1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/jail.h> 36 #include <sys/poll.h> /* POLLIN, POLLOUT */ 37 #include <sys/kernel.h> /* types used in module initialization */ 38 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 39 #include <sys/endian.h> 40 #include <sys/syscallsubr.h> /* kern_ioctl() */ 41 42 #include <sys/rwlock.h> 43 44 #include <vm/vm.h> /* vtophys */ 45 #include <vm/pmap.h> /* vtophys */ 46 #include <vm/vm_param.h> 47 #include <vm/vm_object.h> 48 #include <vm/vm_page.h> 49 #include <vm/vm_pager.h> 50 #include <vm/uma.h> 51 52 53 #include <sys/malloc.h> 54 #include <sys/socket.h> /* sockaddrs */ 55 #include <sys/selinfo.h> 56 #include <sys/kthread.h> /* kthread_add() */ 57 #include <sys/proc.h> /* PROC_LOCK() */ 58 #include <sys/unistd.h> /* RFNOWAIT */ 59 #include <sys/sched.h> /* sched_bind() */ 60 #include <sys/smp.h> /* mp_maxid */ 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/if_types.h> /* IFT_ETHER */ 64 #include <net/ethernet.h> /* ether_ifdetach */ 65 #include <net/if_dl.h> /* LLADDR */ 66 #include <machine/bus.h> /* bus_dmamap_* */ 67 #include <netinet/in.h> /* in6_cksum_pseudo() */ 68 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 69 70 #include <net/netmap.h> 71 #include <dev/netmap/netmap_kern.h> 72 #include <net/netmap_virt.h> 73 #include <dev/netmap/netmap_mem2.h> 74 75 76 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 77 78 void nm_os_selinfo_init(NM_SELINFO_T *si) { 79 struct mtx *m = &si->m; 80 mtx_init(m, "nm_kn_lock", NULL, MTX_DEF); 81 knlist_init_mtx(&si->si.si_note, m); 82 } 83 84 void 85 nm_os_selinfo_uninit(NM_SELINFO_T *si) 86 { 87 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 88 knlist_delete(&si->si.si_note, curthread, 0 /* not locked */ ); 89 knlist_destroy(&si->si.si_note); 90 /* now we don't need the mutex anymore */ 91 mtx_destroy(&si->m); 92 } 93 94 void * 95 nm_os_malloc(size_t size) 96 { 97 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 98 } 99 100 void * 101 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 102 { 103 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 104 } 105 106 void 107 nm_os_free(void *addr) 108 { 109 free(addr, M_DEVBUF); 110 } 111 112 void 113 nm_os_ifnet_lock(void) 114 { 115 IFNET_RLOCK(); 116 } 117 118 void 119 nm_os_ifnet_unlock(void) 120 { 121 IFNET_RUNLOCK(); 122 } 123 124 static int netmap_use_count = 0; 125 126 void 127 nm_os_get_module(void) 128 { 129 netmap_use_count++; 130 } 131 132 void 133 nm_os_put_module(void) 134 { 135 netmap_use_count--; 136 } 137 138 static void 139 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp) 140 { 141 netmap_undo_zombie(ifp); 142 } 143 144 static void 145 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp) 146 { 147 netmap_make_zombie(ifp); 148 } 149 150 static eventhandler_tag nm_ifnet_ah_tag; 151 static eventhandler_tag nm_ifnet_dh_tag; 152 153 int 154 nm_os_ifnet_init(void) 155 { 156 nm_ifnet_ah_tag = 157 EVENTHANDLER_REGISTER(ifnet_arrival_event, 158 netmap_ifnet_arrival_handler, 159 NULL, EVENTHANDLER_PRI_ANY); 160 nm_ifnet_dh_tag = 161 EVENTHANDLER_REGISTER(ifnet_departure_event, 162 netmap_ifnet_departure_handler, 163 NULL, EVENTHANDLER_PRI_ANY); 164 return 0; 165 } 166 167 void 168 nm_os_ifnet_fini(void) 169 { 170 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 171 nm_ifnet_ah_tag); 172 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 173 nm_ifnet_dh_tag); 174 } 175 176 unsigned 177 nm_os_ifnet_mtu(struct ifnet *ifp) 178 { 179 #if __FreeBSD_version < 1100030 180 return ifp->if_data.ifi_mtu; 181 #else /* __FreeBSD_version >= 1100030 */ 182 return ifp->if_mtu; 183 #endif 184 } 185 186 rawsum_t 187 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 188 { 189 /* TODO XXX please use the FreeBSD implementation for this. */ 190 uint16_t *words = (uint16_t *)data; 191 int nw = len / 2; 192 int i; 193 194 for (i = 0; i < nw; i++) 195 cur_sum += be16toh(words[i]); 196 197 if (len & 1) 198 cur_sum += (data[len-1] << 8); 199 200 return cur_sum; 201 } 202 203 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 204 * return value is in network byte order. 205 */ 206 uint16_t 207 nm_os_csum_fold(rawsum_t cur_sum) 208 { 209 /* TODO XXX please use the FreeBSD implementation for this. */ 210 while (cur_sum >> 16) 211 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 212 213 return htobe16((~cur_sum) & 0xFFFF); 214 } 215 216 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 217 { 218 #if 0 219 return in_cksum_hdr((void *)iph); 220 #else 221 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 222 #endif 223 } 224 225 void 226 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 227 size_t datalen, uint16_t *check) 228 { 229 #ifdef INET 230 uint16_t pseudolen = datalen + iph->protocol; 231 232 /* Compute and insert the pseudo-header cheksum. */ 233 *check = in_pseudo(iph->saddr, iph->daddr, 234 htobe16(pseudolen)); 235 /* Compute the checksum on TCP/UDP header + payload 236 * (includes the pseudo-header). 