1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/jail.h> 36 #include <sys/poll.h> /* POLLIN, POLLOUT */ 37 #include <sys/kernel.h> /* types used in module initialization */ 38 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 39 #include <sys/endian.h> 40 #include <sys/syscallsubr.h> /* kern_ioctl() */ 41 42 #include <sys/rwlock.h> 43 44 #include <vm/vm.h> /* vtophys */ 45 #include <vm/pmap.h> /* vtophys */ 46 #include <vm/vm_param.h> 47 #include <vm/vm_object.h> 48 #include <vm/vm_page.h> 49 #include <vm/vm_pager.h> 50 #include <vm/uma.h> 51 52 53 #include <sys/malloc.h> 54 #include <sys/socket.h> /* sockaddrs */ 55 #include <sys/selinfo.h> 56 #include <sys/kthread.h> /* kthread_add() */ 57 #include <sys/proc.h> /* PROC_LOCK() */ 58 #include <sys/unistd.h> /* RFNOWAIT */ 59 #include <sys/sched.h> /* sched_bind() */ 60 #include <sys/smp.h> /* mp_maxid */ 61 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_types.h> /* IFT_ETHER */ 65 #include <net/ethernet.h> /* ether_ifdetach */ 66 #include <net/if_dl.h> /* LLADDR */ 67 #include <machine/bus.h> /* bus_dmamap_* */ 68 #include <netinet/in.h> /* in6_cksum_pseudo() */ 69 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 70 71 #include <net/netmap.h> 72 #include <dev/netmap/netmap_kern.h> 73 #include <net/netmap_virt.h> 74 #include <dev/netmap/netmap_mem2.h> 75 76 77 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 78 79 static void 80 nm_kqueue_notify(void *opaque, int pending) 81 { 82 struct nm_selinfo *si = opaque; 83 84 /* We use a non-zero hint to distinguish this notification call 85 * from the call done in kqueue_scan(), which uses hint=0. 86 */ 87 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 88 } 89 90 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 91 int err; 92 93 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 94 si->ntfytq = taskqueue_create(name, M_NOWAIT, 95 taskqueue_thread_enqueue, &si->ntfytq); 96 if (si->ntfytq == NULL) 97 return -ENOMEM; 98 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 99 if (err) { 100 taskqueue_free(si->ntfytq); 101 si->ntfytq = NULL; 102 return err; 103 } 104 105 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 106 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 107 knlist_init_mtx(&si->si.si_note, &si->m); 108 si->kqueue_users = 0; 109 110 return (0); 111 } 112 113 void 114 nm_os_selinfo_uninit(NM_SELINFO_T *si) 115 { 116 if (si->ntfytq == NULL) { 117 return; /* si was not initialized */ 118 } 119 taskqueue_drain(si->ntfytq, &si->ntfytask); 120 taskqueue_free(si->ntfytq); 121 si->ntfytq = NULL; 122 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 123 knlist_destroy(&si->si.si_note); 124 /* now we don't need the mutex anymore */ 125 mtx_destroy(&si->m); 126 } 127 128 void * 129 nm_os_malloc(size_t size) 130 { 131 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 132 } 133 134 void * 135 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 136 { 137 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 138 } 139 140 void 141 nm_os_free(void *addr) 142 { 143 free(addr, M_DEVBUF); 144 } 145 146 void 147 nm_os_ifnet_lock(void) 148 { 149 IFNET_RLOCK(); 150 } 151 152 void 153 nm_os_ifnet_unlock(void) 154 { 155 IFNET_RUNLOCK(); 156 } 157 158 static int netmap_use_count = 0; 159 160 void 161 nm_os_get_module(void) 162 { 163 netmap_use_count++; 164 } 165 166 void 167 nm_os_put_module(void) 168 { 169 netmap_use_count--; 170 } 171 172 static void 173 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp) 174 { 175 netmap_undo_zombie(ifp); 176 } 177 178 static void 179 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp) 180 { 181 netmap_make_zombie(ifp); 182 } 183 184 static eventhandler_tag nm_ifnet_ah_tag; 185 static eventhandler_tag nm_ifnet_dh_tag; 186 187 int 188 nm_os_ifnet_init(void) 189 { 190 nm_ifnet_ah_tag = 191 EVENTHANDLER_REGISTER(ifnet_arrival_event, 192 netmap_ifnet_arrival_handler, 193 NULL, EVENTHANDLER_PRI_ANY); 194 nm_ifnet_dh_tag = 195 EVENTHANDLER_REGISTER(ifnet_departure_event, 196 netmap_ifnet_departure_handler, 197 NULL, EVENTHANDLER_PRI_ANY); 198 return 0; 199 } 200 201 void 202 nm_os_ifnet_fini(void) 203 { 204 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 205 nm_ifnet_ah_tag); 206 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 207 nm_ifnet_dh_tag); 208 } 209 210 unsigned 211 nm_os_ifnet_mtu(struct ifnet *ifp) 212 { 213 #if __FreeBSD_version < 1100030 214 return ifp->if_data.ifi_mtu; 215 #else /* __FreeBSD_version >= 1100030 */ 216 return ifp->if_mtu; 217 #endif 218 } 219 220 rawsum_t 221 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 222 { 223 /* TODO XXX please use the FreeBSD implementation for this. */ 224 uint16_t *words = (uint16_t *)data; 225 int nw = len / 2; 226 int i; 227 228 for (i = 0; i < nw; i++) 229 cur_sum += be16toh(words[i]); 230 231 if (len & 1) 232 cur_sum += (data[len-1] << 8); 233 234 return cur_sum; 235 } 236 237 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 238 * return value is in network byte order. 