xref: /freebsd/sys/dev/netmap/netmap_freebsd.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *   1. Redistributions of source code must retain the above copyright
10  *      notice, this list of conditions and the following disclaimer.
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* $FreeBSD$ */
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 
32 #include <sys/param.h>
33 #include <sys/module.h>
34 #include <sys/errno.h>
35 #include <sys/jail.h>
36 #include <sys/poll.h>  /* POLLIN, POLLOUT */
37 #include <sys/kernel.h> /* types used in module initialization */
38 #include <sys/conf.h>	/* DEV_MODULE_ORDERED */
39 #include <sys/endian.h>
40 #include <sys/syscallsubr.h> /* kern_ioctl() */
41 
42 #include <sys/rwlock.h>
43 
44 #include <vm/vm.h>      /* vtophys */
45 #include <vm/pmap.h>    /* vtophys */
46 #include <vm/vm_param.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_page.h>
49 #include <vm/vm_pager.h>
50 #include <vm/uma.h>
51 
52 
53 #include <sys/malloc.h>
54 #include <sys/socket.h> /* sockaddrs */
55 #include <sys/selinfo.h>
56 #include <sys/kthread.h> /* kthread_add() */
57 #include <sys/proc.h> /* PROC_LOCK() */
58 #include <sys/unistd.h> /* RFNOWAIT */
59 #include <sys/sched.h> /* sched_bind() */
60 #include <sys/smp.h> /* mp_maxid */
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_types.h> /* IFT_ETHER */
64 #include <net/ethernet.h> /* ether_ifdetach */
65 #include <net/if_dl.h> /* LLADDR */
66 #include <machine/bus.h>        /* bus_dmamap_* */
67 #include <netinet/in.h>		/* in6_cksum_pseudo() */
68 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
69 
70 #include <net/netmap.h>
71 #include <dev/netmap/netmap_kern.h>
72 #include <net/netmap_virt.h>
73 #include <dev/netmap/netmap_mem2.h>
74 
75 
76 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
77 
78 void nm_os_selinfo_init(NM_SELINFO_T *si) {
79 	struct mtx *m = &si->m;
80 	mtx_init(m, "nm_kn_lock", NULL, MTX_DEF);
81 	knlist_init_mtx(&si->si.si_note, m);
82 }
83 
84 void
85 nm_os_selinfo_uninit(NM_SELINFO_T *si)
86 {
87 	/* XXX kqueue(9) needed; these will mirror knlist_init. */
88 	knlist_delete(&si->si.si_note, curthread, 0 /* not locked */ );
89 	knlist_destroy(&si->si.si_note);
90 	/* now we don't need the mutex anymore */
91 	mtx_destroy(&si->m);
92 }
93 
94 void *
95 nm_os_malloc(size_t size)
96 {
97 	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
98 }
99 
100 void *
101 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
102 {
103 	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
104 }
105 
106 void
107 nm_os_free(void *addr)
108 {
109 	free(addr, M_DEVBUF);
110 }
111 
112 void
113 nm_os_ifnet_lock(void)
114 {
115 	IFNET_RLOCK();
116 }
117 
118 void
119 nm_os_ifnet_unlock(void)
120 {
121 	IFNET_RUNLOCK();
122 }
123 
124 static int netmap_use_count = 0;
125 
126 void
127 nm_os_get_module(void)
128 {
129 	netmap_use_count++;
130 }
131 
132 void
133 nm_os_put_module(void)
134 {
135 	netmap_use_count--;
136 }
137 
138 static void
139 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
140 {
141 	netmap_undo_zombie(ifp);
142 }
143 
144 static void
145 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
146 {
147 	netmap_make_zombie(ifp);
148 }
149 
150 static eventhandler_tag nm_ifnet_ah_tag;
151 static eventhandler_tag nm_ifnet_dh_tag;
152 
153 int
154 nm_os_ifnet_init(void)
155 {
156 	nm_ifnet_ah_tag =
157 		EVENTHANDLER_REGISTER(ifnet_arrival_event,
158 				netmap_ifnet_arrival_handler,
159 				NULL, EVENTHANDLER_PRI_ANY);
160 	nm_ifnet_dh_tag =
161 		EVENTHANDLER_REGISTER(ifnet_departure_event,
162 				netmap_ifnet_departure_handler,
163 				NULL, EVENTHANDLER_PRI_ANY);
164 	return 0;
165 }
166 
167 void
168 nm_os_ifnet_fini(void)
169 {
170 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
171 			nm_ifnet_ah_tag);
172 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
173 			nm_ifnet_dh_tag);
174 }
175 
176 unsigned
177 nm_os_ifnet_mtu(struct ifnet *ifp)
178 {
179 #if __FreeBSD_version < 1100030
180 	return ifp->if_data.ifi_mtu;
181 #else /* __FreeBSD_version >= 1100030 */
182 	return ifp->if_mtu;
183 #endif
184 }
185 
186 rawsum_t
187 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
188 {
189 	/* TODO XXX please use the FreeBSD implementation for this. */
190 	uint16_t *words = (uint16_t *)data;
191 	int nw = len / 2;
192 	int i;
193 
194 	for (i = 0; i < nw; i++)
195 		cur_sum += be16toh(words[i]);
196 
197 	if (len & 1)
198 		cur_sum += (data[len-1] << 8);
199 
200 	return cur_sum;
201 }
202 
203 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
204  * return value is in network byte order.
205  */
206 uint16_t
207 nm_os_csum_fold(rawsum_t cur_sum)
208 {
209 	/* TODO XXX please use the FreeBSD implementation for this. */
210 	while (cur_sum >> 16)
211 		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
212 
213 	return htobe16((~cur_sum) & 0xFFFF);
214 }
215 
216 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
217 {
218 #if 0
219 	return in_cksum_hdr((void *)iph);
220 #else
221 	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
222 #endif
223 }
224 
225 void
226 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
227 					size_t datalen, uint16_t *check)
228 {
229 #ifdef INET
230 	uint16_t pseudolen = datalen + iph->protocol;
231 
232 	/* Compute and insert the pseudo-header cheksum. */
233 	*check = in_pseudo(iph->saddr, iph->daddr,
234 				 htobe16(pseudolen));
235 	/* Compute the checksum on TCP/UDP header + payload
236 	 * (includes the pseudo-header).
