xref: /freebsd/sys/dev/netmap/netmap_freebsd.c (revision c4e127e24dc9f1322ebe7ade0991de7022010bf1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *   1. Redistributions of source code must retain the above copyright
10  *      notice, this list of conditions and the following disclaimer.
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* $FreeBSD$ */
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 
32 #include <sys/param.h>
33 #include <sys/module.h>
34 #include <sys/errno.h>
35 #include <sys/eventhandler.h>
36 #include <sys/jail.h>
37 #include <sys/poll.h>  /* POLLIN, POLLOUT */
38 #include <sys/kernel.h> /* types used in module initialization */
39 #include <sys/conf.h>	/* DEV_MODULE_ORDERED */
40 #include <sys/endian.h>
41 #include <sys/syscallsubr.h> /* kern_ioctl() */
42 
43 #include <sys/rwlock.h>
44 
45 #include <vm/vm.h>      /* vtophys */
46 #include <vm/pmap.h>    /* vtophys */
47 #include <vm/vm_param.h>
48 #include <vm/vm_object.h>
49 #include <vm/vm_page.h>
50 #include <vm/vm_pager.h>
51 #include <vm/uma.h>
52 
53 
54 #include <sys/malloc.h>
55 #include <sys/socket.h> /* sockaddrs */
56 #include <sys/selinfo.h>
57 #include <sys/kthread.h> /* kthread_add() */
58 #include <sys/proc.h> /* PROC_LOCK() */
59 #include <sys/unistd.h> /* RFNOWAIT */
60 #include <sys/sched.h> /* sched_bind() */
61 #include <sys/smp.h> /* mp_maxid */
62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_types.h> /* IFT_ETHER */
66 #include <net/ethernet.h> /* ether_ifdetach */
67 #include <net/if_dl.h> /* LLADDR */
68 #include <machine/bus.h>        /* bus_dmamap_* */
69 #include <netinet/in.h>		/* in6_cksum_pseudo() */
70 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
71 
72 #include <net/netmap.h>
73 #include <dev/netmap/netmap_kern.h>
74 #include <net/netmap_virt.h>
75 #include <dev/netmap/netmap_mem2.h>
76 
77 
78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
79 
80 static void
81 nm_kqueue_notify(void *opaque, int pending)
82 {
83 	struct nm_selinfo *si = opaque;
84 
85 	/* We use a non-zero hint to distinguish this notification call
86 	 * from the call done in kqueue_scan(), which uses hint=0.
87 	 */
88 	KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
89 }
90 
91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
92 	int err;
93 
94 	TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
95 	si->ntfytq = taskqueue_create(name, M_NOWAIT,
96 	    taskqueue_thread_enqueue, &si->ntfytq);
97 	if (si->ntfytq == NULL)
98 		return -ENOMEM;
99 	err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
100 	if (err) {
101 		taskqueue_free(si->ntfytq);
102 		si->ntfytq = NULL;
103 		return err;
104 	}
105 
106 	snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
107 	mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
108 	knlist_init_mtx(&si->si.si_note, &si->m);
109 	si->kqueue_users = 0;
110 
111 	return (0);
112 }
113 
114 void
115 nm_os_selinfo_uninit(NM_SELINFO_T *si)
116 {
117 	if (si->ntfytq == NULL) {
118 		return;	/* si was not initialized */
119 	}
120 	taskqueue_drain(si->ntfytq, &si->ntfytask);
121 	taskqueue_free(si->ntfytq);
122 	si->ntfytq = NULL;
123 	knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
124 	knlist_destroy(&si->si.si_note);
125 	/* now we don't need the mutex anymore */
126 	mtx_destroy(&si->m);
127 }
128 
129 void *
130 nm_os_malloc(size_t size)
131 {
132 	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
133 }
134 
135 void *
136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
137 {
138 	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
139 }
140 
141 void
142 nm_os_free(void *addr)
143 {
144 	free(addr, M_DEVBUF);
145 }
146 
147 void
148 nm_os_ifnet_lock(void)
149 {
150 	IFNET_RLOCK();
151 }
152 
153 void
154 nm_os_ifnet_unlock(void)
155 {
156 	IFNET_RUNLOCK();
157 }
158 
159 static int netmap_use_count = 0;
160 
161 void
162 nm_os_get_module(void)
163 {
164 	netmap_use_count++;
165 }
166 
167 void
168 nm_os_put_module(void)
169 {
170 	netmap_use_count--;
171 }
172 
173 static void
174 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
175 {
176 	netmap_undo_zombie(ifp);
177 }
178 
179 static void
180 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
181 {
182 	netmap_make_zombie(ifp);
183 }
184 
185 static eventhandler_tag nm_ifnet_ah_tag;
186 static eventhandler_tag nm_ifnet_dh_tag;
187 
188 int
189 nm_os_ifnet_init(void)
190 {
191 	nm_ifnet_ah_tag =
192 		EVENTHANDLER_REGISTER(ifnet_arrival_event,
193 				netmap_ifnet_arrival_handler,
194 				NULL, EVENTHANDLER_PRI_ANY);
195 	nm_ifnet_dh_tag =
196 		EVENTHANDLER_REGISTER(ifnet_departure_event,
197 				netmap_ifnet_departure_handler,
198 				NULL, EVENTHANDLER_PRI_ANY);
199 	return 0;
200 }
201 
202 void
203 nm_os_ifnet_fini(void)
204 {
205 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
206 			nm_ifnet_ah_tag);
207 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
208 			nm_ifnet_dh_tag);
209 }
210 
211 unsigned
212 nm_os_ifnet_mtu(struct ifnet *ifp)
213 {
214 #if __FreeBSD_version < 1100030
215 	return ifp->if_data.ifi_mtu;
216 #else /* __FreeBSD_version >= 1100030 */
217 	return ifp->if_mtu;
218 #endif
219 }
220 
221 rawsum_t
222 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
223 {
224 	/* TODO XXX please use the FreeBSD implementation for this. */
225 	uint16_t *words = (uint16_t *)data;
226 	int nw = len / 2;
227 	int i;
228 
229 	for (i = 0; i < nw; i++)
230 		cur_sum += be16toh(words[i]);
231 
232 	if (len & 1)
233 		cur_sum += (data[len-1] << 8);
234 
235 	return cur_sum;
236 }
237 
238 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
239  * return value is in network byte order.