239 */ 240 uint16_t 241 nm_os_csum_fold(rawsum_t cur_sum) 242 { 243 /* TODO XXX please use the FreeBSD implementation for this. */ 244 while (cur_sum >> 16) 245 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 246 247 return htobe16((~cur_sum) & 0xFFFF); 248 } 249 250 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 251 { 252 #if 0 253 return in_cksum_hdr((void *)iph); 254 #else 255 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 256 #endif 257 } 258 259 void 260 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 261 size_t datalen, uint16_t *check) 262 { 263 #ifdef INET 264 uint16_t pseudolen = datalen + iph->protocol; 265 266 /* Compute and insert the pseudo-header cheksum. */ 267 *check = in_pseudo(iph->saddr, iph->daddr, 268 htobe16(pseudolen)); 269 /* Compute the checksum on TCP/UDP header + payload 270 * (includes the pseudo-header). 271 */ 272 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 273 #else 274 static int notsupported = 0; 275 if (!notsupported) { 276 notsupported = 1; 277 nm_prerr("inet4 segmentation not supported"); 278 } 279 #endif 280 } 281 282 void 283 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 284 size_t datalen, uint16_t *check) 285 { 286 #ifdef INET6 287 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 288 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 289 #else 290 static int notsupported = 0; 291 if (!notsupported) { 292 notsupported = 1; 293 nm_prerr("inet6 segmentation not supported"); 294 } 295 #endif 296 } 297 298 /* on FreeBSD we send up one packet at a time */ 299 void * 300 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev) 301 { 302 NA(ifp)->if_input(ifp, m); 303 return NULL; 304 } 305 306 int 307 nm_os_mbuf_has_csum_offld(struct mbuf *m) 308 { 309 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 310 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 311 CSUM_SCTP_IPV6); 312 } 313 314 int 315 nm_os_mbuf_has_seg_offld(struct mbuf *m) 316 { 317 return m->m_pkthdr.csum_flags & CSUM_TSO; 318 } 319 320 static void 321 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 322 { 323 int stolen; 324 325 if (unlikely(!NM_NA_VALID(ifp))) { 326 nm_prlim(1, "Warning: RX packet intercepted, but no" 327 " emulated adapter"); 328 return; 329 } 330 331 stolen = generic_rx_handler(ifp, m); 332 if (!stolen) { 333 struct netmap_generic_adapter *gna = 334 (struct netmap_generic_adapter *)NA(ifp); 335 gna->save_if_input(ifp, m); 336 } 337 } 338 339 /* 340 * Intercept the rx routine in the standard device driver. 341 * Second argument is non-zero to intercept, 0 to restore 342 */ 343 int 344 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 345 { 346 struct netmap_adapter *na = &gna->up.up; 347 struct ifnet *ifp = na->ifp; 348 int ret = 0; 349 350 nm_os_ifnet_lock(); 351 if (intercept) { 352 if (gna->save_if_input) { 353 nm_prerr("RX on %s already intercepted", na->name); 354 ret = EBUSY; /* already set */ 355 goto out; 356 } 357 gna->save_if_input = ifp->if_input; 358 ifp->if_input = freebsd_generic_rx_handler; 359 } else { 360 if (!gna->save_if_input) { 361 nm_prerr("Failed to undo RX intercept on %s", 362 na->name); 363 ret = EINVAL; /* not saved */ 364 goto out; 365 } 366 ifp->if_input = gna->save_if_input; 367 gna->save_if_input = NULL; 368 } 369 out: 370 nm_os_ifnet_unlock(); 371 372 return ret; 373 } 374 375 376 /* 377 * Intercept the packet steering routine in the tx path, 378 * so that we can decide which queue is used for an mbuf. 379 * Second argument is non-zero to intercept, 0 to restore. 380 * On freebsd we just intercept if_transmit. 381 */ 382 int 383 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 384 { 385 struct netmap_adapter *na = &gna->up.up; 386 struct ifnet *ifp = netmap_generic_getifp(gna); 387 388 nm_os_ifnet_lock(); 389 if (intercept) { 390 na->if_transmit = ifp->if_transmit; 391 ifp->if_transmit = netmap_transmit; 392 } else { 393 ifp->if_transmit = na->if_transmit; 394 } 395 nm_os_ifnet_unlock(); 396 397 return 0; 398 } 399 400 401 /* 402 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 403 * and non-zero on error (which may be packet drops or other errors). 404 * addr and len identify the netmap buffer, m is the (preallocated) 405 * mbuf to use for transmissions. 406 * 407 * We should add a reference to the mbuf so the m_freem() at the end 408 * of the transmission does not consume resources. 409 * 410 * On FreeBSD, and on multiqueue cards, we can force the queue using 411 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 412 * i = m->m_pkthdr.flowid % adapter->num_queues; 413 * else 414 * i = curcpu % adapter->num_queues; 415 * 416 */ 417 int 418 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 419 { 420 int ret; 421 u_int len = a->len; 422 struct ifnet *ifp = a->ifp; 423 struct mbuf *m = a->m; 424 425 #if __FreeBSD_version < 1100000 426 /* 427 * Old FreeBSD versions. The mbuf has a cluster attached, 428 * we need to copy from the cluster to the netmap buffer. 