1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/eventhandler.h> 36 #include <sys/jail.h> 37 #include <sys/poll.h> /* POLLIN, POLLOUT */ 38 #include <sys/kernel.h> /* types used in module initialization */ 39 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 40 #include <sys/endian.h> 41 #include <sys/syscallsubr.h> /* kern_ioctl() */ 42 43 #include <sys/rwlock.h> 44 45 #include <vm/vm.h> /* vtophys */ 46 #include <vm/pmap.h> /* vtophys */ 47 #include <vm/vm_param.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_pager.h> 51 #include <vm/uma.h> 52 53 54 #include <sys/malloc.h> 55 #include <sys/socket.h> /* sockaddrs */ 56 #include <sys/selinfo.h> 57 #include <sys/kthread.h> /* kthread_add() */ 58 #include <sys/proc.h> /* PROC_LOCK() */ 59 #include <sys/unistd.h> /* RFNOWAIT */ 60 #include <sys/sched.h> /* sched_bind() */ 61 #include <sys/smp.h> /* mp_maxid */ 62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> /* IFT_ETHER */ 66 #include <net/ethernet.h> /* ether_ifdetach */ 67 #include <net/if_dl.h> /* LLADDR */ 68 #include <machine/bus.h> /* bus_dmamap_* */ 69 #include <netinet/in.h> /* in6_cksum_pseudo() */ 70 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 71 72 #include <net/netmap.h> 73 #include <dev/netmap/netmap_kern.h> 74 #include <net/netmap_virt.h> 75 #include <dev/netmap/netmap_mem2.h> 76 77 78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 79 80 static void 81 nm_kqueue_notify(void *opaque, int pending) 82 { 83 struct nm_selinfo *si = opaque; 84 85 /* We use a non-zero hint to distinguish this notification call 86 * from the call done in kqueue_scan(), which uses hint=0. 87 */ 88 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 89 } 90 91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 92 int err; 93 94 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 95 si->ntfytq = taskqueue_create(name, M_NOWAIT, 96 taskqueue_thread_enqueue, &si->ntfytq); 97 if (si->ntfytq == NULL) 98 return -ENOMEM; 99 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 100 if (err) { 101 taskqueue_free(si->ntfytq); 102 si->ntfytq = NULL; 103 return err; 104 } 105 106 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 107 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 108 knlist_init_mtx(&si->si.si_note, &si->m); 109 si->kqueue_users = 0; 110 111 return (0); 112 } 113 114 void 115 nm_os_selinfo_uninit(NM_SELINFO_T *si) 116 { 117 if (si->ntfytq == NULL) { 118 return; /* si was not initialized */ 119 } 120 taskqueue_drain(si->ntfytq, &si->ntfytask); 121 taskqueue_free(si->ntfytq); 122 si->ntfytq = NULL; 123 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 124 knlist_destroy(&si->si.si_note); 125 /* now we don't need the mutex anymore */ 126 mtx_destroy(&si->m); 127 } 128 129 void * 130 nm_os_malloc(size_t size) 131 { 132 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 133 } 134 135 void * 136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 137 { 138 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 139 } 140 141 void 142 nm_os_free(void *addr) 143 { 144 free(addr, M_DEVBUF); 145 } 146 147 void 148 nm_os_ifnet_lock(void) 149 { 150 IFNET_RLOCK(); 151 } 152 153 void 154 nm_os_ifnet_unlock(void) 155 { 156 IFNET_RUNLOCK(); 157 } 158 159 static int netmap_use_count = 0; 160 161 void 162 nm_os_get_module(void) 163 { 164 netmap_use_count++; 165 } 166 167 void 168 nm_os_put_module(void) 169 { 170 netmap_use_count--; 171 } 172 173 static void 174 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp) 175 { 176 netmap_undo_zombie(ifp); 177 } 178 179 static void 180 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp) 181 { 182 netmap_make_zombie(ifp); 183 } 184 185 static eventhandler_tag nm_ifnet_ah_tag; 186 static eventhandler_tag nm_ifnet_dh_tag; 187 188 int 189 nm_os_ifnet_init(void) 190 { 191 nm_ifnet_ah_tag = 192 EVENTHANDLER_REGISTER(ifnet_arrival_event, 193 netmap_ifnet_arrival_handler, 194 NULL, EVENTHANDLER_PRI_ANY); 195 nm_ifnet_dh_tag = 196 EVENTHANDLER_REGISTER(ifnet_departure_event, 197 netmap_ifnet_departure_handler, 198 NULL, EVENTHANDLER_PRI_ANY); 199 return 0; 200 } 201 202 void 203 nm_os_ifnet_fini(void) 204 { 205 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 206 nm_ifnet_ah_tag); 207 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 208 nm_ifnet_dh_tag); 209 } 210 211 unsigned 212 nm_os_ifnet_mtu(struct ifnet *ifp) 213 { 214 return ifp->if_mtu; 215 } 216 217 rawsum_t 218 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 219 { 220 /* TODO XXX please use the FreeBSD implementation for this. */ 221 uint16_t *words = (uint16_t *)data; 222 int nw = len / 2; 223 int i; 224 225 for (i = 0; i < nw; i++) 226 cur_sum += be16toh(words[i]); 227 228 if (len & 1) 229 cur_sum += (data[len-1] << 8); 230 231 return cur_sum; 232 } 233 234 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 235 * return value is in network byte order. 