xref: /freebsd/sys/dev/netmap/netmap.c (revision fab66680b3df4792fb0d3d13b2c9cdd88538d3d2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi
5  * Copyright (C) 2011-2016 Luigi Rizzo
6  * Copyright (C) 2011-2016 Giuseppe Lettieri
7  * Copyright (C) 2011-2016 Vincenzo Maffione
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *   1. Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *   2. Redistributions in binary form must reproduce the above copyright
16  *      notice, this list of conditions and the following disclaimer in the
17  *      documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 
33 /*
34  * $FreeBSD$
35  *
36  * This module supports memory mapped access to network devices,
37  * see netmap(4).
38  *
39  * The module uses a large, memory pool allocated by the kernel
40  * and accessible as mmapped memory by multiple userspace threads/processes.
41  * The memory pool contains packet buffers and "netmap rings",
42  * i.e. user-accessible copies of the interface's queues.
43  *
44  * Access to the network card works like this:
45  * 1. a process/thread issues one or more open() on /dev/netmap, to create
46  *    select()able file descriptor on which events are reported.
47  * 2. on each descriptor, the process issues an ioctl() to identify
48  *    the interface that should report events to the file descriptor.
49  * 3. on each descriptor, the process issues an mmap() request to
50  *    map the shared memory region within the process' address space.
51  *    The list of interesting queues is indicated by a location in
52  *    the shared memory region.
53  * 4. using the functions in the netmap(4) userspace API, a process
54  *    can look up the occupation state of a queue, access memory buffers,
55  *    and retrieve received packets or enqueue packets to transmit.
56  * 5. using some ioctl()s the process can synchronize the userspace view
57  *    of the queue with the actual status in the kernel. This includes both
58  *    receiving the notification of new packets, and transmitting new
59  *    packets on the output interface.
60  * 6. select() or poll() can be used to wait for events on individual
61  *    transmit or receive queues (or all queues for a given interface).
62  *
63 
64 		SYNCHRONIZATION (USER)
65 
66 The netmap rings and data structures may be shared among multiple
67 user threads or even independent processes.
68 Any synchronization among those threads/processes is delegated
69 to the threads themselves. Only one thread at a time can be in
70 a system call on the same netmap ring. The OS does not enforce
71 this and only guarantees against system crashes in case of
72 invalid usage.
73 
74 		LOCKING (INTERNAL)
75 
76 Within the kernel, access to the netmap rings is protected as follows:
77 
78 - a spinlock on each ring, to handle producer/consumer races on
79   RX rings attached to the host stack (against multiple host
80   threads writing from the host stack to the same ring),
81   and on 'destination' rings attached to a VALE switch
82   (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
83   protecting multiple active senders for the same destination)
84 
85 - an atomic variable to guarantee that there is at most one
86   instance of *_*xsync() on the ring at any time.
87   For rings connected to user file
88   descriptors, an atomic_test_and_set() protects this, and the
89   lock on the ring is not actually used.
90   For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
91   is also used to prevent multiple executions (the driver might indeed
92   already guarantee this).
93   For NIC TX rings connected to a VALE switch, the lock arbitrates
94   access to the queue (both when allocating buffers and when pushing
95   them out).
96 
97 - *xsync() should be protected against initializations of the card.
98   On FreeBSD most devices have the reset routine protected by
99   a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
100   the RING protection on rx_reset(), this should be added.
101 
102   On linux there is an external lock on the tx path, which probably
103   also arbitrates access to the reset routine. XXX to be revised
104 
105 - a per-interface core_lock protecting access from the host stack
106   while interfaces may be detached from netmap mode.
107   XXX there should be no need for this lock if we detach the interfaces
108   only while they are down.
109 
110 
111 --- VALE SWITCH ---
112 
113 NMG_LOCK() serializes all modifications to switches and ports.
114 A switch cannot be deleted until all ports are gone.
115 
116 For each switch, an SX lock (RWlock on linux) protects
117 deletion of ports. When configuring or deleting a new port, the
118 lock is acquired in exclusive mode (after holding NMG_LOCK).
119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
120 The lock is held throughout the entire forwarding cycle,
121 during which the thread may incur in a page fault.
122 Hence it is important that sleepable shared locks are used.
123 
124 On the rx ring, the per-port lock is grabbed initially to reserve
125 a number of slot in the ring, then the lock is released,
126 packets are copied from source to destination, and then
127 the lock is acquired again and the receive ring is updated.
128 (A similar thing is done on the tx ring for NIC and host stack
129 ports attached to the switch)
130 
131  */
132 
133 
134 /* --- internals ----
135  *
136  * Roadmap to the code that implements the above.
137  *
138  * > 1. a process/thread issues one or more open() on /dev/netmap, to create
139  * >    select()able file descriptor on which events are reported.
140  *
141  *  	Internally, we allocate a netmap_priv_d structure, that will be
142  *  	initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
143  *  	structure for each open().
144  *
145  *      os-specific:
146  *  	    FreeBSD: see netmap_open() (netmap_freebsd.c)
147  *  	    linux:   see linux_netmap_open() (netmap_linux.c)
148  *
149  * > 2. on each descriptor, the process issues an ioctl() to identify
150  * >    the interface that should report events to the file descriptor.
151  *
152  * 	Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
153  * 	Most important things happen in netmap_get_na() and
154  * 	netmap_do_regif(), called from there. Additional details can be
155  * 	found in the comments above those functions.
156  *
157  * 	In all cases, this action creates/takes-a-reference-to a
158  * 	netmap_*_adapter describing the port, and allocates a netmap_if
159  * 	and all necessary netmap rings, filling them with netmap buffers.
160  *
161  *      In this phase, the sync callbacks for each ring are set (these are used
162  *      in steps 5 and 6 below).  The callbacks depend on the type of adapter.
163  *      The adapter creation/initialization code puts them in the
164  * 	netmap_adapter (fields na->nm_txsync and na->nm_rxsync).  Then, they
165  * 	are copied from there to the netmap_kring's during netmap_do_regif(), by
166  * 	the nm_krings_create() callback.  All the nm_krings_create callbacks
167  * 	actually call netmap_krings_create() to perform this and the other
168  * 	common stuff. netmap_krings_create() also takes care of the host rings,
169  * 	if needed, by setting their sync callbacks appropriately.
170  *
171  * 	Additional actions depend on the kind of netmap_adapter that has been
172  * 	registered:
173  *
174  * 	- netmap_hw_adapter:  	     [netmap.c]
175  * 	     This is a system netdev/ifp with native netmap support.
176  * 	     The ifp is detached from the host stack by redirecting:
177  * 	       - transmissions (from the network stack) to netmap_transmit()
178  * 	       - receive notifications to the nm_notify() callback for
179  * 	         this adapter. The callback is normally netmap_notify(), unless
180  * 	         the ifp is attached to a bridge using bwrap, in which case it
181  * 	         is netmap_bwrap_intr_notify().
182  *
183  * 	- netmap_generic_adapter:      [netmap_generic.c]
184  * 	      A system netdev/ifp without native netmap support.
185  *
186  * 	(the decision about native/non native support is taken in
187  * 	 netmap_get_hw_na(), called by netmap_get_na())
188  *
189  * 	- netmap_vp_adapter 		[netmap_vale.c]
190  * 	      Returned by netmap_get_bdg_na().
191  * 	      This is a persistent or ephemeral VALE port. Ephemeral ports
192  * 	      are created on the fly if they don't already exist, and are
193  * 	      always attached to a bridge.
194  * 	      Persistent VALE ports must must be created separately, and i
195  * 	      then attached like normal NICs. The NIOCREGIF we are examining
196  * 	      will find them only if they had previosly been created and
197  * 	      attached (see VALE_CTL below).