237 	 */
238 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
239 #else
240 	static int notsupported = 0;
241 	if (!notsupported) {
242 		notsupported = 1;
243 		D("inet4 segmentation not supported");
244 	}
245 #endif
246 }
247 
248 void
249 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
250 					size_t datalen, uint16_t *check)
251 {
252 #ifdef INET6
253 	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
254 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
255 #else
256 	static int notsupported = 0;
257 	if (!notsupported) {
258 		notsupported = 1;
259 		D("inet6 segmentation not supported");
260 	}
261 #endif
262 }
263 
264 /* on FreeBSD we send up one packet at a time */
265 void *
266 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
267 {
268 	NA(ifp)->if_input(ifp, m);
269 	return NULL;
270 }
271 
272 int
273 nm_os_mbuf_has_offld(struct mbuf *m)
274 {
275 	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
276 					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
277 					 CSUM_SCTP_IPV6 | CSUM_TSO);
278 }
279 
280 static void
281 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
282 {
283 	int stolen;
284 
285 	if (!NM_NA_VALID(ifp)) {
286 		RD(1, "Warning: got RX packet for invalid emulated adapter");
287 		return;
288 	}
289 
290 	stolen = generic_rx_handler(ifp, m);
291 	if (!stolen) {
292 		struct netmap_generic_adapter *gna =
293 				(struct netmap_generic_adapter *)NA(ifp);
294 		gna->save_if_input(ifp, m);
295 	}
296 }
297 
298 /*
299  * Intercept the rx routine in the standard device driver.
300  * Second argument is non-zero to intercept, 0 to restore
301  */
302 int
303 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
304 {
305 	struct netmap_adapter *na = &gna->up.up;
306 	struct ifnet *ifp = na->ifp;
307 	int ret = 0;
308 
309 	nm_os_ifnet_lock();
310 	if (intercept) {
311 		if (gna->save_if_input) {
312 			D("cannot intercept again");
313 			ret = EINVAL; /* already set */
314 			goto out;
315 		}
316 		gna->save_if_input = ifp->if_input;
317 		ifp->if_input = freebsd_generic_rx_handler;
318 	} else {
319 		if (!gna->save_if_input){
320 			D("cannot restore");
321 			ret = EINVAL;  /* not saved */
322 			goto out;
323 		}
324 		ifp->if_input = gna->save_if_input;
325 		gna->save_if_input = NULL;
326 	}
327 out:
328 	nm_os_ifnet_unlock();
329 
330 	return ret;
331 }
332 
333 
334 /*
335  * Intercept the packet steering routine in the tx path,
336  * so that we can decide which queue is used for an mbuf.
337  * Second argument is non-zero to intercept, 0 to restore.
338  * On freebsd we just intercept if_transmit.
339  */
340 int
341 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
342 {
343 	struct netmap_adapter *na = &gna->up.up;
344 	struct ifnet *ifp = netmap_generic_getifp(gna);
345 
346 	nm_os_ifnet_lock();
347 	if (intercept) {
348 		na->if_transmit = ifp->if_transmit;
349 		ifp->if_transmit = netmap_transmit;
350 	} else {
351 		ifp->if_transmit = na->if_transmit;
352 	}
353 	nm_os_ifnet_unlock();
354 
355 	return 0;
356 }
357 
358 
359 /*
360  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
361  * and non-zero on error (which may be packet drops or other errors).
362  * addr and len identify the netmap buffer, m is the (preallocated)
363  * mbuf to use for transmissions.
364  *
365  * We should add a reference to the mbuf so the m_freem() at the end
366  * of the transmission does not consume resources.
367  *
368  * On FreeBSD, and on multiqueue cards, we can force the queue using
369  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
370  *              i = m->m_pkthdr.flowid % adapter->num_queues;
371  *      else
372  *              i = curcpu % adapter->num_queues;
373  *
374  */
375 int
376 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
377 {
378 	int ret;
379 	u_int len = a->len;
380 	struct ifnet *ifp = a->ifp;
381 	struct mbuf *m = a->m;
382 
383 #if __FreeBSD_version < 1100000
384 	/*
385 	 * Old FreeBSD versions. The mbuf has a cluster attached,
386 	 * we need to copy from the cluster to the netmap buffer.
387 	 */
388 	if (MBUF_REFCNT(m) != 1) {
389 		D("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
390 		panic("in generic_xmit_frame");
391 	}
392 	if (m->m_ext.ext_size < len) {
393 		RD(5, "size %d < len %d", m->m_ext.ext_size, len);
394 		len = m->m_ext.ext_size;
395 	}
396 	bcopy(a->addr, m->m_data, len);
397 #else  /* __FreeBSD_version >= 1100000 */
398 	/* New FreeBSD versions. Link the external storage to
399 	 * the netmap buffer, so that no copy is necessary. */
400 	m->m_ext.ext_buf = m->m_data = a->addr;
401 	m->m_ext.ext_size = len;
402 #endif /* __FreeBSD_version >= 1100000 */
403 
404 	m->m_len = m->m_pkthdr.len = len;
405 
406 	/* mbuf refcnt is not contended, no need to use atomic
407 	 * (a memory barrier is enough). */
408 	SET_MBUF_REFCNT(m, 2);
409 	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
410 	m->m_pkthdr.flowid = a->ring_nr;
411 	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
412 	ret = NA(ifp)->if_transmit(ifp, m);
413 	return ret ? -1 : 0;
414 }
415 
416 
417 #if __FreeBSD_version >= 1100005
418 struct netmap_adapter *
419 netmap_getna(if_t ifp)
420 {
421 	return (NA((struct ifnet *)ifp));
422 }
423 #endif /* __FreeBSD_version >= 1100005 */
424 
425 /*
426  * The following two functions are empty until we have a generic
427  * way to extract the info from the ifp
428  */
429 int
430 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
431 {
432 	return 0;
433 }
434 
435 
436 void
437 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
438 {
439 	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
440 
441 	*txq = num_rings;
442 	*rxq = num_rings;
443 }
444 
445 void
446 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
447 {
448 
449 	gna->rxsg = 1; /* Supported through m_copydata. */
450 	gna->txqdisc = 0; /* Not supported. */
451 }
452 
453 void
454 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
455 {
456 	ND("called");
457 	mit->mit_pending = 0;
458 	mit->mit_ring_idx = idx;
459 	mit->mit_na = na;
460 }
461 
462 
463 void
464 nm_os_mitigation_start(struct nm_generic_mit *mit)
465 {
466 	ND("called");
467 }
468 
469 
470 void
471 nm_os_mitigation_restart(struct nm_generic_mit *mit)
472 {
473 	ND("called");
474 }
475 
476 
477 int
478 nm_os_mitigation_active(struct nm_generic_mit *mit)
479 {
480 	ND("called");
481 	return 0;
482 }
483 
484 
485 void
486 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
487 {
488 	ND("called");
489 }
490 
491 static int
492 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
493 {
494 	return EINVAL;
495 }
496 
497 static void
498 nm_vi_start(struct ifnet *ifp)
499 {
500 	panic("nm_vi_start() must not be called");
501 }
502 
503 /*
504  * Index manager of persistent virtual interfaces.