237 */ 238 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 239 #else 240 static int notsupported = 0; 241 if (!notsupported) { 242 notsupported = 1; 243 D("inet4 segmentation not supported"); 244 } 245 #endif 246 } 247 248 void 249 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 250 size_t datalen, uint16_t *check) 251 { 252 #ifdef INET6 253 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 254 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 255 #else 256 static int notsupported = 0; 257 if (!notsupported) { 258 notsupported = 1; 259 D("inet6 segmentation not supported"); 260 } 261 #endif 262 } 263 264 /* on FreeBSD we send up one packet at a time */ 265 void * 266 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev) 267 { 268 NA(ifp)->if_input(ifp, m); 269 return NULL; 270 } 271 272 int 273 nm_os_mbuf_has_offld(struct mbuf *m) 274 { 275 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 276 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 277 CSUM_SCTP_IPV6 | CSUM_TSO); 278 } 279 280 static void 281 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 282 { 283 int stolen; 284 285 if (!NM_NA_VALID(ifp)) { 286 RD(1, "Warning: got RX packet for invalid emulated adapter"); 287 return; 288 } 289 290 stolen = generic_rx_handler(ifp, m); 291 if (!stolen) { 292 struct netmap_generic_adapter *gna = 293 (struct netmap_generic_adapter *)NA(ifp); 294 gna->save_if_input(ifp, m); 295 } 296 } 297 298 /* 299 * Intercept the rx routine in the standard device driver. 300 * Second argument is non-zero to intercept, 0 to restore 301 */ 302 int 303 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 304 { 305 struct netmap_adapter *na = &gna->up.up; 306 struct ifnet *ifp = na->ifp; 307 int ret = 0; 308 309 nm_os_ifnet_lock(); 310 if (intercept) { 311 if (gna->save_if_input) { 312 D("cannot intercept again"); 313 ret = EINVAL; /* already set */ 314 goto out; 315 } 316 gna->save_if_input = ifp->if_input; 317 ifp->if_input = freebsd_generic_rx_handler; 318 } else { 319 if (!gna->save_if_input){ 320 D("cannot restore"); 321 ret = EINVAL; /* not saved */ 322 goto out; 323 } 324 ifp->if_input = gna->save_if_input; 325 gna->save_if_input = NULL; 326 } 327 out: 328 nm_os_ifnet_unlock(); 329 330 return ret; 331 } 332 333 334 /* 335 * Intercept the packet steering routine in the tx path, 336 * so that we can decide which queue is used for an mbuf. 337 * Second argument is non-zero to intercept, 0 to restore. 338 * On freebsd we just intercept if_transmit. 339 */ 340 int 341 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 342 { 343 struct netmap_adapter *na = &gna->up.up; 344 struct ifnet *ifp = netmap_generic_getifp(gna); 345 346 nm_os_ifnet_lock(); 347 if (intercept) { 348 na->if_transmit = ifp->if_transmit; 349 ifp->if_transmit = netmap_transmit; 350 } else { 351 ifp->if_transmit = na->if_transmit; 352 } 353 nm_os_ifnet_unlock(); 354 355 return 0; 356 } 357 358 359 /* 360 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 361 * and non-zero on error (which may be packet drops or other errors). 362 * addr and len identify the netmap buffer, m is the (preallocated) 363 * mbuf to use for transmissions. 364 * 365 * We should add a reference to the mbuf so the m_freem() at the end 366 * of the transmission does not consume resources. 367 * 368 * On FreeBSD, and on multiqueue cards, we can force the queue using 369 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 370 * i = m->m_pkthdr.flowid % adapter->num_queues; 371 * else 372 * i = curcpu % adapter->num_queues; 373 * 374 */ 375 int 376 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 377 { 378 int ret; 379 u_int len = a->len; 380 struct ifnet *ifp = a->ifp; 381 struct mbuf *m = a->m; 382 383 #if __FreeBSD_version < 1100000 384 /* 385 * Old FreeBSD versions. The mbuf has a cluster attached, 386 * we need to copy from the cluster to the netmap buffer. 387 */ 388 if (MBUF_REFCNT(m) != 1) { 389 D("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 390 panic("in generic_xmit_frame"); 391 } 392 if (m->m_ext.ext_size < len) { 393 RD(5, "size %d < len %d", m->m_ext.ext_size, len); 394 len = m->m_ext.ext_size; 395 } 396 bcopy(a->addr, m->m_data, len); 397 #else /* __FreeBSD_version >= 1100000 */ 398 /* New FreeBSD versions. Link the external storage to 399 * the netmap buffer, so that no copy is necessary. */ 400 m->m_ext.ext_buf = m->m_data = a->addr; 401 m->m_ext.ext_size = len; 402 #endif /* __FreeBSD_version >= 1100000 */ 403 404 m->m_len = m->m_pkthdr.len = len; 405 406 /* mbuf refcnt is not contended, no need to use atomic 407 * (a memory barrier is enough). */ 408 SET_MBUF_REFCNT(m, 2); 409 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 410 m->m_pkthdr.flowid = a->ring_nr; 411 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 412 ret = NA(ifp)->if_transmit(ifp, m); 413 return ret ? -1 : 0; 414 } 415 416 417 #if __FreeBSD_version >= 1100005 418 struct netmap_adapter * 419 netmap_getna(if_t ifp) 420 { 421 return (NA((struct ifnet *)ifp)); 422 } 423 #endif /* __FreeBSD_version >= 1100005 */ 424 425 /* 426 * The following two functions are empty until we have a generic 427 * way to extract the info from the ifp 428 */ 429 int 430 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx) 431 { 432 return 0; 433 } 434 435 436 void 437 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq) 438 { 439 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 