 { 883 char desc[256]; 884 885 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 886 return (ENXIO); 887 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 888 return (ENXIO); 889 890 snprintf(desc, sizeof(desc), "%s PCI adapter", 891 PTNETMAP_MEMDEV_NAME); 892 device_set_desc_copy(dev, desc); 893 894 return (BUS_PROBE_DEFAULT); 895 } 896 897 /* Device initialization routine. */ 898 static int 899 ptn_memdev_attach(device_t dev) 900 { 901 struct ptnetmap_memdev *ptn_dev; 902 int rid; 903 uint16_t mem_id; 904 905 ptn_dev = device_get_softc(dev); 906 ptn_dev->dev = dev; 907 908 pci_enable_busmaster(dev); 909 910 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 911 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 912 RF_ACTIVE); 913 if (ptn_dev->pci_io == NULL) { 914 device_printf(dev, "cannot map I/O space\n"); 915 return (ENXIO); 916 } 917 918 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 919 920 /* create guest allocator */ 921 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 922 if (ptn_dev->nm_mem == NULL) { 923 ptn_memdev_detach(dev); 924 return (ENOMEM); 925 } 926 netmap_mem_get(ptn_dev->nm_mem); 927 928 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 929 930 return (0); 931 } 932 933 /* Device removal routine. */ 934 static int 935 ptn_memdev_detach(device_t dev) 936 { 937 struct ptnetmap_memdev *ptn_dev; 938 939 ptn_dev = device_get_softc(dev); 940 941 if (ptn_dev->nm_mem) { 942 nm_prinf("ptnetmap memdev detached, host memid %u", 943 netmap_mem_get_id(ptn_dev->nm_mem)); 944 netmap_mem_put(ptn_dev->nm_mem); 945 ptn_dev->nm_mem = NULL; 946 } 947 if (ptn_dev->pci_mem) { 948 bus_release_resource(dev, SYS_RES_MEMORY, 949 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 950 ptn_dev->pci_mem = NULL; 951 } 952 if (ptn_dev->pci_io) { 953 bus_release_resource(dev, SYS_RES_IOPORT, 954 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 955 ptn_dev->pci_io = NULL; 956 } 957 958 return (0); 959 } 960 961 static int 962 ptn_memdev_shutdown(device_t dev) 963 { 964 return bus_generic_shutdown(dev); 965 } 966 967 #endif /* WITH_PTNETMAP */ 968 969 /* 970 * In order to track whether pages are still mapped, we hook into 971 * the standard cdev_pager and intercept the constructor and 972 * destructor. 973 */ 974 975 struct netmap_vm_handle_t { 976 struct cdev *dev; 977 struct netmap_priv_d *priv; 978 }; 979 980 981 static int 982 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 983 vm_ooffset_t foff, struct ucred *cred, u_short *color) 984 { 985 struct netmap_vm_handle_t *vmh = handle; 986 987 if (netmap_verbose) 988 nm_prinf("handle %p size %jd prot %d foff %jd", 989 handle, (intmax_t)size, prot, (intmax_t)foff); 990 if (color) 991 *color = 0; 992 dev_ref(vmh->dev); 993 return 0; 994 } 995 996 997 static void 998 netmap_dev_pager_dtor(void *handle) 999 { 1000 struct netmap_vm_handle_t *vmh = handle; 1001 struct cdev *dev = vmh->dev; 1002 struct netmap_priv_d *priv = vmh->priv; 1003 1004 if (netmap_verbose) 1005 nm_prinf("handle %p", handle); 1006 netmap_dtor(priv); 1007 free(vmh, M_DEVBUF); 1008 dev_rel(dev); 1009 } 1010 1011 1012 static int 1013 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 1014 int prot, vm_page_t *mres) 1015 { 1016 struct netmap_vm_handle_t *vmh = object->handle; 1017 struct netmap_priv_d *priv = vmh->priv; 1018 struct netmap_adapter *na = priv->np_na; 1019 vm_paddr_t paddr; 1020 vm_page_t page; 1021 vm_memattr_t memattr; 1022 vm_pindex_t pidx; 1023 1024 nm_prdis("object %p offset %jd prot %d mres %p", 1025 object, (intmax_t)offset, prot, mres); 1026 memattr = object->memattr; 1027 pidx = OFF_TO_IDX(offset); 1028 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1029 if (paddr == 0) 1030 return VM_PAGER_FAIL; 1031 1032 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1033 /* 1034 * If the passed in result page is a fake page, update it with 1035 * the new physical address. 