1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/eventhandler.h> 36 #include <sys/jail.h> 37 #include <sys/poll.h> /* POLLIN, POLLOUT */ 38 #include <sys/kernel.h> /* types used in module initialization */ 39 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 40 #include <sys/endian.h> 41 #include <sys/syscallsubr.h> /* kern_ioctl() */ 42 43 #include <sys/rwlock.h> 44 45 #include <vm/vm.h> /* vtophys */ 46 #include <vm/pmap.h> /* vtophys */ 47 #include <vm/vm_param.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_pager.h> 51 #include <vm/uma.h> 52 53 54 #include <sys/malloc.h> 55 #include <sys/socket.h> /* sockaddrs */ 56 #include <sys/selinfo.h> 57 #include <sys/kthread.h> /* kthread_add() */ 58 #include <sys/proc.h> /* PROC_LOCK() */ 59 #include <sys/unistd.h> /* RFNOWAIT */ 60 #include <sys/sched.h> /* sched_bind() */ 61 #include <sys/smp.h> /* mp_maxid */ 62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> /* IFT_ETHER */ 66 #include <net/ethernet.h> /* ether_ifdetach */ 67 #include <net/if_dl.h> /* LLADDR */ 68 #include <machine/bus.h> /* bus_dmamap_* */ 69 #include <netinet/in.h> /* in6_cksum_pseudo() */ 70 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 71 72 #include <net/netmap.h> 73 #include <dev/netmap/netmap_kern.h> 74 #include <net/netmap_virt.h> 75 #include <dev/netmap/netmap_mem2.h> 76 77 78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 79 80 static void 81 nm_kqueue_notify(void *opaque, int pending) 82 { 83 struct nm_selinfo *si = opaque; 84 85 /* We use a non-zero hint to distinguish this notification call 86 * from the call done in kqueue_scan(), which uses hint=0. 87 */ 88 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 89 } 90 91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 92 int err; 93 94 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 95 si->ntfytq = taskqueue_create(name, M_NOWAIT, 96 taskqueue_thread_enqueue, &si->ntfytq); 97 if (si->ntfytq == NULL) 98 return -ENOMEM; 99 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 100 if (err) { 101 taskqueue_free(si->ntfytq); 102 si->ntfytq = NULL; 103 return err; 104 } 105 106 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 107 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 108 knlist_init_mtx(&si->si.si_note, &si->m); 109 si->kqueue_users = 0; 110 111 return (0); 112 } 113 114 void 115 nm_os_selinfo_uninit(NM_SELINFO_T *si) 116 { 117 if (si->ntfytq == NULL) { 118 return; /* si was not initialized */ 119 } 120 taskqueue_drain(si->ntfytq, &si->ntfytask); 121 taskqueue_free(si->ntfytq); 122 si->ntfytq = NULL; 123 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 124 knlist_destroy(&si->si.si_note); 125 /* now we don't need the mutex anymore */ 126 mtx_destroy(&si->m); 127 } 128 129 void * 130 nm_os_malloc(size_t size) 131 { 132 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 133 } 134 135 void * 136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 137 { 138 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 139 } 140 141 void 142 nm_os_free(void *addr) 143 { 144 free(addr, M_DEVBUF); 145 } 146 147 void 148 nm_os_ifnet_lock(void) 149 { 150 IFNET_RLOCK(); 151 } 152 153 void 154 nm_os_ifnet_unlock(void) 155 { 156 IFNET_RUNLOCK(); 157 } 158 159 static int netmap_use_count = 0; 160 161 void 162 nm_os_get_module(void) 163 { 164 netmap_use_count++; 165 } 166 167 void 168 nm_os_put_module(void) 169 { 170 netmap_use_count--; 171 } 172 173 static void 174 netmap_ifnet_arrival_handler(void *arg __unused, if_t ifp) 175 { 176 netmap_undo_zombie(ifp); 177 } 178 179 static void 180 netmap_ifnet_departure_handler(void *arg __unused, if_t ifp) 181 { 182 netmap_make_zombie(ifp); 183 } 184 185 static eventhandler_tag nm_ifnet_ah_tag; 186 static eventhandler_tag nm_ifnet_dh_tag; 187 188 int 189 nm_os_ifnet_init(void) 190 { 191 nm_ifnet_ah_tag = 192 EVENTHANDLER_REGISTER(ifnet_arrival_event, 193 netmap_ifnet_arrival_handler, 194 NULL, EVENTHANDLER_PRI_ANY); 195 nm_ifnet_dh_tag = 196 EVENTHANDLER_REGISTER(ifnet_departure_event, 197 netmap_ifnet_departure_handler, 198 NULL, EVENTHANDLER_PRI_ANY); 199 return 0; 200 } 201 202 void 203 nm_os_ifnet_fini(void) 204 { 205 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 206 nm_ifnet_ah_tag); 207 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 208 nm_ifnet_dh_tag); 209 } 210 211 unsigned 212 nm_os_ifnet_mtu(if_t ifp) 213 { 214 return if_getmtu(ifp); 215 } 216 217 rawsum_t 218 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 219 { 220 /* TODO XXX please use the FreeBSD implementation for this. */ 221 uint16_t *words = (uint16_t *)data; 222 int nw = len / 2; 223 int i; 224 225 for (i = 0; i < nw; i++) 226 cur_sum += be16toh(words[i]); 227 228 if (len & 1) 229 cur_sum += (data[len-1] << 8); 230 231 return cur_sum; 232 } 233 234 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 235 * return value is in network byte order. 