198  *
199  * 	- netmap_pipe_adapter 	      [netmap_pipe.c]
200  * 	      Returned by netmap_get_pipe_na().
201  * 	      Both pipe ends are created, if they didn't already exist.
202  *
203  * 	- netmap_monitor_adapter      [netmap_monitor.c]
204  * 	      Returned by netmap_get_monitor_na().
205  * 	      If successful, the nm_sync callbacks of the monitored adapter
206  * 	      will be intercepted by the returned monitor.
207  *
208  * 	- netmap_bwrap_adapter	      [netmap_vale.c]
209  * 	      Cannot be obtained in this way, see VALE_CTL below
210  *
211  *
212  * 	os-specific:
213  * 	    linux: we first go through linux_netmap_ioctl() to
214  * 	           adapt the FreeBSD interface to the linux one.
215  *
216  *
217  * > 3. on each descriptor, the process issues an mmap() request to
218  * >    map the shared memory region within the process' address space.
219  * >    The list of interesting queues is indicated by a location in
220  * >    the shared memory region.
221  *
222  *      os-specific:
223  *  	    FreeBSD: netmap_mmap_single (netmap_freebsd.c).
224  *  	    linux:   linux_netmap_mmap (netmap_linux.c).
225  *
226  * > 4. using the functions in the netmap(4) userspace API, a process
227  * >    can look up the occupation state of a queue, access memory buffers,
228  * >    and retrieve received packets or enqueue packets to transmit.
229  *
230  * 	these actions do not involve the kernel.
231  *
232  * > 5. using some ioctl()s the process can synchronize the userspace view
233  * >    of the queue with the actual status in the kernel. This includes both
234  * >    receiving the notification of new packets, and transmitting new
235  * >    packets on the output interface.
236  *
237  * 	These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
238  * 	cases. They invoke the nm_sync callbacks on the netmap_kring
239  * 	structures, as initialized in step 2 and maybe later modified
240  * 	by a monitor. Monitors, however, will always call the original
241  * 	callback before doing anything else.
242  *
243  *
244  * > 6. select() or poll() can be used to wait for events on individual
245  * >    transmit or receive queues (or all queues for a given interface).
246  *
247  * 	Implemented in netmap_poll(). This will call the same nm_sync()
248  * 	callbacks as in step 5 above.
249  *
250  * 	os-specific:
251  * 		linux: we first go through linux_netmap_poll() to adapt
252  * 		       the FreeBSD interface to the linux one.
253  *
254  *
255  *  ----  VALE_CTL -----
256  *
257  *  VALE switches are controlled by issuing a NIOCREGIF with a non-null
258  *  nr_cmd in the nmreq structure. These subcommands are handled by
259  *  netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
260  *  and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
261  *  subcommands, respectively.
262  *
263  *  Any network interface known to the system (including a persistent VALE
264  *  port) can be attached to a VALE switch by issuing the
265  *  NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
266  *  look exactly like ephemeral VALE ports (as created in step 2 above).  The
267  *  attachment of other interfaces, instead, requires the creation of a
268  *  netmap_bwrap_adapter.  Moreover, the attached interface must be put in
269  *  netmap mode. This may require the creation of a netmap_generic_adapter if
270  *  we have no native support for the interface, or if generic adapters have
271  *  been forced by sysctl.
272  *
273  *  Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
274  *  called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
275  *  callback.  In the case of the bwrap, the callback creates the
276  *  netmap_bwrap_adapter.  The initialization of the bwrap is then
277  *  completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
278  *  callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
279  *  A generic adapter for the wrapped ifp will be created if needed, when
280  *  netmap_get_bdg_na() calls netmap_get_hw_na().
281  *
282  *
283  *  ---- DATAPATHS -----
284  *
285  *              -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
286  *
287  *    na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
288  *
289  *    - tx from netmap userspace:
290  *	 concurrently:
291  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
292  *                kring->nm_sync() == DEVICE_netmap_txsync()
293  *           2) device interrupt handler
294  *                na->nm_notify()  == netmap_notify()
295  *    - rx from netmap userspace:
296  *       concurrently:
297  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
298  *                kring->nm_sync() == DEVICE_netmap_rxsync()
299  *           2) device interrupt handler
300  *                na->nm_notify()  == netmap_notify()
301  *    - rx from host stack
302  *       concurrently:
303  *           1) host stack
304  *                netmap_transmit()
305  *                  na->nm_notify  == netmap_notify()
306  *           2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
307  *                kring->nm_sync() == netmap_rxsync_from_host
308  *                  netmap_rxsync_from_host(na, NULL, NULL)
309  *    - tx to host stack
310  *           ioctl(NIOCTXSYNC)/netmap_poll() in process context
311  *             kring->nm_sync() == netmap_txsync_to_host
312  *               netmap_txsync_to_host(na)
313  *                 nm_os_send_up()
314  *                   FreeBSD: na->if_input() == ether_input()
315  *                   linux: netif_rx() with NM_MAGIC_PRIORITY_RX
316  *
317  *
318  *               -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
319  *
320  *    na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
321  *
322  *    - tx from netmap userspace:
323  *       concurrently:
324  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
325  *               kring->nm_sync() == generic_netmap_txsync()
326  *                   nm_os_generic_xmit_frame()
327  *                       linux:   dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
328  *                           ifp->ndo_start_xmit == generic_ndo_start_xmit()
329  *                               gna->save_start_xmit == orig. dev. start_xmit
330  *                       FreeBSD: na->if_transmit() == orig. dev if_transmit
331  *           2) generic_mbuf_destructor()
332  *                   na->nm_notify() == netmap_notify()
333  *    - rx from netmap userspace:
334  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
335  *               kring->nm_sync() == generic_netmap_rxsync()
336  *                   mbq_safe_dequeue()
337  *           2) device driver
338  *               generic_rx_handler()
339  *                   mbq_safe_enqueue()
340  *                   na->nm_notify() == netmap_notify()
341  *    - rx from host stack
342  *        FreeBSD: same as native
343  *        Linux: same as native except:
344  *           1) host stack
345  *               dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
346  *                   ifp->ndo_start_xmit == generic_ndo_start_xmit()
347  *                       netmap_transmit()
348  *                           na->nm_notify() == netmap_notify()
349  *    - tx to host stack (same as native):
350  *
351  *
352  *                           -= VALE =-
353  *
354  *   INCOMING:
355  *
356  *      - VALE ports:
357  *          ioctl(NIOCTXSYNC)/netmap_poll() in process context
358  *              kring->nm_sync() == netmap_vp_txsync()
359  *
360  *      - system device with native support:
361  *         from cable:
362  *             interrupt
363  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
364  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
365  *                     netmap_vp_txsync()
366  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
367  *         from host stack:
368  *             netmap_transmit()
369  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
370  *                     kring->nm_sync() == netmap_rxsync_from_host()
371  *                     netmap_vp_txsync()
372  *
373  *      - system device with generic support:
374  *         from device driver:
375  *            generic_rx_handler()
376  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
377  *                     kring->nm_sync() == generic_netmap_rxsync()
378  *                     netmap_vp_txsync()
379  *                     kring->nm_sync() == generic_netmap_rxsync()
380  *         from host stack:
381  *            netmap_transmit()
382  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
383  *                     kring->nm_sync() == netmap_rxsync_from_host()
384  *                     netmap_vp_txsync()
385  *
386  *   (all cases) --> nm_bdg_flush()
387  *                      dest_na->nm_notify() == (see below)
388  *
389  *   OUTGOING:
390  *
391  *      - VALE ports:
392  *         concurrently:
393  *             1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
394  *                    kring->nm_sync() == netmap_vp_rxsync()
395  *             2) from nm_bdg_flush()
396  *                    na->nm_notify() == netmap_notify()
397  *
398  *      - system device with native support:
399  *          to cable:
400  *             na->nm_notify() == netmap_bwrap_notify()
401  *                 netmap_vp_rxsync()
402  *                 kring->nm_sync() == DEVICE_netmap_txsync()
403  *                 netmap_vp_rxsync()
404  *          to host stack:
405  *                 netmap_vp_rxsync()
406  *                 kring->nm_sync() == netmap_txsync_to_host
407  *                 netmap_vp_rxsync_locked()
408  *
409  *      - system device with generic adapter:
410  *          to device driver:
411  *             na->nm_notify() == netmap_bwrap_notify()
412  *                 netmap_vp_rxsync()
413  *                 kring->nm_sync() == generic_netmap_txsync()
414  *                 netmap_vp_rxsync()
415  *          to host stack:
416  *                 netmap_vp_rxsync()
417  *                 kring->nm_sync() == netmap_txsync_to_host
418  *                 netmap_vp_rxsync()
419  *
420  */
421 
422 /*
423  * OS-specific code that is used only within this file.