1036 */ 1037 page = *mres; 1038 vm_page_updatefake(page, paddr, memattr); 1039 } else { 1040 /* 1041 * Replace the passed in reqpage page with our own fake page and 1042 * free up the all of the original pages. 1043 */ 1044 #ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */ 1045 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK 1046 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK 1047 #endif /* VM_OBJECT_WUNLOCK */ 1048 1049 VM_OBJECT_WUNLOCK(object); 1050 page = vm_page_getfake(paddr, memattr); 1051 VM_OBJECT_WLOCK(object); 1052 vm_page_lock(*mres); 1053 vm_page_free(*mres); 1054 vm_page_unlock(*mres); 1055 *mres = page; 1056 vm_page_insert(page, object, pidx); 1057 } 1058 page->valid = VM_PAGE_BITS_ALL; 1059 return (VM_PAGER_OK); 1060 } 1061 1062 1063 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1064 .cdev_pg_ctor = netmap_dev_pager_ctor, 1065 .cdev_pg_dtor = netmap_dev_pager_dtor, 1066 .cdev_pg_fault = netmap_dev_pager_fault, 1067 }; 1068 1069 1070 static int 1071 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1072 vm_size_t objsize, vm_object_t *objp, int prot) 1073 { 1074 int error; 1075 struct netmap_vm_handle_t *vmh; 1076 struct netmap_priv_d *priv; 1077 vm_object_t obj; 1078 1079 if (netmap_verbose) 1080 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1081 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1082 1083 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1084 M_NOWAIT | M_ZERO); 1085 if (vmh == NULL) 1086 return ENOMEM; 1087 vmh->dev = cdev; 1088 1089 NMG_LOCK(); 1090 error = devfs_get_cdevpriv((void**)&priv); 1091 if (error) 1092 goto err_unlock; 1093 if (priv->np_nifp == NULL) { 1094 error = EINVAL; 1095 goto err_unlock; 1096 } 1097 vmh->priv = priv; 1098 priv->np_refs++; 1099 NMG_UNLOCK(); 1100 1101 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1102 &netmap_cdev_pager_ops, objsize, prot, 1103 *foff, NULL); 1104 if (obj == NULL) { 1105 nm_prerr("cdev_pager_allocate failed"); 1106 error = EINVAL; 1107 goto err_deref; 1108 } 1109 1110 *objp = obj; 1111 return 0; 1112 1113 err_deref: 1114 NMG_LOCK(); 1115 priv->np_refs--; 1116 err_unlock: 1117 NMG_UNLOCK(); 1118 // err: 1119 free(vmh, M_DEVBUF); 1120 return error; 1121 } 1122 1123 /* 1124 * On FreeBSD the close routine is only called on the last close on 1125 * the device (/dev/netmap) so we cannot do anything useful. 1126 * To track close() on individual file descriptors we pass netmap_dtor() to 1127 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1128 * when the last fd pointing to the device is closed. 1129 * 1130 * Note that FreeBSD does not even munmap() on close() so we also have 1131 * to track mmap() ourselves, and postpone the call to 1132 * netmap_dtor() is called when the process has no open fds and no active 1133 * memory maps on /dev/netmap, as in linux. 1134 */ 1135 static int 1136 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1137 { 1138 if (netmap_verbose) 1139 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1140 dev, fflag, devtype, td); 1141 return 0; 1142 } 1143 1144 1145 static int 1146 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1147 { 1148 struct netmap_priv_d *priv; 1149 int error; 1150 1151 (void)dev; 1152 (void)oflags; 1153 (void)devtype; 1154 (void)td; 1155 1156 NMG_LOCK(); 1157 priv = netmap_priv_new(); 1158 if (priv == NULL) { 1159 error = ENOMEM; 1160 goto out; 1161 } 1162 error = devfs_set_cdevpriv(priv, netmap_dtor); 1163 if (error) { 1164 netmap_priv_delete(priv); 1165 } 1166 out: 1167 NMG_UNLOCK(); 1168 return error; 1169 } 1170 1171 /******************** kthread wrapper ****************/ 1172 #include <sys/sysproto.h> 1173 u_int 1174 nm_os_ncpus(void) 1175 { 1176 return mp_maxid + 1; 1177 } 1178 1179 struct nm_kctx_ctx { 1180 /* Userspace thread (kthread creator). */ 1181 struct thread *user_td; 1182 1183 /* worker function and parameter */ 1184 nm_kctx_worker_fn_t worker_fn; 1185 void *worker_private; 1186 1187 