236 */ 237 uint16_t 238 nm_os_csum_fold(rawsum_t cur_sum) 239 { 240 /* TODO XXX please use the FreeBSD implementation for this. */ 241 while (cur_sum >> 16) 242 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 243 244 return htobe16((~cur_sum) & 0xFFFF); 245 } 246 247 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 248 { 249 #if 0 250 return in_cksum_hdr((void *)iph); 251 #else 252 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 253 #endif 254 } 255 256 void 257 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 258 size_t datalen, uint16_t *check) 259 { 260 #ifdef INET 261 uint16_t pseudolen = datalen + iph->protocol; 262 263 /* Compute and insert the pseudo-header checksum. */ 264 *check = in_pseudo(iph->saddr, iph->daddr, 265 htobe16(pseudolen)); 266 /* Compute the checksum on TCP/UDP header + payload 267 * (includes the pseudo-header). 268 */ 269 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 270 #else 271 static int notsupported = 0; 272 if (!notsupported) { 273 notsupported = 1; 274 nm_prerr("inet4 segmentation not supported"); 275 } 276 #endif 277 } 278 279 void 280 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 281 size_t datalen, uint16_t *check) 282 { 283 #ifdef INET6 284 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 285 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 286 #else 287 static int notsupported = 0; 288 if (!notsupported) { 289 notsupported = 1; 290 nm_prerr("inet6 segmentation not supported"); 291 } 292 #endif 293 } 294 295 /* on FreeBSD we send up one packet at a time */ 296 void * 297 nm_os_send_up(if_t ifp, struct mbuf *m, struct mbuf *prev) 298 { 299 NA(ifp)->if_input(ifp, m); 300 return NULL; 301 } 302 303 int 304 nm_os_mbuf_has_csum_offld(struct mbuf *m) 305 { 306 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 307 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 308 CSUM_SCTP_IPV6); 309 } 310 311 int 312 nm_os_mbuf_has_seg_offld(struct mbuf *m) 313 { 314 return m->m_pkthdr.csum_flags & CSUM_TSO; 315 } 316 317 static void 318 freebsd_generic_rx_handler(if_t ifp, struct mbuf *m) 319 { 320 int stolen; 321 322 if (unlikely(!NM_NA_VALID(ifp))) { 323 nm_prlim(1, "Warning: RX packet intercepted, but no" 324 " emulated adapter"); 325 return; 326 } 327 328 stolen = generic_rx_handler(ifp, m); 329 if (!stolen) { 330 NA(ifp)->if_input(ifp, m); 331 } 332 } 333 334 /* 335 * Intercept the rx routine in the standard device driver. 336 * Second argument is non-zero to intercept, 0 to restore 337 */ 338 int 339 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 340 { 341 struct netmap_adapter *na = &gna->up.up; 342 if_t ifp = na->ifp; 343 int ret = 0; 344 345 nm_os_ifnet_lock(); 346 if (intercept) { 347 if_setcapenablebit(ifp, IFCAP_NETMAP, 0); 348 if_setinputfn(ifp, freebsd_generic_rx_handler); 349 } else { 350 if_setcapenablebit(ifp, 0, IFCAP_NETMAP); 351 if_setinputfn(ifp, na->if_input); 352 } 353 nm_os_ifnet_unlock(); 354 355 return ret; 356 } 357 358 359 /* 360 * Intercept the packet steering routine in the tx path, 361 * so that we can decide which queue is used for an mbuf. 362 * Second argument is non-zero to intercept, 0 to restore. 363 * On freebsd we just intercept if_transmit. 364 */ 365 int 366 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 367 { 368 struct netmap_adapter *na = &gna->up.up; 369 if_t ifp = netmap_generic_getifp(gna); 370 371 nm_os_ifnet_lock(); 372 if (intercept) { 373 na->if_transmit = if_gettransmitfn(ifp); 374 if_settransmitfn(ifp, netmap_transmit); 375 } else { 376 if_settransmitfn(ifp, na->if_transmit); 377 } 378 nm_os_ifnet_unlock(); 379 380 return 0; 381 } 382 383 384 /* 385 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 386 * and non-zero on error (which may be packet drops or other errors). 387 * addr and len identify the netmap buffer, m is the (preallocated) 388 * mbuf to use for transmissions. 389 * 390 * We should add a reference to the mbuf so the m_freem() at the end 391 * of the transmission does not consume resources. 392 * 393 * On FreeBSD, and on multiqueue cards, we can force the queue using 394 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 395 * i = m->m_pkthdr.flowid % adapter->num_queues; 396 * else 397 * i = curcpu % adapter->num_queues; 398 * 399 */ 400 int 401 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 402 { 403 int ret; 404 u_int len = a->len; 405 if_t ifp = a->ifp; 406 struct mbuf *m = a->m; 407 408 /* Link the external storage to 409 * the netmap buffer, so that no copy is necessary. */ 410 m->m_ext.ext_buf = m->m_data = a->addr; 411 m->m_ext.ext_size = len; 412 413 m->m_flags |= M_PKTHDR; 414 m->m_len = m->m_pkthdr.len = len; 415 416 /* mbuf refcnt is not contended, no need to use atomic 417 * (a memory barrier is enough). */ 418 SET_MBUF_REFCNT(m, 2); 419 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 420 m->m_pkthdr.flowid = a->ring_nr; 421 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 422 CURVNET_SET(if_getvnet(ifp)); 423 ret = NA(ifp)->if_transmit(ifp, m); 424 CURVNET_RESTORE(); 425 return ret ? -1 : 0; 426 } 427 428 429 struct