424  * Other OS-specific code that must be accessed by drivers
425  * is present in netmap_kern.h
426  */
427 
428 #if defined(__FreeBSD__)
429 #include <sys/cdefs.h> /* prerequisite */
430 #include <sys/types.h>
431 #include <sys/errno.h>
432 #include <sys/param.h>	/* defines used in kernel.h */
433 #include <sys/kernel.h>	/* types used in module initialization */
434 #include <sys/conf.h>	/* cdevsw struct, UID, GID */
435 #include <sys/filio.h>	/* FIONBIO */
436 #include <sys/sockio.h>
437 #include <sys/socketvar.h>	/* struct socket */
438 #include <sys/malloc.h>
439 #include <sys/poll.h>
440 #include <sys/rwlock.h>
441 #include <sys/socket.h> /* sockaddrs */
442 #include <sys/selinfo.h>
443 #include <sys/sysctl.h>
444 #include <sys/jail.h>
445 #include <net/vnet.h>
446 #include <net/if.h>
447 #include <net/if_var.h>
448 #include <net/bpf.h>		/* BIOCIMMEDIATE */
449 #include <machine/bus.h>	/* bus_dmamap_* */
450 #include <sys/endian.h>
451 #include <sys/refcount.h>
452 #include <net/ethernet.h>	/* ETHER_BPF_MTAP */
453 
454 
455 #elif defined(linux)
456 
457 #include "bsd_glue.h"
458 
459 #elif defined(__APPLE__)
460 
461 #warning OSX support is only partial
462 #include "osx_glue.h"
463 
464 #elif defined (_WIN32)
465 
466 #include "win_glue.h"
467 
468 #else
469 
470 #error	Unsupported platform
471 
472 #endif /* unsupported */
473 
474 /*
475  * common headers
476  */
477 #include <net/netmap.h>
478 #include <dev/netmap/netmap_kern.h>
479 #include <dev/netmap/netmap_mem2.h>
480 
481 
482 /* user-controlled variables */
483 int netmap_verbose;
484 #ifdef CONFIG_NETMAP_DEBUG
485 int netmap_debug;
486 #endif /* CONFIG_NETMAP_DEBUG */
487 
488 static int netmap_no_timestamp; /* don't timestamp on rxsync */
489 int netmap_no_pendintr = 1;
490 int netmap_txsync_retry = 2;
491 static int netmap_fwd = 0;	/* force transparent forwarding */
492 
493 /*
494  * netmap_admode selects the netmap mode to use.
495  * Invalid values are reset to NETMAP_ADMODE_BEST
496  */
497 enum {	NETMAP_ADMODE_BEST = 0,	/* use native, fallback to generic */
498 	NETMAP_ADMODE_NATIVE,	/* either native or none */
499 	NETMAP_ADMODE_GENERIC,	/* force generic */
500 	NETMAP_ADMODE_LAST };
501 static int netmap_admode = NETMAP_ADMODE_BEST;
502 
503 /* netmap_generic_mit controls mitigation of RX notifications for
504  * the generic netmap adapter. The value is a time interval in
505  * nanoseconds. */
506 int netmap_generic_mit = 100*1000;
507 
508 /* We use by default netmap-aware qdiscs with generic netmap adapters,
509  * even if there can be a little performance hit with hardware NICs.
510  * However, using the qdisc is the safer approach, for two reasons:
511  * 1) it prevents non-fifo qdiscs to break the TX notification
512  *    scheme, which is based on mbuf destructors when txqdisc is
513  *    not used.
514  * 2) it makes it possible to transmit over software devices that
515  *    change skb->dev, like bridge, veth, ...
516  *
517  * Anyway users looking for the best performance should
518  * use native adapters.
519  */
520 #ifdef linux
521 int netmap_generic_txqdisc = 1;
522 #endif
523 
524 /* Default number of slots and queues for generic adapters. */
525 int netmap_generic_ringsize = 1024;
526 int netmap_generic_rings = 1;
527 
528 /* Non-zero to enable checksum offloading in NIC drivers */
529 int netmap_generic_hwcsum = 0;
530 
531 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
532 int ptnet_vnet_hdr = 1;
533 
534 /*
535  * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
536  * in some other operating systems
537  */
538 SYSBEGIN(main_init);
539 
540 SYSCTL_DECL(_dev_netmap);
541 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
542 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
543 		CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
544 #ifdef CONFIG_NETMAP_DEBUG
545 SYSCTL_INT(_dev_netmap, OID_AUTO, debug,
546 		CTLFLAG_RW, &netmap_debug, 0, "Debug messages");
547 #endif /* CONFIG_NETMAP_DEBUG */
548 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
549 		CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
551 		0, "Always look for new received packets.");
552 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
553 		&netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
554 
555 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
556 		"Force NR_FORWARD mode");
557 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
558 		"Adapter mode. 0 selects the best option available,"
559 		"1 forces native adapter, 2 forces emulated adapter");
560 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum,
561 		0, "Hardware checksums. 0 to disable checksum generation by the NIC (default),"
562 		"1 to enable checksum generation by the NIC");
563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
564 		0, "RX notification interval in nanoseconds");
565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
566 		&netmap_generic_ringsize, 0,
567 		"Number of per-ring slots for emulated netmap mode");
568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
569 		&netmap_generic_rings, 0,
570 		"Number of TX/RX queues for emulated netmap adapters");
571 #ifdef linux
572 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
573 		&netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
574 #endif
575 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
576 		0, "Allow ptnet devices to use virtio-net headers");
577 
578 SYSEND;
579 
580 NMG_LOCK_T	netmap_global_lock;
581 
582 /*
583  * mark the ring as stopped, and run through the locks
584  * to make sure other users get to see it.
585  * stopped must be either NR_KR_STOPPED (for unbounded stop)
586  * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
587  */
588 static void
589 netmap_disable_ring(struct netmap_kring *kr, int stopped)
590 {
591 	nm_kr_stop(kr, stopped);
592 	// XXX check if nm_kr_stop is sufficient
593 	mtx_lock(&kr->q_lock);
594 	mtx_unlock(&kr->q_lock);
595 	nm_kr_put(kr);
596 }
597 
598 /* stop or enable a single ring */
599 void
600 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
601 {
602 	if (stopped)
603 		netmap_disable_ring(NMR(na, t)[ring_id], stopped);
604 	else
605 		NMR(na, t)[ring_id]->nkr_stopped = 0;
606 }
607 
608 
609 /* stop or enable all the rings of na */
610 void
611 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
612 {
613 	int i;
614 	enum txrx t;
615 
616 	if (!nm_netmap_on(na))
617 		return;
618 
619 	for_rx_tx(t) {
620 		for (i = 0; i < netmap_real_rings(na, t); i++) {
621 			netmap_set_ring(na, i, t, stopped);
622 		}
623 	}
624 }
625 
626 /*
627  * Convenience function used in drivers.  Waits for current txsync()s/rxsync()s
628  * to finish and prevents any new one from starting.  Call this before turning
629  * netmap mode off, or before removing the hardware rings (e.g., on module
630  * onload).