240  */
241 uint16_t
242 nm_os_csum_fold(rawsum_t cur_sum)
243 {
244 	/* TODO XXX please use the FreeBSD implementation for this. */
245 	while (cur_sum >> 16)
246 		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
247 
248 	return htobe16((~cur_sum) & 0xFFFF);
249 }
250 
251 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
252 {
253 #if 0
254 	return in_cksum_hdr((void *)iph);
255 #else
256 	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
257 #endif
258 }
259 
260 void
261 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
262 					size_t datalen, uint16_t *check)
263 {
264 #ifdef INET
265 	uint16_t pseudolen = datalen + iph->protocol;
266 
267 	/* Compute and insert the pseudo-header cheksum. */
268 	*check = in_pseudo(iph->saddr, iph->daddr,
269 				 htobe16(pseudolen));
270 	/* Compute the checksum on TCP/UDP header + payload
271 	 * (includes the pseudo-header).
272 	 */
273 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
274 #else
275 	static int notsupported = 0;
276 	if (!notsupported) {
277 		notsupported = 1;
278 		nm_prerr("inet4 segmentation not supported");
279 	}
280 #endif
281 }
282 
283 void
284 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
285 					size_t datalen, uint16_t *check)
286 {
287 #ifdef INET6
288 	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
289 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
290 #else
291 	static int notsupported = 0;
292 	if (!notsupported) {
293 		notsupported = 1;
294 		nm_prerr("inet6 segmentation not supported");
295 	}
296 #endif
297 }
298 
299 /* on FreeBSD we send up one packet at a time */
300 void *
301 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
302 {
303 	NA(ifp)->if_input(ifp, m);
304 	return NULL;
305 }
306 
307 int
308 nm_os_mbuf_has_csum_offld(struct mbuf *m)
309 {
310 	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
311 					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
312 					 CSUM_SCTP_IPV6);
313 }
314 
315 int
316 nm_os_mbuf_has_seg_offld(struct mbuf *m)
317 {
318 	return m->m_pkthdr.csum_flags & CSUM_TSO;
319 }
320 
321 static void
322 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
323 {
324 	int stolen;
325 
326 	if (unlikely(!NM_NA_VALID(ifp))) {
327 		nm_prlim(1, "Warning: RX packet intercepted, but no"
328 				" emulated adapter");
329 		return;
330 	}
331 
332 	stolen = generic_rx_handler(ifp, m);
333 	if (!stolen) {
334 		struct netmap_generic_adapter *gna =
335 				(struct netmap_generic_adapter *)NA(ifp);
336 		gna->save_if_input(ifp, m);
337 	}
338 }
339 
340 /*
341  * Intercept the rx routine in the standard device driver.
342  * Second argument is non-zero to intercept, 0 to restore
343  */
344 int
345 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
346 {
347 	struct netmap_adapter *na = &gna->up.up;
348 	struct ifnet *ifp = na->ifp;
349 	int ret = 0;
350 
351 	nm_os_ifnet_lock();
352 	if (intercept) {
353 		if (gna->save_if_input) {
354 			nm_prerr("RX on %s already intercepted", na->name);
355 			ret = EBUSY; /* already set */
356 			goto out;
357 		}
358 		gna->save_if_input = ifp->if_input;
359 		ifp->if_input = freebsd_generic_rx_handler;
360 	} else {
361 		if (!gna->save_if_input) {
362 			nm_prerr("Failed to undo RX intercept on %s",
363 				na->name);
364 			ret = EINVAL;  /* not saved */
365 			goto out;
366 		}
367 		ifp->if_input = gna->save_if_input;
368 		gna->save_if_input = NULL;
369 	}
370 out:
371 	nm_os_ifnet_unlock();
372 
373 	return ret;
374 }
375 
376 
377 /*
378  * Intercept the packet steering routine in the tx path,
379  * so that we can decide which queue is used for an mbuf.
380  * Second argument is non-zero to intercept, 0 to restore.
381  * On freebsd we just intercept if_transmit.
382  */
383 int
384 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
385 {
386 	struct netmap_adapter *na = &gna->up.up;
387 	struct ifnet *ifp = netmap_generic_getifp(gna);
388 
389 	nm_os_ifnet_lock();
390 	if (intercept) {
391 		na->if_transmit = ifp->if_transmit;
392 		ifp->if_transmit = netmap_transmit;
393 	} else {
394 		ifp->if_transmit = na->if_transmit;
395 	}
396 	nm_os_ifnet_unlock();
397 
398 	return 0;
399 }
400 
401 
402 /*
403  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
404  * and non-zero on error (which may be packet drops or other errors).
405  * addr and len identify the netmap buffer, m is the (preallocated)
406  * mbuf to use for transmissions.
407  *
408  * We should add a reference to the mbuf so the m_freem() at the end
409  * of the transmission does not consume resources.
410  *
411  * On FreeBSD, and on multiqueue cards, we can force the queue using
412  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
413  *              i = m->m_pkthdr.flowid % adapter->num_queues;
414  *      else
415  *              i = curcpu % adapter->num_queues;
416  *
417  */
418 int
419 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
420 {
421 	int ret;
422 	u_int len = a->len;
423 	struct ifnet *ifp = a->ifp;
424 	struct mbuf *m = a->m;
425 
426 #if __FreeBSD_version < 1100000
427 	/*
428 	 * Old FreeBSD versions. The mbuf has a cluster attached,
429 	 * we need to copy from the cluster to the netmap buffer.