440 441 *txq = num_rings; 442 *rxq = num_rings; 443 } 444 445 void 446 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 447 { 448 449 gna->rxsg = 1; /* Supported through m_copydata. */ 450 gna->txqdisc = 0; /* Not supported. */ 451 } 452 453 void 454 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 455 { 456 ND("called"); 457 mit->mit_pending = 0; 458 mit->mit_ring_idx = idx; 459 mit->mit_na = na; 460 } 461 462 463 void 464 nm_os_mitigation_start(struct nm_generic_mit *mit) 465 { 466 ND("called"); 467 } 468 469 470 void 471 nm_os_mitigation_restart(struct nm_generic_mit *mit) 472 { 473 ND("called"); 474 } 475 476 477 int 478 nm_os_mitigation_active(struct nm_generic_mit *mit) 479 { 480 ND("called"); 481 return 0; 482 } 483 484 485 void 486 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 487 { 488 ND("called"); 489 } 490 491 static int 492 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr) 493 { 494 return EINVAL; 495 } 496 497 static void 498 nm_vi_start(struct ifnet *ifp) 499 { 500 panic("nm_vi_start() must not be called"); 501 } 502 503 /* 504 * Index manager of persistent virtual interfaces. 505 * It is used to decide the lowest byte of the MAC address. 506 * We use the same algorithm with management of bridge port index. 507 */ 508 #define NM_VI_MAX 255 509 static struct { 510 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 511 uint8_t active; 512 struct mtx lock; 513 } nm_vi_indices; 514 515 void 516 nm_os_vi_init_index(void) 517 { 518 int i; 519 for (i = 0; i < NM_VI_MAX; i++) 520 nm_vi_indices.index[i] = i; 521 nm_vi_indices.active = 0; 522 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 523 } 524 525 /* return -1 if no index available */ 526 static int 527 nm_vi_get_index(void) 528 { 529 int ret; 530 531 mtx_lock(&nm_vi_indices.lock); 532 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 533 nm_vi_indices.index[nm_vi_indices.active++]; 534 mtx_unlock(&nm_vi_indices.lock); 535 return ret; 536 } 537 538 static void 539 nm_vi_free_index(uint8_t val) 540 { 541 int i, lim; 542 543 mtx_lock(&nm_vi_indices.lock); 544 lim = nm_vi_indices.active; 545 for (i = 0; i < lim; i++) { 546 if (nm_vi_indices.index[i] == val) { 547 /* swap index[lim-1] and j */ 548 int tmp = nm_vi_indices.index[lim-1]; 549 nm_vi_indices.index[lim-1] = val; 550 nm_vi_indices.index[i] = tmp; 551 nm_vi_indices.active--; 552 break; 553 } 554 } 555 if (lim == nm_vi_indices.active) 556 D("funny, index %u didn't found", val); 557 mtx_unlock(&nm_vi_indices.lock); 558 } 559 #undef NM_VI_MAX 560 561 /* 562 * Implementation of a netmap-capable virtual interface that 563 * registered to the system. 564 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 565 * 566 * Note: Linux sets refcount to 0 on allocation of net_device, 567 * then increments it on registration to the system. 568 * FreeBSD sets refcount to 1 on if_alloc(), and does not 569 * increment this refcount on if_attach(). 570 */ 571 int 572 nm_os_vi_persist(const char *name, struct ifnet **ret) 573 { 574 struct ifnet *ifp; 575 u_short macaddr_hi; 576 uint32_t macaddr_mid; 577 u_char eaddr[6]; 578 int unit = nm_vi_get_index(); /* just to decide MAC address */ 579 580 if (unit < 0) 581 return EBUSY; 582 /* 583 * We use the same MAC address generation method with tap 584 * except for the highest octet is 00:be instead of 00:bd 585 */ 586 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 587 macaddr_mid = (uint32_t) ticks; 588 bcopy(&macaddr_hi, eaddr, sizeof(short)); 589 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 590 eaddr[5] = (uint8_t)unit; 591 592 ifp = if_alloc(IFT_ETHER); 593 if (ifp == NULL) { 594 D("if_alloc failed"); 595 return ENOMEM; 596 } 597 if_initname(ifp, name, IF_DUNIT_NONE); 598 ifp->if_mtu = 65536; 599 ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST; 600 ifp->if_init = (void *)nm_vi_dummy; 601 ifp->if_ioctl = nm_vi_dummy; 602 ifp->if_start = nm_vi_start; 603 ifp->if_mtu = ETHERMTU; 604 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 605 ifp->if_capabilities |= IFCAP_LINKSTATE; 606 ifp->if_capenable |= IFCAP_LINKSTATE; 607 608 ether_ifattach(ifp, eaddr); 609 *ret = ifp; 610 return 0; 611 } 612 613 /* unregister from the system and drop the final refcount */ 614 void 615 nm_os_vi_detach(struct ifnet *ifp) 616 { 617 nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]); 618 ether_ifdetach(ifp); 619 if_free(ifp); 620 } 621 622 #ifdef WITH_EXTMEM 623 #include <vm/vm_map.h> 624 #include <vm/vm_kern.h> 625 struct nm_os_extmem { 626 vm_object_t obj; 627 vm_offset_t kva; 628 vm_offset_t size; 629 uintptr_t scan; 630 }; 631 632 void 633 nm_os_extmem_delete(struct nm_os_extmem *e) 634 { 635 D("freeing %jx bytes", (uintmax_t)e->size); 636 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 637 nm_os_free(e); 638 } 639 640 char * 641 nm_os_extmem_nextpage(struct nm_os_extmem *e) 642 { 643 char *rv = NULL; 644 if (e->scan < e->kva + e->size) { 645 rv = (char *)e->scan; 646 e->scan += PAGE_SIZE; 647 } 648 return rv; 649 } 650 651 int 652 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 653 { 654 return (e1->obj == e2->obj); 655 } 656 657 int 658 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 