631  */
632 void
633 netmap_disable_all_rings(struct ifnet *ifp)
634 {
635 	if (NM_NA_VALID(ifp)) {
636 		netmap_set_all_rings(NA(ifp), NM_KR_STOPPED);
637 	}
638 }
639 
640 /*
641  * Convenience function used in drivers.  Re-enables rxsync and txsync on the
642  * adapter's rings In linux drivers, this should be placed near each
643  * napi_enable().
644  */
645 void
646 netmap_enable_all_rings(struct ifnet *ifp)
647 {
648 	if (NM_NA_VALID(ifp)) {
649 		netmap_set_all_rings(NA(ifp), 0 /* enabled */);
650 	}
651 }
652 
653 void
654 netmap_make_zombie(struct ifnet *ifp)
655 {
656 	if (NM_NA_VALID(ifp)) {
657 		struct netmap_adapter *na = NA(ifp);
658 		netmap_set_all_rings(na, NM_KR_LOCKED);
659 		na->na_flags |= NAF_ZOMBIE;
660 		netmap_set_all_rings(na, 0);
661 	}
662 }
663 
664 void
665 netmap_undo_zombie(struct ifnet *ifp)
666 {
667 	if (NM_NA_VALID(ifp)) {
668 		struct netmap_adapter *na = NA(ifp);
669 		if (na->na_flags & NAF_ZOMBIE) {
670 			netmap_set_all_rings(na, NM_KR_LOCKED);
671 			na->na_flags &= ~NAF_ZOMBIE;
672 			netmap_set_all_rings(na, 0);
673 		}
674 	}
675 }
676 
677 /*
678  * generic bound_checking function
679  */
680 u_int
681 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
682 {
683 	u_int oldv = *v;
684 	const char *op = NULL;
685 
686 	if (dflt < lo)
687 		dflt = lo;
688 	if (dflt > hi)
689 		dflt = hi;
690 	if (oldv < lo) {
691 		*v = dflt;
692 		op = "Bump";
693 	} else if (oldv > hi) {
694 		*v = hi;
695 		op = "Clamp";
696 	}
697 	if (op && msg)
698 		nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv);
699 	return *v;
700 }
701 
702 
703 /*
704  * packet-dump function, user-supplied or static buffer.
705  * The destination buffer must be at least 30+4*len
706  */
707 const char *
708 nm_dump_buf(char *p, int len, int lim, char *dst)
709 {
710 	static char _dst[8192];
711 	int i, j, i0;
712 	static char hex[] ="0123456789abcdef";
713 	char *o;	/* output position */
714 
715 #define P_HI(x)	hex[((x) & 0xf0)>>4]
716 #define P_LO(x)	hex[((x) & 0xf)]
717 #define P_C(x)	((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
718 	if (!dst)
719 		dst = _dst;
720 	if (lim <= 0 || lim > len)
721 		lim = len;
722 	o = dst;
723 	sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
724 	o += strlen(o);
725 	/* hexdump routine */
726 	for (i = 0; i < lim; ) {
727 		sprintf(o, "%5d: ", i);
728 		o += strlen(o);
729 		memset(o, ' ', 48);
730 		i0 = i;
731 		for (j=0; j < 16 && i < lim; i++, j++) {
732 			o[j*3] = P_HI(p[i]);
733 			o[j*3+1] = P_LO(p[i]);
734 		}
735 		i = i0;
736 		for (j=0; j < 16 && i < lim; i++, j++)
737 			o[j + 48] = P_C(p[i]);
738 		o[j+48] = '\n';
739 		o += j+49;
740 	}
741 	*o = '\0';
742 #undef P_HI
743 #undef P_LO
744 #undef P_C
745 	return dst;
746 }
747 
748 
749 /*
750  * Fetch configuration from the device, to cope with dynamic
751  * reconfigurations after loading the module.
752  */
753 /* call with NMG_LOCK held */
754 int
755 netmap_update_config(struct netmap_adapter *na)
756 {
757 	struct nm_config_info info;
758 
759 	bzero(&info, sizeof(info));
760 	if (na->nm_config == NULL ||
761 	    na->nm_config(na, &info)) {
762 		/* take whatever we had at init time */
763 		info.num_tx_rings = na->num_tx_rings;
764 		info.num_tx_descs = na->num_tx_desc;
765 		info.num_rx_rings = na->num_rx_rings;
766 		info.num_rx_descs = na->num_rx_desc;
767 		info.rx_buf_maxsize = na->rx_buf_maxsize;
768 	}
769 
770 	if (na->num_tx_rings == info.num_tx_rings &&
771 	    na->num_tx_desc == info.num_tx_descs &&
772 	    na->num_rx_rings == info.num_rx_rings &&
773 	    na->num_rx_desc == info.num_rx_descs &&
774 	    na->rx_buf_maxsize == info.rx_buf_maxsize)
775 		return 0; /* nothing changed */
776 	if (na->active_fds == 0) {
777 		na->num_tx_rings = info.num_tx_rings;
778 		na->num_tx_desc = info.num_tx_descs;
779 		na->num_rx_rings = info.num_rx_rings;
780 		na->num_rx_desc = info.num_rx_descs;
781 		na->rx_buf_maxsize = info.rx_buf_maxsize;
782 		if (netmap_verbose)
783 			nm_prinf("configuration changed for %s: txring %d x %d, "
784 				"rxring %d x %d, rxbufsz %d",
785 				na->name, na->num_tx_rings, na->num_tx_desc,
786 				na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
787 		return 0;
788 	}
789 	nm_prerr("WARNING: configuration changed for %s while active: "
790 		"txring %d x %d, rxring %d x %d, rxbufsz %d",
791 		na->name, info.num_tx_rings, info.num_tx_descs,
792 		info.num_rx_rings, info.num_rx_descs,
793 		info.rx_buf_maxsize);
794 	return 1;
795 }
796 
797 /* nm_sync callbacks for the host rings */
798 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
799 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
800 
801 /* create the krings array and initialize the fields common to all adapters.
802  * The array layout is this:
803  *
804  *                    +----------+
805  * na->tx_rings ----->|          | \
806  *                    |          |  } na->num_tx_ring
807  *                    |          | /
808  *                    +----------+
809  *                    |          |    host tx kring
810  * na->rx_rings ----> +----------+
811  *                    |          | \
812  *                    |          |  } na->num_rx_rings
813  *                    |          | /
814  *                    +----------+
815  *                    |          |    host rx kring
816  *                    +----------+
817  * na->tailroom ----->|          | \
818  *                    |          |  } tailroom bytes
819  *                    |          | /
820  *                    +----------+
821  *
822  * Note: for compatibility, host krings are created even when not needed.
823  * The tailroom space is currently used by vale ports for allocating leases.