505  * It is used to decide the lowest byte of the MAC address.
506  * We use the same algorithm with management of bridge port index.
507  */
508 #define NM_VI_MAX	255
509 static struct {
510 	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
511 	uint8_t active;
512 	struct mtx lock;
513 } nm_vi_indices;
514 
515 void
516 nm_os_vi_init_index(void)
517 {
518 	int i;
519 	for (i = 0; i < NM_VI_MAX; i++)
520 		nm_vi_indices.index[i] = i;
521 	nm_vi_indices.active = 0;
522 	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
523 }
524 
525 /* return -1 if no index available */
526 static int
527 nm_vi_get_index(void)
528 {
529 	int ret;
530 
531 	mtx_lock(&nm_vi_indices.lock);
532 	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
533 		nm_vi_indices.index[nm_vi_indices.active++];
534 	mtx_unlock(&nm_vi_indices.lock);
535 	return ret;
536 }
537 
538 static void
539 nm_vi_free_index(uint8_t val)
540 {
541 	int i, lim;
542 
543 	mtx_lock(&nm_vi_indices.lock);
544 	lim = nm_vi_indices.active;
545 	for (i = 0; i < lim; i++) {
546 		if (nm_vi_indices.index[i] == val) {
547 			/* swap index[lim-1] and j */
548 			int tmp = nm_vi_indices.index[lim-1];
549 			nm_vi_indices.index[lim-1] = val;
550 			nm_vi_indices.index[i] = tmp;
551 			nm_vi_indices.active--;
552 			break;
553 		}
554 	}
555 	if (lim == nm_vi_indices.active)
556 		D("funny, index %u didn't found", val);
557 	mtx_unlock(&nm_vi_indices.lock);
558 }
559 #undef NM_VI_MAX
560 
561 /*
562  * Implementation of a netmap-capable virtual interface that
563  * registered to the system.
564  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
565  *
566  * Note: Linux sets refcount to 0 on allocation of net_device,
567  * then increments it on registration to the system.
568  * FreeBSD sets refcount to 1 on if_alloc(), and does not
569  * increment this refcount on if_attach().
570  */
571 int
572 nm_os_vi_persist(const char *name, struct ifnet **ret)
573 {
574 	struct ifnet *ifp;
575 	u_short macaddr_hi;
576 	uint32_t macaddr_mid;
577 	u_char eaddr[6];
578 	int unit = nm_vi_get_index(); /* just to decide MAC address */
579 
580 	if (unit < 0)
581 		return EBUSY;
582 	/*
583 	 * We use the same MAC address generation method with tap
584 	 * except for the highest octet is 00:be instead of 00:bd
585 	 */
586 	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
587 	macaddr_mid = (uint32_t) ticks;
588 	bcopy(&macaddr_hi, eaddr, sizeof(short));
589 	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
590 	eaddr[5] = (uint8_t)unit;
591 
592 	ifp = if_alloc(IFT_ETHER);
593 	if (ifp == NULL) {
594 		D("if_alloc failed");
595 		return ENOMEM;
596 	}
597 	if_initname(ifp, name, IF_DUNIT_NONE);
598 	ifp->if_mtu = 65536;
599 	ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
600 	ifp->if_init = (void *)nm_vi_dummy;
601 	ifp->if_ioctl = nm_vi_dummy;
602 	ifp->if_start = nm_vi_start;
603 	ifp->if_mtu = ETHERMTU;
604 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
605 	ifp->if_capabilities |= IFCAP_LINKSTATE;
606 	ifp->if_capenable |= IFCAP_LINKSTATE;
607 
608 	ether_ifattach(ifp, eaddr);
609 	*ret = ifp;
610 	return 0;
611 }
612 
613 /* unregister from the system and drop the final refcount */
614 void
615 nm_os_vi_detach(struct ifnet *ifp)
616 {
617 	nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
618 	ether_ifdetach(ifp);
619 	if_free(ifp);
620 }
621 
622 #ifdef WITH_EXTMEM
623 #include <vm/vm_map.h>
624 #include <vm/vm_kern.h>
625 struct nm_os_extmem {
626 	vm_object_t obj;
627 	vm_offset_t kva;
628 	vm_offset_t size;
629 	uintptr_t scan;
630 };
631 
632 void
633 nm_os_extmem_delete(struct nm_os_extmem *e)
634 {
635 	D("freeing %jx bytes", (uintmax_t)e->size);
636 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
637 	nm_os_free(e);
638 }
639 
640 char *
641 nm_os_extmem_nextpage(struct nm_os_extmem *e)
642 {
643 	char *rv = NULL;
644 	if (e->scan < e->kva + e->size) {
645 		rv = (char *)e->scan;
646 		e->scan += PAGE_SIZE;
647 	}
648 	return rv;
649 }
650 
651 int
652 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
653 {
654 	return (e1->obj == e2->obj);
655 }
656 
657 int
658 nm_os_extmem_nr_pages(struct nm_os_extmem *e)
659 {
660 	return e->size >> PAGE_SHIFT;
661 }
662 
663 struct nm_os_extmem *
664 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
665 {
666 	vm_map_t map;
667 	vm_map_entry_t entry;
668 	vm_object_t obj;
669 	vm_prot_t prot;
670 	vm_pindex_t index;
671 	boolean_t wired;
672 	struct nm_os_extmem *e = NULL;
673 	int rv, error = 0;
674 
675 	e = nm_os_malloc(sizeof(*e));
676 	if (e == NULL) {
677 		error = ENOMEM;
678 		goto out;
679 	}
680 
681 	map = &curthread->td_proc->p_vmspace->vm_map;
682 	rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
683 			&obj, &index, &prot, &wired);
684 	if (rv != KERN_SUCCESS) {
685 		D("address %lx not found", p);
686 		goto out_free;
687 	}
688 	/* check that we are given the whole vm_object ? */
689 	vm_map_lookup_done(map, entry);
690 
691 	// XXX can we really use obj after releasing the map lock?