659 { 660 return e->size >> PAGE_SHIFT; 661 } 662 663 struct nm_os_extmem * 664 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 665 { 666 vm_map_t map; 667 vm_map_entry_t entry; 668 vm_object_t obj; 669 vm_prot_t prot; 670 vm_pindex_t index; 671 boolean_t wired; 672 struct nm_os_extmem *e = NULL; 673 int rv, error = 0; 674 675 e = nm_os_malloc(sizeof(*e)); 676 if (e == NULL) { 677 error = ENOMEM; 678 goto out; 679 } 680 681 map = &curthread->td_proc->p_vmspace->vm_map; 682 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 683 &obj, &index, &prot, &wired); 684 if (rv != KERN_SUCCESS) { 685 D("address %lx not found", p); 686 goto out_free; 687 } 688 /* check that we are given the whole vm_object ? */ 689 vm_map_lookup_done(map, entry); 690 691 // XXX can we really use obj after releasing the map lock? 692 e->obj = obj; 693 vm_object_reference(obj); 694 /* wire the memory and add the vm_object to the kernel map, 695 * to make sure that it is not fred even if the processes that 696 * are mmap()ing it all exit 697 */ 698 e->kva = vm_map_min(kernel_map); 699 e->size = obj->size << PAGE_SHIFT; 700 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 701 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 702 VM_PROT_READ | VM_PROT_WRITE, 0); 703 if (rv != KERN_SUCCESS) { 704 D("vm_map_find(%jx) failed", (uintmax_t)e->size); 705 goto out_rel; 706 } 707 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 708 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 709 if (rv != KERN_SUCCESS) { 710 D("vm_map_wire failed"); 711 goto out_rem; 712 } 713 714 e->scan = e->kva; 715 716 return e; 717 718 out_rem: 719 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 720 e->obj = NULL; 721 out_rel: 722 vm_object_deallocate(e->obj); 723 out_free: 724 nm_os_free(e); 725 out: 726 if (perror) 727 *perror = error; 728 return NULL; 729 } 730 #endif /* WITH_EXTMEM */ 731 732 /* ======================== PTNETMAP SUPPORT ========================== */ 733 734 #ifdef WITH_PTNETMAP_GUEST 735 #include <sys/bus.h> 736 #include <sys/rman.h> 737 #include <machine/bus.h> /* bus_dmamap_* */ 738 #include <machine/resource.h> 739 #include <dev/pci/pcivar.h> 740 #include <dev/pci/pcireg.h> 741 /* 742 * ptnetmap memory device (memdev) for freebsd guest, 743 * ssed to expose host netmap memory to the guest through a PCI BAR. 744 */ 745 746 /* 747 * ptnetmap memdev private data structure 748 */ 749 struct ptnetmap_memdev { 750 device_t dev; 751 struct resource *pci_io; 752 struct resource *pci_mem; 753 struct netmap_mem_d *nm_mem; 754 }; 755 756 static int ptn_memdev_probe(device_t); 757 static int ptn_memdev_attach(device_t); 758 static int ptn_memdev_detach(device_t); 759 static int ptn_memdev_shutdown(device_t); 760 761 static device_method_t ptn_memdev_methods[] = { 762 DEVMETHOD(device_probe, ptn_memdev_probe), 763 DEVMETHOD(device_attach, ptn_memdev_attach), 764 DEVMETHOD(device_detach, ptn_memdev_detach), 765 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 766 DEVMETHOD_END 767 }; 768 769 static driver_t ptn_memdev_driver = { 770 PTNETMAP_MEMDEV_NAME, 771 ptn_memdev_methods, 772 sizeof(struct ptnetmap_memdev), 773 }; 774 775 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 776 * below. */ 777 static devclass_t ptnetmap_devclass; 778 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass, 779 NULL, NULL, SI_ORDER_MIDDLE + 1); 780 781 /* 782 * Map host netmap memory through PCI-BAR in the guest OS, 783 * returning physical (nm_paddr) and virtual (nm_addr) addresses 784 * of the netmap memory mapped in the guest. 785 */ 786 int 787 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 788 void **nm_addr, uint64_t *mem_size) 789 { 790 int rid; 791 792 D("ptn_memdev_driver iomap"); 793 794 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 795 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 796 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 797 (*mem_size << 32); 798 799 /* map memory allocator */ 800 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 801 &rid, 0, ~0, *mem_size, RF_ACTIVE); 802 if (ptn_dev->pci_mem == NULL) { 803 *nm_paddr = 0; 804 *nm_addr = NULL; 805 return ENOMEM; 806 } 807 808 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 809 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 810 811 D("=== BAR %d start %lx len %lx mem_size %lx ===", 812 PTNETMAP_MEM_PCI_BAR, 813 (unsigned long)(*nm_paddr), 814 (unsigned long)rman_get_size(ptn_dev->pci_mem), 815 (unsigned long)*mem_size); 816 return (0); 817 } 818 819 uint32_t 820 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 821 { 822 return bus_read_4(ptn_dev->pci_io, reg); 823 } 824 825 /* Unmap host netmap memory. */ 826 void 827 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 828 { 829 D("ptn_memdev_driver iounmap"); 830 831 if (ptn_dev->pci_mem) { 832 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 833 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 834 ptn_dev->pci_mem = NULL; 835 } 836 } 837 838 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 839 * positive on failure */ 840 static int 841 ptn_memdev_probe(device_t dev) 842 { 843 char desc[256]; 844 845 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 