xref: /freebsd/sys/dev/netmap/netmap_freebsd.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *   1. Redistributions of source code must retain the above copyright
10  *      notice, this list of conditions and the following disclaimer.
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* $FreeBSD$ */
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 
32 #include <sys/param.h>
33 #include <sys/module.h>
34 #include <sys/errno.h>
35 #include <sys/jail.h>
36 #include <sys/poll.h>  /* POLLIN, POLLOUT */
37 #include <sys/kernel.h> /* types used in module initialization */
38 #include <sys/conf.h>	/* DEV_MODULE_ORDERED */
39 #include <sys/endian.h>
40 #include <sys/syscallsubr.h> /* kern_ioctl() */
41 
42 #include <sys/rwlock.h>
43 
44 #include <vm/vm.h>      /* vtophys */
45 #include <vm/pmap.h>    /* vtophys */
46 #include <vm/vm_param.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_page.h>
49 #include <vm/vm_pager.h>
50 #include <vm/uma.h>
51 
52 
53 #include <sys/malloc.h>
54 #include <sys/socket.h> /* sockaddrs */
55 #include <sys/selinfo.h>
56 #include <sys/kthread.h> /* kthread_add() */
57 #include <sys/proc.h> /* PROC_LOCK() */
58 #include <sys/unistd.h> /* RFNOWAIT */
59 #include <sys/sched.h> /* sched_bind() */
60 #include <sys/smp.h> /* mp_maxid */
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_types.h> /* IFT_ETHER */
64 #include <net/ethernet.h> /* ether_ifdetach */
65 #include <net/if_dl.h> /* LLADDR */
66 #include <machine/bus.h>        /* bus_dmamap_* */
67 #include <netinet/in.h>		/* in6_cksum_pseudo() */
68 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
69 
70 #include <net/netmap.h>
71 #include <dev/netmap/netmap_kern.h>
72 #include <net/netmap_virt.h>
73 #include <dev/netmap/netmap_mem2.h>
74 
75 
76 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
77 
78 void nm_os_selinfo_init(NM_SELINFO_T *si) {
79 	struct mtx *m = &si->m;
80 	mtx_init(m, "nm_kn_lock", NULL, MTX_DEF);
81 	knlist_init_mtx(&si->si.si_note, m);
82 }
83 
84 void
85 nm_os_selinfo_uninit(NM_SELINFO_T *si)
86 {
87 	/* XXX kqueue(9) needed; these will mirror knlist_init. */
88 	knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
89 	knlist_destroy(&si->si.si_note);
90 	/* now we don't need the mutex anymore */
91 	mtx_destroy(&si->m);
92 }
93 
94 void *
95 nm_os_malloc(size_t size)
96 {
97 	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
98 }
99 
100 void *
101 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
102 {
103 	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
104 }
105 
106 void
107 nm_os_free(void *addr)
108 {
109 	free(addr, M_DEVBUF);
110 }
111 
112 void
113 nm_os_ifnet_lock(void)
114 {
115 	IFNET_RLOCK();
116 }
117 
118 void
119 nm_os_ifnet_unlock(void)
120 {
121 	IFNET_RUNLOCK();
122 }
123 
124 static int netmap_use_count = 0;
125 
126 void
127 nm_os_get_module(void)
128 {
129 	netmap_use_count++;
130 }
131 
132 void
133 nm_os_put_module(void)
134 {
135 	netmap_use_count--;
136 }
137 
138 static void
139 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
140 {
141 	netmap_undo_zombie(ifp);
142 }
143 
144 static void
145 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
146 {
147 	netmap_make_zombie(ifp);
148 }
149 
150 static eventhandler_tag nm_ifnet_ah_tag;
151 static eventhandler_tag nm_ifnet_dh_tag;
152 
153 int
154 nm_os_ifnet_init(void)
155 {
156 	nm_ifnet_ah_tag =
157 		EVENTHANDLER_REGISTER(ifnet_arrival_event,
158 				netmap_ifnet_arrival_handler,
159 				NULL, EVENTHANDLER_PRI_ANY);
160 	nm_ifnet_dh_tag =
161 		EVENTHANDLER_REGISTER(ifnet_departure_event,
162 				netmap_ifnet_departure_handler,
163 				NULL, EVENTHANDLER_PRI_ANY);
164 	return 0;
165 }
166 
167 void
168 nm_os_ifnet_fini(void)
169 {
170 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
171 			nm_ifnet_ah_tag);
172 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
173 			nm_ifnet_dh_tag);
174 }
175 
176 unsigned
177 nm_os_ifnet_mtu(struct ifnet *ifp)
178 {
179 #if __FreeBSD_version < 1100030
180 	return ifp->if_data.ifi_mtu;
181 #else /* __FreeBSD_version >= 1100030 */
182 	return ifp->if_mtu;
183 #endif
184 }
185 
186 rawsum_t
187 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
188 {
189 	/* TODO XXX please use the FreeBSD implementation for this. */
190 	uint16_t *words = (uint16_t *)data;
191 	int nw = len / 2;
192 	int i;
193 
194 	for (i = 0; i < nw; i++)
195 		cur_sum += be16toh(words[i]);
196 
197 	if (len & 1)
198 		cur_sum += (data[len-1] << 8);
199 
200 	return cur_sum;
201 }
202 
203 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
204  * return value is in network byte order.
205  */
206 uint16_t
207 nm_os_csum_fold(rawsum_t cur_sum)
208 {
209 	/* TODO XXX please use the FreeBSD implementation for this. */
210 	while (cur_sum >> 16)
211 		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
212 
213 	return htobe16((~cur_sum) & 0xFFFF);
214 }
215 
216 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
217 {
218 #if 0
219 	return in_cksum_hdr((void *)iph);
220 #else
221 	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
222 #endif
223 }
224 
225 void
226 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
227 					size_t datalen, uint16_t *check)
228 {
229 #ifdef INET
230 	uint16_t pseudolen = datalen + iph->protocol;
231 
232 	/* Compute and insert the pseudo-header cheksum. */
233 	*check = in_pseudo(iph->saddr, iph->daddr,
234 				 htobe16(pseudolen));
235 	/* Compute the checksum on TCP/UDP header + payload
236 	 * (includes the pseudo-header).