236 */ 237 uint16_t 238 nm_os_csum_fold(rawsum_t cur_sum) 239 { 240 /* TODO XXX please use the FreeBSD implementation for this. */ 241 while (cur_sum >> 16) 242 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 243 244 return htobe16((~cur_sum) & 0xFFFF); 245 } 246 247 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 248 { 249 #if 0 250 return in_cksum_hdr((void *)iph); 251 #else 252 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 253 #endif 254 } 255 256 void 257 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 258 size_t datalen, uint16_t *check) 259 { 260 #ifdef INET 261 uint16_t pseudolen = datalen + iph->protocol; 262 263 /* Compute and insert the pseudo-header checksum. */ 264 *check = in_pseudo(iph->saddr, iph->daddr, 265 htobe16(pseudolen)); 266 /* Compute the checksum on TCP/UDP header + payload 267 * (includes the pseudo-header). 268 */ 269 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 270 #else 271 static int notsupported = 0; 272 if (!notsupported) { 273 notsupported = 1; 274 nm_prerr("inet4 segmentation not supported"); 275 } 276 #endif 277 } 278 279 void 280 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 281 size_t datalen, uint16_t *check) 282 { 283 #ifdef INET6 284 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 285 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 286 #else 287 static int notsupported = 0; 288 if (!notsupported) { 289 notsupported = 1; 290 nm_prerr("inet6 segmentation not supported"); 291 } 292 #endif 293 } 294 295 /* on FreeBSD we send up one packet at a time */ 296 void * 297 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev) 298 { 299 NA(ifp)->if_input(ifp, m); 300 return NULL; 301 } 302 303 int 304 nm_os_mbuf_has_csum_offld(struct mbuf *m) 305 { 306 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 307 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 308 CSUM_SCTP_IPV6); 309 } 310 311 int 312 nm_os_mbuf_has_seg_offld(struct mbuf *m) 313 { 314 return m->m_pkthdr.csum_flags & CSUM_TSO; 315 } 316 317 static void 318 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 319 { 320 int stolen; 321 322 if (unlikely(!NM_NA_VALID(ifp))) { 323 nm_prlim(1, "Warning: RX packet intercepted, but no" 324 " emulated adapter"); 325 return; 326 } 327 328 stolen = generic_rx_handler(ifp, m); 329 if (!stolen) { 330 struct netmap_generic_adapter *gna = 331 (struct netmap_generic_adapter *)NA(ifp); 332 gna->save_if_input(ifp, m); 333 } 334 } 335 336 /* 337 * Intercept the rx routine in the standard device driver. 338 * Second argument is non-zero to intercept, 0 to restore 339 */ 340 int 341 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 342 { 343 struct netmap_adapter *na = &gna->up.up; 344 struct ifnet *ifp = na->ifp; 345 int ret = 0; 346 347 nm_os_ifnet_lock(); 348 if (intercept) { 349 if (gna->save_if_input) { 350 nm_prerr("RX on %s already intercepted", na->name); 351 ret = EBUSY; /* already set */ 352 goto out; 353 } 354 355 ifp->if_capenable |= IFCAP_NETMAP; 356 gna->save_if_input = ifp->if_input; 357 ifp->if_input = freebsd_generic_rx_handler; 358 } else { 359 if (!gna->save_if_input) { 360 nm_prerr("Failed to undo RX intercept on %s", 361 na->name); 362 ret = EINVAL; /* not saved */ 363 goto out; 364 } 365 366 ifp->if_capenable &= ~IFCAP_NETMAP; 367 ifp->if_input = gna->save_if_input; 368 gna->save_if_input = NULL; 369 } 370 out: 371 nm_os_ifnet_unlock(); 372 373 return ret; 374 } 375 376 377 /* 378 * Intercept the packet steering routine in the tx path, 379 * so that we can decide which queue is used for an mbuf. 380 * Second argument is non-zero to intercept, 0 to restore. 381 * On freebsd we just intercept if_transmit. 382 */ 383 int 384 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 385 { 386 struct netmap_adapter *na = &gna->up.up; 387 struct ifnet *ifp = netmap_generic_getifp(gna); 388 389 nm_os_ifnet_lock(); 390 if (intercept) { 391 na->if_transmit = ifp->if_transmit; 392 ifp->if_transmit = netmap_transmit; 393 } else { 394 ifp->if_transmit = na->if_transmit; 395 } 396 nm_os_ifnet_unlock(); 397 398 return 0; 399 } 400 401 402 /* 403 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 404 * and non-zero on error (which may be packet drops or other errors). 405 * addr and len identify the netmap buffer, m is the (preallocated) 406 * mbuf to use for transmissions. 407 * 408 * We should add a reference to the mbuf so the m_freem() at the end 409 * of the transmission does not consume resources. 410 * 411 * On FreeBSD, and on multiqueue cards, we can force the queue using 412 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 413 * i = m->m_pkthdr.flowid % adapter->num_queues; 414 * else 415 * i = curcpu % adapter->num_queues; 416 * 417 */ 418 int 419 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 420 { 421 int ret; 422 u_int len = a->len; 423 struct ifnet *ifp = a->ifp; 424 struct mbuf *m = a->m; 425 426 /* Link the external storage to 427 * the netmap buffer, so that no copy is necessary. */ 428 m->m_ext.ext_buf = m->m_data = a->addr; 429 m->m_ext.ext_size = len; 430 431 m->m_flags |= M_PKTHDR; 432 m->m_len = m->m_pkthdr.len = len; 433 434 /* mbuf refcnt is not contended, no need to use atomic 435 * (a memory barrier is enough). */ 436 SET_MBUF_REFCNT(m, 2); 437 