429 */ 430 if (MBUF_REFCNT(m) != 1) { 431 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 432 panic("in generic_xmit_frame"); 433 } 434 if (m->m_ext.ext_size < len) { 435 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len); 436 len = m->m_ext.ext_size; 437 } 438 bcopy(a->addr, m->m_data, len); 439 #else /* __FreeBSD_version >= 1100000 */ 440 /* New FreeBSD versions. Link the external storage to 441 * the netmap buffer, so that no copy is necessary. */ 442 m->m_ext.ext_buf = m->m_data = a->addr; 443 m->m_ext.ext_size = len; 444 #endif /* __FreeBSD_version >= 1100000 */ 445 446 m->m_len = m->m_pkthdr.len = len; 447 448 /* mbuf refcnt is not contended, no need to use atomic 449 * (a memory barrier is enough). */ 450 SET_MBUF_REFCNT(m, 2); 451 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 452 m->m_pkthdr.flowid = a->ring_nr; 453 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 454 ret = NA(ifp)->if_transmit(ifp, m); 455 return ret ? -1 : 0; 456 } 457 458 459 #if __FreeBSD_version >= 1100005 460 struct netmap_adapter * 461 netmap_getna(if_t ifp) 462 { 463 return (NA((struct ifnet *)ifp)); 464 } 465 #endif /* __FreeBSD_version >= 1100005 */ 466 467 /* 468 * The following two functions are empty until we have a generic 469 * way to extract the info from the ifp 470 */ 471 int 472 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx) 473 { 474 return 0; 475 } 476 477 478 void 479 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq) 480 { 481 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 482 483 *txq = num_rings; 484 *rxq = num_rings; 485 } 486 487 void 488 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 489 { 490 491 gna->rxsg = 1; /* Supported through m_copydata. */ 492 gna->txqdisc = 0; /* Not supported. */ 493 } 494 495 void 496 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 497 { 498 mit->mit_pending = 0; 499 mit->mit_ring_idx = idx; 500 mit->mit_na = na; 501 } 502 503 504 void 505 nm_os_mitigation_start(struct nm_generic_mit *mit) 506 { 507 } 508 509 510 void 511 nm_os_mitigation_restart(struct nm_generic_mit *mit) 512 { 513 } 514 515 516 int 517 nm_os_mitigation_active(struct nm_generic_mit *mit) 518 { 519 520 return 0; 521 } 522 523 524 void 525 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 526 { 527 } 528 529 static int 530 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr) 531 { 532 533 return EINVAL; 534 } 535 536 static void 537 nm_vi_start(struct ifnet *ifp) 538 { 539 panic("nm_vi_start() must not be called"); 540 } 541 542 /* 543 * Index manager of persistent virtual interfaces. 544 * It is used to decide the lowest byte of the MAC address. 545 * We use the same algorithm with management of bridge port index. 546 */ 547 #define NM_VI_MAX 255 548 static struct { 549 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 550 uint8_t active; 551 struct mtx lock; 552 } nm_vi_indices; 553 554 void 555 nm_os_vi_init_index(void) 556 { 557 int i; 558 for (i = 0; i < NM_VI_MAX; i++) 559 nm_vi_indices.index[i] = i; 560 nm_vi_indices.active = 0; 561 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 562 } 563 564 /* return -1 if no index available */ 565 static int 566 nm_vi_get_index(void) 567 { 568 int ret; 569 570 mtx_lock(&nm_vi_indices.lock); 571 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 572 nm_vi_indices.index[nm_vi_indices.active++]; 573 mtx_unlock(&nm_vi_indices.lock); 574 return ret; 575 } 576 577 static void 578 nm_vi_free_index(uint8_t val) 579 { 580 int i, lim; 581 582 mtx_lock(&nm_vi_indices.lock); 583 lim = nm_vi_indices.active; 584 for (i = 0; i < lim; i++) { 585 if (nm_vi_indices.index[i] == val) { 586 /* swap index[lim-1] and j */ 587 int tmp = nm_vi_indices.index[lim-1]; 588 nm_vi_indices.index[lim-1] = val; 589 nm_vi_indices.index[i] = tmp; 590 nm_vi_indices.active--; 591 break; 592 } 593 } 594 if (lim == nm_vi_indices.active) 595 nm_prerr("Index %u not found", val); 596 mtx_unlock(&nm_vi_indices.lock); 597 } 598 #undef NM_VI_MAX 599 600 /* 601 * Implementation of a netmap-capable virtual interface that 602 * registered to the system. 603 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 604 * 605 * Note: Linux sets refcount to 0 on allocation of net_device, 606 * then increments it on registration to the system. 607 * FreeBSD sets refcount to 1 on if_alloc(), and does not 608 * increment this refcount on if_attach(). 609 */ 610 int 611 nm_os_vi_persist(const char *name, struct ifnet **ret) 612 { 613 struct ifnet *ifp; 614 u_short macaddr_hi; 615 uint32_t macaddr_mid; 616 u_char eaddr[6]; 617 int unit = nm_vi_get_index(); /* just to decide MAC address */ 618 619 if (unit < 0) 620 return EBUSY; 621 /* 622 * We use the same MAC address generation method with tap 623 * except for the highest octet is 00:be instead of 00:bd 624 */ 625 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 626 macaddr_mid = (uint32_t) ticks; 627 bcopy(&macaddr_hi, eaddr, sizeof(short)); 628 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 629 eaddr[5] = (uint8_t)unit; 630 631 ifp = if_alloc(IFT_ETHER); 632 if (ifp == NULL) { 633 nm_prerr("if_alloc failed"); 634 return ENOMEM; 635 } 636 if_initname(ifp, name, IF_DUNIT_NONE); 637 ifp->if_mtu = 65536; 638 ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST; 639 ifp->if_init = (void *)nm_vi_dummy; 640 ifp->if_ioctl = nm_vi_dummy; 641 ifp->if_start = nm_vi_start; 642 ifp->if_mtu = ETHERMTU; 643 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 644 ifp->if_capabilities |= IFCAP_LINKSTATE; 645 ifp->if_capenable |= IFCAP_LINKSTATE; 