237 	 */
238 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
239 #else
240 	static int notsupported = 0;
241 	if (!notsupported) {
242 		notsupported = 1;
243 		D("inet4 segmentation not supported");
244 	}
245 #endif
246 }
247 
248 void
249 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
250 					size_t datalen, uint16_t *check)
251 {
252 #ifdef INET6
253 	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
254 	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
255 #else
256 	static int notsupported = 0;
257 	if (!notsupported) {
258 		notsupported = 1;
259 		D("inet6 segmentation not supported");
260 	}
261 #endif
262 }
263 
264 /* on FreeBSD we send up one packet at a time */
265 void *
266 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
267 {
268 	NA(ifp)->if_input(ifp, m);
269 	return NULL;
270 }
271 
272 int
273 nm_os_mbuf_has_csum_offld(struct mbuf *m)
274 {
275 	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
276 					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
277 					 CSUM_SCTP_IPV6);
278 }
279 
280 int
281 nm_os_mbuf_has_seg_offld(struct mbuf *m)
282 {
283 	return m->m_pkthdr.csum_flags & CSUM_TSO;
284 }
285 
286 static void
287 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
288 {
289 	int stolen;
290 
291 	if (!NM_NA_VALID(ifp)) {
292 		RD(1, "Warning: got RX packet for invalid emulated adapter");
293 		return;
294 	}
295 
296 	stolen = generic_rx_handler(ifp, m);
297 	if (!stolen) {
298 		struct netmap_generic_adapter *gna =
299 				(struct netmap_generic_adapter *)NA(ifp);
300 		gna->save_if_input(ifp, m);
301 	}
302 }
303 
304 /*
305  * Intercept the rx routine in the standard device driver.
306  * Second argument is non-zero to intercept, 0 to restore
307  */
308 int
309 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
310 {
311 	struct netmap_adapter *na = &gna->up.up;
312 	struct ifnet *ifp = na->ifp;
313 	int ret = 0;
314 
315 	nm_os_ifnet_lock();
316 	if (intercept) {
317 		if (gna->save_if_input) {
318 			D("cannot intercept again");
319 			ret = EINVAL; /* already set */
320 			goto out;
321 		}
322 		gna->save_if_input = ifp->if_input;
323 		ifp->if_input = freebsd_generic_rx_handler;
324 	} else {
325 		if (!gna->save_if_input){
326 			D("cannot restore");
327 			ret = EINVAL;  /* not saved */
328 			goto out;
329 		}
330 		ifp->if_input = gna->save_if_input;
331 		gna->save_if_input = NULL;
332 	}
333 out:
334 	nm_os_ifnet_unlock();
335 
336 	return ret;
337 }
338 
339 
340 /*
341  * Intercept the packet steering routine in the tx path,
342  * so that we can decide which queue is used for an mbuf.
343  * Second argument is non-zero to intercept, 0 to restore.
344  * On freebsd we just intercept if_transmit.
345  */
346 int
347 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
348 {
349 	struct netmap_adapter *na = &gna->up.up;
350 	struct ifnet *ifp = netmap_generic_getifp(gna);
351 
352 	nm_os_ifnet_lock();
353 	if (intercept) {
354 		na->if_transmit = ifp->if_transmit;
355 		ifp->if_transmit = netmap_transmit;
356 	} else {
357 		ifp->if_transmit = na->if_transmit;
358 	}
359 	nm_os_ifnet_unlock();
360 
361 	return 0;
362 }
363 
364 
365 /*
366  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
367  * and non-zero on error (which may be packet drops or other errors).
368  * addr and len identify the netmap buffer, m is the (preallocated)
369  * mbuf to use for transmissions.
370  *
371  * We should add a reference to the mbuf so the m_freem() at the end
372  * of the transmission does not consume resources.
373  *
374  * On FreeBSD, and on multiqueue cards, we can force the queue using
375  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
376  *              i = m->m_pkthdr.flowid % adapter->num_queues;
377  *      else
378  *              i = curcpu % adapter->num_queues;
379  *
380  */
381 int
382 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
383 {
384 	int ret;
385 	u_int len = a->len;
386 	struct ifnet *ifp = a->ifp;
387 	struct mbuf *m = a->m;
388 
389 #if __FreeBSD_version < 1100000
390 	/*
391 	 * Old FreeBSD versions. The mbuf has a cluster attached,
392 	 * we need to copy from the cluster to the netmap buffer.