692 	e->obj = obj;
693 	vm_object_reference(obj);
694 	/* wire the memory and add the vm_object to the kernel map,
695 	 * to make sure that it is not fred even if the processes that
696 	 * are mmap()ing it all exit
697 	 */
698 	e->kva = vm_map_min(kernel_map);
699 	e->size = obj->size << PAGE_SHIFT;
700 	rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
701 			VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
702 			VM_PROT_READ | VM_PROT_WRITE, 0);
703 	if (rv != KERN_SUCCESS) {
704 		D("vm_map_find(%jx) failed", (uintmax_t)e->size);
705 		goto out_rel;
706 	}
707 	rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
708 			VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
709 	if (rv != KERN_SUCCESS) {
710 		D("vm_map_wire failed");
711 		goto out_rem;
712 	}
713 
714 	e->scan = e->kva;
715 
716 	return e;
717 
718 out_rem:
719 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
720 	e->obj = NULL;
721 out_rel:
722 	vm_object_deallocate(e->obj);
723 out_free:
724 	nm_os_free(e);
725 out:
726 	if (perror)
727 		*perror = error;
728 	return NULL;
729 }
730 #endif /* WITH_EXTMEM */
731 
732 /* ======================== PTNETMAP SUPPORT ========================== */
733 
734 #ifdef WITH_PTNETMAP_GUEST
735 #include <sys/bus.h>
736 #include <sys/rman.h>
737 #include <machine/bus.h>        /* bus_dmamap_* */
738 #include <machine/resource.h>
739 #include <dev/pci/pcivar.h>
740 #include <dev/pci/pcireg.h>
741 /*
742  * ptnetmap memory device (memdev) for freebsd guest,
743  * ssed to expose host netmap memory to the guest through a PCI BAR.
744  */
745 
746 /*
747  * ptnetmap memdev private data structure
748  */
749 struct ptnetmap_memdev {
750 	device_t dev;
751 	struct resource *pci_io;
752 	struct resource *pci_mem;
753 	struct netmap_mem_d *nm_mem;
754 };
755 
756 static int	ptn_memdev_probe(device_t);
757 static int	ptn_memdev_attach(device_t);
758 static int	ptn_memdev_detach(device_t);
759 static int	ptn_memdev_shutdown(device_t);
760 
761 static device_method_t ptn_memdev_methods[] = {
762 	DEVMETHOD(device_probe, ptn_memdev_probe),
763 	DEVMETHOD(device_attach, ptn_memdev_attach),
764 	DEVMETHOD(device_detach, ptn_memdev_detach),
765 	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
766 	DEVMETHOD_END
767 };
768 
769 static driver_t ptn_memdev_driver = {
770 	PTNETMAP_MEMDEV_NAME,
771 	ptn_memdev_methods,
772 	sizeof(struct ptnetmap_memdev),
773 };
774 
775 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
776  * below. */
777 static devclass_t ptnetmap_devclass;
778 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
779 		      NULL, NULL, SI_ORDER_MIDDLE + 1);
780 
781 /*
782  * Map host netmap memory through PCI-BAR in the guest OS,
783  * returning physical (nm_paddr) and virtual (nm_addr) addresses
784  * of the netmap memory mapped in the guest.
785  */
786 int
787 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
788 		      void **nm_addr, uint64_t *mem_size)
789 {
790 	int rid;
791 
792 	D("ptn_memdev_driver iomap");
793 
794 	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
795 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
796 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
797 			(*mem_size << 32);
798 
799 	/* map memory allocator */
800 	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
801 			&rid, 0, ~0, *mem_size, RF_ACTIVE);
802 	if (ptn_dev->pci_mem == NULL) {
803 		*nm_paddr = 0;
804 		*nm_addr = NULL;
805 		return ENOMEM;
806 	}
807 
808 	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
809 	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
810 
811 	D("=== BAR %d start %lx len %lx mem_size %lx ===",
812 			PTNETMAP_MEM_PCI_BAR,
813 			(unsigned long)(*nm_paddr),
814 			(unsigned long)rman_get_size(ptn_dev->pci_mem),
815 			(unsigned long)*mem_size);
816 	return (0);
817 }
818 
819 uint32_t
820 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
821 {
822 	return bus_read_4(ptn_dev->pci_io, reg);
823 }
824 
825 /* Unmap host netmap memory. */
826 void
827 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
828 {
829 	D("ptn_memdev_driver iounmap");
830 
831 	if (ptn_dev->pci_mem) {
832 		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
833 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
834 		ptn_dev->pci_mem = NULL;
835 	}
836 }
837 
838 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
839  * positive on failure */
840 static int
841 ptn_memdev_probe(device_t dev)
842 {
843 	char desc[256];
844 
845 	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
846 		return (ENXIO);
847 	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
848 		return (ENXIO);
849 
850 	snprintf(desc, sizeof(desc), "%s PCI adapter",
851 			PTNETMAP_MEMDEV_NAME);
852 	device_set_desc_copy(dev, desc);
853 
854 	return (BUS_PROBE_DEFAULT);
855 }
856 
857 /* Device initialization routine. */
858 static int
859 ptn_memdev_attach(device_t dev)
860 {
861 	struct ptnetmap_memdev *ptn_dev;
862 	int rid;
863 	uint16_t mem_id;
864 
865 	D("ptn_memdev_driver attach");
866 
867 	ptn_dev = device_get_softc(dev);
868 	ptn_dev->dev = dev;
869 
870 	pci_enable_busmaster(dev);
871 
872 	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
873 	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
874 						 RF_ACTIVE);
875 	if (ptn_dev->pci_io == NULL) {
876 	        device_printf(dev, "cannot map I/O space\n");
877 	        return (ENXIO);
878 	}
879 
880 	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
881 