646 647 ether_ifattach(ifp, eaddr); 648 *ret = ifp; 649 return 0; 650 } 651 652 /* unregister from the system and drop the final refcount */ 653 void 654 nm_os_vi_detach(struct ifnet *ifp) 655 { 656 nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]); 657 ether_ifdetach(ifp); 658 if_free(ifp); 659 } 660 661 #ifdef WITH_EXTMEM 662 #include <vm/vm_map.h> 663 #include <vm/vm_kern.h> 664 struct nm_os_extmem { 665 vm_object_t obj; 666 vm_offset_t kva; 667 vm_offset_t size; 668 uintptr_t scan; 669 }; 670 671 void 672 nm_os_extmem_delete(struct nm_os_extmem *e) 673 { 674 nm_prinf("freeing %zx bytes", (size_t)e->size); 675 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 676 nm_os_free(e); 677 } 678 679 char * 680 nm_os_extmem_nextpage(struct nm_os_extmem *e) 681 { 682 char *rv = NULL; 683 if (e->scan < e->kva + e->size) { 684 rv = (char *)e->scan; 685 e->scan += PAGE_SIZE; 686 } 687 return rv; 688 } 689 690 int 691 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 692 { 693 return (e1->obj == e2->obj); 694 } 695 696 int 697 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 698 { 699 return e->size >> PAGE_SHIFT; 700 } 701 702 struct nm_os_extmem * 703 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 704 { 705 vm_map_t map; 706 vm_map_entry_t entry; 707 vm_object_t obj; 708 vm_prot_t prot; 709 vm_pindex_t index; 710 boolean_t wired; 711 struct nm_os_extmem *e = NULL; 712 int rv, error = 0; 713 714 e = nm_os_malloc(sizeof(*e)); 715 if (e == NULL) { 716 error = ENOMEM; 717 goto out; 718 } 719 720 map = &curthread->td_proc->p_vmspace->vm_map; 721 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 722 &obj, &index, &prot, &wired); 723 if (rv != KERN_SUCCESS) { 724 nm_prerr("address %lx not found", p); 725 goto out_free; 726 } 727 /* check that we are given the whole vm_object ? */ 728 vm_map_lookup_done(map, entry); 729 730 // XXX can we really use obj after releasing the map lock? 731 e->obj = obj; 732 vm_object_reference(obj); 733 /* wire the memory and add the vm_object to the kernel map, 734 * to make sure that it is not fred even if the processes that 735 * are mmap()ing it all exit 736 */ 737 e->kva = vm_map_min(kernel_map); 738 e->size = obj->size << PAGE_SHIFT; 739 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 740 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 741 VM_PROT_READ | VM_PROT_WRITE, 0); 742 if (rv != KERN_SUCCESS) { 743 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 744 goto out_rel; 745 } 746 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 747 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 748 if (rv != KERN_SUCCESS) { 749 nm_prerr("vm_map_wire failed"); 750 goto out_rem; 751 } 752 753 e->scan = e->kva; 754 755 return e; 756 757 out_rem: 758 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 759 e->obj = NULL; 760 out_rel: 761 vm_object_deallocate(e->obj); 762 out_free: 763 nm_os_free(e); 764 out: 765 if (perror) 766 *perror = error; 767 return NULL; 768 } 769 #endif /* WITH_EXTMEM */ 770 771 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 772 773 #ifdef WITH_PTNETMAP 774 #include <sys/bus.h> 775 #include <sys/rman.h> 776 #include <machine/bus.h> /* bus_dmamap_* */ 777 #include <machine/resource.h> 778 #include <dev/pci/pcivar.h> 779 #include <dev/pci/pcireg.h> 780 /* 781 * ptnetmap memory device (memdev) for freebsd guest, 782 * ssed to expose host netmap memory to the guest through a PCI BAR. 783 */ 784 785 /* 786 * ptnetmap memdev private data structure 787 */ 788 struct ptnetmap_memdev { 789 device_t dev; 790 struct resource *pci_io; 791 struct resource *pci_mem; 792 struct netmap_mem_d *nm_mem; 793 }; 794 795 static int ptn_memdev_probe(device_t); 796 static int ptn_memdev_attach(device_t); 797 static int ptn_memdev_detach(device_t); 798 static int ptn_memdev_shutdown(device_t); 799 800 static device_method_t ptn_memdev_methods[] = { 801 DEVMETHOD(device_probe, ptn_memdev_probe), 802 DEVMETHOD(device_attach, ptn_memdev_attach), 803 DEVMETHOD(device_detach, ptn_memdev_detach), 804 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 805 DEVMETHOD_END 806 }; 807 808 static driver_t ptn_memdev_driver = { 809 PTNETMAP_MEMDEV_NAME, 810 ptn_memdev_methods, 811 sizeof(struct ptnetmap_memdev), 812 }; 813 814 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 815 * below. */ 816 static devclass_t ptnetmap_devclass; 817 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass, 818 NULL, NULL, SI_ORDER_MIDDLE + 1); 819 820 /* 821 * Map host netmap memory through PCI-BAR in the guest OS, 822 * returning physical (nm_paddr) and virtual (nm_addr) addresses 823 * of the netmap memory mapped in the guest. 