393 	 */
394 	if (MBUF_REFCNT(m) != 1) {
395 		D("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
396 		panic("in generic_xmit_frame");
397 	}
398 	if (m->m_ext.ext_size < len) {
399 		RD(5, "size %d < len %d", m->m_ext.ext_size, len);
400 		len = m->m_ext.ext_size;
401 	}
402 	bcopy(a->addr, m->m_data, len);
403 #else  /* __FreeBSD_version >= 1100000 */
404 	/* New FreeBSD versions. Link the external storage to
405 	 * the netmap buffer, so that no copy is necessary. */
406 	m->m_ext.ext_buf = m->m_data = a->addr;
407 	m->m_ext.ext_size = len;
408 #endif /* __FreeBSD_version >= 1100000 */
409 
410 	m->m_len = m->m_pkthdr.len = len;
411 
412 	/* mbuf refcnt is not contended, no need to use atomic
413 	 * (a memory barrier is enough). */
414 	SET_MBUF_REFCNT(m, 2);
415 	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
416 	m->m_pkthdr.flowid = a->ring_nr;
417 	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
418 	ret = NA(ifp)->if_transmit(ifp, m);
419 	return ret ? -1 : 0;
420 }
421 
422 
423 #if __FreeBSD_version >= 1100005
424 struct netmap_adapter *
425 netmap_getna(if_t ifp)
426 {
427 	return (NA((struct ifnet *)ifp));
428 }
429 #endif /* __FreeBSD_version >= 1100005 */
430 
431 /*
432  * The following two functions are empty until we have a generic
433  * way to extract the info from the ifp
434  */
435 int
436 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
437 {
438 	return 0;
439 }
440 
441 
442 void
443 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
444 {
445 	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
446 
447 	*txq = num_rings;
448 	*rxq = num_rings;
449 }
450 
451 void
452 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
453 {
454 
455 	gna->rxsg = 1; /* Supported through m_copydata. */
456 	gna->txqdisc = 0; /* Not supported. */
457 }
458 
459 void
460 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
461 {
462 	ND("called");
463 	mit->mit_pending = 0;
464 	mit->mit_ring_idx = idx;
465 	mit->mit_na = na;
466 }
467 
468 
469 void
470 nm_os_mitigation_start(struct nm_generic_mit *mit)
471 {
472 	ND("called");
473 }
474 
475 
476 void
477 nm_os_mitigation_restart(struct nm_generic_mit *mit)
478 {
479 	ND("called");
480 }
481 
482 
483 int
484 nm_os_mitigation_active(struct nm_generic_mit *mit)
485 {
486 	ND("called");
487 	return 0;
488 }
489 
490 
491 void
492 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
493 {
494 	ND("called");
495 }
496 
497 static int
498 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
499 {
500 	return EINVAL;
501 }
502 
503 static void
504 nm_vi_start(struct ifnet *ifp)
505 {
506 	panic("nm_vi_start() must not be called");
507 }
508 
509 /*
510  * Index manager of persistent virtual interfaces.
511  * It is used to decide the lowest byte of the MAC address.
512  * We use the same algorithm with management of bridge port index.
513  */
514 #define NM_VI_MAX	255
515 static struct {
516 	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
517 	uint8_t active;
518 	struct mtx lock;
519 } nm_vi_indices;
520 
521 void
522 nm_os_vi_init_index(void)
523 {
524 	int i;
525 	for (i = 0; i < NM_VI_MAX; i++)
526 		nm_vi_indices.index[i] = i;
527 	nm_vi_indices.active = 0;
528 	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
529 }
530 
531 /* return -1 if no index available */
532 static int
533 nm_vi_get_index(void)
534 {
535 	int ret;
536 
537 	mtx_lock(&nm_vi_indices.lock);
538 	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
539 		nm_vi_indices.index[nm_vi_indices.active++];
540 	mtx_unlock(&nm_vi_indices.lock);
541 	return ret;
542 }
543 
544 static void
545 nm_vi_free_index(uint8_t val)
546 {
547 	int i, lim;
548 
549 	mtx_lock(&nm_vi_indices.lock);
550 	lim = nm_vi_indices.active;
551 	for (i = 0; i < lim; i++) {
552 		if (nm_vi_indices.index[i] == val) {
553 			/* swap index[lim-1] and j */
554 			int tmp = nm_vi_indices.index[lim-1];
555 			nm_vi_indices.index[lim-1] = val;
556 			nm_vi_indices.index[i] = tmp;
557 			nm_vi_indices.active--;
558 			break;
559 		}
560 	}
561 	if (lim == nm_vi_indices.active)
562 		D("funny, index %u didn't found", val);
563 	mtx_unlock(&nm_vi_indices.lock);
564 }
565 #undef NM_VI_MAX
566 
567 /*
568  * Implementation of a netmap-capable virtual interface that
569  * registered to the system.
570  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
571  *
572  * Note: Linux sets refcount to 0 on allocation of net_device,
573  * then increments it on registration to the system.
574  * FreeBSD sets refcount to 1 on if_alloc(), and does not
575  * increment this refcount on if_attach().
576  */
577 int
578 nm_os_vi_persist(const char *name, struct ifnet **ret)
579 {
580 	struct ifnet *ifp;
581 	u_short macaddr_hi;
582 	uint32_t macaddr_mid;
583 	u_char eaddr[6];
584 	int unit = nm_vi_get_index(); /* just to decide MAC address */
585 
586 	if (unit < 0)
587 		return EBUSY;
588 	/*
589 	 * We use the same MAC address generation method with tap
590 	 * except for the highest octet is 00:be instead of 00:bd
591 	 */
592 	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
593 	macaddr_mid = (uint32_t) ticks;
594 	bcopy(&macaddr_hi, eaddr, sizeof(short));
595 	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
596 	eaddr[5] = (uint8_t)unit;
597 
598 	ifp = if_alloc(IFT_ETHER);