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 438 m->m_pkthdr.flowid = a->ring_nr; 439 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 440 CURVNET_SET(ifp->if_vnet); 441 ret = NA(ifp)->if_transmit(ifp, m); 442 CURVNET_RESTORE(); 443 return ret ? -1 : 0; 444 } 445 446 447 struct netmap_adapter * 448 netmap_getna(if_t ifp) 449 { 450 return (NA((struct ifnet *)ifp)); 451 } 452 453 /* 454 * The following two functions are empty until we have a generic 455 * way to extract the info from the ifp 456 */ 457 int 458 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx) 459 { 460 return 0; 461 } 462 463 464 void 465 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq) 466 { 467 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 468 469 *txq = num_rings; 470 *rxq = num_rings; 471 } 472 473 void 474 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 475 { 476 477 gna->rxsg = 1; /* Supported through m_copydata. */ 478 gna->txqdisc = 0; /* Not supported. */ 479 } 480 481 void 482 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 483 { 484 mit->mit_pending = 0; 485 mit->mit_ring_idx = idx; 486 mit->mit_na = na; 487 } 488 489 490 void 491 nm_os_mitigation_start(struct nm_generic_mit *mit) 492 { 493 } 494 495 496 void 497 nm_os_mitigation_restart(struct nm_generic_mit *mit) 498 { 499 } 500 501 502 int 503 nm_os_mitigation_active(struct nm_generic_mit *mit) 504 { 505 506 return 0; 507 } 508 509 510 void 511 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 512 { 513 } 514 515 static int 516 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr) 517 { 518 519 return EINVAL; 520 } 521 522 static void 523 nm_vi_start(struct ifnet *ifp) 524 { 525 panic("nm_vi_start() must not be called"); 526 } 527 528 /* 529 * Index manager of persistent virtual interfaces. 530 * It is used to decide the lowest byte of the MAC address. 531 * We use the same algorithm with management of bridge port index. 532 */ 533 #define NM_VI_MAX 255 534 static struct { 535 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 536 uint8_t active; 537 struct mtx lock; 538 } nm_vi_indices; 539 540 void 541 nm_os_vi_init_index(void) 542 { 543 int i; 544 for (i = 0; i < NM_VI_MAX; i++) 545 nm_vi_indices.index[i] = i; 546 nm_vi_indices.active = 0; 547 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 548 } 549 550 /* return -1 if no index available */ 551 static int 552 nm_vi_get_index(void) 553 { 554 int ret; 555 556 mtx_lock(&nm_vi_indices.lock); 557 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 558 nm_vi_indices.index[nm_vi_indices.active++]; 559 mtx_unlock(&nm_vi_indices.lock); 560 return ret; 561 } 562 563 static void 564 nm_vi_free_index(uint8_t val) 565 { 566 int i, lim; 567 568 mtx_lock(&nm_vi_indices.lock); 569 lim = nm_vi_indices.active; 570 for (i = 0; i < lim; i++) { 571 if (nm_vi_indices.index[i] == val) { 572 /* swap index[lim-1] and j */ 573 int tmp = nm_vi_indices.index[lim-1]; 574 nm_vi_indices.index[lim-1] = val; 575 nm_vi_indices.index[i] = tmp; 576 nm_vi_indices.active--; 577 break; 578 } 579 } 580 if (lim == nm_vi_indices.active) 581 nm_prerr("Index %u not found", val); 582 mtx_unlock(&nm_vi_indices.lock); 583 } 584 #undef NM_VI_MAX 585 586 /* 587 * Implementation of a netmap-capable virtual interface that 588 * registered to the system. 589 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 590 * 591 * Note: Linux sets refcount to 0 on allocation of net_device, 592 * then increments it on registration to the system. 593 * FreeBSD sets refcount to 1 on if_alloc(), and does not 594 * increment this refcount on if_attach(). 595 */ 596 int 597 nm_os_vi_persist(const char *name, struct ifnet **ret) 598 { 599 struct ifnet *ifp; 600 u_short macaddr_hi; 601 uint32_t macaddr_mid; 602 u_char eaddr[6]; 603 int unit = nm_vi_get_index(); /* just to decide MAC address */ 604 605 if (unit < 0) 606 return EBUSY; 607 /* 608 * We use the same MAC address generation method with tap 609 * except for the highest octet is 00:be instead of 00:bd 610 */ 611 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 612 macaddr_mid = (uint32_t) ticks; 613 bcopy(&macaddr_hi, eaddr, sizeof(short)); 614 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 615 eaddr[5] = (uint8_t)unit; 616 617 ifp = if_alloc(IFT_ETHER); 618 if (ifp == NULL) { 619 nm_prerr("if_alloc failed"); 620 return ENOMEM; 621 } 622 if_initname(ifp, name, IF_DUNIT_NONE); 623 ifp->if_mtu = 65536; 624 ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST; 625 ifp->if_init = (void *)nm_vi_dummy; 626 ifp->if_ioctl = nm_vi_dummy; 627 ifp->if_start = nm_vi_start; 628 ifp->if_mtu = ETHERMTU; 629 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 630 ifp->if_capabilities |= IFCAP_LINKSTATE; 631 ifp->if_capenable |= IFCAP_LINKSTATE; 632 633 ether_ifattach(ifp, eaddr); 634 *ret = ifp; 635 return 0; 636 } 637 638 /* unregister from the system and drop the final refcount */ 639 void 640 nm_os_vi_detach(struct ifnet *ifp) 641 { 642 nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]); 643 ether_ifdetach(ifp); 644 if_free(ifp); 645 } 646 647 #ifdef WITH_EXTMEM 648 #include <vm/vm_map.h> 649 #include <vm/vm_extern.h> 650 #include <vm/vm_kern.h> 651 struct nm_os_extmem { 652 vm_object_t obj; 653 vm_offset_t kva; 654 vm_offset_t size; 655 uintptr_t scan; 656 }; 657 658 void 659 nm_os_extmem_delete(struct nm_os_extmem *e) 660 { 661 nm_prinf("freeing %zx bytes", (size_t)e->size); 662 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 663 nm_os_free(e); 664 } 665 666 char * 667 nm_os_extmem_nextpage(struct nm_os_extmem *e) 668 { 669 char *rv = NULL; 670 if (e->scan < e->kva + e->size) { 671 rv = (char *)e->scan; 672 e->scan += PAGE_SIZE; 673 } 674 return rv; 675 } 676 677 int 678 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 679 { 680 return (e1->obj == e2->obj); 681 } 682 683 int 684 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 685 { 686 return e->size >> PAGE_SHIFT; 687 } 688 689 struct nm_os_extmem * 690 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 691 { 692 vm_map_t map; 693 vm_map_entry_t entry; 694 vm_object_t obj; 695 vm_prot_t prot; 696 vm_pindex_t index; 697 boolean_t wired; 698 struct nm_os_extmem *e = NULL; 699 int rv, error = 0; 700 701 e = nm_os_malloc(sizeof(*e)); 702 if (e == NULL) { 703 error = ENOMEM; 704 goto out; 705 } 706 707 map = &curthread->td_proc->p_vmspace->vm_map; 708 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 709 &obj, &index, &prot, &wired); 710 if (rv != KERN_SUCCESS) { 711 nm_prerr("address %lx not found", p); 712 error = vm_mmap_to_errno(rv); 713 goto out_free; 714 } 715 vm_object_reference(obj); 716 717 /* check that we are given the whole vm_object ? */ 718 vm_map_lookup_done(map, entry); 719 720 e->obj = obj; 721 /* Wire the memory and add the vm_object to the kernel map, 722 * to make sure that it is not freed even if all the processes 723 * that are mmap()ing should munmap() it. 724 */ 725 e->kva = vm_map_min(kernel_map); 726 e->size = obj->size << PAGE_SHIFT; 727 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 728 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 729 VM_PROT_READ | VM_PROT_WRITE, 0); 730 if (rv != KERN_SUCCESS) { 731 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 732 error = vm_mmap_to_errno(rv); 733 goto out_rel; 734 } 735 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 736 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 737 if (rv != KERN_SUCCESS) { 738 nm_prerr("vm_map_wire failed"); 739 error = vm_mmap_to_errno(rv); 740 goto out_rem; 741 } 742 743 e->scan = e->kva; 744 745 return e; 746 747 out_rem: 748 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 749 out_rel: 750 vm_object_deallocate(e->obj); 751 e->obj = NULL; 752 out_free: 753 nm_os_free(e); 754 out: 755 if (perror) 756 *perror = error; 757 return NULL; 758 } 759 #endif /* WITH_EXTMEM */ 760 761 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 762 763 #ifdef WITH_PTNETMAP 764 #include <sys/bus.h> 765 #include <sys/rman.h> 766 #include <machine/bus.h> /* bus_dmamap_* */ 767 #include <machine/resource.h> 768 #include <dev/pci/pcivar.h> 769 #include <dev/pci/pcireg.h> 770 /* 771 * ptnetmap memory device (memdev) for freebsd guest, 772 * ssed to expose host netmap memory to the guest through a PCI BAR. 773 */ 774 775 /* 776 * ptnetmap memdev private data structure 777 */ 778 struct ptnetmap_memdev { 779 device_t dev; 780 struct resource *pci_io; 781 struct resource *pci_mem; 782 struct netmap_mem_d *nm_mem; 783 }; 784 785 static int ptn_memdev_probe(device_t); 786 static int ptn_memdev_attach(device_t); 787 static int ptn_memdev_detach(device_t); 788 static int ptn_memdev_shutdown(device_t); 789 790 static device_method_t ptn_memdev_methods[] = { 791 DEVMETHOD(device_probe, ptn_memdev_probe), 792 DEVMETHOD(device_attach, ptn_memdev_attach), 793 DEVMETHOD(device_detach, ptn_memdev_detach), 794 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 795 DEVMETHOD_END 796 }; 797 798 static driver_t ptn_memdev_driver = { 799 PTNETMAP_MEMDEV_NAME, 800 ptn_memdev_methods, 801 sizeof(struct ptnetmap_memdev), 802 }; 803 804 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 805 * below. */ 806 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL, 807 SI_ORDER_MIDDLE + 1); 808 809 /* 810 * Map host netmap memory through PCI-BAR in the guest OS, 811 * returning physical (nm_paddr) and virtual (nm_addr) addresses 812 * of the netmap memory mapped in the guest. 