struct nm_kctx *nmk; 1188 1189 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1190 long type; 1191 }; 1192 1193 struct nm_kctx { 1194 struct thread *worker; 1195 struct mtx worker_lock; 1196 struct nm_kctx_ctx worker_ctx; 1197 int run; /* used to stop kthread */ 1198 int attach_user; /* kthread attached to user_process */ 1199 int affinity; 1200 }; 1201 1202 static void 1203 nm_kctx_worker(void *data) 1204 { 1205 struct nm_kctx *nmk = data; 1206 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1207 1208 if (nmk->affinity >= 0) { 1209 thread_lock(curthread); 1210 sched_bind(curthread, nmk->affinity); 1211 thread_unlock(curthread); 1212 } 1213 1214 while (nmk->run) { 1215 /* 1216 * check if the parent process dies 1217 * (when kthread is attached to user process) 1218 */ 1219 if (ctx->user_td) { 1220 PROC_LOCK(curproc); 1221 thread_suspend_check(0); 1222 PROC_UNLOCK(curproc); 1223 } else { 1224 kthread_suspend_check(); 1225 } 1226 1227 /* Continuously execute worker process. */ 1228 ctx->worker_fn(ctx->worker_private); /* worker body */ 1229 } 1230 1231 kthread_exit(); 1232 } 1233 1234 void 1235 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1236 { 1237 nmk->affinity = affinity; 1238 } 1239 1240 struct nm_kctx * 1241 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1242 { 1243 struct nm_kctx *nmk = NULL; 1244 1245 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1246 if (!nmk) 1247 return NULL; 1248 1249 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1250 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1251 nmk->worker_ctx.worker_private = cfg->worker_private; 1252 nmk->worker_ctx.type = cfg->type; 1253 nmk->affinity = -1; 1254 1255 /* attach kthread to user process (ptnetmap) */ 1256 nmk->attach_user = cfg->attach_user; 1257 1258 return nmk; 1259 } 1260 1261 int 1262 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1263 { 1264 struct proc *p = NULL; 1265 int error = 0; 1266 1267 /* Temporarily disable this function as it is currently broken 1268 * and causes kernel crashes. The failure can be triggered by 1269 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1270 return EOPNOTSUPP; 1271 1272 if (nmk->worker) 1273 return EBUSY; 1274 1275 /* check if we want to attach kthread to user process */ 1276 if (nmk->attach_user) { 1277 nmk->worker_ctx.user_td = curthread; 1278 p = curthread->td_proc; 1279 } 1280 1281 /* enable kthread main loop */ 1282 nmk->run = 1; 1283 /* create kthread */ 1284 if((error = kthread_add(nm_kctx_worker, nmk, p, 1285 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1286 nmk->worker_ctx.type))) { 1287 goto err; 1288 } 1289 1290 nm_prinf("nm_kthread started td %p", nmk->worker); 1291 1292 return 0; 1293 err: 1294 nm_prerr("nm_kthread start failed err %d", error); 1295 nmk->worker = NULL; 1296 return error; 1297 } 1298 1299 void 1300 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1301 { 1302 if (!nmk->worker) 1303 return; 1304 1305 /* tell to kthread to exit from main loop */ 1306 nmk->run = 0; 1307 1308 /* wake up kthread if it sleeps */ 1309 kthread_resume(nmk->worker); 1310 1311 nmk->worker = NULL; 1312 } 1313 1314 void 1315 nm_os_kctx_destroy(struct nm_kctx *nmk) 1316 { 1317 if (!nmk) 1318 return; 1319 1320 if (nmk->worker) 1321 nm_os_kctx_worker_stop(nmk); 1322 1323 free(nmk, M_DEVBUF); 1324 } 1325 1326 /******************** kqueue support ****************/ 1327 1328 /* 1329 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1330 * needs to call knote() to wake up kqueue listeners. 1331 * This operation is deferred to a taskqueue in order to avoid possible 1332 * lock order reversals; these may happen because knote() grabs a 1333 * private lock associated to the 'si' (see struct selinfo, 1334 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1335 * can be called while holding the lock associated to a different 1336 * 'si'. 