599 	if (ifp == NULL) {
600 		D("if_alloc failed");
601 		return ENOMEM;
602 	}
603 	if_initname(ifp, name, IF_DUNIT_NONE);
604 	ifp->if_mtu = 65536;
605 	ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
606 	ifp->if_init = (void *)nm_vi_dummy;
607 	ifp->if_ioctl = nm_vi_dummy;
608 	ifp->if_start = nm_vi_start;
609 	ifp->if_mtu = ETHERMTU;
610 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
611 	ifp->if_capabilities |= IFCAP_LINKSTATE;
612 	ifp->if_capenable |= IFCAP_LINKSTATE;
613 
614 	ether_ifattach(ifp, eaddr);
615 	*ret = ifp;
616 	return 0;
617 }
618 
619 /* unregister from the system and drop the final refcount */
620 void
621 nm_os_vi_detach(struct ifnet *ifp)
622 {
623 	nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
624 	ether_ifdetach(ifp);
625 	if_free(ifp);
626 }
627 
628 #ifdef WITH_EXTMEM
629 #include <vm/vm_map.h>
630 #include <vm/vm_kern.h>
631 struct nm_os_extmem {
632 	vm_object_t obj;
633 	vm_offset_t kva;
634 	vm_offset_t size;
635 	uintptr_t scan;
636 };
637 
638 void
639 nm_os_extmem_delete(struct nm_os_extmem *e)
640 {
641 	D("freeing %zx bytes", (size_t)e->size);
642 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
643 	nm_os_free(e);
644 }
645 
646 char *
647 nm_os_extmem_nextpage(struct nm_os_extmem *e)
648 {
649 	char *rv = NULL;
650 	if (e->scan < e->kva + e->size) {
651 		rv = (char *)e->scan;
652 		e->scan += PAGE_SIZE;
653 	}
654 	return rv;
655 }
656 
657 int
658 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
659 {
660 	return (e1->obj == e2->obj);
661 }
662 
663 int
664 nm_os_extmem_nr_pages(struct nm_os_extmem *e)
665 {
666 	return e->size >> PAGE_SHIFT;
667 }
668 
669 struct nm_os_extmem *
670 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
671 {
672 	vm_map_t map;
673 	vm_map_entry_t entry;
674 	vm_object_t obj;
675 	vm_prot_t prot;
676 	vm_pindex_t index;
677 	boolean_t wired;
678 	struct nm_os_extmem *e = NULL;
679 	int rv, error = 0;
680 
681 	e = nm_os_malloc(sizeof(*e));
682 	if (e == NULL) {
683 		error = ENOMEM;
684 		goto out;
685 	}
686 
687 	map = &curthread->td_proc->p_vmspace->vm_map;
688 	rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
689 			&obj, &index, &prot, &wired);
690 	if (rv != KERN_SUCCESS) {
691 		D("address %lx not found", p);
692 		goto out_free;
693 	}
694 	/* check that we are given the whole vm_object ? */
695 	vm_map_lookup_done(map, entry);
696 
697 	// XXX can we really use obj after releasing the map lock?
698 	e->obj = obj;
699 	vm_object_reference(obj);
700 	/* wire the memory and add the vm_object to the kernel map,
701 	 * to make sure that it is not fred even if the processes that
702 	 * are mmap()ing it all exit
703 	 */
704 	e->kva = vm_map_min(kernel_map);
705 	e->size = obj->size << PAGE_SHIFT;
706 	rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
707 			VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
708 			VM_PROT_READ | VM_PROT_WRITE, 0);
709 	if (rv != KERN_SUCCESS) {
710 		D("vm_map_find(%zx) failed", (size_t)e->size);
711 		goto out_rel;
712 	}
713 	rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
714 			VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
715 	if (rv != KERN_SUCCESS) {
716 		D("vm_map_wire failed");
717 		goto out_rem;
718 	}
719 
720 	e->scan = e->kva;
721 
722 	return e;
723 
724 out_rem:
725 	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
726 	e->obj = NULL;
727 out_rel:
728 	vm_object_deallocate(e->obj);
729 out_free:
730 	nm_os_free(e);
731 out:
732 	if (perror)
733 		*perror = error;
734 	return NULL;
735 }
736 #endif /* WITH_EXTMEM */
737 
738 /* ================== PTNETMAP GUEST SUPPORT ==================== */
739 
740 #ifdef WITH_PTNETMAP
741 #include <sys/bus.h>
742 #include <sys/rman.h>
743 #include <machine/bus.h>        /* bus_dmamap_* */
744 #include <machine/resource.h>
745 #include <dev/pci/pcivar.h>
746 #include <dev/pci/pcireg.h>
747 /*
748  * ptnetmap memory device (memdev) for freebsd guest,
749  * ssed to expose host netmap memory to the guest through a PCI BAR.
750  */
751 
752 /*
753  * ptnetmap memdev private data structure
754  */
755 struct ptnetmap_memdev {
756 	device_t dev;
757 	struct resource *pci_io;
758 	struct resource *pci_mem;
759 	struct netmap_mem_d *nm_mem;
760 };
761 
762 static int	ptn_memdev_probe(device_t);
763 static int	ptn_memdev_attach(device_t);
764 static int	ptn_memdev_detach(device_t);
765 static int	ptn_memdev_shutdown(device_t);
766 
767 static device_method_t ptn_memdev_methods[] = {
768 	DEVMETHOD(device_probe, ptn_memdev_probe),
769 	DEVMETHOD(device_attach, ptn_memdev_attach),
770 	DEVMETHOD(device_detach, ptn_memdev_detach),
771 	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
772 	DEVMETHOD_END
773 };
774 
775 static driver_t ptn_memdev_driver = {
776 	PTNETMAP_MEMDEV_NAME,
777 	ptn_memdev_methods,
778 	sizeof(struct ptnetmap_memdev),
779 };
780 
781 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
782  * below. */
783 static devclass_t ptnetmap_devclass;
784 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
785 		      NULL, NULL, SI_ORDER_MIDDLE + 1);
786 
787 /*
788  * Map host netmap memory through PCI-BAR in the guest OS,
789  * returning physical (nm_paddr) and virtual (nm_addr) addresses
790  * of the netmap memory mapped in the guest.