824  */
825 /* call with NMG_LOCK held */
826 int
827 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
828 {
829 	u_int i, len, ndesc;
830 	struct netmap_kring *kring;
831 	u_int n[NR_TXRX];
832 	enum txrx t;
833 	int err = 0;
834 
835 	if (na->tx_rings != NULL) {
836 		if (netmap_debug & NM_DEBUG_ON)
837 			nm_prerr("warning: krings were already created");
838 		return 0;
839 	}
840 
841 	/* account for the (possibly fake) host rings */
842 	n[NR_TX] = netmap_all_rings(na, NR_TX);
843 	n[NR_RX] = netmap_all_rings(na, NR_RX);
844 
845 	len = (n[NR_TX] + n[NR_RX]) *
846 		(sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
847 		+ tailroom;
848 
849 	na->tx_rings = nm_os_malloc((size_t)len);
850 	if (na->tx_rings == NULL) {
851 		nm_prerr("Cannot allocate krings");
852 		return ENOMEM;
853 	}
854 	na->rx_rings = na->tx_rings + n[NR_TX];
855 	na->tailroom = na->rx_rings + n[NR_RX];
856 
857 	/* link the krings in the krings array */
858 	kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
859 	for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
860 		na->tx_rings[i] = kring;
861 		kring++;
862 	}
863 
864 	/*
865 	 * All fields in krings are 0 except the one initialized below.
866 	 * but better be explicit on important kring fields.
867 	 */
868 	for_rx_tx(t) {
869 		ndesc = nma_get_ndesc(na, t);
870 		for (i = 0; i < n[t]; i++) {
871 			kring = NMR(na, t)[i];
872 			bzero(kring, sizeof(*kring));
873 			kring->notify_na = na;
874 			kring->ring_id = i;
875 			kring->tx = t;
876 			kring->nkr_num_slots = ndesc;
877 			kring->nr_mode = NKR_NETMAP_OFF;
878 			kring->nr_pending_mode = NKR_NETMAP_OFF;
879 			if (i < nma_get_nrings(na, t)) {
880 				kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
881 			} else {
882 				if (!(na->na_flags & NAF_HOST_RINGS))
883 					kring->nr_kflags |= NKR_FAKERING;
884 				kring->nm_sync = (t == NR_TX ?
885 						netmap_txsync_to_host:
886 						netmap_rxsync_from_host);
887 			}
888 			kring->nm_notify = na->nm_notify;
889 			kring->rhead = kring->rcur = kring->nr_hwcur = 0;
890 			/*
891 			 * IMPORTANT: Always keep one slot empty.
892 			 */
893 			kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
894 			snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
895 					nm_txrx2str(t), i);
896 			nm_prdis("ktx %s h %d c %d t %d",
897 				kring->name, kring->rhead, kring->rcur, kring->rtail);
898 			err = nm_os_selinfo_init(&kring->si, kring->name);
899 			if (err) {
900 				netmap_krings_delete(na);
901 				return err;
902 			}
903 			mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
904 			kring->na = na;	/* setting this field marks the mutex as initialized */
905 		}
906 		err = nm_os_selinfo_init(&na->si[t], na->name);
907 		if (err) {
908 			netmap_krings_delete(na);
909 			return err;
910 		}
911 	}
912 
913 	return 0;
914 }
915 
916 
917 /* undo the actions performed by netmap_krings_create */
918 /* call with NMG_LOCK held */
919 void
920 netmap_krings_delete(struct netmap_adapter *na)
921 {
922 	struct netmap_kring **kring = na->tx_rings;
923 	enum txrx t;
924 
925 	if (na->tx_rings == NULL) {
926 		if (netmap_debug & NM_DEBUG_ON)
927 			nm_prerr("warning: krings were already deleted");
928 		return;
929 	}
930 
931 	for_rx_tx(t)
932 		nm_os_selinfo_uninit(&na->si[t]);
933 
934 	/* we rely on the krings layout described above */
935 	for ( ; kring != na->tailroom; kring++) {
936 		if ((*kring)->na != NULL)
937 			mtx_destroy(&(*kring)->q_lock);
938 		nm_os_selinfo_uninit(&(*kring)->si);
939 	}
940 	nm_os_free(na->tx_rings);
941 	na->tx_rings = na->rx_rings = na->tailroom = NULL;
942 }
943 
944 
945 /*
946  * Destructor for NIC ports. They also have an mbuf queue
947  * on the rings connected to the host so we need to purge
948  * them first.
949  */
950 /* call with NMG_LOCK held */
951 void
952 netmap_hw_krings_delete(struct netmap_adapter *na)
953 {
954 	u_int lim = netmap_real_rings(na, NR_RX), i;
955 
956 	for (i = nma_get_nrings(na, NR_RX); i < lim; i++) {
957 		struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue;
958 		nm_prdis("destroy sw mbq with len %d", mbq_len(q));
959 		mbq_purge(q);
960 		mbq_safe_fini(q);
961 	}
962 	netmap_krings_delete(na);
963 }
964 
965 static void
966 netmap_mem_drop(struct netmap_adapter *na)
967 {
968 	int last = netmap_mem_deref(na->nm_mem, na);
969 	/* if the native allocator had been overrided on regif,
970 	 * restore it now and drop the temporary one
971 	 */
972 	if (last && na->nm_mem_prev) {
973 		netmap_mem_put(na->nm_mem);
974 		na->nm_mem = na->nm_mem_prev;
975 		na->nm_mem_prev = NULL;
976 	}
977 }
978 
979 /*
980  * Undo everything that was done in netmap_do_regif(). In particular,
981  * call nm_register(ifp,0) to stop netmap mode on the interface and
982  * revert to normal operation.
983  */
984 /* call with NMG_LOCK held */
985 static void netmap_unset_ringid(struct netmap_priv_d *);
986 static void netmap_krings_put(struct netmap_priv_d *);
987 void
988 netmap_do_unregif(struct netmap_priv_d *priv)
989 {
990 	struct netmap_adapter *na = priv->np_na;
991 
992 	NMG_LOCK_ASSERT();
993 	na->active_fds--;
994 	/* unset nr_pending_mode and possibly release exclusive mode */
995 	netmap_krings_put(priv);
996 
997 #ifdef	WITH_MONITOR
998 	/* XXX check whether we have to do something with monitor
999 	 * when rings change nr_mode. */
1000 	if (na->active_fds <= 0) {
1001 		/* walk through all the rings and tell any monitor
1002 		 * that the port is going to exit netmap mode
1003 		 */
1004 		netmap_monitor_stop(na);
1005 	}
1006 #endif
1007 
1008 	if (na->active_fds <= 0 || nm_kring_pending(priv)) {
1009 		na->nm_register(na, 0);
1010 	}
1011 
1012 	/* delete rings and buffers that are no longer needed */
1013 	netmap_mem_rings_delete(na);
1014 
1015 	if (na->active_fds <= 0) {	/* last instance */
1016 		/*
1017 		 * (TO CHECK) We enter here
1018 		 * when the last reference to this file descriptor goes
1019 		 * away. This means we cannot have any pending poll()
1020 		 * or interrupt routine operating on the structure.
1021 		 * XXX The file may be closed in a thread while
1022 		 * another thread is using it.
1023 		 * Linux keeps the file opened until the last reference
1024 		 * by any outstanding ioctl/poll or mmap is gone.
1025 		 * FreeBSD does not track mmap()s (but we do) and
1026 		 * wakes up any sleeping poll(). Need to check what
1027 		 * happens if the close() occurs while a concurrent
1028 		 * syscall is running.