813 */ 814 int 815 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 816 void **nm_addr, uint64_t *mem_size) 817 { 818 int rid; 819 820 nm_prinf("ptn_memdev_driver iomap"); 821 822 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 823 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 824 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 825 (*mem_size << 32); 826 827 /* map memory allocator */ 828 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 829 &rid, 0, ~0, *mem_size, RF_ACTIVE); 830 if (ptn_dev->pci_mem == NULL) { 831 *nm_paddr = 0; 832 *nm_addr = NULL; 833 return ENOMEM; 834 } 835 836 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 837 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 838 839 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 840 PTNETMAP_MEM_PCI_BAR, 841 (unsigned long)(*nm_paddr), 842 (unsigned long)rman_get_size(ptn_dev->pci_mem), 843 (unsigned long)*mem_size); 844 return (0); 845 } 846 847 uint32_t 848 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 849 { 850 return bus_read_4(ptn_dev->pci_io, reg); 851 } 852 853 /* Unmap host netmap memory. */ 854 void 855 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 856 { 857 nm_prinf("ptn_memdev_driver iounmap"); 858 859 if (ptn_dev->pci_mem) { 860 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 861 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 862 ptn_dev->pci_mem = NULL; 863 } 864 } 865 866 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 867 * positive on failure */ 868 static int 869 ptn_memdev_probe(device_t dev) 870 { 871 char desc[256]; 872 873 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 874 return (ENXIO); 875 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 876 return (ENXIO); 877 878 snprintf(desc, sizeof(desc), "%s PCI adapter", 879 PTNETMAP_MEMDEV_NAME); 880 device_set_desc_copy(dev, desc); 881 882 return (BUS_PROBE_DEFAULT); 883 } 884 885 /* Device initialization routine. */ 886 static int 887 ptn_memdev_attach(device_t dev) 888 { 889 struct ptnetmap_memdev *ptn_dev; 890 int rid; 891 uint16_t mem_id; 892 893 ptn_dev = device_get_softc(dev); 894 ptn_dev->dev = dev; 895 896 pci_enable_busmaster(dev); 897 898 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 899 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 900 RF_ACTIVE); 901 if (ptn_dev->pci_io == NULL) { 902 device_printf(dev, "cannot map I/O space\n"); 903 return (ENXIO); 904 } 905 906 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 907 908 /* create guest allocator */ 909 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 910 if (ptn_dev->nm_mem == NULL) { 911 ptn_memdev_detach(dev); 912 return (ENOMEM); 913 } 914 netmap_mem_get(ptn_dev->nm_mem); 915 916 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 917 918 return (0); 919 } 920 921 /* Device removal routine. */ 922 static int 923 ptn_memdev_detach(device_t dev) 924 { 925 struct ptnetmap_memdev *ptn_dev; 926 927 ptn_dev = device_get_softc(dev); 928 929 if (ptn_dev->nm_mem) { 930 nm_prinf("ptnetmap memdev detached, host memid %u", 931 netmap_mem_get_id(ptn_dev->nm_mem)); 932 netmap_mem_put(ptn_dev->nm_mem); 933 ptn_dev->nm_mem = NULL; 934 } 935 if (ptn_dev->pci_mem) { 936 bus_release_resource(dev, SYS_RES_MEMORY, 937 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 938 ptn_dev->pci_mem = NULL; 939 } 940 if (ptn_dev->pci_io) { 941 bus_release_resource(dev, SYS_RES_IOPORT, 942 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 943 ptn_dev->pci_io = NULL; 944 } 945 946 return (0); 947 } 948 949 static int 950 ptn_memdev_shutdown(device_t dev) 951 { 952 return bus_generic_shutdown(dev); 953 } 954 955 #endif /* WITH_PTNETMAP */ 956 957 /* 958 * In order to track whether pages are still mapped, we hook into 959 * the standard cdev_pager and intercept the constructor and 960 * destructor. 961 */ 962 963 struct netmap_vm_handle_t { 964 struct cdev *dev; 965 struct netmap_priv_d *priv; 966 }; 967 968 969 static int 970 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 971 vm_ooffset_t foff, struct ucred *cred, u_short *color) 972 { 973 struct netmap_vm_handle_t *vmh = handle; 974 975 if (netmap_verbose) 976 nm_prinf("handle %p size %jd prot %d foff %jd", 977 handle, (intmax_t)size, prot, (intmax_t)foff); 978 if (color) 979 *color = 0; 980 dev_ref(vmh->dev); 981 return 0; 982 } 983 984 985 static void 986 netmap_dev_pager_dtor(void *handle) 987 { 988 struct netmap_vm_handle_t *vmh = handle; 989 struct cdev *dev = vmh->dev; 990 struct netmap_priv_d *priv = vmh->priv; 991 992 if (netmap_verbose) 993 nm_prinf("handle %p", handle); 994 netmap_dtor(priv); 995 free(vmh, M_DEVBUF); 996 dev_rel(dev); 997 } 998 999 1000 static int 1001 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 1002 int prot, vm_page_t *mres) 1003 { 1004 struct netmap_vm_handle_t *vmh = object->handle; 1005 struct netmap_priv_d *priv = vmh->priv; 1006 struct netmap_adapter *na = priv->np_na; 1007 vm_paddr_t paddr; 1008 vm_page_t page; 1009 vm_memattr_t memattr; 1010 1011 nm_prdis("object %p offset %jd prot %d mres %p", 1012 object, (intmax_t)offset, prot, mres); 1013 memattr = object->memattr; 1014 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1015 if (paddr == 0) 1016 return VM_PAGER_FAIL; 1017 1018 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1019 /* 1020 * If the passed in result page is a fake page, update it with 1021 * the new physical address. 1022 */ 1023 page = *mres; 1024 vm_page_updatefake(page, paddr, memattr); 1025 } else { 1026 /* 1027 * Replace the passed in reqpage page with our own fake page and 1028 * free up the all of the original pages. 