824 */ 825 int 826 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 827 void **nm_addr, uint64_t *mem_size) 828 { 829 int rid; 830 831 nm_prinf("ptn_memdev_driver iomap"); 832 833 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 834 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 835 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 836 (*mem_size << 32); 837 838 /* map memory allocator */ 839 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 840 &rid, 0, ~0, *mem_size, RF_ACTIVE); 841 if (ptn_dev->pci_mem == NULL) { 842 *nm_paddr = 0; 843 *nm_addr = NULL; 844 return ENOMEM; 845 } 846 847 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 848 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 849 850 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 851 PTNETMAP_MEM_PCI_BAR, 852 (unsigned long)(*nm_paddr), 853 (unsigned long)rman_get_size(ptn_dev->pci_mem), 854 (unsigned long)*mem_size); 855 return (0); 856 } 857 858 uint32_t 859 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 860 { 861 return bus_read_4(ptn_dev->pci_io, reg); 862 } 863 864 /* Unmap host netmap memory. */ 865 void 866 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 867 { 868 nm_prinf("ptn_memdev_driver iounmap"); 869 870 if (ptn_dev->pci_mem) { 871 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 872 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 873 ptn_dev->pci_mem = NULL; 874 } 875 } 876 877 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 878 * positive on failure */ 879 static int 880 ptn_memdev_probe(device_t dev) 881 { 882 char desc[256]; 883 884 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 885 return (ENXIO); 886 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 887 return (ENXIO); 888 889 snprintf(desc, sizeof(desc), "%s PCI adapter", 890 PTNETMAP_MEMDEV_NAME); 891 device_set_desc_copy(dev, desc); 892 893 return (BUS_PROBE_DEFAULT); 894 } 895 896 /* Device initialization routine. */ 897 static int 898 ptn_memdev_attach(device_t dev) 899 { 900 struct ptnetmap_memdev *ptn_dev; 901 int rid; 902 uint16_t mem_id; 903 904 ptn_dev = device_get_softc(dev); 905 ptn_dev->dev = dev; 906 907 pci_enable_busmaster(dev); 908 909 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 910 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 911 RF_ACTIVE); 912 if (ptn_dev->pci_io == NULL) { 913 device_printf(dev, "cannot map I/O space\n"); 914 return (ENXIO); 915 } 916 917 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 918 919 /* create guest allocator */ 920 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 921 if (ptn_dev->nm_mem == NULL) { 922 ptn_memdev_detach(dev); 923 return (ENOMEM); 924 } 925 netmap_mem_get(ptn_dev->nm_mem); 926 927 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 928 929 return (0); 930 } 931 932 /* Device removal routine. */ 933 static int 934 ptn_memdev_detach(device_t dev) 935 { 936 struct ptnetmap_memdev *ptn_dev; 937 938 ptn_dev = device_get_softc(dev); 939 940 if (ptn_dev->nm_mem) { 941 nm_prinf("ptnetmap memdev detached, host memid %u", 942 netmap_mem_get_id(ptn_dev->nm_mem)); 943 netmap_mem_put(ptn_dev->nm_mem); 944 ptn_dev->nm_mem = NULL; 945 } 946 if (ptn_dev->pci_mem) { 947 bus_release_resource(dev, SYS_RES_MEMORY, 948 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 949 ptn_dev->pci_mem = NULL; 950 } 951 if (ptn_dev->pci_io) { 952 bus_release_resource(dev, SYS_RES_IOPORT, 953 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 954 ptn_dev->pci_io = NULL; 955 } 956 957 return (0); 958 } 959 960 static int 961 ptn_memdev_shutdown(device_t dev) 962 { 963 return bus_generic_shutdown(dev); 964 } 965 966 #endif /* WITH_PTNETMAP */ 967 968 /* 969 * In order to track whether pages are still mapped, we hook into 970 * the standard cdev_pager and intercept the constructor and 971 * destructor. 972 */ 973 974 struct netmap_vm_handle_t { 975 struct cdev *dev; 976 struct netmap_priv_d *priv; 977 }; 978 979 980 static int 981 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 982 vm_ooffset_t foff, struct ucred *cred, u_short *color) 983 { 984 struct netmap_vm_handle_t *vmh = handle; 985 986 if (netmap_verbose) 987 nm_prinf("handle %p size %jd prot %d foff %jd", 988 handle, (intmax_t)size, prot, (intmax_t)foff); 989 if (color) 990 *color = 0; 991 dev_ref(vmh->dev); 992 return 0; 993 } 994 995 996 static void 997 netmap_dev_pager_dtor(void *handle) 998 { 999 struct netmap_vm_handle_t *vmh = handle; 1000 struct cdev *dev = vmh->dev; 1001 struct netmap_priv_d *priv = vmh->priv; 1002 1003 if (netmap_verbose) 1004 nm_prinf("handle %p", handle); 1005 netmap_dtor(priv); 1006 free(vmh, M_DEVBUF); 1007 dev_rel(dev); 1008 } 1009 1010 1011 static int 1012 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 1013 int prot, vm_page_t *mres) 1014 { 1015 struct netmap_vm_handle_t *vmh = object->handle; 1016 struct netmap_priv_d *priv = vmh->priv; 1017 struct netmap_adapter *na = priv->np_na; 1018 vm_paddr_t paddr; 1019 vm_page_t page; 1020 vm_memattr_t memattr; 1021 vm_pindex_t pidx; 1022 1023 nm_prdis("object %p offset %jd prot %d mres %p", 1024 object, (intmax_t)offset, prot, mres); 1025 memattr = object->memattr; 1026 pidx = OFF_TO_IDX(offset); 1027 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1028 if (paddr == 0) 1029 return VM_PAGER_FAIL; 1030 1031 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1032 /* 1033 * If the passed in result page is a fake page, update it with 1034 * the new physical address. 1035 */ 1036 page = *mres; 1037 vm_page_updatefake(page, paddr, memattr); 1038 } else { 1039 /* 1040 * Replace the passed in reqpage page with our own fake page and 1041 * free up the all of the original pages. 