netmap_adapter * 430 netmap_getna(if_t ifp) 431 { 432 return (NA(ifp)); 433 } 434 435 /* 436 * The following two functions are empty until we have a generic 437 * way to extract the info from the ifp 438 */ 439 int 440 nm_os_generic_find_num_desc(if_t ifp, unsigned int *tx, unsigned int *rx) 441 { 442 return 0; 443 } 444 445 446 void 447 nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq) 448 { 449 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 450 451 *txq = num_rings; 452 *rxq = num_rings; 453 } 454 455 void 456 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 457 { 458 459 gna->rxsg = 1; /* Supported through m_copydata. */ 460 gna->txqdisc = 0; /* Not supported. */ 461 } 462 463 void 464 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 465 { 466 mit->mit_pending = 0; 467 mit->mit_ring_idx = idx; 468 mit->mit_na = na; 469 } 470 471 472 void 473 nm_os_mitigation_start(struct nm_generic_mit *mit) 474 { 475 } 476 477 478 void 479 nm_os_mitigation_restart(struct nm_generic_mit *mit) 480 { 481 } 482 483 484 int 485 nm_os_mitigation_active(struct nm_generic_mit *mit) 486 { 487 488 return 0; 489 } 490 491 492 void 493 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 494 { 495 } 496 497 static int 498 nm_vi_dummy(if_t ifp, u_long cmd, caddr_t addr) 499 { 500 501 return EINVAL; 502 } 503 504 static void 505 nm_vi_start(if_t ifp) 506 { 507 panic("nm_vi_start() must not be called"); 508 } 509 510 /* 511 * Index manager of persistent virtual interfaces. 512 * It is used to decide the lowest byte of the MAC address. 513 * We use the same algorithm with management of bridge port index. 514 */ 515 #define NM_VI_MAX 255 516 static struct { 517 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 518 uint8_t active; 519 struct mtx lock; 520 } nm_vi_indices; 521 522 void 523 nm_os_vi_init_index(void) 524 { 525 int i; 526 for (i = 0; i < NM_VI_MAX; i++) 527 nm_vi_indices.index[i] = i; 528 nm_vi_indices.active = 0; 529 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 530 } 531 532 /* return -1 if no index available */ 533 static int 534 nm_vi_get_index(void) 535 { 536 int ret; 537 538 mtx_lock(&nm_vi_indices.lock); 539 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 540 nm_vi_indices.index[nm_vi_indices.active++]; 541 mtx_unlock(&nm_vi_indices.lock); 542 return ret; 543 } 544 545 static void 546 nm_vi_free_index(uint8_t val) 547 { 548 int i, lim; 549 550 mtx_lock(&nm_vi_indices.lock); 551 lim = nm_vi_indices.active; 552 for (i = 0; i < lim; i++) { 553 if (nm_vi_indices.index[i] == val) { 554 /* swap index[lim-1] and j */ 555 int tmp = nm_vi_indices.index[lim-1]; 556 nm_vi_indices.index[lim-1] = val; 557 nm_vi_indices.index[i] = tmp; 558 nm_vi_indices.active--; 559 break; 560 } 561 } 562 if (lim == nm_vi_indices.active) 563 nm_prerr("Index %u not found", val); 564 mtx_unlock(&nm_vi_indices.lock); 565 } 566 #undef NM_VI_MAX 567 568 /* 569 * Implementation of a netmap-capable virtual interface that 570 * registered to the system. 571 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 572 * 573 * Note: Linux sets refcount to 0 on allocation of net_device, 574 * then increments it on registration to the system. 575 * FreeBSD sets refcount to 1 on if_alloc(), and does not 576 * increment this refcount on if_attach(). 577 */ 578 int 579 nm_os_vi_persist(const char *name, if_t *ret) 580 { 581 if_t ifp; 582 u_short macaddr_hi; 583 uint32_t macaddr_mid; 584 u_char eaddr[6]; 585 int unit = nm_vi_get_index(); /* just to decide MAC address */ 586 587 if (unit < 0) 588 return EBUSY; 589 /* 590 * We use the same MAC address generation method with tap 591 * except for the highest octet is 00:be instead of 00:bd 592 */ 593 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 594 macaddr_mid = (uint32_t) ticks; 595 bcopy(&macaddr_hi, eaddr, sizeof(short)); 596 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 597 eaddr[5] = (uint8_t)unit; 598 599 ifp = if_alloc(IFT_ETHER); 600 if (ifp == NULL) { 601 nm_prerr("if_alloc failed"); 602 return ENOMEM; 603 } 604 if_initname(ifp, name, IF_DUNIT_NONE); 605 if_setflags(ifp, IFF_UP | IFF_SIMPLEX | IFF_MULTICAST); 606 if_setinitfn(ifp, (void *)nm_vi_dummy); 607 if_setioctlfn(ifp, nm_vi_dummy); 608 if_setstartfn(ifp, nm_vi_start); 609 if_setmtu(ifp, ETHERMTU); 610 if_setsendqlen(ifp, ifqmaxlen); 611 if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0); 612 if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0); 613 614 ether_ifattach(ifp, eaddr); 615 *ret = ifp; 616 return 0; 617 } 618 619 /* unregister from the system and drop the final refcount */ 620 void 621 nm_os_vi_detach(if_t ifp) 622 { 623 nm_vi_free_index(((char *)if_getlladdr(ifp))[5]); 624 ether_ifdetach(ifp); 625 if_free(ifp); 626 } 627 628 #ifdef WITH_EXTMEM 629 #include <vm/vm_map.h> 630 #include <vm/vm_extern.h> 631 #include <vm/vm_kern.h> 632 struct nm_os_extmem { 633 vm_object_t obj; 634 vm_offset_t kva; 635 vm_offset_t size; 636 uintptr_t scan; 637 }; 638 639 void 640 nm_os_extmem_delete(struct