791  */
792 int
793 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
794 		      void **nm_addr, uint64_t *mem_size)
795 {
796 	int rid;
797 
798 	D("ptn_memdev_driver iomap");
799 
800 	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
801 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
802 	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
803 			(*mem_size << 32);
804 
805 	/* map memory allocator */
806 	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
807 			&rid, 0, ~0, *mem_size, RF_ACTIVE);
808 	if (ptn_dev->pci_mem == NULL) {
809 		*nm_paddr = 0;
810 		*nm_addr = NULL;
811 		return ENOMEM;
812 	}
813 
814 	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
815 	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
816 
817 	D("=== BAR %d start %lx len %lx mem_size %lx ===",
818 			PTNETMAP_MEM_PCI_BAR,
819 			(unsigned long)(*nm_paddr),
820 			(unsigned long)rman_get_size(ptn_dev->pci_mem),
821 			(unsigned long)*mem_size);
822 	return (0);
823 }
824 
825 uint32_t
826 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
827 {
828 	return bus_read_4(ptn_dev->pci_io, reg);
829 }
830 
831 /* Unmap host netmap memory. */
832 void
833 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
834 {
835 	D("ptn_memdev_driver iounmap");
836 
837 	if (ptn_dev->pci_mem) {
838 		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
839 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
840 		ptn_dev->pci_mem = NULL;
841 	}
842 }
843 
844 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
845  * positive on failure */
846 static int
847 ptn_memdev_probe(device_t dev)
848 {
849 	char desc[256];
850 
851 	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
852 		return (ENXIO);
853 	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
854 		return (ENXIO);
855 
856 	snprintf(desc, sizeof(desc), "%s PCI adapter",
857 			PTNETMAP_MEMDEV_NAME);
858 	device_set_desc_copy(dev, desc);
859 
860 	return (BUS_PROBE_DEFAULT);
861 }
862 
863 /* Device initialization routine. */
864 static int
865 ptn_memdev_attach(device_t dev)
866 {
867 	struct ptnetmap_memdev *ptn_dev;
868 	int rid;
869 	uint16_t mem_id;
870 
871 	D("ptn_memdev_driver attach");
872 
873 	ptn_dev = device_get_softc(dev);
874 	ptn_dev->dev = dev;
875 
876 	pci_enable_busmaster(dev);
877 
878 	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
879 	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
880 						 RF_ACTIVE);
881 	if (ptn_dev->pci_io == NULL) {
882 	        device_printf(dev, "cannot map I/O space\n");
883 	        return (ENXIO);
884 	}
885 
886 	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
887 
888 	/* create guest allocator */
889 	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
890 	if (ptn_dev->nm_mem == NULL) {
891 		ptn_memdev_detach(dev);
892 	        return (ENOMEM);
893 	}
894 	netmap_mem_get(ptn_dev->nm_mem);
895 
896 	D("ptn_memdev_driver probe OK - host_mem_id: %d", mem_id);
897 
898 	return (0);
899 }
900 
901 /* Device removal routine. */
902 static int
903 ptn_memdev_detach(device_t dev)
904 {
905 	struct ptnetmap_memdev *ptn_dev;
906 
907 	D("ptn_memdev_driver detach");
908 	ptn_dev = device_get_softc(dev);
909 
910 	if (ptn_dev->nm_mem) {
911 		netmap_mem_put(ptn_dev->nm_mem);
912 		ptn_dev->nm_mem = NULL;
913 	}
914 	if (ptn_dev->pci_mem) {
915 		bus_release_resource(dev, SYS_RES_MEMORY,
916 			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
917 		ptn_dev->pci_mem = NULL;
918 	}
919 	if (ptn_dev->pci_io) {
920 		bus_release_resource(dev, SYS_RES_IOPORT,
921 			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
922 		ptn_dev->pci_io = NULL;
923 	}
924 
925 	return (0);
926 }
927 
928 static int
929 ptn_memdev_shutdown(device_t dev)
930 {
931 	D("ptn_memdev_driver shutdown");
932 	return bus_generic_shutdown(dev);
933 }
934 
935 #endif /* WITH_PTNETMAP */
936 
937 /*
938  * In order to track whether pages are still mapped, we hook into
939  * the standard cdev_pager and intercept the constructor and
940  * destructor.
941  */
942 
943 struct netmap_vm_handle_t {
944 	struct cdev 		*dev;
945 	struct netmap_priv_d	*priv;
946 };
947 
948 
949 static int
950 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
951 		vm_ooffset_t foff, struct ucred *cred, u_short *color)
952 {
953 	struct netmap_vm_handle_t *vmh = handle;
954 
955 	if (netmap_verbose)
956 		D("handle %p size %jd prot %d foff %jd",
957 			handle, (intmax_t)size, prot, (intmax_t)foff);
958 	if (color)
959 		*color = 0;
960 	dev_ref(vmh->dev);
961 	return 0;
962 }
963 
964 
965 static void
966 netmap_dev_pager_dtor(void *handle)
967 {
968 	struct netmap_vm_handle_t *vmh = handle;
969 	struct cdev *dev = vmh->dev;
970 	struct netmap_priv_d *priv = vmh->priv;
971 
972 	if (netmap_verbose)
973 		D("handle %p", handle);
974 	netmap_dtor(priv);
975 	free(vmh, M_DEVBUF);
976 	dev_rel(dev);
977 }
978 
979 
980 static int
981 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
982 	int prot, vm_page_t *mres)
983 {
984 	struct netmap_vm_handle_t *vmh = object->handle;
985 	struct netmap_priv_d *priv = vmh->priv;
986 	struct netmap_adapter *na = priv->np_na;
987 	vm_paddr_t paddr;
988 	vm_page_t page;
989 	vm_memattr_t memattr;
990 	vm_pindex_t pidx;
991 
992 	ND("object %p offset %jd prot %d mres %p",
993 			object, (intmax_t)offset, prot, mres);
994 	memattr = object->memattr;
995 	pidx = OFF_TO_IDX(offset);
996 	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
997 	if (paddr == 0)
998 		return VM_PAGER_FAIL;
999 
1000 	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
1001 		/*
1002 		 * If the passed in result page is a fake page, update it with
1003 		 * the new physical address.
1004 		 */
1005 		page = *mres;
1006 		vm_page_updatefake(page, paddr, memattr);
1007 	} else {
1008 		/*
1009 		 * Replace the passed in reqpage page with our own fake page and
1010 		 * free up the all of the original pages.