846 return (ENXIO); 847 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 848 return (ENXIO); 849 850 snprintf(desc, sizeof(desc), "%s PCI adapter", 851 PTNETMAP_MEMDEV_NAME); 852 device_set_desc_copy(dev, desc); 853 854 return (BUS_PROBE_DEFAULT); 855 } 856 857 /* Device initialization routine. */ 858 static int 859 ptn_memdev_attach(device_t dev) 860 { 861 struct ptnetmap_memdev *ptn_dev; 862 int rid; 863 uint16_t mem_id; 864 865 D("ptn_memdev_driver attach"); 866 867 ptn_dev = device_get_softc(dev); 868 ptn_dev->dev = dev; 869 870 pci_enable_busmaster(dev); 871 872 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 873 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 874 RF_ACTIVE); 875 if (ptn_dev->pci_io == NULL) { 876 device_printf(dev, "cannot map I/O space\n"); 877 return (ENXIO); 878 } 879 880 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 881 882 /* create guest allocator */ 883 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 884 if (ptn_dev->nm_mem == NULL) { 885 ptn_memdev_detach(dev); 886 return (ENOMEM); 887 } 888 netmap_mem_get(ptn_dev->nm_mem); 889 890 D("ptn_memdev_driver probe OK - host_mem_id: %d", mem_id); 891 892 return (0); 893 } 894 895 /* Device removal routine. */ 896 static int 897 ptn_memdev_detach(device_t dev) 898 { 899 struct ptnetmap_memdev *ptn_dev; 900 901 D("ptn_memdev_driver detach"); 902 ptn_dev = device_get_softc(dev); 903 904 if (ptn_dev->nm_mem) { 905 netmap_mem_put(ptn_dev->nm_mem); 906 ptn_dev->nm_mem = NULL; 907 } 908 if (ptn_dev->pci_mem) { 909 bus_release_resource(dev, SYS_RES_MEMORY, 910 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 911 ptn_dev->pci_mem = NULL; 912 } 913 if (ptn_dev->pci_io) { 914 bus_release_resource(dev, SYS_RES_IOPORT, 915 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 916 ptn_dev->pci_io = NULL; 917 } 918 919 return (0); 920 } 921 922 static int 923 ptn_memdev_shutdown(device_t dev) 924 { 925 D("ptn_memdev_driver shutdown"); 926 return bus_generic_shutdown(dev); 927 } 928 929 #endif /* WITH_PTNETMAP_GUEST */ 930 931 /* 932 * In order to track whether pages are still mapped, we hook into 933 * the standard cdev_pager and intercept the constructor and 934 * destructor. 935 */ 936 937 struct netmap_vm_handle_t { 938 struct cdev *dev; 939 struct netmap_priv_d *priv; 940 }; 941 942 943 static int 944 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 945 vm_ooffset_t foff, struct ucred *cred, u_short *color) 946 { 947 struct netmap_vm_handle_t *vmh = handle; 948 949 if (netmap_verbose) 950 D("handle %p size %jd prot %d foff %jd", 951 handle, (intmax_t)size, prot, (intmax_t)foff); 952 if (color) 953 *color = 0; 954 dev_ref(vmh->dev); 955 return 0; 956 } 957 958 959 static void 960 netmap_dev_pager_dtor(void *handle) 961 { 962 struct netmap_vm_handle_t *vmh = handle; 963 struct cdev *dev = vmh->dev; 964 struct netmap_priv_d *priv = vmh->priv; 965 966 if (netmap_verbose) 967 D("handle %p", handle); 968 netmap_dtor(priv); 969 free(vmh, M_DEVBUF); 970 dev_rel(dev); 971 } 972 973 974 static int 975 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 976 int prot, vm_page_t *mres) 977 { 978 struct netmap_vm_handle_t *vmh = object->handle; 979 struct netmap_priv_d *priv = vmh->priv; 980 struct netmap_adapter *na = priv->np_na; 981 vm_paddr_t paddr; 982 vm_page_t page; 983 vm_memattr_t memattr; 984 vm_pindex_t pidx; 985 986 ND("object %p offset %jd prot %d mres %p", 987 object, (intmax_t)offset, prot, mres); 988 memattr = object->memattr; 989 pidx = OFF_TO_IDX(offset); 990 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 991 if (paddr == 0) 992 return VM_PAGER_FAIL; 993 994 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 995 /* 996 * If the passed in result page is a fake page, update it with 997 * the new physical address. 998 */ 999 page = *mres; 1000 vm_page_updatefake(page, paddr, memattr); 1001 } else { 1002 /* 1003 * Replace the passed in reqpage page with our own fake page and 1004 * free up the all of the original pages. 1005 */ 1006 #ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */ 1007 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK 1008 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK 1009 #endif /* VM_OBJECT_WUNLOCK */ 1010 1011 VM_OBJECT_WUNLOCK(object); 1012 page = vm_page_getfake(paddr, memattr); 1013 VM_OBJECT_WLOCK(object); 1014 vm_page_lock(*mres); 1015 vm_page_free(*mres); 1016 vm_page_unlock(*mres); 1017 *mres = page; 1018 vm_page_insert(page, object, pidx); 1019 } 1020 page->valid = VM_PAGE_BITS_ALL; 1021 return (VM_PAGER_OK); 1022 } 1023 1024 1025 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1026 .cdev_pg_ctor = netmap_dev_pager_ctor, 1027 .cdev_pg_dtor = netmap_dev_pager_dtor, 1028 .cdev_pg_fault = netmap_dev_pager_fault, 1029 }; 1030 1031 1032 static int 1033 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1034 vm_size_t objsize, vm_object_t *objp, int prot) 1035 { 1036 int error; 1037 struct netmap_vm_handle_t *vmh; 1038 struct netmap_priv_d *priv; 1039 vm_object_t obj; 1040 1041 if (netmap_verbose) 1042 D("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1043 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1044 