nm_os_extmem *e) 641 { 642 nm_prinf("freeing %zx bytes", (size_t)e->size); 643 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 644 nm_os_free(e); 645 } 646 647 char * 648 nm_os_extmem_nextpage(struct nm_os_extmem *e) 649 { 650 char *rv = NULL; 651 if (e->scan < e->kva + e->size) { 652 rv = (char *)e->scan; 653 e->scan += PAGE_SIZE; 654 } 655 return rv; 656 } 657 658 int 659 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 660 { 661 return (e1->obj == e2->obj); 662 } 663 664 int 665 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 666 { 667 return e->size >> PAGE_SHIFT; 668 } 669 670 struct nm_os_extmem * 671 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 672 { 673 vm_map_t map; 674 vm_map_entry_t entry; 675 vm_object_t obj; 676 vm_prot_t prot; 677 vm_pindex_t index; 678 boolean_t wired; 679 struct nm_os_extmem *e = NULL; 680 int rv, error = 0; 681 682 e = nm_os_malloc(sizeof(*e)); 683 if (e == NULL) { 684 error = ENOMEM; 685 goto out; 686 } 687 688 map = &curthread->td_proc->p_vmspace->vm_map; 689 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 690 &obj, &index, &prot, &wired); 691 if (rv != KERN_SUCCESS) { 692 nm_prerr("address %lx not found", p); 693 error = vm_mmap_to_errno(rv); 694 goto out_free; 695 } 696 vm_object_reference(obj); 697 698 /* check that we are given the whole vm_object ? */ 699 vm_map_lookup_done(map, entry); 700 701 e->obj = obj; 702 /* Wire the memory and add the vm_object to the kernel map, 703 * to make sure that it is not freed even if all the processes 704 * that are mmap()ing should munmap() it. 705 */ 706 e->kva = vm_map_min(kernel_map); 707 e->size = obj->size << PAGE_SHIFT; 708 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 709 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 710 VM_PROT_READ | VM_PROT_WRITE, 0); 711 if (rv != KERN_SUCCESS) { 712 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 713 error = vm_mmap_to_errno(rv); 714 goto out_rel; 715 } 716 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 717 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 718 if (rv != KERN_SUCCESS) { 719 nm_prerr("vm_map_wire failed"); 720 error = vm_mmap_to_errno(rv); 721 goto out_rem; 722 } 723 724 e->scan = e->kva; 725 726 return e; 727 728 out_rem: 729 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 730 out_rel: 731 vm_object_deallocate(e->obj); 732 e->obj = NULL; 733 out_free: 734 nm_os_free(e); 735 out: 736 if (perror) 737 *perror = error; 738 return NULL; 739 } 740 #endif /* WITH_EXTMEM */ 741 742 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 743 744 #ifdef WITH_PTNETMAP 745 #include <sys/bus.h> 746 #include <sys/rman.h> 747 #include <machine/bus.h> /* bus_dmamap_* */ 748 #include <machine/resource.h> 749 #include <dev/pci/pcivar.h> 750 #include <dev/pci/pcireg.h> 751 /* 752 * ptnetmap memory device (memdev) for freebsd guest, 753 * ssed to expose host netmap memory to the guest through a PCI BAR. 754 */ 755 756 /* 757 * ptnetmap memdev private data structure 758 */ 759 struct ptnetmap_memdev { 760 device_t dev; 761 struct resource *pci_io; 762 struct resource *pci_mem; 763 struct netmap_mem_d *nm_mem; 764 }; 765 766 static int ptn_memdev_probe(device_t); 767 static int ptn_memdev_attach(device_t); 768 static int ptn_memdev_detach(device_t); 769 static int ptn_memdev_shutdown(device_t); 770 771 static device_method_t ptn_memdev_methods[] = { 772 DEVMETHOD(device_probe, ptn_memdev_probe), 773 DEVMETHOD(device_attach, ptn_memdev_attach), 774 DEVMETHOD(device_detach, ptn_memdev_detach), 775 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 776 DEVMETHOD_END 777 }; 778 779 static driver_t ptn_memdev_driver = { 780 PTNETMAP_MEMDEV_NAME, 781 ptn_memdev_methods, 782 sizeof(struct ptnetmap_memdev), 783 }; 784 785 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 786 * below. */ 787 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL, 788 SI_ORDER_MIDDLE + 1); 789 790 /* 791 * Map host netmap memory through PCI-BAR in the guest OS, 792 * returning physical (nm_paddr) and virtual (nm_addr) addresses 793 * of the netmap memory mapped in the guest. 794 */ 795 int 796 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 797 void **nm_addr, uint64_t *mem_size) 798 { 799 int rid; 800 801 nm_prinf("ptn_memdev_driver iomap"); 802 803 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 804 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 805 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 806 (*mem_size << 32); 807 808 /* map memory allocator */ 809 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 810 &rid, 0, ~0, *mem_size, RF_ACTIVE); 811 if (ptn_dev->pci_mem == NULL) { 812 *nm_paddr = 0; 813 *nm_addr = NULL; 814 return ENOMEM; 815 } 816 817 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 818 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 819 820 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 821 PTNETMAP_MEM_PCI_BAR, 822 (unsigned long)(*nm_paddr), 823 (unsigned long)rman_get_size(ptn_dev->pci_mem), 