882 	/* create guest allocator */
883 	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
884 	if (ptn_dev->nm_mem == NULL) {
885 		ptn_memdev_detach(dev);
886 	        return (ENOMEM);
887 	}
888 	netmap_mem_get(ptn_dev->nm_mem);
889 
890 	D("ptn_memdev_driver probe OK - host_mem_id: %d", mem_id);
891 
892 	return (0);
893 }
894 
895 /* Device removal routine. */
896 static int
897 ptn_memdev_detach(device_t dev)
898 {
899 	struct ptnetmap_memdev *ptn_dev;
900 
901 	D("ptn_memdev_driver detach");
902 	ptn_dev = device_get_softc(dev);
903 
904 	if (ptn_dev->nm_mem) {
905 		netmap_mem_put(ptn_dev->nm_mem);
906 		ptn_dev->nm_mem = NULL;
907 	}
908 	if (ptn_dev->pci_mem) {
909 		bus_release_resource(dev, SYS_RES_MEMORY,
910 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
911 		ptn_dev->pci_mem = NULL;
912 	}
913 	if (ptn_dev->pci_io) {
914 		bus_release_resource(dev, SYS_RES_IOPORT,
915 			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
916 		ptn_dev->pci_io = NULL;
917 	}
918 
919 	return (0);
920 }
921 
922 static int
923 ptn_memdev_shutdown(device_t dev)
924 {
925 	D("ptn_memdev_driver shutdown");
926 	return bus_generic_shutdown(dev);
927 }
928 
929 #endif /* WITH_PTNETMAP_GUEST */
930 
931 /*
932  * In order to track whether pages are still mapped, we hook into
933  * the standard cdev_pager and intercept the constructor and
934  * destructor.
935  */
936 
937 struct netmap_vm_handle_t {
938 	struct cdev 		*dev;
939 	struct netmap_priv_d	*priv;
940 };
941 
942 
943 static int
944 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
945 		vm_ooffset_t foff, struct ucred *cred, u_short *color)
946 {
947 	struct netmap_vm_handle_t *vmh = handle;
948 
949 	if (netmap_verbose)
950 		D("handle %p size %jd prot %d foff %jd",
951 			handle, (intmax_t)size, prot, (intmax_t)foff);
952 	if (color)
953 		*color = 0;
954 	dev_ref(vmh->dev);
955 	return 0;
956 }
957 
958 
959 static void
960 netmap_dev_pager_dtor(void *handle)
961 {
962 	struct netmap_vm_handle_t *vmh = handle;
963 	struct cdev *dev = vmh->dev;
964 	struct netmap_priv_d *priv = vmh->priv;
965 
966 	if (netmap_verbose)
967 		D("handle %p", handle);
968 	netmap_dtor(priv);
969 	free(vmh, M_DEVBUF);
970 	dev_rel(dev);
971 }
972 
973 
974 static int
975 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
976 	int prot, vm_page_t *mres)
977 {
978 	struct netmap_vm_handle_t *vmh = object->handle;
979 	struct netmap_priv_d *priv = vmh->priv;
980 	struct netmap_adapter *na = priv->np_na;
981 	vm_paddr_t paddr;
982 	vm_page_t page;
983 	vm_memattr_t memattr;
984 	vm_pindex_t pidx;
985 
986 	ND("object %p offset %jd prot %d mres %p",
987 			object, (intmax_t)offset, prot, mres);
988 	memattr = object->memattr;
989 	pidx = OFF_TO_IDX(offset);
990 	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
991 	if (paddr == 0)
992 		return VM_PAGER_FAIL;
993 
994 	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
995 		/*
996 		 * If the passed in result page is a fake page, update it with
997 		 * the new physical address.
998 		 */
999 		page = *mres;
1000 		vm_page_updatefake(page, paddr, memattr);
1001 	} else {
1002 		/*
1003 		 * Replace the passed in reqpage page with our own fake page and
1004 		 * free up the all of the original pages.
1005 		 */
1006 #ifndef VM_OBJECT_WUNLOCK	/* FreeBSD < 10.x */
1007 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
1008 #define VM_OBJECT_WLOCK	VM_OBJECT_LOCK
1009 #endif /* VM_OBJECT_WUNLOCK */
1010 
1011 		VM_OBJECT_WUNLOCK(object);
1012 		page = vm_page_getfake(paddr, memattr);
1013 		VM_OBJECT_WLOCK(object);
1014 		vm_page_lock(*mres);
1015 		vm_page_free(*mres);
1016 		vm_page_unlock(*mres);
1017 		*mres = page;
1018 		vm_page_insert(page, object, pidx);
1019 	}
1020 	page->valid = VM_PAGE_BITS_ALL;
1021 	return (VM_PAGER_OK);
1022 }
1023 
1024 
1025 static struct cdev_pager_ops netmap_cdev_pager_ops = {
1026 	.cdev_pg_ctor = netmap_dev_pager_ctor,
1027 	.cdev_pg_dtor = netmap_dev_pager_dtor,
1028 	.cdev_pg_fault = netmap_dev_pager_fault,
1029 };
1030 
1031 
1032 static int
1033 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1034 	vm_size_t objsize,  vm_object_t *objp, int prot)
1035 {
1036 	int error;
1037 	struct netmap_vm_handle_t *vmh;
1038 	struct netmap_priv_d *priv;
1039 	vm_object_t obj;
1040 
1041 	if (netmap_verbose)
1042 		D("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1043 		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1044 
1045 	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1046 			      M_NOWAIT | M_ZERO);
1047 	if (vmh == NULL)
1048 		return ENOMEM;
1049 	vmh->dev = cdev;
1050 
1051 	NMG_LOCK();
1052 	error = devfs_get_cdevpriv((void**)&priv);
1053 	if (error)
1054 		goto err_unlock;
1055 	if (priv->np_nifp == NULL) {
1056 		error = EINVAL;
1057 		goto err_unlock;
1058 	}
1059 	vmh->priv = priv;
1060 	priv->np_refs++;
1061 	NMG_UNLOCK();
1062 
1063 	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1064 		&netmap_cdev_pager_ops, objsize, prot,
1065 		*foff, NULL);
1066 	if (obj == NULL) {
1067 		D("cdev_pager_allocate failed");
1068 		error = EINVAL;
1069 		goto err_deref;
1070 	}
1071 
1072 	*objp = obj;
1073 	return 0;
1074 
1075 err_deref:
1076 	NMG_LOCK();
1077 	priv->np_refs--;
1078 err_unlock:
1079 	NMG_UNLOCK();
1080 // err:
1081 	free(vmh, M_DEVBUF);
1082 	return error;
1083 }
1084 
1085 /*
1086  * On FreeBSD the close routine is only called on the last close on
1087  * the device (/dev/netmap) so we cannot do anything useful.