1045 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1046 M_NOWAIT | M_ZERO); 1047 if (vmh == NULL) 1048 return ENOMEM; 1049 vmh->dev = cdev; 1050 1051 NMG_LOCK(); 1052 error = devfs_get_cdevpriv((void**)&priv); 1053 if (error) 1054 goto err_unlock; 1055 if (priv->np_nifp == NULL) { 1056 error = EINVAL; 1057 goto err_unlock; 1058 } 1059 vmh->priv = priv; 1060 priv->np_refs++; 1061 NMG_UNLOCK(); 1062 1063 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1064 &netmap_cdev_pager_ops, objsize, prot, 1065 *foff, NULL); 1066 if (obj == NULL) { 1067 D("cdev_pager_allocate failed"); 1068 error = EINVAL; 1069 goto err_deref; 1070 } 1071 1072 *objp = obj; 1073 return 0; 1074 1075 err_deref: 1076 NMG_LOCK(); 1077 priv->np_refs--; 1078 err_unlock: 1079 NMG_UNLOCK(); 1080 // err: 1081 free(vmh, M_DEVBUF); 1082 return error; 1083 } 1084 1085 /* 1086 * On FreeBSD the close routine is only called on the last close on 1087 * the device (/dev/netmap) so we cannot do anything useful. 1088 * To track close() on individual file descriptors we pass netmap_dtor() to 1089 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1090 * when the last fd pointing to the device is closed. 1091 * 1092 * Note that FreeBSD does not even munmap() on close() so we also have 1093 * to track mmap() ourselves, and postpone the call to 1094 * netmap_dtor() is called when the process has no open fds and no active 1095 * memory maps on /dev/netmap, as in linux. 1096 */ 1097 static int 1098 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1099 { 1100 if (netmap_verbose) 1101 D("dev %p fflag 0x%x devtype %d td %p", 1102 dev, fflag, devtype, td); 1103 return 0; 1104 } 1105 1106 1107 static int 1108 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1109 { 1110 struct netmap_priv_d *priv; 1111 int error; 1112 1113 (void)dev; 1114 (void)oflags; 1115 (void)devtype; 1116 (void)td; 1117 1118 NMG_LOCK(); 1119 priv = netmap_priv_new(); 1120 if (priv == NULL) { 1121 error = ENOMEM; 1122 goto out; 1123 } 1124 error = devfs_set_cdevpriv(priv, netmap_dtor); 1125 if (error) { 1126 netmap_priv_delete(priv); 1127 } 1128 out: 1129 NMG_UNLOCK(); 1130 return error; 1131 } 1132 1133 /******************** kthread wrapper ****************/ 1134 #include <sys/sysproto.h> 1135 u_int 1136 nm_os_ncpus(void) 1137 { 1138 return mp_maxid + 1; 1139 } 1140 1141 struct nm_kctx_ctx { 1142 struct thread *user_td; /* thread user-space (kthread creator) to send ioctl */ 1143 struct ptnetmap_cfgentry_bhyve cfg; 1144 1145 /* worker function and parameter */ 1146 nm_kctx_worker_fn_t worker_fn; 1147 void *worker_private; 1148 1149 struct nm_kctx *nmk; 1150 1151 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1152 long type; 1153 }; 1154 1155 struct nm_kctx { 1156 struct thread *worker; 1157 struct mtx worker_lock; 1158 uint64_t scheduled; /* pending wake_up request */ 1159 struct nm_kctx_ctx worker_ctx; 1160 int run; /* used to stop kthread */ 1161 int attach_user; /* kthread attached to user_process */ 1162 int affinity; 1163 }; 1164 1165 void inline 1166 nm_os_kctx_worker_wakeup(struct nm_kctx *nmk) 1167 { 1168 /* 1169 * There may be a race between FE and BE, 1170 * which call both this function, and worker kthread, 1171 * that reads nmk->scheduled. 1172 * 1173 * For us it is not important the counter value, 1174 * but simply that it has changed since the last 1175 * time the kthread saw it. 1176 */ 1177 mtx_lock(&nmk->worker_lock); 1178 nmk->scheduled++; 1179 if (nmk->worker_ctx.cfg.wchan) { 1180 wakeup((void *)(uintptr_t)nmk->worker_ctx.cfg.wchan); 1181 } 1182 mtx_unlock(&nmk->worker_lock); 1183 } 1184 1185 void inline 1186 nm_os_kctx_send_irq(struct nm_kctx *nmk) 1187 { 1188 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1189 int err; 1190 1191 if (ctx->user_td && ctx->cfg.ioctl_fd > 0) { 1192 err = kern_ioctl(ctx->user_td, ctx->cfg.ioctl_fd, ctx->cfg.ioctl_cmd, 1193 (caddr_t)&ctx->cfg.ioctl_data); 1194 if (err) { 1195 D("kern_ioctl error: %d ioctl parameters: fd %d com %lu data %p", 1196 err, ctx->cfg.ioctl_fd, (unsigned long)ctx->cfg.ioctl_cmd, 1197 &ctx->cfg.ioctl_data); 1198 } 1199 } 1200 } 1201 1202 static void 1203 nm_kctx_worker(void *data) 1204 { 1205 struct nm_kctx *nmk = data; 1206 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1207 uint64_t old_scheduled = nmk->scheduled; 1208 1209 if (nmk->affinity >= 0) { 1210 thread_lock(curthread); 1211 sched_bind(curthread, nmk->affinity); 1212 thread_unlock(curthread); 1213 } 1214 1215 while (nmk->run) { 1216 /* 1217 * check if the parent process dies 1218 * (when kthread is attached to user process) 1219 */ 1220 if (ctx->user_td) { 1221 PROC_LOCK(curproc); 1222 thread_suspend_check(0); 1223 PROC_UNLOCK(curproc); 1224 } else { 1225 kthread_suspend_check(); 1226 } 1227 1228 /* 1229 * if wchan is not defined, we don't have notification 1230 * mechanism and we continually execute worker_fn() 1231 */ 1232 if (!ctx->cfg.wchan) { 1233 ctx->worker_fn(ctx->worker_private, 1); /* worker body */ 1234 } else { 1235 /* checks if there is a pending notification */ 1236 mtx_lock(&nmk->worker_lock); 1237 if (likely(nmk->scheduled != old_scheduled)) { 1238 old_scheduled = nmk->scheduled; 1239 mtx_unlock(&nmk->worker_lock); 