824 (unsigned long)*mem_size); 825 return (0); 826 } 827 828 uint32_t 829 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 830 { 831 return bus_read_4(ptn_dev->pci_io, reg); 832 } 833 834 /* Unmap host netmap memory. */ 835 void 836 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 837 { 838 nm_prinf("ptn_memdev_driver iounmap"); 839 840 if (ptn_dev->pci_mem) { 841 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 842 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 843 ptn_dev->pci_mem = NULL; 844 } 845 } 846 847 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 848 * positive on failure */ 849 static int 850 ptn_memdev_probe(device_t dev) 851 { 852 char desc[256]; 853 854 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 855 return (ENXIO); 856 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 857 return (ENXIO); 858 859 snprintf(desc, sizeof(desc), "%s PCI adapter", 860 PTNETMAP_MEMDEV_NAME); 861 device_set_desc_copy(dev, desc); 862 863 return (BUS_PROBE_DEFAULT); 864 } 865 866 /* Device initialization routine. */ 867 static int 868 ptn_memdev_attach(device_t dev) 869 { 870 struct ptnetmap_memdev *ptn_dev; 871 int rid; 872 uint16_t mem_id; 873 874 ptn_dev = device_get_softc(dev); 875 ptn_dev->dev = dev; 876 877 pci_enable_busmaster(dev); 878 879 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 880 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 881 RF_ACTIVE); 882 if (ptn_dev->pci_io == NULL) { 883 device_printf(dev, "cannot map I/O space\n"); 884 return (ENXIO); 885 } 886 887 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 888 889 /* create guest allocator */ 890 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 891 if (ptn_dev->nm_mem == NULL) { 892 ptn_memdev_detach(dev); 893 return (ENOMEM); 894 } 895 netmap_mem_get(ptn_dev->nm_mem); 896 897 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 898 899 return (0); 900 } 901 902 /* Device removal routine. */ 903 static int 904 ptn_memdev_detach(device_t dev) 905 { 906 struct ptnetmap_memdev *ptn_dev; 907 908 ptn_dev = device_get_softc(dev); 909 910 if (ptn_dev->nm_mem) { 911 nm_prinf("ptnetmap memdev detached, host memid %u", 912 netmap_mem_get_id(ptn_dev->nm_mem)); 913 netmap_mem_put(ptn_dev->nm_mem); 914 ptn_dev->nm_mem = NULL; 915 } 916 if (ptn_dev->pci_mem) { 917 bus_release_resource(dev, SYS_RES_MEMORY, 918 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 919 ptn_dev->pci_mem = NULL; 920 } 921 if (ptn_dev->pci_io) { 922 bus_release_resource(dev, SYS_RES_IOPORT, 923 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 924 ptn_dev->pci_io = NULL; 925 } 926 927 return (0); 928 } 929 930 static int 931 ptn_memdev_shutdown(device_t dev) 932 { 933 return bus_generic_shutdown(dev); 934 } 935 936 #endif /* WITH_PTNETMAP */ 937 938 /* 939 * In order to track whether pages are still mapped, we hook into 940 * the standard cdev_pager and intercept the constructor and 941 * destructor. 942 */ 943 944 struct netmap_vm_handle_t { 945 struct cdev *dev; 946 struct netmap_priv_d *priv; 947 }; 948 949 950 static int 951 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 952 vm_ooffset_t foff, struct ucred *cred, u_short *color) 953 { 954 struct netmap_vm_handle_t *vmh = handle; 955 956 if (netmap_verbose) 957 nm_prinf("handle %p size %jd prot %d foff %jd", 958 handle, (intmax_t)size, prot, (intmax_t)foff); 959 if (color) 960 *color = 0; 961 dev_ref(vmh->dev); 962 return 0; 963 } 964 965 966 static void 967 netmap_dev_pager_dtor(void *handle) 968 { 969 struct netmap_vm_handle_t *vmh = handle; 970 struct cdev *dev = vmh->dev; 971 struct netmap_priv_d *priv = vmh->priv; 972 973 if (netmap_verbose) 974 nm_prinf("handle %p", handle); 975 netmap_dtor(priv); 976 free(vmh, M_DEVBUF); 977 dev_rel(dev); 978 } 979 980 981 static int 982 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 983 int prot, vm_page_t *mres) 984 { 985 struct netmap_vm_handle_t *vmh = object->handle; 986 struct netmap_priv_d *priv = vmh->priv; 987 struct netmap_adapter *na = priv->np_na; 988 vm_paddr_t paddr; 989 vm_page_t page; 990 vm_memattr_t memattr; 991 992 nm_prdis("object %p offset %jd prot %d mres %p", 993 object, (intmax_t)offset, prot, mres); 994 memattr = object->memattr; 995 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 996 if (paddr == 0) 997 return VM_PAGER_FAIL; 998 999 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1000 /* 1001 * If the passed in result page is a fake page, update it with 1002 * the new physical address. 1003 */ 1004 page = *mres; 1005 vm_page_updatefake(page, paddr, memattr); 1006 } else { 1007 /* 1008 * Replace the passed in reqpage page with our own fake page and 1009 * free up the all of the original pages. 