430 	 */
431 	if (MBUF_REFCNT(m) != 1) {
432 		nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
433 		panic("in generic_xmit_frame");
434 	}
435 	if (m->m_ext.ext_size < len) {
436 		nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len);
437 		len = m->m_ext.ext_size;
438 	}
439 	bcopy(a->addr, m->m_data, len);
440 #else  /* __FreeBSD_version >= 1100000 */
441 	/* New FreeBSD versions. Link the external storage to
442 	 * the netmap buffer, so that no copy is necessary. */
443 	m->m_ext.ext_buf = m->m_data = a->addr;
444 	m->m_ext.ext_size = len;
445 #endif /* __FreeBSD_version >= 1100000 */
446 
447 	m->m_len = m->m_pkthdr.len = len;
448 
449 	/* mbuf refcnt is not contended, no need to use atomic
450 	 * (a memory barrier is enough). */
451 	SET_MBUF_REFCNT(m, 2);
452 	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
453 	m->m_pkthdr.flowid = a->ring_nr;
454 	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
455 	ret = NA(ifp)->if_transmit(ifp, m);
456 	return ret ? -1 : 0;
457 }
458 
459 
460 #if __FreeBSD_version >= 1100005
461 struct netmap_adapter *
462 netmap_getna(if_t ifp)
463 {
464 	return (NA((struct ifnet *)ifp));
465 }
466 #endif /* __FreeBSD_version >= 1100005 */
467 
468 /*
469  * The following two functions are empty until we have a generic
470  * way to extract the info from the ifp
471  */
472 int
473 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
474 {
475 	return 0;
476 }
477 
478 
479 void
480 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
481 {
482 	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
483 
484 	*txq = num_rings;
485 	*rxq = num_rings;
486 }
487 
488 void
489 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
490 {
491 
492 	gna->rxsg = 1; /* Supported through m_copydata. */
493 	gna->txqdisc = 0; /* Not supported. */
494 }
495 
496 void
497 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
498 {
499 	mit->mit_pending = 0;
500 	mit->mit_ring_idx = idx;
501 	mit->mit_na = na;
502 }
503 
504 
505 void
506 nm_os_mitigation_start(struct nm_generic_mit *mit)
507 {
508 }
509 
510 
511 void
512 nm_os_mitigation_restart(struct nm_generic_mit *mit)
513 {
514 }
515 
516 
517 int
518 nm_os_mitigation_active(struct nm_generic_mit *mit)
519 {
520 
521 	return 0;
522 }
523 
524 
525 void
526 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
527 {
528 }
529 
530 static int
531 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
532 {
533 
534 	return EINVAL;
535 }
536 
537 static void
538 nm_vi_start(struct ifnet *ifp)
539 {
540 	panic("nm_vi_start() must not be called");
541 }
542 
543 /*
544  * Index manager of persistent virtual interfaces.
545  * It is used to decide the lowest byte of the MAC address.
546  * We use the same algorithm with management of bridge port index.
547  */
548 #define NM_VI_MAX	255
549 static struct {
550 	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
551 	uint8_t active;
552 	struct mtx lock;
553 } nm_vi_indices;
554 
555 void
556 nm_os_vi_init_index(void)
557 {
558 	int i;
559 	for (i = 0; i < NM_VI_MAX; i++)
560 		nm_vi_indices.index[i] = i;
561 	nm_vi_indices.active = 0;
562 	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
563 }
564 
565 /* return -1 if no index available */
566 static int
567 nm_vi_get_index(void)
568 {
569 	int ret;
570 
571 	mtx_lock(&nm_vi_indices.lock);
572 	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
573 		nm_vi_indices.index[nm_vi_indices.active++];
574 	mtx_unlock(&nm_vi_indices.lock);
575 	return ret;
576 }
577 
578 static void
579 nm_vi_free_index(uint8_t val)
580 {
581 	int i, lim;
582 
583 	mtx_lock(&nm_vi_indices.lock);
584 	lim = nm_vi_indices.active;
585 	for (i = 0; i < lim; i++) {
586 		if (nm_vi_indices.index[i] == val) {
587 			/* swap index[lim-1] and j */
588 			int tmp = nm_vi_indices.index[lim-1];
589 			nm_vi_indices.index[lim-1] = val;
590 			nm_vi_indices.index[i] = tmp;
591 			nm_vi_indices.active--;
592 			break;
593 		}
594 	}
595 	if (lim == nm_vi_indices.active)
596 		nm_prerr("Index %u not found", val);
597 	mtx_unlock(&nm_vi_indices.lock);
598 }
599 #undef NM_VI_MAX
600 
601 /*
602  * Implementation of a netmap-capable virtual interface that
603  * registered to the system.
604  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
605  *
606  * Note: Linux sets refcount to 0 on allocation of net_device,
607  * then increments it on registration to the system.
608  * FreeBSD sets refcount to 1 on if_alloc(), and does not
609  * increment this refcount on if_attach().