1029 */ 1030 #ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */ 1031 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK 1032 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK 1033 #endif /* VM_OBJECT_WUNLOCK */ 1034 1035 VM_OBJECT_WUNLOCK(object); 1036 page = vm_page_getfake(paddr, memattr); 1037 VM_OBJECT_WLOCK(object); 1038 vm_page_replace(page, object, (*mres)->pindex, *mres); 1039 *mres = page; 1040 } 1041 page->valid = VM_PAGE_BITS_ALL; 1042 return (VM_PAGER_OK); 1043 } 1044 1045 1046 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1047 .cdev_pg_ctor = netmap_dev_pager_ctor, 1048 .cdev_pg_dtor = netmap_dev_pager_dtor, 1049 .cdev_pg_fault = netmap_dev_pager_fault, 1050 }; 1051 1052 1053 static int 1054 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1055 vm_size_t objsize, vm_object_t *objp, int prot) 1056 { 1057 int error; 1058 struct netmap_vm_handle_t *vmh; 1059 struct netmap_priv_d *priv; 1060 vm_object_t obj; 1061 1062 if (netmap_verbose) 1063 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1064 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1065 1066 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1067 M_NOWAIT | M_ZERO); 1068 if (vmh == NULL) 1069 return ENOMEM; 1070 vmh->dev = cdev; 1071 1072 NMG_LOCK(); 1073 error = devfs_get_cdevpriv((void**)&priv); 1074 if (error) 1075 goto err_unlock; 1076 if (priv->np_nifp == NULL) { 1077 error = EINVAL; 1078 goto err_unlock; 1079 } 1080 vmh->priv = priv; 1081 priv->np_refs++; 1082 NMG_UNLOCK(); 1083 1084 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1085 &netmap_cdev_pager_ops, objsize, prot, 1086 *foff, NULL); 1087 if (obj == NULL) { 1088 nm_prerr("cdev_pager_allocate failed"); 1089 error = EINVAL; 1090 goto err_deref; 1091 } 1092 1093 *objp = obj; 1094 return 0; 1095 1096 err_deref: 1097 NMG_LOCK(); 1098 priv->np_refs--; 1099 err_unlock: 1100 NMG_UNLOCK(); 1101 // err: 1102 free(vmh, M_DEVBUF); 1103 return error; 1104 } 1105 1106 /* 1107 * On FreeBSD the close routine is only called on the last close on 1108 * the device (/dev/netmap) so we cannot do anything useful. 1109 * To track close() on individual file descriptors we pass netmap_dtor() to 1110 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1111 * when the last fd pointing to the device is closed. 1112 * 1113 * Note that FreeBSD does not even munmap() on close() so we also have 1114 * to track mmap() ourselves, and postpone the call to 1115 * netmap_dtor() is called when the process has no open fds and no active 1116 * memory maps on /dev/netmap, as in linux. 1117 */ 1118 static int 1119 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1120 { 1121 if (netmap_verbose) 1122 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1123 dev, fflag, devtype, td); 1124 return 0; 1125 } 1126 1127 1128 static int 1129 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1130 { 1131 struct netmap_priv_d *priv; 1132 int error; 1133 1134 (void)dev; 1135 (void)oflags; 1136 (void)devtype; 1137 (void)td; 1138 1139 NMG_LOCK(); 1140 priv = netmap_priv_new(); 1141 if (priv == NULL) { 1142 error = ENOMEM; 1143 goto out; 1144 } 1145 error = devfs_set_cdevpriv(priv, netmap_dtor); 1146 if (error) { 1147 netmap_priv_delete(priv); 1148 } 1149 out: 1150 NMG_UNLOCK(); 1151 return error; 1152 } 1153 1154 /******************** kthread wrapper ****************/ 1155 #include <sys/sysproto.h> 1156 u_int 1157 nm_os_ncpus(void) 1158 { 1159 return mp_maxid + 1; 1160 } 1161 1162 struct nm_kctx_ctx { 1163 /* Userspace thread (kthread creator). */ 1164 struct thread *user_td; 1165 1166 /* worker function and parameter */ 1167 nm_kctx_worker_fn_t worker_fn; 1168 void *worker_private; 1169 1170 struct nm_kctx *nmk; 1171 1172 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1173 long type; 1174 }; 1175 1176 struct nm_kctx { 1177 struct thread *worker; 1178 struct mtx worker_lock; 1179 struct nm_kctx_ctx worker_ctx; 1180 int run; /* used to stop kthread */ 1181 int attach_user; /* kthread attached to user_process */ 1182 int affinity; 1183 }; 1184 1185 static void 1186 nm_kctx_worker(void *data) 1187 { 1188 struct nm_kctx *nmk = data; 1189 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1190 1191 if (nmk->affinity >= 0) { 1192 thread_lock(curthread); 1193 sched_bind(curthread, nmk->affinity); 1194 thread_unlock(curthread); 1195 } 1196 1197 while (nmk->run) { 1198 /* 1199 * check if the parent process dies 1200 * (when kthread is attached to user process) 1201 */ 1202 if (ctx->user_td) { 1203 PROC_LOCK(curproc); 1204 thread_suspend_check(0); 1205 PROC_UNLOCK(curproc); 1206 } else { 1207 kthread_suspend_check(); 1208 } 1209 1210 /* Continuously execute worker process. */ 1211 ctx->worker_fn(ctx->worker_private); /* worker body */ 1212 } 1213 1214 kthread_exit(); 1215 } 1216 1217 void 1218 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1219 { 1220 nmk->affinity = affinity; 1221 } 1222 1223 struct nm_kctx * 1224 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1225 { 1226 struct nm_kctx *nmk = NULL; 1227 1228 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1229 if (!nmk) 1230 return NULL; 1231 1232 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1233 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1234 nmk->worker_ctx.worker_private = cfg->worker_private; 1235 