1042 */ 1043 #ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */ 1044 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK 1045 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK 1046 #endif /* VM_OBJECT_WUNLOCK */ 1047 1048 VM_OBJECT_WUNLOCK(object); 1049 page = vm_page_getfake(paddr, memattr); 1050 VM_OBJECT_WLOCK(object); 1051 vm_page_lock(*mres); 1052 vm_page_free(*mres); 1053 vm_page_unlock(*mres); 1054 *mres = page; 1055 vm_page_insert(page, object, pidx); 1056 } 1057 page->valid = VM_PAGE_BITS_ALL; 1058 return (VM_PAGER_OK); 1059 } 1060 1061 1062 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1063 .cdev_pg_ctor = netmap_dev_pager_ctor, 1064 .cdev_pg_dtor = netmap_dev_pager_dtor, 1065 .cdev_pg_fault = netmap_dev_pager_fault, 1066 }; 1067 1068 1069 static int 1070 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1071 vm_size_t objsize, vm_object_t *objp, int prot) 1072 { 1073 int error; 1074 struct netmap_vm_handle_t *vmh; 1075 struct netmap_priv_d *priv; 1076 vm_object_t obj; 1077 1078 if (netmap_verbose) 1079 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1080 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1081 1082 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1083 M_NOWAIT | M_ZERO); 1084 if (vmh == NULL) 1085 return ENOMEM; 1086 vmh->dev = cdev; 1087 1088 NMG_LOCK(); 1089 error = devfs_get_cdevpriv((void**)&priv); 1090 if (error) 1091 goto err_unlock; 1092 if (priv->np_nifp == NULL) { 1093 error = EINVAL; 1094 goto err_unlock; 1095 } 1096 vmh->priv = priv; 1097 priv->np_refs++; 1098 NMG_UNLOCK(); 1099 1100 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1101 &netmap_cdev_pager_ops, objsize, prot, 1102 *foff, NULL); 1103 if (obj == NULL) { 1104 nm_prerr("cdev_pager_allocate failed"); 1105 error = EINVAL; 1106 goto err_deref; 1107 } 1108 1109 *objp = obj; 1110 return 0; 1111 1112 err_deref: 1113 NMG_LOCK(); 1114 priv->np_refs--; 1115 err_unlock: 1116 NMG_UNLOCK(); 1117 // err: 1118 free(vmh, M_DEVBUF); 1119 return error; 1120 } 1121 1122 /* 1123 * On FreeBSD the close routine is only called on the last close on 1124 * the device (/dev/netmap) so we cannot do anything useful. 1125 * To track close() on individual file descriptors we pass netmap_dtor() to 1126 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1127 * when the last fd pointing to the device is closed. 1128 * 1129 * Note that FreeBSD does not even munmap() on close() so we also have 1130 * to track mmap() ourselves, and postpone the call to 1131 * netmap_dtor() is called when the process has no open fds and no active 1132 * memory maps on /dev/netmap, as in linux. 1133 */ 1134 static int 1135 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1136 { 1137 if (netmap_verbose) 1138 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1139 dev, fflag, devtype, td); 1140 return 0; 1141 } 1142 1143 1144 static int 1145 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1146 { 1147 struct netmap_priv_d *priv; 1148 int error; 1149 1150 (void)dev; 1151 (void)oflags; 1152 (void)devtype; 1153 (void)td; 1154 1155 NMG_LOCK(); 1156 priv = netmap_priv_new(); 1157 if (priv == NULL) { 1158 error = ENOMEM; 1159 goto out; 1160 } 1161 error = devfs_set_cdevpriv(priv, netmap_dtor); 1162 if (error) { 1163 netmap_priv_delete(priv); 1164 } 1165 out: 1166 NMG_UNLOCK(); 1167 return error; 1168 } 1169 1170 /******************** kthread wrapper ****************/ 1171 #include <sys/sysproto.h> 1172 u_int 1173 nm_os_ncpus(void) 1174 { 1175 return mp_maxid + 1; 1176 } 1177 1178 struct nm_kctx_ctx { 1179 /* Userspace thread (kthread creator). */ 1180 struct thread *user_td; 1181 1182 /* worker function and parameter */ 1183 nm_kctx_worker_fn_t worker_fn; 1184 void *worker_private; 1185 1186 struct nm_kctx *nmk; 1187 1188 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1189 long type; 1190 }; 1191 1192 struct nm_kctx { 1193 struct thread *worker; 1194 struct mtx worker_lock; 1195 struct nm_kctx_ctx worker_ctx; 1196 int run; /* used to stop kthread */ 1197 int attach_user; /* kthread attached to user_process */ 1198 int affinity; 1199 }; 1200 1201 static void 1202 nm_kctx_worker(void *data) 1203 { 1204 struct nm_kctx *nmk = data; 1205 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1206 1207 if (nmk->affinity >= 0) { 1208 thread_lock(curthread); 1209 sched_bind(curthread, nmk->affinity); 1210 thread_unlock(curthread); 1211 } 1212 1213 while (nmk->run) { 1214 /* 1215 * check if the parent process dies 1216 * (when kthread is attached to user process) 1217 */ 1218 if (ctx->user_td) { 1219 PROC_LOCK(curproc); 1220 thread_suspend_check(0); 1221 PROC_UNLOCK(curproc); 1222 } else { 1223 kthread_suspend_check(); 1224 } 1225 1226 /* Continuously execute worker process. */ 1227 ctx->worker_fn(ctx->worker_private); /* worker body */ 1228 } 1229 1230 kthread_exit(); 1231 } 1232 1233 void 1234 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1235 { 1236 nmk->affinity = affinity; 1237 } 1238 1239 struct nm_kctx * 1240 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1241 { 1242 struct nm_kctx *nmk = NULL; 1243 1244 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1245 if (!nmk) 1246 return NULL; 1247 