1010 */ 1011 VM_OBJECT_WUNLOCK(object); 1012 page = vm_page_getfake(paddr, memattr); 1013 VM_OBJECT_WLOCK(object); 1014 vm_page_replace(page, object, (*mres)->pindex, *mres); 1015 *mres = page; 1016 } 1017 page->valid = VM_PAGE_BITS_ALL; 1018 return (VM_PAGER_OK); 1019 } 1020 1021 1022 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1023 .cdev_pg_ctor = netmap_dev_pager_ctor, 1024 .cdev_pg_dtor = netmap_dev_pager_dtor, 1025 .cdev_pg_fault = netmap_dev_pager_fault, 1026 }; 1027 1028 1029 static int 1030 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1031 vm_size_t objsize, vm_object_t *objp, int prot) 1032 { 1033 int error; 1034 struct netmap_vm_handle_t *vmh; 1035 struct netmap_priv_d *priv; 1036 vm_object_t obj; 1037 1038 if (netmap_verbose) 1039 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1040 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1041 1042 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1043 M_NOWAIT | M_ZERO); 1044 if (vmh == NULL) 1045 return ENOMEM; 1046 vmh->dev = cdev; 1047 1048 NMG_LOCK(); 1049 error = devfs_get_cdevpriv((void**)&priv); 1050 if (error) 1051 goto err_unlock; 1052 if (priv->np_nifp == NULL) { 1053 error = EINVAL; 1054 goto err_unlock; 1055 } 1056 vmh->priv = priv; 1057 priv->np_refs++; 1058 NMG_UNLOCK(); 1059 1060 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1061 &netmap_cdev_pager_ops, objsize, prot, 1062 *foff, NULL); 1063 if (obj == NULL) { 1064 nm_prerr("cdev_pager_allocate failed"); 1065 error = EINVAL; 1066 goto err_deref; 1067 } 1068 1069 *objp = obj; 1070 return 0; 1071 1072 err_deref: 1073 NMG_LOCK(); 1074 priv->np_refs--; 1075 err_unlock: 1076 NMG_UNLOCK(); 1077 // err: 1078 free(vmh, M_DEVBUF); 1079 return error; 1080 } 1081 1082 /* 1083 * On FreeBSD the close routine is only called on the last close on 1084 * the device (/dev/netmap) so we cannot do anything useful. 1085 * To track close() on individual file descriptors we pass netmap_dtor() to 1086 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1087 * when the last fd pointing to the device is closed. 1088 * 1089 * Note that FreeBSD does not even munmap() on close() so we also have 1090 * to track mmap() ourselves, and postpone the call to 1091 * netmap_dtor() is called when the process has no open fds and no active 1092 * memory maps on /dev/netmap, as in linux. 1093 */ 1094 static int 1095 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1096 { 1097 if (netmap_verbose) 1098 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1099 dev, fflag, devtype, td); 1100 return 0; 1101 } 1102 1103 1104 static int 1105 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1106 { 1107 struct netmap_priv_d *priv; 1108 int error; 1109 1110 (void)dev; 1111 (void)oflags; 1112 (void)devtype; 1113 (void)td; 1114 1115 NMG_LOCK(); 1116 priv = netmap_priv_new(); 1117 if (priv == NULL) { 1118 error = ENOMEM; 1119 goto out; 1120 } 1121 error = devfs_set_cdevpriv(priv, netmap_dtor); 1122 if (error) { 1123 netmap_priv_delete(priv); 1124 } 1125 out: 1126 NMG_UNLOCK(); 1127 return error; 1128 } 1129 1130 /******************** kthread wrapper ****************/ 1131 #include <sys/sysproto.h> 1132 u_int 1133 nm_os_ncpus(void) 1134 { 1135 return mp_maxid + 1; 1136 } 1137 1138 struct nm_kctx_ctx { 1139 /* Userspace thread (kthread creator). */ 1140 struct thread *user_td; 1141 1142 /* worker function and parameter */ 1143 nm_kctx_worker_fn_t worker_fn; 1144 void *worker_private; 1145 1146 struct nm_kctx *nmk; 1147 1148 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1149 long type; 1150 }; 1151 1152 struct nm_kctx { 1153 struct thread *worker; 1154 struct mtx worker_lock; 1155 struct nm_kctx_ctx worker_ctx; 1156 int run; /* used to stop kthread */ 1157 int attach_user; /* kthread attached to user_process */ 1158 int affinity; 1159 }; 1160 1161 static void 1162 nm_kctx_worker(void *data) 1163 { 1164 struct nm_kctx *nmk = data; 1165 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1166 1167 if (nmk->affinity >= 0) { 1168 thread_lock(curthread); 1169 sched_bind(curthread, nmk->affinity); 1170 thread_unlock(curthread); 1171 } 1172 1173 while (nmk->run) { 1174 /* 1175 * check if the parent process dies 1176 * (when kthread is attached to user process) 1177 */ 1178 if (ctx->user_td) { 1179 PROC_LOCK(curproc); 1180 thread_suspend_check(0); 1181 PROC_UNLOCK(curproc); 1182 } else { 1183 kthread_suspend_check(); 1184 } 1185 1186 /* Continuously execute worker process. */ 1187 ctx->worker_fn(ctx->worker_private); /* worker body */ 1188 } 1189 1190 kthread_exit(); 1191 } 1192 1193 void 1194 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1195 { 1196 nmk->affinity = affinity; 1197 } 1198 1199 struct nm_kctx * 1200 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1201 { 1202 struct nm_kctx *nmk = NULL; 1203 1204 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1205 if (!nmk) 1206 return NULL; 1207 1208 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1209 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1210 nmk->worker_ctx.worker_private = cfg->worker_private; 1211 nmk->worker_ctx.type = cfg->type; 1212 nmk->affinity = -1; 1213 1214 /* attach kthread to user process (ptnetmap) */ 1215 nmk->attach_user = cfg->attach_user; 1216 1217 return nmk; 1218 } 