1029 		 */
1030 		if (netmap_debug & NM_DEBUG_ON)
1031 			nm_prinf("deleting last instance for %s", na->name);
1032 
1033 		if (nm_netmap_on(na)) {
1034 			nm_prerr("BUG: netmap on while going to delete the krings");
1035 		}
1036 
1037 		na->nm_krings_delete(na);
1038 
1039 		/* restore the default number of host tx and rx rings */
1040 		na->num_host_tx_rings = 1;
1041 		na->num_host_rx_rings = 1;
1042 	}
1043 
1044 	/* possibily decrement counter of tx_si/rx_si users */
1045 	netmap_unset_ringid(priv);
1046 	/* delete the nifp */
1047 	netmap_mem_if_delete(na, priv->np_nifp);
1048 	/* drop the allocator */
1049 	netmap_mem_drop(na);
1050 	/* mark the priv as unregistered */
1051 	priv->np_na = NULL;
1052 	priv->np_nifp = NULL;
1053 }
1054 
1055 struct netmap_priv_d*
1056 netmap_priv_new(void)
1057 {
1058 	struct netmap_priv_d *priv;
1059 
1060 	priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1061 	if (priv == NULL)
1062 		return NULL;
1063 	priv->np_refs = 1;
1064 	nm_os_get_module();
1065 	return priv;
1066 }
1067 
1068 /*
1069  * Destructor of the netmap_priv_d, called when the fd is closed
1070  * Action: undo all the things done by NIOCREGIF,
1071  * On FreeBSD we need to track whether there are active mmap()s,
1072  * and we use np_active_mmaps for that. On linux, the field is always 0.
1073  * Return: 1 if we can free priv, 0 otherwise.
1074  *
1075  */
1076 /* call with NMG_LOCK held */
1077 void
1078 netmap_priv_delete(struct netmap_priv_d *priv)
1079 {
1080 	struct netmap_adapter *na = priv->np_na;
1081 
1082 	/* number of active references to this fd */
1083 	if (--priv->np_refs > 0) {
1084 		return;
1085 	}
1086 	nm_os_put_module();
1087 	if (na) {
1088 		netmap_do_unregif(priv);
1089 	}
1090 	netmap_unget_na(na, priv->np_ifp);
1091 	bzero(priv, sizeof(*priv));	/* for safety */
1092 	nm_os_free(priv);
1093 }
1094 
1095 
1096 /* call with NMG_LOCK *not* held */
1097 void
1098 netmap_dtor(void *data)
1099 {
1100 	struct netmap_priv_d *priv = data;
1101 
1102 	NMG_LOCK();
1103 	netmap_priv_delete(priv);
1104 	NMG_UNLOCK();
1105 }
1106 
1107 
1108 /*
1109  * Handlers for synchronization of the rings from/to the host stack.
1110  * These are associated to a network interface and are just another
1111  * ring pair managed by userspace.
1112  *
1113  * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1114  * flags):
1115  *
1116  * - Before releasing buffers on hw RX rings, the application can mark
1117  *   them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1118  *   will be forwarded to the host stack, similarly to what happened if
1119  *   the application moved them to the host TX ring.
1120  *
1121  * - Before releasing buffers on the host RX ring, the application can
1122  *   mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1123  *   they will be forwarded to the hw TX rings, saving the application
1124  *   from doing the same task in user-space.
1125  *
1126  * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD
1127  * flag, or globally with the netmap_fwd sysctl.
1128  *
1129  * The transfer NIC --> host is relatively easy, just encapsulate
1130  * into mbufs and we are done. The host --> NIC side is slightly
1131  * harder because there might not be room in the tx ring so it
1132  * might take a while before releasing the buffer.
1133  */
1134 
1135 
1136 /*
1137  * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1138  * We do not need to lock because the queue is private.
1139  * After this call the queue is empty.
1140  */
1141 static void
1142 netmap_send_up(struct ifnet *dst, struct mbq *q)
1143 {
1144 	struct mbuf *m;
1145 	struct mbuf *head = NULL, *prev = NULL;
1146 
1147 	/* Send packets up, outside the lock; head/prev machinery
1148 	 * is only useful for Windows. */
1149 	while ((m = mbq_dequeue(q)) != NULL) {
1150 		if (netmap_debug & NM_DEBUG_HOST)
1151 			nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m));
1152 		prev = nm_os_send_up(dst, m, prev);
1153 		if (head == NULL)
1154 			head = prev;
1155 	}
1156 	if (head)
1157 		nm_os_send_up(dst, NULL, head);
1158 	mbq_fini(q);
1159 }
1160 
1161 
1162 /*
1163  * Scan the buffers from hwcur to ring->head, and put a copy of those
1164  * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1165  * Drop remaining packets in the unlikely event
1166  * of an mbuf shortage.
1167  */
1168 static void
1169 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1170 {
1171 	u_int const lim = kring->nkr_num_slots - 1;
1172 	u_int const head = kring->rhead;
1173 	u_int n;
1174 	struct netmap_adapter *na = kring->na;
1175 
1176 	for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1177 		struct mbuf *m;
1178 		struct netmap_slot *slot = &kring->ring->slot[n];
1179 
1180 		if ((slot->flags & NS_FORWARD) == 0 && !force)
1181 			continue;
1182 		if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1183 			nm_prlim(5, "bad pkt at %d len %d", n, slot->len);
1184 			continue;
1185 		}
1186 		slot->flags &= ~NS_FORWARD; // XXX needed ?
1187 		/* XXX TODO: adapt to the case of a multisegment packet */
1188 		m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1189 
1190 		if (m == NULL)
1191 			break;
1192 		mbq_enqueue(q, m);
1193 	}
1194 }
1195 
1196 static inline int
1197 _nm_may_forward(struct netmap_kring *kring)
1198 {
1199 	return	((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1200 		 kring->na->na_flags & NAF_HOST_RINGS &&
1201 		 kring->tx == NR_RX);
1202 }
1203 
1204 static inline int
1205 nm_may_forward_up(struct netmap_kring *kring)
1206 {
1207 	return	_nm_may_forward(kring) &&
1208 		 kring->ring_id != kring->na->num_rx_rings;
1209 }
1210 
1211 static inline int
1212 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1213 {
1214 	return	_nm_may_forward(kring) &&
1215 		 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1216 		 kring->ring_id == kring->na->num_rx_rings;
1217 }
1218 
1219 /*
1220  * Send to the NIC rings packets marked NS_FORWARD between
1221  * kring->nr_hwcur and kring->rhead.
1222  * Called under kring->rx_queue.lock on the sw rx ring.
1223  *
1224  * It can only be called if the user opened all the TX hw rings,
1225  * see NAF_CAN_FORWARD_DOWN flag.
1226  * We can touch the TX netmap rings (slots, head and cur) since
1227  * we are in poll/ioctl system call context, and the application
1228  * is not supposed to touch the ring (using a different thread)
1229  * during the execution of the system call.
1230  */
1231 static u_int
1232 netmap_sw_to_nic(struct netmap_adapter *na)
1233 {
1234 	struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1235 	struct netmap_slot *rxslot = kring->ring->slot;
1236 	u_int i, rxcur = kring->nr_hwcur;
1237 	u_int const head = kring->rhead;
1238 	u_int const src_lim = kring->nkr_num_slots - 1;
1239 	u_int sent = 0;
1240 
1241 	/* scan rings to find space, then fill as much as possible */
1242 	for (i = 0; i < na->num_tx_rings; i++) {
1243 		struct netmap_kring *kdst = na->tx_rings[i];
1244 		struct netmap_ring *rdst = kdst->ring;
1245 		u_int const dst_lim = kdst->nkr_num_slots - 1;
1246 
1247 		/* XXX do we trust ring or kring->rcur,rtail ? */
1248 		for (; rxcur != head && !nm_ring_empty(rdst);
1249 		     rxcur = nm_next(rxcur, src_lim) ) {
1250 			struct netmap_slot *src, *dst, tmp;
1251 			u_int dst_head = rdst->head;
1252 
1253 			src = &rxslot[rxcur];
1254 			if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1255 				continue;
1256 
1257 			sent++;
1258 
1259 			dst = &rdst->slot[dst_head];
1260 
1261 			tmp = *src;
1262 
1263 			src->buf_idx = dst->buf_idx;
1264 			src->flags = NS_BUF_CHANGED;
1265 
1266 			dst->buf_idx = tmp.buf_idx;
1267 			dst->len = tmp.len;
1268 			dst->flags = NS_BUF_CHANGED;
1269 
1270 			rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1271 		}
1272 		/* if (sent) XXX txsync ? it would be just an optimization */
1273 	}
1274 	return sent;
1275 }
1276 
1277 
1278 /*
1279  * netmap_txsync_to_host() passes packets up. We are called from a
1280  * system call in user process context, and the only contention
1281  * can be among multiple user threads erroneously calling
1282  * this routine concurrently.