610  */
611 int
612 nm_os_vi_persist(const char *name, struct ifnet **ret)
613 {
614 	struct ifnet *ifp;
615 	u_short macaddr_hi;
616 	uint32_t macaddr_mid;
617 	u_char eaddr[6];
618 	int unit = nm_vi_get_index(); /* just to decide MAC address */
619 
620 	if (unit < 0)
621 		return EBUSY;
622 	/*
623 	 * We use the same MAC address generation method with tap
624 	 * except for the highest octet is 00:be instead of 00:bd
625 	 */
626 	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
627 	macaddr_mid = (uint32_t) ticks;
628 	bcopy(&macaddr_hi, eaddr, sizeof(short));
629 	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
630 	eaddr[5] = (uint8_t)unit;
631 
632 	ifp = if_alloc(IFT_ETHER);
633 	if (ifp == NULL) {
634 		nm_prerr("if_alloc failed");
635 		return ENOMEM;
636 	}
637 	if_initname(ifp, name, IF_DUNIT_NONE);
638 	ifp->if_mtu = 65536;
639 	ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
640 	ifp->if_init = (void *)nm_vi_dummy;
641 	ifp->if_ioctl = nm_vi_dummy;
642 	ifp->if_start = nm_vi_start;
643 	ifp->if_mtu = ETHERMTU;
644 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
645 	ifp->if_capabilities |= IFCAP_LINKSTATE;
646 	ifp->if_capenable |= IFCAP_LINKSTATE;
647 
648 	ether_ifattach(ifp, eaddr);
649 	*ret = ifp;
650 	return 0;
651 }
652 
653 /* unregister from the system and drop the final refcount */
654 void
655 nm_os_vi_detach(struct ifnet *ifp)
656 {
657 	nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
658 	ether_ifdetach(ifp);
659 	if_free(ifp);
660 }
661 
662 #ifdef WITH_EXTMEM
663 #include <vm/vm_map.h>
664 #include <vm/vm_kern.h>
665 struct nm_os_extmem {
666 	vm_object_t obj;
667 	vm_offset_t kva;
668 	vm_offset_t size;
669 	uintptr_t scan;
670 };
671 
672 void
673 nm_os_extmem_delete(struct nm_os_extmem *e)
674 {
675 	nm_prinf("freeing %zx bytes", (size_t)e->size);
676 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
677 	nm_os_free(e);
678 }
679 
680 char *
681 nm_os_extmem_nextpage(struct nm_os_extmem *e)
682 {
683 	char *rv = NULL;
684 	if (e->scan < e->kva + e->size) {
685 		rv = (char *)e->scan;
686 		e->scan += PAGE_SIZE;
687 	}
688 	return rv;
689 }
690 
691 int
692 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
693 {
694 	return (e1->obj == e2->obj);
695 }
696 
697 int
698 nm_os_extmem_nr_pages(struct nm_os_extmem *e)
699 {
700 	return e->size >> PAGE_SHIFT;
701 }
702 
703 struct nm_os_extmem *
704 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
705 {
706 	vm_map_t map;
707 	vm_map_entry_t entry;
708 	vm_object_t obj;
709 	vm_prot_t prot;
710 	vm_pindex_t index;
711 	boolean_t wired;
712 	struct nm_os_extmem *e = NULL;
713 	int rv, error = 0;
714 
715 	e = nm_os_malloc(sizeof(*e));
716 	if (e == NULL) {
717 		error = ENOMEM;
718 		goto out;
719 	}
720 
721 	map = &curthread->td_proc->p_vmspace->vm_map;
722 	rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
723 			&obj, &index, &prot, &wired);
724 	if (rv != KERN_SUCCESS) {
725 		nm_prerr("address %lx not found", p);
726 		goto out_free;
727 	}
728 	/* check that we are given the whole vm_object ? */
729 	vm_map_lookup_done(map, entry);
730 
731 	// XXX can we really use obj after releasing the map lock?
732 	e->obj = obj;
733 	vm_object_reference(obj);
734 	/* wire the memory and add the vm_object to the kernel map,
735 	 * to make sure that it is not fred even if the processes that
736 	 * are mmap()ing it all exit
737 	 */
738 	e->kva = vm_map_min(kernel_map);
739 	e->size = obj->size << PAGE_SHIFT;
740 	rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
741 			VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
742 			VM_PROT_READ | VM_PROT_WRITE, 0);
743 	if (rv != KERN_SUCCESS) {
744 		nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
745 		goto out_rel;
746 	}
747 	rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
748 			VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
749 	if (rv != KERN_SUCCESS) {
750 		nm_prerr("vm_map_wire failed");
751 		goto out_rem;
752 	}
753 
754 	e->scan = e->kva;
755 
756 	return e;
757 
758 out_rem:
759 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
760 	e->obj = NULL;
761 out_rel:
762 	vm_object_deallocate(e->obj);
763 out_free:
764 	nm_os_free(e);
765 out:
766 	if (perror)
767 		*perror = error;
768 	return NULL;
769 }
770 #endif /* WITH_EXTMEM */
771 
772 /* ================== PTNETMAP GUEST SUPPORT ==================== */
773 
774 #ifdef WITH_PTNETMAP
775 #include <sys/bus.h>
776 #include <sys/rman.h>
777 #include <machine/bus.h>        /* bus_dmamap_* */
778 #include <machine/resource.h>
779 #include <dev/pci/pcivar.h>
780 #include <dev/pci/pcireg.h>
781 /*
782  * ptnetmap memory device (memdev) for freebsd guest,
783  * ssed to expose host netmap memory to the guest through a PCI BAR.
784  */
785 
786 /*
787  * ptnetmap memdev private data structure
788  */
789 struct ptnetmap_memdev {
790 	device_t dev;
791 	struct resource *pci_io;
792 	struct resource *pci_mem;
793 	struct netmap_mem_d *nm_mem;
794 };
795 
796 static int	ptn_memdev_probe(device_t);
797 static int	ptn_memdev_attach(device_t);
798 static int	ptn_memdev_detach(device_t);
799 static int	ptn_memdev_shutdown(device_t);
800 
801 static device_method_t ptn_memdev_methods[] = {
802 	DEVMETHOD(device_probe, ptn_memdev_probe),
803 	DEVMETHOD(device_attach, ptn_memdev_attach),
804 	DEVMETHOD(device_detach, ptn_memdev_detach),
805 	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
806 	DEVMETHOD_END
807 };
808 
809 static driver_t ptn_memdev_driver = {
810 	PTNETMAP_MEMDEV_NAME,
811 	ptn_memdev_methods,
812 	sizeof(struct ptnetmap_memdev),
813 };
814 
815 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
816  * below. */
817 static devclass_t ptnetmap_devclass;
818 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
819 		      NULL, NULL, SI_ORDER_MIDDLE + 1);
820 
821 /*
822  * Map host netmap memory through PCI-BAR in the guest OS,
823  * returning physical (nm_paddr) and virtual (nm_addr) addresses
824  * of the netmap memory mapped in the guest.