1248 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1249 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1250 nmk->worker_ctx.worker_private = cfg->worker_private; 1251 nmk->worker_ctx.type = cfg->type; 1252 nmk->affinity = -1; 1253 1254 /* attach kthread to user process (ptnetmap) */ 1255 nmk->attach_user = cfg->attach_user; 1256 1257 return nmk; 1258 } 1259 1260 int 1261 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1262 { 1263 struct proc *p = NULL; 1264 int error = 0; 1265 1266 /* Temporarily disable this function as it is currently broken 1267 * and causes kernel crashes. The failure can be triggered by 1268 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1269 return EOPNOTSUPP; 1270 1271 if (nmk->worker) 1272 return EBUSY; 1273 1274 /* check if we want to attach kthread to user process */ 1275 if (nmk->attach_user) { 1276 nmk->worker_ctx.user_td = curthread; 1277 p = curthread->td_proc; 1278 } 1279 1280 /* enable kthread main loop */ 1281 nmk->run = 1; 1282 /* create kthread */ 1283 if((error = kthread_add(nm_kctx_worker, nmk, p, 1284 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1285 nmk->worker_ctx.type))) { 1286 goto err; 1287 } 1288 1289 nm_prinf("nm_kthread started td %p", nmk->worker); 1290 1291 return 0; 1292 err: 1293 nm_prerr("nm_kthread start failed err %d", error); 1294 nmk->worker = NULL; 1295 return error; 1296 } 1297 1298 void 1299 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1300 { 1301 if (!nmk->worker) 1302 return; 1303 1304 /* tell to kthread to exit from main loop */ 1305 nmk->run = 0; 1306 1307 /* wake up kthread if it sleeps */ 1308 kthread_resume(nmk->worker); 1309 1310 nmk->worker = NULL; 1311 } 1312 1313 void 1314 nm_os_kctx_destroy(struct nm_kctx *nmk) 1315 { 1316 if (!nmk) 1317 return; 1318 1319 if (nmk->worker) 1320 nm_os_kctx_worker_stop(nmk); 1321 1322 free(nmk, M_DEVBUF); 1323 } 1324 1325 /******************** kqueue support ****************/ 1326 1327 /* 1328 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1329 * needs to call knote() to wake up kqueue listeners. 1330 * This operation is deferred to a taskqueue in order to avoid possible 1331 * lock order reversals; these may happen because knote() grabs a 1332 * private lock associated to the 'si' (see struct selinfo, 1333 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1334 * can be called while holding the lock associated to a different 1335 * 'si'. 1336 * When calling knote() we use a non-zero 'hint' argument to inform 1337 * the netmap_knrw() function that it is being called from 1338 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1339 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1340 * call netmap_poll(). 1341 * 1342 * The netmap_kqfilter() function registers one or another f_event 1343 * depending on read or write mode. A pointer to the struct 1344 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1345 * be passed to netmap_poll(). We pass NULL as a third argument to 1346 * netmap_poll(), so that the latter only runs the txsync/rxsync 1347 * (if necessary), and skips the nm_os_selrecord() calls. 1348 */ 1349 1350 1351 void 1352 nm_os_selwakeup(struct nm_selinfo *si) 1353 { 1354 selwakeuppri(&si->si, PI_NET); 1355 if (si->kqueue_users > 0) { 1356 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1357 } 1358 } 1359 1360 void 1361 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1362 { 1363 selrecord(td, &si->si); 1364 } 1365 1366 static void 1367 netmap_knrdetach(struct knote *kn) 1368 { 1369 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1370 struct nm_selinfo *si = priv->np_si[NR_RX]; 1371 1372 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1373 NMG_LOCK(); 1374 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1375 si->mtxname)); 1376 si->kqueue_users--; 1377 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1378 NMG_UNLOCK(); 1379 } 1380 1381 static void 1382 netmap_knwdetach(struct knote *kn) 1383 { 1384 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1385 struct nm_selinfo *si = priv->np_si[NR_TX]; 1386 1387 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1388 NMG_LOCK(); 1389 si->kqueue_users--; 1390 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1391 NMG_UNLOCK(); 1392 } 1393 1394 /* 1395 * Callback triggered by netmap notifications (see netmap_notify()), 1396 * and by the application calling kevent(). In the former case we 1397 * just return 1 (events ready), since we are not able to do better. 1398 * In the latter case we use netmap_poll() to see which events are 1399 * ready. 1400 */ 1401 static int 1402 netmap_knrw(struct knote *kn, long hint, int events) 1403 { 1404 struct netmap_priv_d *priv; 1405 int revents; 1406 1407 if (hint != 0) { 1408 /* Called from netmap_notify(), typically from a 1409 * thread different from the one issuing kevent(). 1410 * Assume we are ready. */ 1411 return 1; 1412 } 1413 1414 /* Called from kevent(). */ 1415 priv = kn->kn_hook; 1416 revents = netmap_poll(priv, events, /*thread=*/NULL); 1417 1418 return (events & revents) ? 