1283  */
1284 static int
1285 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1286 {
1287 	struct netmap_adapter *na = kring->na;
1288 	u_int const lim = kring->nkr_num_slots - 1;
1289 	u_int const head = kring->rhead;
1290 	struct mbq q;
1291 
1292 	/* Take packets from hwcur to head and pass them up.
1293 	 * Force hwcur = head since netmap_grab_packets() stops at head
1294 	 */
1295 	mbq_init(&q);
1296 	netmap_grab_packets(kring, &q, 1 /* force */);
1297 	nm_prdis("have %d pkts in queue", mbq_len(&q));
1298 	kring->nr_hwcur = head;
1299 	kring->nr_hwtail = head + lim;
1300 	if (kring->nr_hwtail > lim)
1301 		kring->nr_hwtail -= lim + 1;
1302 
1303 	netmap_send_up(na->ifp, &q);
1304 	return 0;
1305 }
1306 
1307 
1308 /*
1309  * rxsync backend for packets coming from the host stack.
1310  * They have been put in kring->rx_queue by netmap_transmit().
1311  * We protect access to the kring using kring->rx_queue.lock
1312  *
1313  * also moves to the nic hw rings any packet the user has marked
1314  * for transparent-mode forwarding, then sets the NR_FORWARD
1315  * flag in the kring to let the caller push them out
1316  */
1317 static int
1318 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1319 {
1320 	struct netmap_adapter *na = kring->na;
1321 	struct netmap_ring *ring = kring->ring;
1322 	u_int nm_i, n;
1323 	u_int const lim = kring->nkr_num_slots - 1;
1324 	u_int const head = kring->rhead;
1325 	int ret = 0;
1326 	struct mbq *q = &kring->rx_queue, fq;
1327 
1328 	mbq_init(&fq); /* fq holds packets to be freed */
1329 
1330 	mbq_lock(q);
1331 
1332 	/* First part: import newly received packets */
1333 	n = mbq_len(q);
1334 	if (n) { /* grab packets from the queue */
1335 		struct mbuf *m;
1336 		uint32_t stop_i;
1337 
1338 		nm_i = kring->nr_hwtail;
1339 		stop_i = nm_prev(kring->nr_hwcur, lim);
1340 		while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1341 			int len = MBUF_LEN(m);
1342 			struct netmap_slot *slot = &ring->slot[nm_i];
1343 
1344 			m_copydata(m, 0, len, NMB(na, slot));
1345 			nm_prdis("nm %d len %d", nm_i, len);
1346 			if (netmap_debug & NM_DEBUG_HOST)
1347 				nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1348 
1349 			slot->len = len;
1350 			slot->flags = 0;
1351 			nm_i = nm_next(nm_i, lim);
1352 			mbq_enqueue(&fq, m);
1353 		}
1354 		kring->nr_hwtail = nm_i;
1355 	}
1356 
1357 	/*
1358 	 * Second part: skip past packets that userspace has released.
1359 	 */
1360 	nm_i = kring->nr_hwcur;
1361 	if (nm_i != head) { /* something was released */
1362 		if (nm_may_forward_down(kring, flags)) {
1363 			ret = netmap_sw_to_nic(na);
1364 			if (ret > 0) {
1365 				kring->nr_kflags |= NR_FORWARD;
1366 				ret = 0;
1367 			}
1368 		}
1369 		kring->nr_hwcur = head;
1370 	}
1371 
1372 	mbq_unlock(q);
1373 
1374 	mbq_purge(&fq);
1375 	mbq_fini(&fq);
1376 
1377 	return ret;
1378 }
1379 
1380 
1381 /* Get a netmap adapter for the port.
1382  *
1383  * If it is possible to satisfy the request, return 0
1384  * with *na containing the netmap adapter found.
1385  * Otherwise return an error code, with *na containing NULL.
1386  *
1387  * When the port is attached to a bridge, we always return
1388  * EBUSY.
1389  * Otherwise, if the port is already bound to a file descriptor,
1390  * then we unconditionally return the existing adapter into *na.
1391  * In all the other cases, we return (into *na) either native,
1392  * generic or NULL, according to the following table:
1393  *
1394  *					native_support
1395  * active_fds   dev.netmap.admode         YES     NO
1396  * -------------------------------------------------------
1397  *    >0              *                 NA(ifp) NA(ifp)
1398  *
1399  *     0        NETMAP_ADMODE_BEST      NATIVE  GENERIC
1400  *     0        NETMAP_ADMODE_NATIVE    NATIVE   NULL
1401  *     0        NETMAP_ADMODE_GENERIC   GENERIC GENERIC
1402  *
1403  */
1404 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1405 int
1406 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1407 {
1408 	/* generic support */
1409 	int i = netmap_admode;	/* Take a snapshot. */
1410 	struct netmap_adapter *prev_na;
1411 	int error = 0;
1412 
1413 	*na = NULL; /* default */
1414 
1415 	/* reset in case of invalid value */
1416 	if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1417 		i = netmap_admode = NETMAP_ADMODE_BEST;
1418 
1419 	if (NM_NA_VALID(ifp)) {
1420 		prev_na = NA(ifp);
1421 		/* If an adapter already exists, return it if
1422 		 * there are active file descriptors or if
1423 		 * netmap is not forced to use generic
1424 		 * adapters.
1425 		 */
1426 		if (NETMAP_OWNED_BY_ANY(prev_na)
1427 			|| i != NETMAP_ADMODE_GENERIC
1428 			|| prev_na->na_flags & NAF_FORCE_NATIVE
1429 #ifdef WITH_PIPES
1430 			/* ugly, but we cannot allow an adapter switch
1431 			 * if some pipe is referring to this one
1432 			 */
1433 			|| prev_na->na_next_pipe > 0
1434 #endif
1435 		) {
1436 			*na = prev_na;
1437 			goto assign_mem;
1438 		}
1439 	}
1440 
1441 	/* If there isn't native support and netmap is not allowed
1442 	 * to use generic adapters, we cannot satisfy the request.
1443 	 */
1444 	if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1445 		return EOPNOTSUPP;
1446 
1447 	/* Otherwise, create a generic adapter and return it,
1448 	 * saving the previously used netmap adapter, if any.
1449 	 *
1450 	 * Note that here 'prev_na', if not NULL, MUST be a
1451 	 * native adapter, and CANNOT be a generic one. This is
1452 	 * true because generic adapters are created on demand, and
1453 	 * destroyed when not used anymore. Therefore, if the adapter
1454 	 * currently attached to an interface 'ifp' is generic, it
1455 	 * must be that
1456 	 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1457 	 * Consequently, if NA(ifp) is generic, we will enter one of
1458 	 * the branches above. This ensures that we never override
1459 	 * a generic adapter with another generic adapter.