1088  * To track close() on individual file descriptors we pass netmap_dtor() to
1089  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1090  * when the last fd pointing to the device is closed.
1091  *
1092  * Note that FreeBSD does not even munmap() on close() so we also have
1093  * to track mmap() ourselves, and postpone the call to
1094  * netmap_dtor() is called when the process has no open fds and no active
1095  * memory maps on /dev/netmap, as in linux.
1096  */
1097 static int
1098 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1099 {
1100 	if (netmap_verbose)
1101 		D("dev %p fflag 0x%x devtype %d td %p",
1102 			dev, fflag, devtype, td);
1103 	return 0;
1104 }
1105 
1106 
1107 static int
1108 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1109 {
1110 	struct netmap_priv_d *priv;
1111 	int error;
1112 
1113 	(void)dev;
1114 	(void)oflags;
1115 	(void)devtype;
1116 	(void)td;
1117 
1118 	NMG_LOCK();
1119 	priv = netmap_priv_new();
1120 	if (priv == NULL) {
1121 		error = ENOMEM;
1122 		goto out;
1123 	}
1124 	error = devfs_set_cdevpriv(priv, netmap_dtor);
1125 	if (error) {
1126 		netmap_priv_delete(priv);
1127 	}
1128 out:
1129 	NMG_UNLOCK();
1130 	return error;
1131 }
1132 
1133 /******************** kthread wrapper ****************/
1134 #include <sys/sysproto.h>
1135 u_int
1136 nm_os_ncpus(void)
1137 {
1138 	return mp_maxid + 1;
1139 }
1140 
1141 struct nm_kctx_ctx {
1142 	struct thread *user_td;		/* thread user-space (kthread creator) to send ioctl */
1143 	struct ptnetmap_cfgentry_bhyve	cfg;
1144 
1145 	/* worker function and parameter */
1146 	nm_kctx_worker_fn_t worker_fn;
1147 	void *worker_private;
1148 
1149 	struct nm_kctx *nmk;
1150 
1151 	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1152 	long type;
1153 };
1154 
1155 struct nm_kctx {
1156 	struct thread *worker;
1157 	struct mtx worker_lock;
1158 	uint64_t scheduled; 		/* pending wake_up request */
1159 	struct nm_kctx_ctx worker_ctx;
1160 	int run;			/* used to stop kthread */
1161 	int attach_user;		/* kthread attached to user_process */
1162 	int affinity;
1163 };
1164 
1165 void inline
1166 nm_os_kctx_worker_wakeup(struct nm_kctx *nmk)
1167 {
1168 	/*
1169 	 * There may be a race between FE and BE,
1170 	 * which call both this function, and worker kthread,
1171 	 * that reads nmk->scheduled.
1172 	 *
1173 	 * For us it is not important the counter value,
1174 	 * but simply that it has changed since the last
1175 	 * time the kthread saw it.
1176 	 */
1177 	mtx_lock(&nmk->worker_lock);
1178 	nmk->scheduled++;
1179 	if (nmk->worker_ctx.cfg.wchan) {
1180 		wakeup((void *)(uintptr_t)nmk->worker_ctx.cfg.wchan);
1181 	}
1182 	mtx_unlock(&nmk->worker_lock);
1183 }
1184 
1185 void inline
1186 nm_os_kctx_send_irq(struct nm_kctx *nmk)
1187 {
1188 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1189 	int err;
1190 
1191 	if (ctx->user_td && ctx->cfg.ioctl_fd > 0) {
1192 		err = kern_ioctl(ctx->user_td, ctx->cfg.ioctl_fd, ctx->cfg.ioctl_cmd,
1193 				 (caddr_t)&ctx->cfg.ioctl_data);
1194 		if (err) {
1195 			D("kern_ioctl error: %d ioctl parameters: fd %d com %lu data %p",
1196 				err, ctx->cfg.ioctl_fd, (unsigned long)ctx->cfg.ioctl_cmd,
1197 				&ctx->cfg.ioctl_data);
1198 		}
1199 	}
1200 }
1201 
1202 static void
1203 nm_kctx_worker(void *data)
1204 {
1205 	struct nm_kctx *nmk = data;
1206 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1207 	uint64_t old_scheduled = nmk->scheduled;
1208 
1209 	if (nmk->affinity >= 0) {
1210 		thread_lock(curthread);
1211 		sched_bind(curthread, nmk->affinity);
1212 		thread_unlock(curthread);
1213 	}
1214 
1215 	while (nmk->run) {
1216 		/*
1217 		 * check if the parent process dies
1218 		 * (when kthread is attached to user process)
1219 		 */
1220 		if (ctx->user_td) {
1221 			PROC_LOCK(curproc);
1222 			thread_suspend_check(0);
1223 			PROC_UNLOCK(curproc);
1224 		} else {
1225 			kthread_suspend_check();
1226 		}
1227 
1228 		/*
1229 		 * if wchan is not defined, we don't have notification
1230 		 * mechanism and we continually execute worker_fn()
1231 		 */
1232 		if (!ctx->cfg.wchan) {
1233 			ctx->worker_fn(ctx->worker_private, 1); /* worker body */
1234 		} else {
1235 			/* checks if there is a pending notification */
1236 			mtx_lock(&nmk->worker_lock);
1237 			if (likely(nmk->scheduled != old_scheduled)) {
1238 				old_scheduled = nmk->scheduled;
1239 				mtx_unlock(&nmk->worker_lock);
1240 
1241 				ctx->worker_fn(ctx->worker_private, 1); /* worker body */
1242 
1243 				continue;
1244 			} else if (nmk->run) {
1245 				/* wait on event with one second timeout */
1246 				msleep((void *)(uintptr_t)ctx->cfg.wchan, &nmk->worker_lock,
1247 					0, "nmk_ev", hz);
1248 				nmk->scheduled++;
1249 			}
1250 			mtx_unlock(&nmk->worker_lock);
1251 		}
1252 	}
1253 
1254 	kthread_exit();
1255 }
1256 
1257 void
1258 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1259 {
1260 	nmk->affinity = affinity;
1261 }