1011 		 */
1012 #ifndef VM_OBJECT_WUNLOCK	/* FreeBSD < 10.x */
1013 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
1014 #define VM_OBJECT_WLOCK	VM_OBJECT_LOCK
1015 #endif /* VM_OBJECT_WUNLOCK */
1016 
1017 		VM_OBJECT_WUNLOCK(object);
1018 		page = vm_page_getfake(paddr, memattr);
1019 		VM_OBJECT_WLOCK(object);
1020 		vm_page_lock(*mres);
1021 		vm_page_free(*mres);
1022 		vm_page_unlock(*mres);
1023 		*mres = page;
1024 		vm_page_insert(page, object, pidx);
1025 	}
1026 	page->valid = VM_PAGE_BITS_ALL;
1027 	return (VM_PAGER_OK);
1028 }
1029 
1030 
1031 static struct cdev_pager_ops netmap_cdev_pager_ops = {
1032 	.cdev_pg_ctor = netmap_dev_pager_ctor,
1033 	.cdev_pg_dtor = netmap_dev_pager_dtor,
1034 	.cdev_pg_fault = netmap_dev_pager_fault,
1035 };
1036 
1037 
1038 static int
1039 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1040 	vm_size_t objsize,  vm_object_t *objp, int prot)
1041 {
1042 	int error;
1043 	struct netmap_vm_handle_t *vmh;
1044 	struct netmap_priv_d *priv;
1045 	vm_object_t obj;
1046 
1047 	if (netmap_verbose)
1048 		D("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1049 		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1050 
1051 	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1052 			      M_NOWAIT | M_ZERO);
1053 	if (vmh == NULL)
1054 		return ENOMEM;
1055 	vmh->dev = cdev;
1056 
1057 	NMG_LOCK();
1058 	error = devfs_get_cdevpriv((void**)&priv);
1059 	if (error)
1060 		goto err_unlock;
1061 	if (priv->np_nifp == NULL) {
1062 		error = EINVAL;
1063 		goto err_unlock;
1064 	}
1065 	vmh->priv = priv;
1066 	priv->np_refs++;
1067 	NMG_UNLOCK();
1068 
1069 	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1070 		&netmap_cdev_pager_ops, objsize, prot,
1071 		*foff, NULL);
1072 	if (obj == NULL) {
1073 		D("cdev_pager_allocate failed");
1074 		error = EINVAL;
1075 		goto err_deref;
1076 	}
1077 
1078 	*objp = obj;
1079 	return 0;
1080 
1081 err_deref:
1082 	NMG_LOCK();
1083 	priv->np_refs--;
1084 err_unlock:
1085 	NMG_UNLOCK();
1086 // err:
1087 	free(vmh, M_DEVBUF);
1088 	return error;
1089 }
1090 
1091 /*
1092  * On FreeBSD the close routine is only called on the last close on
1093  * the device (/dev/netmap) so we cannot do anything useful.
1094  * To track close() on individual file descriptors we pass netmap_dtor() to
1095  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1096  * when the last fd pointing to the device is closed.
1097  *
1098  * Note that FreeBSD does not even munmap() on close() so we also have
1099  * to track mmap() ourselves, and postpone the call to
1100  * netmap_dtor() is called when the process has no open fds and no active
1101  * memory maps on /dev/netmap, as in linux.
1102  */
1103 static int
1104 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1105 {
1106 	if (netmap_verbose)
1107 		D("dev %p fflag 0x%x devtype %d td %p",
1108 			dev, fflag, devtype, td);
1109 	return 0;
1110 }
1111 
1112 
1113 static int
1114 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1115 {
1116 	struct netmap_priv_d *priv;
1117 	int error;
1118 
1119 	(void)dev;
1120 	(void)oflags;
1121 	(void)devtype;
1122 	(void)td;
1123 
1124 	NMG_LOCK();
1125 	priv = netmap_priv_new();
1126 	if (priv == NULL) {
1127 		error = ENOMEM;
1128 		goto out;
1129 	}
1130 	error = devfs_set_cdevpriv(priv, netmap_dtor);
1131 	if (error) {
1132 		netmap_priv_delete(priv);
1133 	}
1134 out:
1135 	NMG_UNLOCK();
1136 	return error;
1137 }
1138 
1139 /******************** kthread wrapper ****************/
1140 #include <sys/sysproto.h>
1141 u_int
1142 nm_os_ncpus(void)
1143 {
1144 	return mp_maxid + 1;
1145 }
1146 
1147 struct nm_kctx_ctx {
1148 	/* Userspace thread (kthread creator). */
1149 	struct thread *user_td;
1150 
1151 	/* worker function and parameter */
1152 	nm_kctx_worker_fn_t worker_fn;
1153 	void *worker_private;
1154 
1155 	struct nm_kctx *nmk;
1156 
1157 	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1158 	long type;
1159 };
1160 
1161 struct nm_kctx {
1162 	struct thread *worker;
1163 	struct mtx worker_lock;
1164 	struct nm_kctx_ctx worker_ctx;
1165 	int run;			/* used to stop kthread */
1166 	int attach_user;		/* kthread attached to user_process */
1167 	int affinity;
1168 };
1169 
1170 static void
1171 nm_kctx_worker(void *data)
1172 {
1173 	struct nm_kctx *nmk = data;
1174 	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1175 
1176 	if (nmk->affinity >= 0) {
1177 		thread_lock(curthread);
1178 		sched_bind(curthread, nmk->affinity);
1179 		thread_unlock(curthread);
1180 	}
1181 
1182 	while (nmk->run) {
1183 		/*
1184 		 * check if the parent process dies
1185 		 * (when kthread is attached to user process)
1186 		 */
1187 		if (ctx->user_td) {
1188 			PROC_LOCK(curproc);
1189 			thread_suspend_check(0);
1190 			PROC_UNLOCK(curproc);
1191 		} else {
1192 			kthread_suspend_check();
1193 		}
1194 
1195 		/* Continuously execute worker process. */
1196 		ctx->worker_fn(ctx->worker_private); /* worker body */
1197 	}
1198 
1199 	kthread_exit();
1200 }
1201 
1202 void