825  */
826 int
827 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
828 		      void **nm_addr, uint64_t *mem_size)
829 {
830 	int rid;
831 
832 	nm_prinf("ptn_memdev_driver iomap");
833 
834 	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
835 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
836 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
837 			(*mem_size << 32);
838 
839 	/* map memory allocator */
840 	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
841 			&rid, 0, ~0, *mem_size, RF_ACTIVE);
842 	if (ptn_dev->pci_mem == NULL) {
843 		*nm_paddr = 0;
844 		*nm_addr = NULL;
845 		return ENOMEM;
846 	}
847 
848 	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
849 	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
850 
851 	nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
852 			PTNETMAP_MEM_PCI_BAR,
853 			(unsigned long)(*nm_paddr),
854 			(unsigned long)rman_get_size(ptn_dev->pci_mem),
855 			(unsigned long)*mem_size);
856 	return (0);
857 }
858 
859 uint32_t
860 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
861 {
862 	return bus_read_4(ptn_dev->pci_io, reg);
863 }
864 
865 /* Unmap host netmap memory. */
866 void
867 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
868 {
869 	nm_prinf("ptn_memdev_driver iounmap");
870 
871 	if (ptn_dev->pci_mem) {
872 		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
873 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
874 		ptn_dev->pci_mem = NULL;
875 	}
876 }
877 
878 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
879  * positive on failure */
880 static int
881 ptn_memdev_probe(device_t dev)
882 {
883 	char desc[256];
884 
885 	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
886 		return (ENXIO);
887 	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
888 		return (ENXIO);
889 
890 	snprintf(desc, sizeof(desc), "%s PCI adapter",
891 			PTNETMAP_MEMDEV_NAME);
892 	device_set_desc_copy(dev, desc);
893 
894 	return (BUS_PROBE_DEFAULT);
895 }
896 
897 /* Device initialization routine. */
898 static int
899 ptn_memdev_attach(device_t dev)
900 {
901 	struct ptnetmap_memdev *ptn_dev;
902 	int rid;
903 	uint16_t mem_id;
904 
905 	ptn_dev = device_get_softc(dev);
906 	ptn_dev->dev = dev;
907 
908 	pci_enable_busmaster(dev);
909 
910 	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
911 	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
912 						 RF_ACTIVE);
913 	if (ptn_dev->pci_io == NULL) {
914 	        device_printf(dev, "cannot map I/O space\n");
915 	        return (ENXIO);
916 	}
917 
918 	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
919 
920 	/* create guest allocator */
921 	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
922 	if (ptn_dev->nm_mem == NULL) {
923 		ptn_memdev_detach(dev);
924 	        return (ENOMEM);
925 	}
926 	netmap_mem_get(ptn_dev->nm_mem);
927 
928 	nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
929 
930 	return (0);
931 }
932 
933 /* Device removal routine. */
934 static int
935 ptn_memdev_detach(device_t dev)
936 {
937 	struct ptnetmap_memdev *ptn_dev;
938 
939 	ptn_dev = device_get_softc(dev);
940 
941 	if (ptn_dev->nm_mem) {
942 		nm_prinf("ptnetmap memdev detached, host memid %u",
943 			netmap_mem_get_id(ptn_dev->nm_mem));
944 		netmap_mem_put(ptn_dev->nm_mem);
945 		ptn_dev->nm_mem = NULL;
946 	}
947 	if (ptn_dev->pci_mem) {
948 		bus_release_resource(dev, SYS_RES_MEMORY,
949 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
950 		ptn_dev->pci_mem = NULL;
951 	}
952 	if (ptn_dev->pci_io) {
953 		bus_release_resource(dev, SYS_RES_IOPORT,
954 			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
955 		ptn_dev->pci_io = NULL;
956 	}
957 
958 	return (0);
959 }
960 
961 static int
962 ptn_memdev_shutdown(device_t dev)
963 {
964 	return bus_generic_shutdown(dev);
965 }
966 
967 #endif /* WITH_PTNETMAP */
968 
969 /*
970  * In order to track whether pages are still mapped, we hook into
971  * the standard cdev_pager and intercept the constructor and
972  * destructor.
973  */
974 
975 struct netmap_vm_handle_t {
976 	struct cdev 		*dev;
977 	struct netmap_priv_d	*priv;
978 };
979 
980 
981 static int
982 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
983 		vm_ooffset_t foff, struct ucred *cred, u_short *color)
984 {
985 	struct netmap_vm_handle_t *vmh = handle;
986 
987 	if (netmap_verbose)
988 		nm_prinf("handle %p size %jd prot %d foff %jd",
989 			handle, (intmax_t)size, prot, (intmax_t)foff);
990 	if (color)
991 		*color = 0;
992 	dev_ref(vmh->dev);
993 	return 0;
994 }
995 
996 
997 static void
998 netmap_dev_pager_dtor(void *handle)
999 {
1000 	struct netmap_vm_handle_t *vmh = handle;
1001 	struct cdev *dev = vmh->dev;
1002 	struct netmap_priv_d *priv = vmh->priv;
1003 
1004 	if (netmap_verbose)
1005 		nm_prinf("handle %p", handle);
1006 	netmap_dtor(priv);
1007 	free(vmh, M_DEVBUF);
1008 	dev_rel(dev);
1009 }
1010 
1011 
1012 static int
1013 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
1014 	int prot, vm_page_t *mres)
1015 {
1016 	struct netmap_vm_handle_t *vmh = object->handle;
1017 	struct netmap_priv_d *priv = vmh->priv;
1018 	struct netmap_adapter *na = priv->np_na;
1019 	vm_paddr_t paddr;
1020 	vm_page_t page;
1021 	vm_memattr_t memattr;
1022 	vm_pindex_t pidx;
1023 
1024 	nm_prdis("object %p offset %jd prot %d mres %p",
1025 			object, (intmax_t)offset, prot, mres);
1026 	memattr = object->memattr;
1027 	pidx = OFF_TO_IDX(offset);
1028 	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
1029 	if (paddr == 0)
1030 		return VM_PAGER_FAIL;
1031 
1032 	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
1033 		/*
1034 		 * If the passed in result page is a fake page, update it with
1035 		 * the new physical address.
1036 		 */
1037 		page = *mres;
1038 		vm_page_updatefake(page, paddr, memattr);
1039 	} else {
1040 		/*
1041 		 * Replace the passed in reqpage page with our own fake page and
1042 		 * free up the all of the original pages.