1337 * When calling knote() we use a non-zero 'hint' argument to inform 1338 * the netmap_knrw() function that it is being called from 1339 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1340 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1341 * call netmap_poll(). 1342 * 1343 * The netmap_kqfilter() function registers one or another f_event 1344 * depending on read or write mode. A pointer to the struct 1345 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1346 * be passed to netmap_poll(). We pass NULL as a third argument to 1347 * netmap_poll(), so that the latter only runs the txsync/rxsync 1348 * (if necessary), and skips the nm_os_selrecord() calls. 1349 */ 1350 1351 1352 void 1353 nm_os_selwakeup(struct nm_selinfo *si) 1354 { 1355 selwakeuppri(&si->si, PI_NET); 1356 if (si->kqueue_users > 0) { 1357 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1358 } 1359 } 1360 1361 void 1362 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1363 { 1364 selrecord(td, &si->si); 1365 } 1366 1367 static void 1368 netmap_knrdetach(struct knote *kn) 1369 { 1370 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1371 struct nm_selinfo *si = priv->np_si[NR_RX]; 1372 1373 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1374 NMG_LOCK(); 1375 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1376 si->mtxname)); 1377 si->kqueue_users--; 1378 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1379 NMG_UNLOCK(); 1380 } 1381 1382 static void 1383 netmap_knwdetach(struct knote *kn) 1384 { 1385 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1386 struct nm_selinfo *si = priv->np_si[NR_TX]; 1387 1388 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1389 NMG_LOCK(); 1390 si->kqueue_users--; 1391 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1392 NMG_UNLOCK(); 1393 } 1394 1395 /* 1396 * Callback triggered by netmap notifications (see netmap_notify()), 1397 * and by the application calling kevent(). In the former case we 1398 * just return 1 (events ready), since we are not able to do better. 1399 * In the latter case we use netmap_poll() to see which events are 1400 * ready. 1401 */ 1402 static int 1403 netmap_knrw(struct knote *kn, long hint, int events) 1404 { 1405 struct netmap_priv_d *priv; 1406 int revents; 1407 1408 if (hint != 0) { 1409 /* Called from netmap_notify(), typically from a 1410 * thread different from the one issuing kevent(). 1411 * Assume we are ready. */ 1412 return 1; 1413 } 1414 1415 /* Called from kevent(). */ 1416 priv = kn->kn_hook; 1417 revents = netmap_poll(priv, events, /*thread=*/NULL); 1418 1419 return (events & revents) ? 1 : 0; 1420 } 1421 1422 static int 1423 netmap_knread(struct knote *kn, long hint) 1424 { 1425 return netmap_knrw(kn, hint, POLLIN); 1426 } 1427 1428 static int 1429 netmap_knwrite(struct knote *kn, long hint) 1430 { 1431 return netmap_knrw(kn, hint, POLLOUT); 1432 } 1433 1434 static struct filterops netmap_rfiltops = { 1435 .f_isfd = 1, 1436 .f_detach = netmap_knrdetach, 1437 .f_event = netmap_knread, 1438 }; 1439 1440 static struct filterops netmap_wfiltops = { 1441 .f_isfd = 1, 1442 .f_detach = netmap_knwdetach, 1443 .f_event = netmap_knwrite, 1444 }; 1445 1446 1447 /* 1448 * This is called when a thread invokes kevent() to record 1449 * a change in the configuration of the kqueue(). 1450 * The 'priv' is the one associated to the open netmap device. 1451 */ 1452 static int 1453 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1454 { 1455 struct netmap_priv_d *priv; 1456 int error; 1457 struct netmap_adapter *na; 1458 struct nm_selinfo *si; 1459 int ev = kn->kn_filter; 1460 1461 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1462 nm_prerr("bad filter request %d", ev); 1463 return 1; 1464 } 1465 error = devfs_get_cdevpriv((void**)&priv); 1466 if (error) { 1467 nm_prerr("device not yet setup"); 1468 return 1; 1469 } 1470 na = priv->np_na; 1471 if (na == NULL) { 1472 nm_prerr("no netmap adapter for this file descriptor"); 1473 return 1; 1474 } 1475 /* the si is indicated in the priv */ 1476 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1477 kn->kn_fop = (ev == EVFILT_WRITE) ? 