1240 1241 ctx->worker_fn(ctx->worker_private, 1); /* worker body */ 1242 1243 continue; 1244 } else if (nmk->run) { 1245 /* wait on event with one second timeout */ 1246 msleep((void *)(uintptr_t)ctx->cfg.wchan, &nmk->worker_lock, 1247 0, "nmk_ev", hz); 1248 nmk->scheduled++; 1249 } 1250 mtx_unlock(&nmk->worker_lock); 1251 } 1252 } 1253 1254 kthread_exit(); 1255 } 1256 1257 void 1258 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1259 { 1260 nmk->affinity = affinity; 1261 } 1262 1263 struct nm_kctx * 1264 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1265 { 1266 struct nm_kctx *nmk = NULL; 1267 1268 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1269 if (!nmk) 1270 return NULL; 1271 1272 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1273 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1274 nmk->worker_ctx.worker_private = cfg->worker_private; 1275 nmk->worker_ctx.type = cfg->type; 1276 nmk->affinity = -1; 1277 1278 /* attach kthread to user process (ptnetmap) */ 1279 nmk->attach_user = cfg->attach_user; 1280 1281 /* store kick/interrupt configuration */ 1282 if (opaque) { 1283 nmk->worker_ctx.cfg = *((struct ptnetmap_cfgentry_bhyve *)opaque); 1284 } 1285 1286 return nmk; 1287 } 1288 1289 int 1290 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1291 { 1292 struct proc *p = NULL; 1293 int error = 0; 1294 1295 if (nmk->worker) { 1296 return EBUSY; 1297 } 1298 1299 /* check if we want to attach kthread to user process */ 1300 if (nmk->attach_user) { 1301 nmk->worker_ctx.user_td = curthread; 1302 p = curthread->td_proc; 1303 } 1304 1305 /* enable kthread main loop */ 1306 nmk->run = 1; 1307 /* create kthread */ 1308 if((error = kthread_add(nm_kctx_worker, nmk, p, 1309 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1310 nmk->worker_ctx.type))) { 1311 goto err; 1312 } 1313 1314 D("nm_kthread started td %p", nmk->worker); 1315 1316 return 0; 1317 err: 1318 D("nm_kthread start failed err %d", error); 1319 nmk->worker = NULL; 1320 return error; 1321 } 1322 1323 void 1324 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1325 { 1326 if (!nmk->worker) { 1327 return; 1328 } 1329 /* tell to kthread to exit from main loop */ 1330 nmk->run = 0; 1331 1332 /* wake up kthread if it sleeps */ 1333 kthread_resume(nmk->worker); 1334 nm_os_kctx_worker_wakeup(nmk); 1335 1336 nmk->worker = NULL; 1337 } 1338 1339 void 1340 nm_os_kctx_destroy(struct nm_kctx *nmk) 1341 { 1342 if (!nmk) 1343 return; 1344 if (nmk->worker) { 1345 nm_os_kctx_worker_stop(nmk); 1346 } 1347 1348 memset(&nmk->worker_ctx.cfg, 0, sizeof(nmk->worker_ctx.cfg)); 1349 1350 free(nmk, M_DEVBUF); 1351 } 1352 1353 /******************** kqueue support ****************/ 1354 1355 /* 1356 * nm_os_selwakeup also needs to issue a KNOTE_UNLOCKED. 1357 * We use a non-zero argument to distinguish the call from the one 1358 * in kevent_scan() which instead also needs to run netmap_poll(). 1359 * The knote uses a global mutex for the time being. We might 1360 * try to reuse the one in the si, but it is not allocated 1361 * permanently so it might be a bit tricky. 1362 * 1363 * The *kqfilter function registers one or another f_event 1364 * depending on read or write mode. 1365 * In the call to f_event() td_fpop is NULL so any child function 1366 * calling devfs_get_cdevpriv() would fail - and we need it in 1367 * netmap_poll(). As a workaround we store priv into kn->kn_hook 1368 * and pass it as first argument to netmap_poll(), which then 1369 * uses the failure to tell that we are called from f_event() 1370 * and do not need the selrecord(). 1371 */ 1372 1373 1374 void 1375 nm_os_selwakeup(struct nm_selinfo *si) 1376 { 1377 if (netmap_verbose) 1378 D("on knote %p", &si->si.si_note); 1379 selwakeuppri(&si->si, PI_NET); 1380 /* use a non-zero hint to tell the notification from the 1381 * call done in kqueue_scan() which uses 0 1382 */ 1383 KNOTE_UNLOCKED(&si->si.si_note, 0x100 /* notification */); 1384 } 1385 1386 void 1387 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1388 { 1389 selrecord(td, &si->si); 1390 } 1391 1392 static void 1393 netmap_knrdetach(struct knote *kn) 1394 { 1395 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1396 struct selinfo *si = &priv->np_si[NR_RX]->si; 1397 1398 D("remove selinfo %p", si); 1399 knlist_remove(&si->si_note, kn, 0); 1400 } 1401 1402 static void 1403 netmap_knwdetach(struct knote *kn) 1404 { 1405 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1406 struct selinfo *si = &priv->np_si[NR_TX]->si; 1407 1408 D("remove selinfo %p", si); 1409 knlist_remove(&si->si_note, kn, 0); 1410 } 1411 1412 /* 1413 * callback from notifies (generated externally) and our 1414 * calls to kevent(). The former we just return 1 (ready) 1415 * since we do not know better. 1416 * In the latter we call netmap_poll and return 0/1 accordingly. 1417 */ 1418 static int 1419 netmap_knrw(struct knote *kn, long hint, int events) 1420 { 1421 struct netmap_priv_d *priv; 1422 int revents; 1423 1424 if (hint != 0) { 1425 ND(5, "call from notify"); 1426 return 1; /* assume we are ready */ 1427 } 1428 priv = kn->kn_hook; 1429 /* the notification may come from an external thread, 1430 * in which case we do not want to run the netmap_poll 1431 * This should be filtered above, but check just in case. 1432 */ 1433 if (curthread != priv->np_td) { /* should not happen */ 1434 RD(5, "curthread changed %p %p", curthread, priv->np_td); 1435 return 1; 1436 } else { 1437 revents = netmap_poll(priv, events, NULL); 1438 return (events & revents) ? 