1 : 0; 1419 } 1420 1421 static int 1422 netmap_knread(struct knote *kn, long hint) 1423 { 1424 return netmap_knrw(kn, hint, POLLIN); 1425 } 1426 1427 static int 1428 netmap_knwrite(struct knote *kn, long hint) 1429 { 1430 return netmap_knrw(kn, hint, POLLOUT); 1431 } 1432 1433 static struct filterops netmap_rfiltops = { 1434 .f_isfd = 1, 1435 .f_detach = netmap_knrdetach, 1436 .f_event = netmap_knread, 1437 }; 1438 1439 static struct filterops netmap_wfiltops = { 1440 .f_isfd = 1, 1441 .f_detach = netmap_knwdetach, 1442 .f_event = netmap_knwrite, 1443 }; 1444 1445 1446 /* 1447 * This is called when a thread invokes kevent() to record 1448 * a change in the configuration of the kqueue(). 1449 * The 'priv' is the one associated to the open netmap device. 1450 */ 1451 static int 1452 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1453 { 1454 struct netmap_priv_d *priv; 1455 int error; 1456 struct netmap_adapter *na; 1457 struct nm_selinfo *si; 1458 int ev = kn->kn_filter; 1459 1460 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1461 nm_prerr("bad filter request %d", ev); 1462 return 1; 1463 } 1464 error = devfs_get_cdevpriv((void**)&priv); 1465 if (error) { 1466 nm_prerr("device not yet setup"); 1467 return 1; 1468 } 1469 na = priv->np_na; 1470 if (na == NULL) { 1471 nm_prerr("no netmap adapter for this file descriptor"); 1472 return 1; 1473 } 1474 /* the si is indicated in the priv */ 1475 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1476 kn->kn_fop = (ev == EVFILT_WRITE) ? 1477 &netmap_wfiltops : &netmap_rfiltops; 1478 kn->kn_hook = priv; 1479 NMG_LOCK(); 1480 si->kqueue_users++; 1481 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1482 NMG_UNLOCK(); 1483 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1484 1485 return 0; 1486 } 1487 1488 static int 1489 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1490 { 1491 struct netmap_priv_d *priv; 1492 if (devfs_get_cdevpriv((void **)&priv)) { 1493 return POLLERR; 1494 } 1495 return netmap_poll(priv, events, td); 1496 } 1497 1498 static int 1499 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1500 int ffla __unused, struct thread *td) 1501 { 1502 int error; 1503 struct netmap_priv_d *priv; 1504 1505 CURVNET_SET(TD_TO_VNET(td)); 1506 error = devfs_get_cdevpriv((void **)&priv); 1507 if (error) { 1508 /* XXX ENOENT should be impossible, since the priv 1509 * is now created in the open */ 1510 if (error == ENOENT) 1511 error = ENXIO; 1512 goto out; 1513 } 1514 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1515 out: 1516 CURVNET_RESTORE(); 1517 1518 return error; 1519 } 1520 1521 void 1522 nm_os_onattach(struct ifnet *ifp) 1523 { 1524 ifp->if_capabilities |= IFCAP_NETMAP; 1525 } 1526 1527 void 1528 nm_os_onenter(struct ifnet *ifp) 1529 { 1530 struct netmap_adapter *na = NA(ifp); 1531 1532 na->if_transmit = ifp->if_transmit; 1533 ifp->if_transmit = netmap_transmit; 1534 ifp->if_capenable |= IFCAP_NETMAP; 1535 } 1536 1537 void 1538 nm_os_onexit(struct ifnet *ifp) 1539 { 1540 struct netmap_adapter *na = NA(ifp); 1541 1542 ifp->if_transmit = na->if_transmit; 1543 ifp->if_capenable &= ~IFCAP_NETMAP; 1544 } 1545 1546 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1547 struct cdevsw netmap_cdevsw = { 1548 .d_version = D_VERSION, 1549 .d_name = "netmap", 1550 .d_open = netmap_open, 1551 .d_mmap_single = netmap_mmap_single, 1552 .d_ioctl = freebsd_netmap_ioctl, 1553 .d_poll = freebsd_netmap_poll, 1554 .d_kqfilter = netmap_kqfilter, 1555 .d_close = netmap_close, 1556 }; 1557 /*--- end of kqueue support ----*/ 1558 1559 /* 1560 * Kernel entry point. 1561 * 1562 * Initialize/finalize the module and return. 1563 * 1564 * Return 0 on success, errno on failure. 1565 */ 1566 static int 1567 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1568 { 1569 int error = 0; 1570 1571 switch (event) { 1572 case MOD_LOAD: 1573 error = netmap_init(); 1574 break; 1575 1576 case MOD_UNLOAD: 1577 /* 1578 * if some one is still using netmap, 1579 * then the module can not be unloaded. 1580 */ 1581 if (netmap_use_count) { 1582 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1583 netmap_use_count); 1584 error = EBUSY; 1585 break; 1586 } 1587 netmap_fini(); 1588 break; 1589 1590 default: 1591 error = EOPNOTSUPP; 1592 break; 1593 } 1594 1595 return (error); 1596 } 1597 1598 #ifdef DEV_MODULE_ORDERED 1599 /* 1600 * The netmap module contains three drivers: (i) the netmap character device 1601 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1602 * device driver. The attach() routines of both (ii) and (iii) need the 1603 * lock of the global allocator, and such lock is initialized in netmap_init(), 1604 * which is part of (i). 1605 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1606 * the 'order' parameter of driver declaration macros. For (i), we specify 1607 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1608 * macros for (ii) and (iii). 1609 */ 1610 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1611 #else /* !DEV_MODULE_ORDERED */ 1612 DEV_MODULE(netmap, netmap_loader, NULL); 1613 #endif /* DEV_MODULE_ORDERED */ 1614 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1615 MODULE_VERSION(netmap, 1); 1616 /* reduce conditional code */ 1617 // linux API, use for the knlist in FreeBSD 1618 /* use a private mutex for the knlist */ 1619