1262 
1263 struct nm_kctx *
1264 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1265 {
1266 	struct nm_kctx *nmk = NULL;
1267 
1268 	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1269 	if (!nmk)
1270 		return NULL;
1271 
1272 	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1273 	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1274 	nmk->worker_ctx.worker_private = cfg->worker_private;
1275 	nmk->worker_ctx.type = cfg->type;
1276 	nmk->affinity = -1;
1277 
1278 	/* attach kthread to user process (ptnetmap) */
1279 	nmk->attach_user = cfg->attach_user;
1280 
1281 	/* store kick/interrupt configuration */
1282 	if (opaque) {
1283 		nmk->worker_ctx.cfg = *((struct ptnetmap_cfgentry_bhyve *)opaque);
1284 	}
1285 
1286 	return nmk;
1287 }
1288 
1289 int
1290 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1291 {
1292 	struct proc *p = NULL;
1293 	int error = 0;
1294 
1295 	if (nmk->worker) {
1296 		return EBUSY;
1297 	}
1298 
1299 	/* check if we want to attach kthread to user process */
1300 	if (nmk->attach_user) {
1301 		nmk->worker_ctx.user_td = curthread;
1302 		p = curthread->td_proc;
1303 	}
1304 
1305 	/* enable kthread main loop */
1306 	nmk->run = 1;
1307 	/* create kthread */
1308 	if((error = kthread_add(nm_kctx_worker, nmk, p,
1309 			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1310 			nmk->worker_ctx.type))) {
1311 		goto err;
1312 	}
1313 
1314 	D("nm_kthread started td %p", nmk->worker);
1315 
1316 	return 0;
1317 err:
1318 	D("nm_kthread start failed err %d", error);
1319 	nmk->worker = NULL;
1320 	return error;
1321 }
1322 
1323 void
1324 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1325 {
1326 	if (!nmk->worker) {
1327 		return;
1328 	}
1329 	/* tell to kthread to exit from main loop */
1330 	nmk->run = 0;
1331 
1332 	/* wake up kthread if it sleeps */
1333 	kthread_resume(nmk->worker);
1334 	nm_os_kctx_worker_wakeup(nmk);
1335 
1336 	nmk->worker = NULL;
1337 }
1338 
1339 void
1340 nm_os_kctx_destroy(struct nm_kctx *nmk)
1341 {
1342 	if (!nmk)
1343 		return;
1344 	if (nmk->worker) {
1345 		nm_os_kctx_worker_stop(nmk);
1346 	}
1347 
1348 	memset(&nmk->worker_ctx.cfg, 0, sizeof(nmk->worker_ctx.cfg));
1349 
1350 	free(nmk, M_DEVBUF);
1351 }
1352 
1353 /******************** kqueue support ****************/
1354 
1355 /*
1356  * nm_os_selwakeup also needs to issue a KNOTE_UNLOCKED.
1357  * We use a non-zero argument to distinguish the call from the one
1358  * in kevent_scan() which instead also needs to run netmap_poll().
1359  * The knote uses a global mutex for the time being. We might
1360  * try to reuse the one in the si, but it is not allocated
1361  * permanently so it might be a bit tricky.
1362  *
1363  * The *kqfilter function registers one or another f_event
1364  * depending on read or write mode.
1365  * In the call to f_event() td_fpop is NULL so any child function
1366  * calling devfs_get_cdevpriv() would fail - and we need it in
1367  * netmap_poll(). As a workaround we store priv into kn->kn_hook
1368  * and pass it as first argument to netmap_poll(), which then
1369  * uses the failure to tell that we are called from f_event()
1370  * and do not need the selrecord().
1371  */
1372 
1373 
1374 void
1375 nm_os_selwakeup(struct nm_selinfo *si)
1376 {
1377 	if (netmap_verbose)
1378 		D("on knote %p", &si->si.si_note);
1379 	selwakeuppri(&si->si, PI_NET);
1380 	/* use a non-zero hint to tell the notification from the
1381 	 * call done in kqueue_scan() which uses 0
1382 	 */
1383 	KNOTE_UNLOCKED(&si->si.si_note, 0x100 /* notification */);
1384 }
1385 
1386 void
1387 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1388 {
1389 	selrecord(td, &si->si);
1390 }
1391 
1392 static void
1393 netmap_knrdetach(struct knote *kn)
1394 {
1395 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1396 	struct selinfo *si = &priv->np_si[NR_RX]->si;
1397 
1398 	D("remove selinfo %p", si);
1399 	knlist_remove(&si->si_note, kn, 0);
1400 }
1401 
1402 static void
1403 netmap_knwdetach(struct knote *kn)
1404 {
1405 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1406 	struct selinfo *si = &priv->np_si[NR_TX]->si;
1407 
1408 	D("remove selinfo %p", si);
1409 	knlist_remove(&si->si_note, kn, 0);
1410 }
1411 
1412 /*
1413  * callback from notifies (generated externally) and our
1414  * calls to kevent(). The former we just return 1 (ready)
1415  * since we do not know better.
1416  * In the latter we call netmap_poll and return 0/1 accordingly.
1417  */
1418 static int
1419 netmap_knrw(struct knote *kn, long hint, int events)
1420 {
1421 	struct netmap_priv_d *priv;
1422 	int revents;
1423 
1424 	if (hint != 0) {
1425 		ND(5, "call from notify");
1426 		return 1; /* assume we are ready */
1427 	}
1428 	priv = kn->kn_hook;
1429 	/* the notification may come from an external thread,
1430 	 * in which case we do not want to run the netmap_poll
1431 	 * This should be filtered above, but check just in case.