nmk->worker_ctx.type = cfg->type; 1236 nmk->affinity = -1; 1237 1238 /* attach kthread to user process (ptnetmap) */ 1239 nmk->attach_user = cfg->attach_user; 1240 1241 return nmk; 1242 } 1243 1244 int 1245 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1246 { 1247 struct proc *p = NULL; 1248 int error = 0; 1249 1250 /* Temporarily disable this function as it is currently broken 1251 * and causes kernel crashes. The failure can be triggered by 1252 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1253 return EOPNOTSUPP; 1254 1255 if (nmk->worker) 1256 return EBUSY; 1257 1258 /* check if we want to attach kthread to user process */ 1259 if (nmk->attach_user) { 1260 nmk->worker_ctx.user_td = curthread; 1261 p = curthread->td_proc; 1262 } 1263 1264 /* enable kthread main loop */ 1265 nmk->run = 1; 1266 /* create kthread */ 1267 if((error = kthread_add(nm_kctx_worker, nmk, p, 1268 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1269 nmk->worker_ctx.type))) { 1270 goto err; 1271 } 1272 1273 nm_prinf("nm_kthread started td %p", nmk->worker); 1274 1275 return 0; 1276 err: 1277 nm_prerr("nm_kthread start failed err %d", error); 1278 nmk->worker = NULL; 1279 return error; 1280 } 1281 1282 void 1283 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1284 { 1285 if (!nmk->worker) 1286 return; 1287 1288 /* tell to kthread to exit from main loop */ 1289 nmk->run = 0; 1290 1291 /* wake up kthread if it sleeps */ 1292 kthread_resume(nmk->worker); 1293 1294 nmk->worker = NULL; 1295 } 1296 1297 void 1298 nm_os_kctx_destroy(struct nm_kctx *nmk) 1299 { 1300 if (!nmk) 1301 return; 1302 1303 if (nmk->worker) 1304 nm_os_kctx_worker_stop(nmk); 1305 1306 free(nmk, M_DEVBUF); 1307 } 1308 1309 /******************** kqueue support ****************/ 1310 1311 /* 1312 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1313 * needs to call knote() to wake up kqueue listeners. 1314 * This operation is deferred to a taskqueue in order to avoid possible 1315 * lock order reversals; these may happen because knote() grabs a 1316 * private lock associated to the 'si' (see struct selinfo, 1317 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1318 * can be called while holding the lock associated to a different 1319 * 'si'. 1320 * When calling knote() we use a non-zero 'hint' argument to inform 1321 * the netmap_knrw() function that it is being called from 1322 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1323 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1324 * call netmap_poll(). 1325 * 1326 * The netmap_kqfilter() function registers one or another f_event 1327 * depending on read or write mode. A pointer to the struct 1328 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1329 * be passed to netmap_poll(). We pass NULL as a third argument to 1330 * netmap_poll(), so that the latter only runs the txsync/rxsync 1331 * (if necessary), and skips the nm_os_selrecord() calls. 1332 */ 1333 1334 1335 void 1336 nm_os_selwakeup(struct nm_selinfo *si) 1337 { 1338 selwakeuppri(&si->si, PI_NET); 1339 if (si->kqueue_users > 0) { 1340 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1341 } 1342 } 1343 1344 void 1345 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1346 { 1347 selrecord(td, &si->si); 1348 } 1349 1350 static void 1351 netmap_knrdetach(struct knote *kn) 1352 { 1353 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1354 struct nm_selinfo *si = priv->np_si[NR_RX]; 1355 1356 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1357 NMG_LOCK(); 1358 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1359 si->mtxname)); 1360 si->kqueue_users--; 1361 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1362 NMG_UNLOCK(); 1363 } 1364 1365 static void 1366 netmap_knwdetach(struct knote *kn) 1367 { 1368 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1369 struct nm_selinfo *si = priv->np_si[NR_TX]; 1370 1371 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1372 NMG_LOCK(); 1373 si->kqueue_users--; 1374 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1375 NMG_UNLOCK(); 1376 } 1377 1378 /* 1379 * Callback triggered by netmap notifications (see netmap_notify()), 1380 * and by the application calling kevent(). In the former case we 1381 * just return 1 (events ready), since we are not able to do better. 1382 * In the latter case we use netmap_poll() to see which events are 1383 * ready. 1384 */ 1385 static int 1386 netmap_knrw(struct knote *kn, long hint, int events) 1387 { 1388 struct netmap_priv_d *priv; 1389 int revents; 1390 1391 if (hint != 0) { 1392 /* Called from netmap_notify(), typically from a 1393 * thread different from the one issuing kevent(). 1394 * Assume we are ready. */ 1395 return 1; 1396 } 1397 1398 /* Called from kevent(). */ 1399 priv = kn->kn_hook; 1400 revents = netmap_poll(priv, events, /*thread=*/NULL); 1401 1402 return (events & revents) ? 