1203 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1204 {
1205 	nmk->affinity = affinity;
1206 }
1207 
1208 struct nm_kctx *
1209 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1210 {
1211 	struct nm_kctx *nmk = NULL;
1212 
1213 	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1214 	if (!nmk)
1215 		return NULL;
1216 
1217 	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1218 	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1219 	nmk->worker_ctx.worker_private = cfg->worker_private;
1220 	nmk->worker_ctx.type = cfg->type;
1221 	nmk->affinity = -1;
1222 
1223 	/* attach kthread to user process (ptnetmap) */
1224 	nmk->attach_user = cfg->attach_user;
1225 
1226 	return nmk;
1227 }
1228 
1229 int
1230 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1231 {
1232 	struct proc *p = NULL;
1233 	int error = 0;
1234 
1235 	/* Temporarily disable this function as it is currently broken
1236 	 * and causes kernel crashes. The failure can be triggered by
1237 	 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
1238 	return EOPNOTSUPP;
1239 
1240 	if (nmk->worker)
1241 		return EBUSY;
1242 
1243 	/* check if we want to attach kthread to user process */
1244 	if (nmk->attach_user) {
1245 		nmk->worker_ctx.user_td = curthread;
1246 		p = curthread->td_proc;
1247 	}
1248 
1249 	/* enable kthread main loop */
1250 	nmk->run = 1;
1251 	/* create kthread */
1252 	if((error = kthread_add(nm_kctx_worker, nmk, p,
1253 			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1254 			nmk->worker_ctx.type))) {
1255 		goto err;
1256 	}
1257 
1258 	D("nm_kthread started td %p", nmk->worker);
1259 
1260 	return 0;
1261 err:
1262 	D("nm_kthread start failed err %d", error);
1263 	nmk->worker = NULL;
1264 	return error;
1265 }
1266 
1267 void
1268 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1269 {
1270 	if (!nmk->worker)
1271 		return;
1272 
1273 	/* tell to kthread to exit from main loop */
1274 	nmk->run = 0;
1275 
1276 	/* wake up kthread if it sleeps */
1277 	kthread_resume(nmk->worker);
1278 
1279 	nmk->worker = NULL;
1280 }
1281 
1282 void
1283 nm_os_kctx_destroy(struct nm_kctx *nmk)
1284 {
1285 	if (!nmk)
1286 		return;
1287 
1288 	if (nmk->worker)
1289 		nm_os_kctx_worker_stop(nmk);
1290 
1291 	free(nmk, M_DEVBUF);
1292 }
1293 
1294 /******************** kqueue support ****************/
1295 
1296 /*
1297  * In addition to calling selwakeuppri(), nm_os_selwakeup() also
1298  * needs to call KNOTE to wake up kqueue listeners.
1299  * We use a non-zero 'hint' argument to inform the netmap_knrw()
1300  * function that it is being called from 'nm_os_selwakeup'; this
1301  * is necessary because when netmap_knrw() is called by the kevent
1302  * subsystem (i.e. kevent_scan()) we also need to call netmap_poll().
1303  * The knote uses a private mutex associated to the 'si' (see struct
1304  * selinfo, struct nm_selinfo, and nm_os_selinfo_init).
1305  *
1306  * The netmap_kqfilter() function registers one or another f_event
1307  * depending on read or write mode. A pointer to the struct
1308  * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
1309  * be passed to netmap_poll(). We pass NULL as a third argument to
1310  * netmap_poll(), so that the latter only runs the txsync/rxsync
1311  * (if necessary), and skips the nm_os_selrecord() calls.
1312  */
1313 
1314 
1315 void
1316 nm_os_selwakeup(struct nm_selinfo *si)
1317 {
1318 	if (netmap_verbose)
1319 		nm_prinf("on knote %p", &si->si.si_note);
1320 	selwakeuppri(&si->si, PI_NET);
1321 	/* We use a non-zero hint to distinguish this notification call
1322 	 * from the call done in kqueue_scan(), which uses hint=0.
1323 	 */
1324 	KNOTE(&si->si.si_note, /*hint=*/0x100,
1325 	    mtx_owned(&si->m) ? KNF_LISTLOCKED : 0);
1326 }
1327 
1328 void
1329 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1330 {
1331 	selrecord(td, &si->si);
1332 }
1333 
1334 static void
1335 netmap_knrdetach(struct knote *kn)
1336 {
1337 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1338 	struct selinfo *si = &priv->np_si[NR_RX]->si;
1339 
1340 	D("remove selinfo %p", si);
1341 	knlist_remove(&si->si_note, kn, /*islocked=*/0);
1342 }
1343 
1344 static void
1345 netmap_knwdetach(struct knote *kn)
1346 {
1347 	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1348 	struct selinfo *si = &priv->np_si[NR_TX]->si;
1349 
1350 	D("remove selinfo %p", si);
1351 	knlist_remove(&si->si_note, kn, /*islocked=*/0);
1352 }
1353 
1354 /*
1355  * Callback triggered by netmap notifications (see netmap_notify()),
1356  * and by the application calling kevent(). In the former case we
1357  * just return 1 (events ready), since we are not able to do better.
1358  * In the latter case we use netmap_poll() to see which events are
1359  * ready.
1360  */
1361 static int
1362 netmap_knrw(struct knote *kn, long hint, int events)
1363 {
1364 	struct netmap_priv_d *priv;
1365 	int revents;
1366 
1367 	if (hint != 0) {
1368 		/* Called from netmap_notify(), typically from a
1369 		 * thread different from the one issuing kevent().