1043 		 */
1044 #ifndef VM_OBJECT_WUNLOCK	/* FreeBSD < 10.x */
1045 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
1046 #define VM_OBJECT_WLOCK	VM_OBJECT_LOCK
1047 #endif /* VM_OBJECT_WUNLOCK */
1048 
1049 		VM_OBJECT_WUNLOCK(object);
1050 		page = vm_page_getfake(paddr, memattr);
1051 		VM_OBJECT_WLOCK(object);
1052 		vm_page_lock(*mres);
1053 		vm_page_free(*mres);
1054 		vm_page_unlock(*mres);
1055 		*mres = page;
1056 		vm_page_insert(page, object, pidx);
1057 	}
1058 	page->valid = VM_PAGE_BITS_ALL;
1059 	return (VM_PAGER_OK);
1060 }
1061 
1062 
1063 static struct cdev_pager_ops netmap_cdev_pager_ops = {
1064 	.cdev_pg_ctor = netmap_dev_pager_ctor,
1065 	.cdev_pg_dtor = netmap_dev_pager_dtor,
1066 	.cdev_pg_fault = netmap_dev_pager_fault,
1067 };
1068 
1069 
1070 static int
1071 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1072 	vm_size_t objsize,  vm_object_t *objp, int prot)
1073 {
1074 	int error;
1075 	struct netmap_vm_handle_t *vmh;
1076 	struct netmap_priv_d *priv;
1077 	vm_object_t obj;
1078 
1079 	if (netmap_verbose)
1080 		nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1081 		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1082 
1083 	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1084 			      M_NOWAIT | M_ZERO);
1085 	if (vmh == NULL)
1086 		return ENOMEM;
1087 	vmh->dev = cdev;
1088 
1089 	NMG_LOCK();
1090 	error = devfs_get_cdevpriv((void**)&priv);
1091 	if (error)
1092 		goto err_unlock;
1093 	if (priv->np_nifp == NULL) {
1094 		error = EINVAL;
1095 		goto err_unlock;
1096 	}
1097 	vmh->priv = priv;
1098 	priv->np_refs++;
1099 	NMG_UNLOCK();
1100 
1101 	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1102 		&netmap_cdev_pager_ops, objsize, prot,
1103 		*foff, NULL);
1104 	if (obj == NULL) {
1105 		nm_prerr("cdev_pager_allocate failed");
1106 		error = EINVAL;
1107 		goto err_deref;
1108 	}
1109 
1110 	*objp = obj;
1111 	return 0;
1112 
1113 err_deref:
1114 	NMG_LOCK();
1115 	priv->np_refs--;
1116 err_unlock:
1117 	NMG_UNLOCK();
1118 // err:
1119 	free(vmh, M_DEVBUF);
1120 	return error;
1121 }
1122 
1123 /*
1124  * On FreeBSD the close routine is only called on the last close on
1125  * the device (/dev/netmap) so we cannot do anything useful.
1126  * To track close() on individual file descriptors we pass netmap_dtor() to
1127  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1128  * when the last fd pointing to the device is closed.
1129  *
1130  * Note that FreeBSD does not even munmap() on close() so we also have
1131  * to track mmap() ourselves, and postpone the call to
1132  * netmap_dtor() is called when the process has no open fds and no active
1133  * memory maps on /dev/netmap, as in linux.
1134  */
1135 static int
1136 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1137 {
1138 	if (netmap_verbose)
1139 		nm_prinf("dev %p fflag 0x%x devtype %d td %p",
1140 			dev, fflag, devtype, td);
1141 	return 0;
1142 }
1143 
1144 
1145 static int
1146 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1147 {
1148 	struct netmap_priv_d *priv;
1149 	int error;
1150 
1151 	(void)dev;
1152 	(void)oflags;
1153 	(void)devtype;
1154 	(void)td;
1155 
1156 	NMG_LOCK();
1157 	priv = netmap_priv_new();
1158 	if (priv == NULL) {
1159 		error = ENOMEM;
1160 		goto out;
1161 	}
1162 	error = devfs_set_cdevpriv(priv, netmap_dtor);
1163 	if (error) {
1164 		netmap_priv_delete(priv);
1165 	}
1166 out:
1167 	NMG_UNLOCK();
1168 	return error;
1169 }
1170 
1171 /******************** kthread wrapper ****************/
1172 #include <sys/sysproto.h>
1173 u_int
1174 nm_os_ncpus(void)
1175 {
1176 	return mp_maxid + 1;
1177 }
1178 
1179 struct nm_kctx_ctx {
1180 	/* Userspace thread (kthread creator). */
1181 	struct thread *user_td;
1182 
1183 	/* worker function and parameter */
1184 	nm_kctx_worker_fn_t worker_fn;
1185 	void *worker_private;
1186 
1187 	struct nm_kctx *nmk;
1188 
1189 	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1190 	long type;
1191 };
1192 
1193 struct nm_kctx {
1194 	struct thread *worker;
1195 	struct mtx worker_lock;
1196 	struct nm_kctx_ctx worker_ctx;
1197 	int run;			/* used to stop kthread */
1198 	int attach_user;		/* kthread attached to user_process */
1199 	int affinity;
1200 };
1201 
1202 static void
1203 nm_kctx_worker(void *data)
1204 {
1205 	struct nm_kctx *nmk = data;
1206 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1207 
1208 	if (nmk->affinity >= 0) {
1209 		thread_lock(curthread);
1210 		sched_bind(curthread, nmk->affinity);
1211 		thread_unlock(curthread);
1212 	}
1213 
1214 	while (nmk->run) {
1215 		/*
1216 		 * check if the parent process dies
1217 		 * (when kthread is attached to user process)
1218 		 */
1219 		if (ctx->user_td) {
1220 			PROC_LOCK(curproc);
1221 			thread_suspend_check(0);
1222 			PROC_UNLOCK(curproc);
1223 		} else {
1224 			kthread_suspend_check();
1225 		}
1226 
1227 		/* Continuously execute worker process. */
1228 		ctx->worker_fn(ctx->worker_private); /* worker body */
1229 	}
1230 
1231 	kthread_exit();
1232 }
1233 
1234 void
1235 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1236 {
1237 	nmk->affinity = affinity;
1238 }
1239 
1240 struct nm_kctx *