1219 1220 int 1221 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1222 { 1223 struct proc *p = NULL; 1224 int error = 0; 1225 1226 /* Temporarily disable this function as it is currently broken 1227 * and causes kernel crashes. The failure can be triggered by 1228 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1229 return EOPNOTSUPP; 1230 1231 if (nmk->worker) 1232 return EBUSY; 1233 1234 /* check if we want to attach kthread to user process */ 1235 if (nmk->attach_user) { 1236 nmk->worker_ctx.user_td = curthread; 1237 p = curthread->td_proc; 1238 } 1239 1240 /* enable kthread main loop */ 1241 nmk->run = 1; 1242 /* create kthread */ 1243 if((error = kthread_add(nm_kctx_worker, nmk, p, 1244 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1245 nmk->worker_ctx.type))) { 1246 goto err; 1247 } 1248 1249 nm_prinf("nm_kthread started td %p", nmk->worker); 1250 1251 return 0; 1252 err: 1253 nm_prerr("nm_kthread start failed err %d", error); 1254 nmk->worker = NULL; 1255 return error; 1256 } 1257 1258 void 1259 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1260 { 1261 if (!nmk->worker) 1262 return; 1263 1264 /* tell to kthread to exit from main loop */ 1265 nmk->run = 0; 1266 1267 /* wake up kthread if it sleeps */ 1268 kthread_resume(nmk->worker); 1269 1270 nmk->worker = NULL; 1271 } 1272 1273 void 1274 nm_os_kctx_destroy(struct nm_kctx *nmk) 1275 { 1276 if (!nmk) 1277 return; 1278 1279 if (nmk->worker) 1280 nm_os_kctx_worker_stop(nmk); 1281 1282 free(nmk, M_DEVBUF); 1283 } 1284 1285 /******************** kqueue support ****************/ 1286 1287 /* 1288 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1289 * needs to call knote() to wake up kqueue listeners. 1290 * This operation is deferred to a taskqueue in order to avoid possible 1291 * lock order reversals; these may happen because knote() grabs a 1292 * private lock associated to the 'si' (see struct selinfo, 1293 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1294 * can be called while holding the lock associated to a different 1295 * 'si'. 1296 * When calling knote() we use a non-zero 'hint' argument to inform 1297 * the netmap_knrw() function that it is being called from 1298 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1299 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1300 * call netmap_poll(). 1301 * 1302 * The netmap_kqfilter() function registers one or another f_event 1303 * depending on read or write mode. A pointer to the struct 1304 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1305 * be passed to netmap_poll(). We pass NULL as a third argument to 1306 * netmap_poll(), so that the latter only runs the txsync/rxsync 1307 * (if necessary), and skips the nm_os_selrecord() calls. 1308 */ 1309 1310 1311 void 1312 nm_os_selwakeup(struct nm_selinfo *si) 1313 { 1314 selwakeuppri(&si->si, PI_NET); 1315 if (si->kqueue_users > 0) { 1316 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1317 } 1318 } 1319 1320 void 1321 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1322 { 1323 selrecord(td, &si->si); 1324 } 1325 1326 static void 1327 netmap_knrdetach(struct knote *kn) 1328 { 1329 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1330 struct nm_selinfo *si = priv->np_si[NR_RX]; 1331 1332 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1333 NMG_LOCK(); 1334 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1335 si->mtxname)); 1336 si->kqueue_users--; 1337 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1338 NMG_UNLOCK(); 1339 } 1340 1341 static void 1342 netmap_knwdetach(struct knote *kn) 1343 { 1344 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1345 struct nm_selinfo *si = priv->np_si[NR_TX]; 1346 1347 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1348 NMG_LOCK(); 1349 si->kqueue_users--; 1350 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1351 NMG_UNLOCK(); 1352 } 1353 1354 /* 1355 * Callback triggered by netmap notifications (see netmap_notify()), 1356 * and by the application calling kevent(). In the former case we 1357 * just return 1 (events ready), since we are not able to do better. 1358 * In the latter case we use netmap_poll() to see which events are 1359 * ready. 1360 */ 1361 static int 1362 netmap_knrw(struct knote *kn, long hint, int events) 1363 { 1364 struct netmap_priv_d *priv; 1365 int revents; 1366 1367 if (hint != 0) { 1368 /* Called from netmap_notify(), typically from a 1369 * thread different from the one issuing kevent(). 1370 * Assume we are ready. */ 1371 return 1; 1372 } 1373 1374 /* Called from kevent(). */ 1375 priv = kn->kn_hook; 1376 revents = netmap_poll(priv, events, /*thread=*/NULL); 1377 1378 return (events & revents) ? 