1432 	 */
1433 	if (curthread != priv->np_td) { /* should not happen */
1434 		RD(5, "curthread changed %p %p", curthread, priv->np_td);
1435 		return 1;
1436 	} else {
1437 		revents = netmap_poll(priv, events, NULL);
1438 		return (events & revents) ? 1 : 0;
1439 	}
1440 }
1441 
1442 static int
1443 netmap_knread(struct knote *kn, long hint)
1444 {
1445 	return netmap_knrw(kn, hint, POLLIN);
1446 }
1447 
1448 static int
1449 netmap_knwrite(struct knote *kn, long hint)
1450 {
1451 	return netmap_knrw(kn, hint, POLLOUT);
1452 }
1453 
1454 static struct filterops netmap_rfiltops = {
1455 	.f_isfd = 1,
1456 	.f_detach = netmap_knrdetach,
1457 	.f_event = netmap_knread,
1458 };
1459 
1460 static struct filterops netmap_wfiltops = {
1461 	.f_isfd = 1,
1462 	.f_detach = netmap_knwdetach,
1463 	.f_event = netmap_knwrite,
1464 };
1465 
1466 
1467 /*
1468  * This is called when a thread invokes kevent() to record
1469  * a change in the configuration of the kqueue().
1470  * The 'priv' should be the same as in the netmap device.
1471  */
1472 static int
1473 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1474 {
1475 	struct netmap_priv_d *priv;
1476 	int error;
1477 	struct netmap_adapter *na;
1478 	struct nm_selinfo *si;
1479 	int ev = kn->kn_filter;
1480 
1481 	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1482 		D("bad filter request %d", ev);
1483 		return 1;
1484 	}
1485 	error = devfs_get_cdevpriv((void**)&priv);
1486 	if (error) {
1487 		D("device not yet setup");
1488 		return 1;
1489 	}
1490 	na = priv->np_na;
1491 	if (na == NULL) {
1492 		D("no netmap adapter for this file descriptor");
1493 		return 1;
1494 	}
1495 	/* the si is indicated in the priv */
1496 	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1497 	// XXX lock(priv) ?
1498 	kn->kn_fop = (ev == EVFILT_WRITE) ?
1499 		&netmap_wfiltops : &netmap_rfiltops;
1500 	kn->kn_hook = priv;
1501 	knlist_add(&si->si.si_note, kn, 0);
1502 	// XXX unlock(priv)
1503 	ND("register %p %s td %p priv %p kn %p np_nifp %p kn_fp/fpop %s",
1504 		na, na->ifp->if_xname, curthread, priv, kn,
1505 		priv->np_nifp,
1506 		kn->kn_fp == curthread->td_fpop ? "match" : "MISMATCH");
1507 	return 0;
1508 }
1509 
1510 static int
1511 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1512 {
1513 	struct netmap_priv_d *priv;
1514 	if (devfs_get_cdevpriv((void **)&priv)) {
1515 		return POLLERR;
1516 	}
1517 	return netmap_poll(priv, events, td);
1518 }
1519 
1520 static int
1521 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1522 		int ffla __unused, struct thread *td)
1523 {
1524 	int error;
1525 	struct netmap_priv_d *priv;
1526 
1527 	CURVNET_SET(TD_TO_VNET(td));
1528 	error = devfs_get_cdevpriv((void **)&priv);
1529 	if (error) {
1530 		/* XXX ENOENT should be impossible, since the priv
1531 		 * is now created in the open */
1532 		if (error == ENOENT)
1533 			error = ENXIO;
1534 		goto out;
1535 	}
1536 	error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1537 out:
1538 	CURVNET_RESTORE();
1539 
1540 	return error;
1541 }
1542 
1543 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1544 struct cdevsw netmap_cdevsw = {
1545 	.d_version = D_VERSION,
1546 	.d_name = "netmap",
1547 	.d_open = netmap_open,
1548 	.d_mmap_single = netmap_mmap_single,
1549 	.d_ioctl = freebsd_netmap_ioctl,
1550 	.d_poll = freebsd_netmap_poll,
1551 	.d_kqfilter = netmap_kqfilter,
1552 	.d_close = netmap_close,
1553 };
1554 /*--- end of kqueue support ----*/
1555 
1556 /*
1557  * Kernel entry point.
1558  *
1559  * Initialize/finalize the module and return.
1560  *
1561  * Return 0 on success, errno on failure.
1562  */
1563 static int
1564 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1565 {
1566 	int error = 0;
1567 
1568 	switch (event) {
1569 	case MOD_LOAD:
1570 		error = netmap_init();
1571 		break;
1572 
1573 	case MOD_UNLOAD:
1574 		/*
1575 		 * if some one is still using netmap,
1576 		 * then the module can not be unloaded.
1577 		 */
1578 		if (netmap_use_count) {
1579 			D("netmap module can not be unloaded - netmap_use_count: %d",
1580 					netmap_use_count);
1581 			error = EBUSY;
1582 			break;
1583 		}
1584 		netmap_fini();
1585 		break;
1586 
1587 	default:
1588 		error = EOPNOTSUPP;
1589 		break;
1590 	}
1591 
1592 	return (error);
1593 }
1594 
1595 #ifdef DEV_MODULE_ORDERED
1596 /*
1597  * The netmap module contains three drivers: (i) the netmap character device
1598  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1599  * device driver. The attach() routines of both (ii) and (iii) need the
1600  * lock of the global allocator, and such lock is initialized in netmap_init(),
1601  * which is part of (i).
1602  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1603  * the 'order' parameter of driver declaration macros. For (i), we specify
1604  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1605  * macros for (ii) and (iii).
1606  */
1607 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1608 #else /* !DEV_MODULE_ORDERED */
1609 DEV_MODULE(netmap, netmap_loader, NULL);
1610 #endif /* DEV_MODULE_ORDERED  */
1611 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1612 MODULE_VERSION(netmap, 1);
1613 /* reduce conditional code */
1614 // linux API, use for the knlist in FreeBSD
1615 /* use a private mutex for the knlist */
1616