1370 		 * Assume we are ready. */
1371 		return 1;
1372 	}
1373 
1374 	/* Called from kevent(). */
1375 	priv = kn->kn_hook;
1376 	revents = netmap_poll(priv, events, /*thread=*/NULL);
1377 
1378 	return (events & revents) ? 1 : 0;
1379 }
1380 
1381 static int
1382 netmap_knread(struct knote *kn, long hint)
1383 {
1384 	return netmap_knrw(kn, hint, POLLIN);
1385 }
1386 
1387 static int
1388 netmap_knwrite(struct knote *kn, long hint)
1389 {
1390 	return netmap_knrw(kn, hint, POLLOUT);
1391 }
1392 
1393 static struct filterops netmap_rfiltops = {
1394 	.f_isfd = 1,
1395 	.f_detach = netmap_knrdetach,
1396 	.f_event = netmap_knread,
1397 };
1398 
1399 static struct filterops netmap_wfiltops = {
1400 	.f_isfd = 1,
1401 	.f_detach = netmap_knwdetach,
1402 	.f_event = netmap_knwrite,
1403 };
1404 
1405 
1406 /*
1407  * This is called when a thread invokes kevent() to record
1408  * a change in the configuration of the kqueue().
1409  * The 'priv' is the one associated to the open netmap device.
1410  */
1411 static int
1412 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1413 {
1414 	struct netmap_priv_d *priv;
1415 	int error;
1416 	struct netmap_adapter *na;
1417 	struct nm_selinfo *si;
1418 	int ev = kn->kn_filter;
1419 
1420 	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1421 		D("bad filter request %d", ev);
1422 		return 1;
1423 	}
1424 	error = devfs_get_cdevpriv((void**)&priv);
1425 	if (error) {
1426 		D("device not yet setup");
1427 		return 1;
1428 	}
1429 	na = priv->np_na;
1430 	if (na == NULL) {
1431 		D("no netmap adapter for this file descriptor");
1432 		return 1;
1433 	}
1434 	/* the si is indicated in the priv */
1435 	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1436 	kn->kn_fop = (ev == EVFILT_WRITE) ?
1437 		&netmap_wfiltops : &netmap_rfiltops;
1438 	kn->kn_hook = priv;
1439 	knlist_add(&si->si.si_note, kn, /*islocked=*/0);
1440 
1441 	return 0;
1442 }
1443 
1444 static int
1445 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1446 {
1447 	struct netmap_priv_d *priv;
1448 	if (devfs_get_cdevpriv((void **)&priv)) {
1449 		return POLLERR;
1450 	}
1451 	return netmap_poll(priv, events, td);
1452 }
1453 
1454 static int
1455 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1456 		int ffla __unused, struct thread *td)
1457 {
1458 	int error;
1459 	struct netmap_priv_d *priv;
1460 
1461 	CURVNET_SET(TD_TO_VNET(td));
1462 	error = devfs_get_cdevpriv((void **)&priv);
1463 	if (error) {
1464 		/* XXX ENOENT should be impossible, since the priv
1465 		 * is now created in the open */
1466 		if (error == ENOENT)
1467 			error = ENXIO;
1468 		goto out;
1469 	}
1470 	error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1471 out:
1472 	CURVNET_RESTORE();
1473 
1474 	return error;
1475 }
1476 
1477 void
1478 nm_os_onattach(struct ifnet *ifp)
1479 {
1480 	ifp->if_capabilities |= IFCAP_NETMAP;
1481 }
1482 
1483 void
1484 nm_os_onenter(struct ifnet *ifp)
1485 {
1486 	struct netmap_adapter *na = NA(ifp);
1487 
1488 	na->if_transmit = ifp->if_transmit;
1489 	ifp->if_transmit = netmap_transmit;
1490 	ifp->if_capenable |= IFCAP_NETMAP;
1491 }
1492 
1493 void
1494 nm_os_onexit(struct ifnet *ifp)
1495 {
1496 	struct netmap_adapter *na = NA(ifp);
1497 
1498 	ifp->if_transmit = na->if_transmit;
1499 	ifp->if_capenable &= ~IFCAP_NETMAP;
1500 }
1501 
1502 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1503 struct cdevsw netmap_cdevsw = {
1504 	.d_version = D_VERSION,
1505 	.d_name = "netmap",
1506 	.d_open = netmap_open,
1507 	.d_mmap_single = netmap_mmap_single,
1508 	.d_ioctl = freebsd_netmap_ioctl,
1509 	.d_poll = freebsd_netmap_poll,
1510 	.d_kqfilter = netmap_kqfilter,
1511 	.d_close = netmap_close,
1512 };
1513 /*--- end of kqueue support ----*/
1514 
1515 /*
1516  * Kernel entry point.
1517  *
1518  * Initialize/finalize the module and return.
1519  *
1520  * Return 0 on success, errno on failure.
1521  */
1522 static int
1523 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1524 {
1525 	int error = 0;
1526 
1527 	switch (event) {
1528 	case MOD_LOAD:
1529 		error = netmap_init();
1530 		break;
1531 
1532 	case MOD_UNLOAD:
1533 		/*
1534 		 * if some one is still using netmap,
1535 		 * then the module can not be unloaded.
1536 		 */
1537 		if (netmap_use_count) {
1538 			D("netmap module can not be unloaded - netmap_use_count: %d",
1539 					netmap_use_count);
1540 			error = EBUSY;
1541 			break;
1542 		}
1543 		netmap_fini();
1544 		break;
1545 
1546 	default:
1547 		error = EOPNOTSUPP;
1548 		break;
1549 	}
1550 
1551 	return (error);
1552 }
1553 
1554 #ifdef DEV_MODULE_ORDERED
1555 /*
1556  * The netmap module contains three drivers: (i) the netmap character device
1557  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1558  * device driver. The attach() routines of both (ii) and (iii) need the
1559  * lock of the global allocator, and such lock is initialized in netmap_init(),
1560  * which is part of (i).
1561  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1562  * the 'order' parameter of driver declaration macros. For (i), we specify
1563  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1564  * macros for (ii) and (iii).
1565  */
1566 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1567 #else /* !DEV_MODULE_ORDERED */
1568 DEV_MODULE(netmap, netmap_loader, NULL);
1569 #endif /* DEV_MODULE_ORDERED  */
1570 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1571 MODULE_VERSION(netmap, 1);
1572 /* reduce conditional code */
1573 // linux API, use for the knlist in FreeBSD
1574 /* use a private mutex for the knlist */
1575