1478 &netmap_wfiltops : &netmap_rfiltops; 1479 kn->kn_hook = priv; 1480 NMG_LOCK(); 1481 si->kqueue_users++; 1482 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1483 NMG_UNLOCK(); 1484 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1485 1486 return 0; 1487 } 1488 1489 static int 1490 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1491 { 1492 struct netmap_priv_d *priv; 1493 if (devfs_get_cdevpriv((void **)&priv)) { 1494 return POLLERR; 1495 } 1496 return netmap_poll(priv, events, td); 1497 } 1498 1499 static int 1500 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1501 int ffla __unused, struct thread *td) 1502 { 1503 int error; 1504 struct netmap_priv_d *priv; 1505 1506 CURVNET_SET(TD_TO_VNET(td)); 1507 error = devfs_get_cdevpriv((void **)&priv); 1508 if (error) { 1509 /* XXX ENOENT should be impossible, since the priv 1510 * is now created in the open */ 1511 if (error == ENOENT) 1512 error = ENXIO; 1513 goto out; 1514 } 1515 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1516 out: 1517 CURVNET_RESTORE(); 1518 1519 return error; 1520 } 1521 1522 void 1523 nm_os_onattach(struct ifnet *ifp) 1524 { 1525 ifp->if_capabilities |= IFCAP_NETMAP; 1526 } 1527 1528 void 1529 nm_os_onenter(struct ifnet *ifp) 1530 { 1531 struct netmap_adapter *na = NA(ifp); 1532 1533 na->if_transmit = ifp->if_transmit; 1534 ifp->if_transmit = netmap_transmit; 1535 ifp->if_capenable |= IFCAP_NETMAP; 1536 } 1537 1538 void 1539 nm_os_onexit(struct ifnet *ifp) 1540 { 1541 struct netmap_adapter *na = NA(ifp); 1542 1543 ifp->if_transmit = na->if_transmit; 1544 ifp->if_capenable &= ~IFCAP_NETMAP; 1545 } 1546 1547 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1548 struct cdevsw netmap_cdevsw = { 1549 .d_version = D_VERSION, 1550 .d_name = "netmap", 1551 .d_open = netmap_open, 1552 .d_mmap_single = netmap_mmap_single, 1553 .d_ioctl = freebsd_netmap_ioctl, 1554 .d_poll = freebsd_netmap_poll, 1555 .d_kqfilter = netmap_kqfilter, 1556 .d_close = netmap_close, 1557 }; 1558 /*--- end of kqueue support ----*/ 1559 1560 /* 1561 * Kernel entry point. 1562 * 1563 * Initialize/finalize the module and return. 1564 * 1565 * Return 0 on success, errno on failure. 1566 */ 1567 static int 1568 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1569 { 1570 int error = 0; 1571 1572 switch (event) { 1573 case MOD_LOAD: 1574 error = netmap_init(); 1575 break; 1576 1577 case MOD_UNLOAD: 1578 /* 1579 * if some one is still using netmap, 1580 * then the module can not be unloaded. 1581 */ 1582 if (netmap_use_count) { 1583 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1584 netmap_use_count); 1585 error = EBUSY; 1586 break; 1587 } 1588 netmap_fini(); 1589 break; 1590 1591 default: 1592 error = EOPNOTSUPP; 1593 break; 1594 } 1595 1596 return (error); 1597 } 1598 1599 #ifdef DEV_MODULE_ORDERED 1600 /* 1601 * The netmap module contains three drivers: (i) the netmap character device 1602 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1603 * device driver. The attach() routines of both (ii) and (iii) need the 1604 * lock of the global allocator, and such lock is initialized in netmap_init(), 1605 * which is part of (i). 1606 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1607 * the 'order' parameter of driver declaration macros. For (i), we specify 1608 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1609 * macros for (ii) and (iii). 1610 */ 1611 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1612 #else /* !DEV_MODULE_ORDERED */ 1613 DEV_MODULE(netmap, netmap_loader, NULL); 1614 #endif /* DEV_MODULE_ORDERED */ 1615 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1616 MODULE_VERSION(netmap, 1); 1617 /* reduce conditional code */ 1618 // linux API, use for the knlist in FreeBSD 1619 /* use a private mutex for the knlist */ 1620