1 : 0; 1439 } 1440 } 1441 1442 static int 1443 netmap_knread(struct knote *kn, long hint) 1444 { 1445 return netmap_knrw(kn, hint, POLLIN); 1446 } 1447 1448 static int 1449 netmap_knwrite(struct knote *kn, long hint) 1450 { 1451 return netmap_knrw(kn, hint, POLLOUT); 1452 } 1453 1454 static struct filterops netmap_rfiltops = { 1455 .f_isfd = 1, 1456 .f_detach = netmap_knrdetach, 1457 .f_event = netmap_knread, 1458 }; 1459 1460 static struct filterops netmap_wfiltops = { 1461 .f_isfd = 1, 1462 .f_detach = netmap_knwdetach, 1463 .f_event = netmap_knwrite, 1464 }; 1465 1466 1467 /* 1468 * This is called when a thread invokes kevent() to record 1469 * a change in the configuration of the kqueue(). 1470 * The 'priv' should be the same as in the netmap device. 1471 */ 1472 static int 1473 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1474 { 1475 struct netmap_priv_d *priv; 1476 int error; 1477 struct netmap_adapter *na; 1478 struct nm_selinfo *si; 1479 int ev = kn->kn_filter; 1480 1481 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1482 D("bad filter request %d", ev); 1483 return 1; 1484 } 1485 error = devfs_get_cdevpriv((void**)&priv); 1486 if (error) { 1487 D("device not yet setup"); 1488 return 1; 1489 } 1490 na = priv->np_na; 1491 if (na == NULL) { 1492 D("no netmap adapter for this file descriptor"); 1493 return 1; 1494 } 1495 /* the si is indicated in the priv */ 1496 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1497 // XXX lock(priv) ? 1498 kn->kn_fop = (ev == EVFILT_WRITE) ? 1499 &netmap_wfiltops : &netmap_rfiltops; 1500 kn->kn_hook = priv; 1501 knlist_add(&si->si.si_note, kn, 0); 1502 // XXX unlock(priv) 1503 ND("register %p %s td %p priv %p kn %p np_nifp %p kn_fp/fpop %s", 1504 na, na->ifp->if_xname, curthread, priv, kn, 1505 priv->np_nifp, 1506 kn->kn_fp == curthread->td_fpop ? "match" : "MISMATCH"); 1507 return 0; 1508 } 1509 1510 static int 1511 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1512 { 1513 struct netmap_priv_d *priv; 1514 if (devfs_get_cdevpriv((void **)&priv)) { 1515 return POLLERR; 1516 } 1517 return netmap_poll(priv, events, td); 1518 } 1519 1520 static int 1521 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1522 int ffla __unused, struct thread *td) 1523 { 1524 int error; 1525 struct netmap_priv_d *priv; 1526 1527 CURVNET_SET(TD_TO_VNET(td)); 1528 error = devfs_get_cdevpriv((void **)&priv); 1529 if (error) { 1530 /* XXX ENOENT should be impossible, since the priv 1531 * is now created in the open */ 1532 if (error == ENOENT) 1533 error = ENXIO; 1534 goto out; 1535 } 1536 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1537 out: 1538 CURVNET_RESTORE(); 1539 1540 return error; 1541 } 1542 1543 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1544 struct cdevsw netmap_cdevsw = { 1545 .d_version = D_VERSION, 1546 .d_name = "netmap", 1547 .d_open = netmap_open, 1548 .d_mmap_single = netmap_mmap_single, 1549 .d_ioctl = freebsd_netmap_ioctl, 1550 .d_poll = freebsd_netmap_poll, 1551 .d_kqfilter = netmap_kqfilter, 1552 .d_close = netmap_close, 1553 }; 1554 /*--- end of kqueue support ----*/ 1555 1556 /* 1557 * Kernel entry point. 1558 * 1559 * Initialize/finalize the module and return. 1560 * 1561 * Return 0 on success, errno on failure. 1562 */ 1563 static int 1564 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1565 { 1566 int error = 0; 1567 1568 switch (event) { 1569 case MOD_LOAD: 1570 error = netmap_init(); 1571 break; 1572 1573 case MOD_UNLOAD: 1574 /* 1575 * if some one is still using netmap, 1576 * then the module can not be unloaded. 1577 */ 1578 if (netmap_use_count) { 1579 D("netmap module can not be unloaded - netmap_use_count: %d", 1580 netmap_use_count); 1581 error = EBUSY; 1582 break; 1583 } 1584 netmap_fini(); 1585 break; 1586 1587 default: 1588 error = EOPNOTSUPP; 1589 break; 1590 } 1591 1592 return (error); 1593 } 1594 1595 #ifdef DEV_MODULE_ORDERED 1596 /* 1597 * The netmap module contains three drivers: (i) the netmap character device 1598 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1599 * device driver. The attach() routines of both (ii) and (iii) need the 1600 * lock of the global allocator, and such lock is initialized in netmap_init(), 1601 * which is part of (i). 1602 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1603 * the 'order' parameter of driver declaration macros. For (i), we specify 1604 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1605 * macros for (ii) and (iii). 1606 */ 1607 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1608 #else /* !DEV_MODULE_ORDERED */ 1609 DEV_MODULE(netmap, netmap_loader, NULL); 1610 #endif /* DEV_MODULE_ORDERED */ 1611 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1612 MODULE_VERSION(netmap, 1); 1613 /* reduce conditional code */ 1614 // linux API, use for the knlist in FreeBSD 1615 /* use a private mutex for the knlist */ 1616