1241 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1242 {
1243 	struct nm_kctx *nmk = NULL;
1244 
1245 	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1246 	if (!nmk)
1247 		return NULL;
1248 
1249 	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1250 	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1251 	nmk->worker_ctx.worker_private = cfg->worker_private;
1252 	nmk->worker_ctx.type = cfg->type;
1253 	nmk->affinity = -1;
1254 
1255 	/* attach kthread to user process (ptnetmap) */
1256 	nmk->attach_user = cfg->attach_user;
1257 
1258 	return nmk;
1259 }
1260 
1261 int
1262 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1263 {
1264 	struct proc *p = NULL;
1265 	int error = 0;
1266 
1267 	/* Temporarily disable this function as it is currently broken
1268 	 * and causes kernel crashes. The failure can be triggered by
1269 	 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
1270 	return EOPNOTSUPP;
1271 
1272 	if (nmk->worker)
1273 		return EBUSY;
1274 
1275 	/* check if we want to attach kthread to user process */
1276 	if (nmk->attach_user) {
1277 		nmk->worker_ctx.user_td = curthread;
1278 		p = curthread->td_proc;
1279 	}
1280 
1281 	/* enable kthread main loop */
1282 	nmk->run = 1;
1283 	/* create kthread */
1284 	if((error = kthread_add(nm_kctx_worker, nmk, p,
1285 			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1286 			nmk->worker_ctx.type))) {
1287 		goto err;
1288 	}
1289 
1290 	nm_prinf("nm_kthread started td %p", nmk->worker);
1291 
1292 	return 0;
1293 err:
1294 	nm_prerr("nm_kthread start failed err %d", error);
1295 	nmk->worker = NULL;
1296 	return error;
1297 }
1298 
1299 void
1300 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1301 {
1302 	if (!nmk->worker)
1303 		return;
1304 
1305 	/* tell to kthread to exit from main loop */
1306 	nmk->run = 0;
1307 
1308 	/* wake up kthread if it sleeps */
1309 	kthread_resume(nmk->worker);
1310 
1311 	nmk->worker = NULL;
1312 }
1313 
1314 void
1315 nm_os_kctx_destroy(struct nm_kctx *nmk)
1316 {
1317 	if (!nmk)
1318 		return;
1319 
1320 	if (nmk->worker)
1321 		nm_os_kctx_worker_stop(nmk);
1322 
1323 	free(nmk, M_DEVBUF);
1324 }
1325 
1326 /******************** kqueue support ****************/
1327 
1328 /*
1329  * In addition to calling selwakeuppri(), nm_os_selwakeup() also
1330  * needs to call knote() to wake up kqueue listeners.
1331  * This operation is deferred to a taskqueue in order to avoid possible
1332  * lock order reversals; these may happen because knote() grabs a
1333  * private lock associated to the 'si' (see struct selinfo,
1334  * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
1335  * can be called while holding the lock associated to a different
1336  * 'si'.
1337  * When calling knote() we use a non-zero 'hint' argument to inform
1338  * the netmap_knrw() function that it is being called from
1339  * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
1340  * called by the kevent subsystem (i.e. kevent_scan()) we also need to
1341  * call netmap_poll().
1342  *
1343  * The netmap_kqfilter() function registers one or another f_event
1344  * depending on read or write mode. A pointer to the struct
1345  * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
1346  * be passed to netmap_poll(). We pass NULL as a third argument to
1347  * netmap_poll(), so that the latter only runs the txsync/rxsync
1348  * (if necessary), and skips the nm_os_selrecord() calls.
1349  */
1350 
1351 
1352 void
1353 nm_os_selwakeup(struct nm_selinfo *si)
1354 {
1355 	selwakeuppri(&si->si, PI_NET);
1356 	if (si->kqueue_users > 0) {
1357 		taskqueue_enqueue(si->ntfytq, &si->ntfytask);
1358 	}
1359 }
1360 
1361 void
1362 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1363 {
1364 	selrecord(td, &si->si);
1365 }
1366 
1367 static void
1368 netmap_knrdetach(struct knote *kn)
1369 {
1370 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1371 	struct nm_selinfo *si = priv->np_si[NR_RX];
1372 
1373 	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1374 	NMG_LOCK();
1375 	KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s",
1376 	    si->mtxname));
1377 	si->kqueue_users--;
1378 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1379 	NMG_UNLOCK();
1380 }
1381 
1382 static void
1383 netmap_knwdetach(struct knote *kn)
1384 {
1385 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1386 	struct nm_selinfo *si = priv->np_si[NR_TX];
1387 
1388 	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1389 	NMG_LOCK();
1390 	si->kqueue_users--;
1391 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1392 	NMG_UNLOCK();
1393 }
1394 
1395 /*
1396  * Callback triggered by netmap notifications (see netmap_notify()),
1397  * and by the application calling kevent(). In the former case we
1398  * just return 1 (events ready), since we are not able to do better.
1399  * In the latter case we use netmap_poll() to see which events are
1400  * ready.
1401  */
1402 static int
1403 netmap_knrw(struct knote *kn, long hint, int events)
1404 {
1405 	struct netmap_priv_d *priv;
1406 	int revents;
1407 
1408 	if (hint != 0) {
1409 		/* Called from netmap_notify(), typically from a
1410 		 * thread different from the one issuing kevent().