1 : 0; 1403 } 1404 1405 static int 1406 netmap_knread(struct knote *kn, long hint) 1407 { 1408 return netmap_knrw(kn, hint, POLLIN); 1409 } 1410 1411 static int 1412 netmap_knwrite(struct knote *kn, long hint) 1413 { 1414 return netmap_knrw(kn, hint, POLLOUT); 1415 } 1416 1417 static struct filterops netmap_rfiltops = { 1418 .f_isfd = 1, 1419 .f_detach = netmap_knrdetach, 1420 .f_event = netmap_knread, 1421 }; 1422 1423 static struct filterops netmap_wfiltops = { 1424 .f_isfd = 1, 1425 .f_detach = netmap_knwdetach, 1426 .f_event = netmap_knwrite, 1427 }; 1428 1429 1430 /* 1431 * This is called when a thread invokes kevent() to record 1432 * a change in the configuration of the kqueue(). 1433 * The 'priv' is the one associated to the open netmap device. 1434 */ 1435 static int 1436 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1437 { 1438 struct netmap_priv_d *priv; 1439 int error; 1440 struct netmap_adapter *na; 1441 struct nm_selinfo *si; 1442 int ev = kn->kn_filter; 1443 1444 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1445 nm_prerr("bad filter request %d", ev); 1446 return 1; 1447 } 1448 error = devfs_get_cdevpriv((void**)&priv); 1449 if (error) { 1450 nm_prerr("device not yet setup"); 1451 return 1; 1452 } 1453 na = priv->np_na; 1454 if (na == NULL) { 1455 nm_prerr("no netmap adapter for this file descriptor"); 1456 return 1; 1457 } 1458 /* the si is indicated in the priv */ 1459 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1460 kn->kn_fop = (ev == EVFILT_WRITE) ? 1461 &netmap_wfiltops : &netmap_rfiltops; 1462 kn->kn_hook = priv; 1463 NMG_LOCK(); 1464 si->kqueue_users++; 1465 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1466 NMG_UNLOCK(); 1467 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1468 1469 return 0; 1470 } 1471 1472 static int 1473 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1474 { 1475 struct netmap_priv_d *priv; 1476 if (devfs_get_cdevpriv((void **)&priv)) { 1477 return POLLERR; 1478 } 1479 return netmap_poll(priv, events, td); 1480 } 1481 1482 static int 1483 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1484 int ffla __unused, struct thread *td) 1485 { 1486 int error; 1487 struct netmap_priv_d *priv; 1488 1489 CURVNET_SET(TD_TO_VNET(td)); 1490 error = devfs_get_cdevpriv((void **)&priv); 1491 if (error) { 1492 /* XXX ENOENT should be impossible, since the priv 1493 * is now created in the open */ 1494 if (error == ENOENT) 1495 error = ENXIO; 1496 goto out; 1497 } 1498 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1499 out: 1500 CURVNET_RESTORE(); 1501 1502 return error; 1503 } 1504 1505 void 1506 nm_os_onattach(struct ifnet *ifp) 1507 { 1508 ifp->if_capabilities |= IFCAP_NETMAP; 1509 } 1510 1511 void 1512 nm_os_onenter(struct ifnet *ifp) 1513 { 1514 struct netmap_adapter *na = NA(ifp); 1515 1516 na->if_transmit = ifp->if_transmit; 1517 ifp->if_transmit = netmap_transmit; 1518 ifp->if_capenable |= IFCAP_NETMAP; 1519 } 1520 1521 void 1522 nm_os_onexit(struct ifnet *ifp) 1523 { 1524 struct netmap_adapter *na = NA(ifp); 1525 1526 ifp->if_transmit = na->if_transmit; 1527 ifp->if_capenable &= ~IFCAP_NETMAP; 1528 } 1529 1530 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1531 struct cdevsw netmap_cdevsw = { 1532 .d_version = D_VERSION, 1533 .d_name = "netmap", 1534 .d_open = netmap_open, 1535 .d_mmap_single = netmap_mmap_single, 1536 .d_ioctl = freebsd_netmap_ioctl, 1537 .d_poll = freebsd_netmap_poll, 1538 .d_kqfilter = netmap_kqfilter, 1539 .d_close = netmap_close, 1540 }; 1541 /*--- end of kqueue support ----*/ 1542 1543 /* 1544 * Kernel entry point. 1545 * 1546 * Initialize/finalize the module and return. 1547 * 1548 * Return 0 on success, errno on failure. 1549 */ 1550 static int 1551 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1552 { 1553 int error = 0; 1554 1555 switch (event) { 1556 case MOD_LOAD: 1557 error = netmap_init(); 1558 break; 1559 1560 case MOD_UNLOAD: 1561 /* 1562 * if some one is still using netmap, 1563 * then the module can not be unloaded. 1564 */ 1565 if (netmap_use_count) { 1566 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1567 netmap_use_count); 1568 error = EBUSY; 1569 break; 1570 } 1571 netmap_fini(); 1572 break; 1573 1574 default: 1575 error = EOPNOTSUPP; 1576 break; 1577 } 1578 1579 return (error); 1580 } 1581 1582 #ifdef DEV_MODULE_ORDERED 1583 /* 1584 * The netmap module contains three drivers: (i) the netmap character device 1585 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1586 * device driver. The attach() routines of both (ii) and (iii) need the 1587 * lock of the global allocator, and such lock is initialized in netmap_init(), 1588 * which is part of (i). 1589 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1590 * the 'order' parameter of driver declaration macros. For (i), we specify 1591 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1592 * macros for (ii) and (iii). 1593 */ 1594 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1595 #else /* !DEV_MODULE_ORDERED */ 1596 DEV_MODULE(netmap, netmap_loader, NULL); 1597 #endif /* DEV_MODULE_ORDERED */ 1598 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1599 MODULE_VERSION(netmap, 1); 1600 /* reduce conditional code */ 1601 // linux API, use for the knlist in FreeBSD 1602 /* use a private mutex for the knlist */ 1603