1 : 0; 1379 } 1380 1381 static int 1382 netmap_knread(struct knote *kn, long hint) 1383 { 1384 return netmap_knrw(kn, hint, POLLIN); 1385 } 1386 1387 static int 1388 netmap_knwrite(struct knote *kn, long hint) 1389 { 1390 return netmap_knrw(kn, hint, POLLOUT); 1391 } 1392 1393 static struct filterops netmap_rfiltops = { 1394 .f_isfd = 1, 1395 .f_detach = netmap_knrdetach, 1396 .f_event = netmap_knread, 1397 }; 1398 1399 static struct filterops netmap_wfiltops = { 1400 .f_isfd = 1, 1401 .f_detach = netmap_knwdetach, 1402 .f_event = netmap_knwrite, 1403 }; 1404 1405 1406 /* 1407 * This is called when a thread invokes kevent() to record 1408 * a change in the configuration of the kqueue(). 1409 * The 'priv' is the one associated to the open netmap device. 1410 */ 1411 static int 1412 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1413 { 1414 struct netmap_priv_d *priv; 1415 int error; 1416 struct netmap_adapter *na; 1417 struct nm_selinfo *si; 1418 int ev = kn->kn_filter; 1419 1420 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1421 nm_prerr("bad filter request %d", ev); 1422 return 1; 1423 } 1424 error = devfs_get_cdevpriv((void**)&priv); 1425 if (error) { 1426 nm_prerr("device not yet setup"); 1427 return 1; 1428 } 1429 na = priv->np_na; 1430 if (na == NULL) { 1431 nm_prerr("no netmap adapter for this file descriptor"); 1432 return 1; 1433 } 1434 /* the si is indicated in the priv */ 1435 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1436 kn->kn_fop = (ev == EVFILT_WRITE) ? 1437 &netmap_wfiltops : &netmap_rfiltops; 1438 kn->kn_hook = priv; 1439 NMG_LOCK(); 1440 si->kqueue_users++; 1441 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1442 NMG_UNLOCK(); 1443 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1444 1445 return 0; 1446 } 1447 1448 static int 1449 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1450 { 1451 struct netmap_priv_d *priv; 1452 if (devfs_get_cdevpriv((void **)&priv)) { 1453 return POLLERR; 1454 } 1455 return netmap_poll(priv, events, td); 1456 } 1457 1458 static int 1459 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1460 int ffla __unused, struct thread *td) 1461 { 1462 int error; 1463 struct netmap_priv_d *priv; 1464 1465 CURVNET_SET(TD_TO_VNET(td)); 1466 error = devfs_get_cdevpriv((void **)&priv); 1467 if (error) { 1468 /* XXX ENOENT should be impossible, since the priv 1469 * is now created in the open */ 1470 if (error == ENOENT) 1471 error = ENXIO; 1472 goto out; 1473 } 1474 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1475 out: 1476 CURVNET_RESTORE(); 1477 1478 return error; 1479 } 1480 1481 void 1482 nm_os_onattach(if_t ifp) 1483 { 1484 if_setcapabilitiesbit(ifp, IFCAP_NETMAP, 0); 1485 } 1486 1487 void 1488 nm_os_onenter(if_t ifp) 1489 { 1490 struct netmap_adapter *na = NA(ifp); 1491 1492 na->if_transmit = if_gettransmitfn(ifp); 1493 if_settransmitfn(ifp, netmap_transmit); 1494 if_setcapenablebit(ifp, IFCAP_NETMAP, 0); 1495 } 1496 1497 void 1498 nm_os_onexit(if_t ifp) 1499 { 1500 struct netmap_adapter *na = NA(ifp); 1501 1502 if_settransmitfn(ifp, na->if_transmit); 1503 if_setcapenablebit(ifp, 0, IFCAP_NETMAP); 1504 } 1505 1506 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1507 struct cdevsw netmap_cdevsw = { 1508 .d_version = D_VERSION, 1509 .d_name = "netmap", 1510 .d_open = netmap_open, 1511 .d_mmap_single = netmap_mmap_single, 1512 .d_ioctl = freebsd_netmap_ioctl, 1513 .d_poll = freebsd_netmap_poll, 1514 .d_kqfilter = netmap_kqfilter, 1515 .d_close = netmap_close, 1516 }; 1517 /*--- end of kqueue support ----*/ 1518 1519 /* 1520 * Kernel entry point. 1521 * 1522 * Initialize/finalize the module and return. 1523 * 1524 * Return 0 on success, errno on failure. 1525 */ 1526 static int 1527 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1528 { 1529 int error = 0; 1530 1531 switch (event) { 1532 case MOD_LOAD: 1533 error = netmap_init(); 1534 break; 1535 1536 case MOD_UNLOAD: 1537 /* 1538 * if some one is still using netmap, 1539 * then the module can not be unloaded. 1540 */ 1541 if (netmap_use_count) { 1542 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1543 netmap_use_count); 1544 error = EBUSY; 1545 break; 1546 } 1547 netmap_fini(); 1548 break; 1549 1550 default: 1551 error = EOPNOTSUPP; 1552 break; 1553 } 1554 1555 return (error); 1556 } 1557 1558 #ifdef DEV_MODULE_ORDERED 1559 /* 1560 * The netmap module contains three drivers: (i) the netmap character device 1561 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1562 * device driver. The attach() routines of both (ii) and (iii) need the 1563 * lock of the global allocator, and such lock is initialized in netmap_init(), 1564 * which is part of (i). 1565 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1566 * the 'order' parameter of driver declaration macros. For (i), we specify 1567 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1568 * macros for (ii) and (iii). 1569 */ 1570 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1571 #else /* !DEV_MODULE_ORDERED */ 1572 DEV_MODULE(netmap, netmap_loader, NULL); 1573 #endif /* DEV_MODULE_ORDERED */ 1574 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1575 MODULE_VERSION(netmap, 1); 1576 /* reduce conditional code */ 1577 // linux API, use for the knlist in FreeBSD 1578 /* use a private mutex for the knlist */ 1579