1411 		 * Assume we are ready. */
1412 		return 1;
1413 	}
1414 
1415 	/* Called from kevent(). */
1416 	priv = kn->kn_hook;
1417 	revents = netmap_poll(priv, events, /*thread=*/NULL);
1418 
1419 	return (events & revents) ? 1 : 0;
1420 }
1421 
1422 static int
1423 netmap_knread(struct knote *kn, long hint)
1424 {
1425 	return netmap_knrw(kn, hint, POLLIN);
1426 }
1427 
1428 static int
1429 netmap_knwrite(struct knote *kn, long hint)
1430 {
1431 	return netmap_knrw(kn, hint, POLLOUT);
1432 }
1433 
1434 static struct filterops netmap_rfiltops = {
1435 	.f_isfd = 1,
1436 	.f_detach = netmap_knrdetach,
1437 	.f_event = netmap_knread,
1438 };
1439 
1440 static struct filterops netmap_wfiltops = {
1441 	.f_isfd = 1,
1442 	.f_detach = netmap_knwdetach,
1443 	.f_event = netmap_knwrite,
1444 };
1445 
1446 
1447 /*
1448  * This is called when a thread invokes kevent() to record
1449  * a change in the configuration of the kqueue().
1450  * The 'priv' is the one associated to the open netmap device.
1451  */
1452 static int
1453 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1454 {
1455 	struct netmap_priv_d *priv;
1456 	int error;
1457 	struct netmap_adapter *na;
1458 	struct nm_selinfo *si;
1459 	int ev = kn->kn_filter;
1460 
1461 	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1462 		nm_prerr("bad filter request %d", ev);
1463 		return 1;
1464 	}
1465 	error = devfs_get_cdevpriv((void**)&priv);
1466 	if (error) {
1467 		nm_prerr("device not yet setup");
1468 		return 1;
1469 	}
1470 	na = priv->np_na;
1471 	if (na == NULL) {
1472 		nm_prerr("no netmap adapter for this file descriptor");
1473 		return 1;
1474 	}
1475 	/* the si is indicated in the priv */
1476 	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1477 	kn->kn_fop = (ev == EVFILT_WRITE) ?
1478 		&netmap_wfiltops : &netmap_rfiltops;
1479 	kn->kn_hook = priv;
1480 	NMG_LOCK();
1481 	si->kqueue_users++;
1482 	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1483 	NMG_UNLOCK();
1484 	knlist_add(&si->si.si_note, kn, /*islocked=*/0);
1485 
1486 	return 0;
1487 }
1488 
1489 static int
1490 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1491 {
1492 	struct netmap_priv_d *priv;
1493 	if (devfs_get_cdevpriv((void **)&priv)) {
1494 		return POLLERR;
1495 	}
1496 	return netmap_poll(priv, events, td);
1497 }
1498 
1499 static int
1500 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1501 		int ffla __unused, struct thread *td)
1502 {
1503 	int error;
1504 	struct netmap_priv_d *priv;
1505 
1506 	CURVNET_SET(TD_TO_VNET(td));
1507 	error = devfs_get_cdevpriv((void **)&priv);
1508 	if (error) {
1509 		/* XXX ENOENT should be impossible, since the priv
1510 		 * is now created in the open */
1511 		if (error == ENOENT)
1512 			error = ENXIO;
1513 		goto out;
1514 	}
1515 	error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1516 out:
1517 	CURVNET_RESTORE();
1518 
1519 	return error;
1520 }
1521 
1522 void
1523 nm_os_onattach(struct ifnet *ifp)
1524 {
1525 	ifp->if_capabilities |= IFCAP_NETMAP;
1526 }
1527 
1528 void
1529 nm_os_onenter(struct ifnet *ifp)
1530 {
1531 	struct netmap_adapter *na = NA(ifp);
1532 
1533 	na->if_transmit = ifp->if_transmit;
1534 	ifp->if_transmit = netmap_transmit;
1535 	ifp->if_capenable |= IFCAP_NETMAP;
1536 }
1537 
1538 void
1539 nm_os_onexit(struct ifnet *ifp)
1540 {
1541 	struct netmap_adapter *na = NA(ifp);
1542 
1543 	ifp->if_transmit = na->if_transmit;
1544 	ifp->if_capenable &= ~IFCAP_NETMAP;
1545 }
1546 
1547 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1548 struct cdevsw netmap_cdevsw = {
1549 	.d_version = D_VERSION,
1550 	.d_name = "netmap",
1551 	.d_open = netmap_open,
1552 	.d_mmap_single = netmap_mmap_single,
1553 	.d_ioctl = freebsd_netmap_ioctl,
1554 	.d_poll = freebsd_netmap_poll,
1555 	.d_kqfilter = netmap_kqfilter,
1556 	.d_close = netmap_close,
1557 };
1558 /*--- end of kqueue support ----*/
1559 
1560 /*
1561  * Kernel entry point.
1562  *
1563  * Initialize/finalize the module and return.
1564  *
1565  * Return 0 on success, errno on failure.
1566  */
1567 static int
1568 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1569 {
1570 	int error = 0;
1571 
1572 	switch (event) {
1573 	case MOD_LOAD:
1574 		error = netmap_init();
1575 		break;
1576 
1577 	case MOD_UNLOAD:
1578 		/*
1579 		 * if some one is still using netmap,
1580 		 * then the module can not be unloaded.
1581 		 */
1582 		if (netmap_use_count) {
1583 			nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
1584 					netmap_use_count);
1585 			error = EBUSY;
1586 			break;
1587 		}
1588 		netmap_fini();
1589 		break;
1590 
1591 	default:
1592 		error = EOPNOTSUPP;
1593 		break;
1594 	}
1595 
1596 	return (error);
1597 }
1598 
1599 #ifdef DEV_MODULE_ORDERED
1600 /*
1601  * The netmap module contains three drivers: (i) the netmap character device
1602  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1603  * device driver. The attach() routines of both (ii) and (iii) need the
1604  * lock of the global allocator, and such lock is initialized in netmap_init(),
1605  * which is part of (i).
1606  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1607  * the 'order' parameter of driver declaration macros. For (i), we specify
1608  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1609  * macros for (ii) and (iii).
1610  */
1611 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1612 #else /* !DEV_MODULE_ORDERED */
1613 DEV_MODULE(netmap, netmap_loader, NULL);
1614 #endif /* DEV_MODULE_ORDERED  */
1615 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1616 MODULE_VERSION(netmap, 1);
1617 /* reduce conditional code */
1618 // linux API, use for the knlist in FreeBSD
1619 /* use a private mutex for the knlist */
1620