1460 	 */
1461 	error = generic_netmap_attach(ifp);
1462 	if (error)
1463 		return error;
1464 
1465 	*na = NA(ifp);
1466 
1467 assign_mem:
1468 	if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1469 	    (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1470 		(*na)->nm_mem_prev = (*na)->nm_mem;
1471 		(*na)->nm_mem = netmap_mem_get(nmd);
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 /*
1478  * MUST BE CALLED UNDER NMG_LOCK()
1479  *
1480  * Get a refcounted reference to a netmap adapter attached
1481  * to the interface specified by req.
1482  * This is always called in the execution of an ioctl().
1483  *
1484  * Return ENXIO if the interface specified by the request does
1485  * not exist, ENOTSUP if netmap is not supported by the interface,
1486  * EBUSY if the interface is already attached to a bridge,
1487  * EINVAL if parameters are invalid, ENOMEM if needed resources
1488  * could not be allocated.
1489  * If successful, hold a reference to the netmap adapter.
1490  *
1491  * If the interface specified by req is a system one, also keep
1492  * a reference to it and return a valid *ifp.
1493  */
1494 int
1495 netmap_get_na(struct nmreq_header *hdr,
1496 	      struct netmap_adapter **na, struct ifnet **ifp,
1497 	      struct netmap_mem_d *nmd, int create)
1498 {
1499 	struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1500 	int error = 0;
1501 	struct netmap_adapter *ret = NULL;
1502 	int nmd_ref = 0;
1503 
1504 	*na = NULL;     /* default return value */
1505 	*ifp = NULL;
1506 
1507 	if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1508 		return EINVAL;
1509 	}
1510 
1511 	if (req->nr_mode == NR_REG_PIPE_MASTER ||
1512 			req->nr_mode == NR_REG_PIPE_SLAVE) {
1513 		/* Do not accept deprecated pipe modes. */
1514 		nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1515 		return EINVAL;
1516 	}
1517 
1518 	NMG_LOCK_ASSERT();
1519 
1520 	/* if the request contain a memid, try to find the
1521 	 * corresponding memory region
1522 	 */
1523 	if (nmd == NULL && req->nr_mem_id) {
1524 		nmd = netmap_mem_find(req->nr_mem_id);
1525 		if (nmd == NULL)
1526 			return EINVAL;
1527 		/* keep the rereference */
1528 		nmd_ref = 1;
1529 	}
1530 
1531 	/* We cascade through all possible types of netmap adapter.
1532 	 * All netmap_get_*_na() functions return an error and an na,
1533 	 * with the following combinations:
1534 	 *
1535 	 * error    na
1536 	 *   0	   NULL		type doesn't match
1537 	 *  !0	   NULL		type matches, but na creation/lookup failed
1538 	 *   0	  !NULL		type matches and na created/found
1539 	 *  !0    !NULL		impossible
1540 	 */
1541 	error = netmap_get_null_na(hdr, na, nmd, create);
1542 	if (error || *na != NULL)
1543 		goto out;
1544 
1545 	/* try to see if this is a monitor port */
1546 	error = netmap_get_monitor_na(hdr, na, nmd, create);
1547 	if (error || *na != NULL)
1548 		goto out;
1549 
1550 	/* try to see if this is a pipe port */
1551 	error = netmap_get_pipe_na(hdr, na, nmd, create);
1552 	if (error || *na != NULL)
1553 		goto out;
1554 
1555 	/* try to see if this is a bridge port */
1556 	error = netmap_get_vale_na(hdr, na, nmd, create);
1557 	if (error)
1558 		goto out;
1559 
1560 	if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1561 		goto out;
1562 
1563 	/*
1564 	 * This must be a hardware na, lookup the name in the system.
1565 	 * Note that by hardware we actually mean "it shows up in ifconfig".
1566 	 * This may still be a tap, a veth/epair, or even a
1567 	 * persistent VALE port.
1568 	 */
1569 	*ifp = ifunit_ref(hdr->nr_name);
1570 	if (*ifp == NULL) {
1571 		error = ENXIO;
1572 		goto out;
1573 	}
1574 
1575 	error = netmap_get_hw_na(*ifp, nmd, &ret);
1576 	if (error)
1577 		goto out;
1578 
1579 	*na = ret;
1580 	netmap_adapter_get(ret);
1581 
1582 	/*
1583 	 * if the adapter supports the host rings and it is not alread open,
1584 	 * try to set the number of host rings as requested by the user
1585 	 */
1586 	if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) {
1587 		if (req->nr_host_tx_rings)
1588 			(*na)->num_host_tx_rings = req->nr_host_tx_rings;
1589 		if (req->nr_host_rx_rings)
1590 			(*na)->num_host_rx_rings = req->nr_host_rx_rings;
1591 	}
1592 	nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings,
1593 			(*na)->num_host_rx_rings);
1594 
1595 out:
1596 	if (error) {
1597 		if (ret)
1598 			netmap_adapter_put(ret);
1599 		if (*ifp) {
1600 			if_rele(*ifp);
1601 			*ifp = NULL;
1602 		}
1603 	}
1604 	if (nmd_ref)
1605 		netmap_mem_put(nmd);
1606 
1607 	return error;
1608 }
1609 
1610 /* undo netmap_get_na() */
1611 void
1612 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp)
1613 {
1614 	if (ifp)
1615 		if_rele(ifp);
1616 	if (na)
1617 		netmap_adapter_put(na);
1618 }
1619 
1620 
1621 #define NM_FAIL_ON(t) do {						\
1622 	if (unlikely(t)) {						\
1623 		nm_prlim(5, "%s: fail '" #t "' "				\
1624 			"h %d c %d t %d "				\
1625 			"rh %d rc %d rt %d "				\
1626 			"hc %d ht %d",					\
1627 			kring->name,					\
1628 			head, cur, ring->tail,				\
1629 			kring->rhead, kring->rcur, kring->rtail,	\
1630 			kring->nr_hwcur, kring->nr_hwtail);		\
1631 		return kring->nkr_num_slots;				\
1632 	}								\
1633 } while (0)
1634 
1635 /*
1636  * validate parameters on entry for *_txsync()
1637  * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1638  * in case of error.
1639  *
1640  * rhead, rcur and rtail=hwtail are stored from previous round.
1641  * hwcur is the next packet to send to the ring.
1642  *
1643  * We want
1644  *    hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1645  *
1646  * hwcur, rhead, rtail and hwtail are reliable
1647  */
1648 u_int
1649 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1650 {
1651 	u_int head = ring->head; /* read only once */
1652 	u_int cur = ring->cur; /* read only once */
1653 	u_int n = kring->nkr_num_slots;
1654 
1655 	nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1656 		kring->name,
1657 		kring->nr_hwcur, kring->nr_hwtail,
1658 		ring->head, ring->cur, ring->tail);
1659 #if 1 /* kernel sanity checks; but we can trust the kring. */
1660 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1661 	    kring->rtail >= n ||  kring->nr_hwtail >= n);
1662 #endif /* kernel sanity checks */
1663 	/*
1664 	 * user sanity checks. We only use head,
1665 	 * A, B, ... are possible positions for head:
1666 	 *
1667 	 *  0    A  rhead   B  rtail   C  n-1
1668 	 *  0    D  rtail   E  rhead   F  n-1
1669 	 *
1670 	 * B, F, D are valid. A, C, E are wrong
1671 	 */
1672 	if (kring->rtail >= kring->rhead) {
1673 		/* want rhead <= head <= rtail */
1674 		NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1675 		/* and also head <= cur <= rtail */
1676 		NM_FAIL_ON(cur < head || cur > kring->rtail);
1677 	} else { /* here rtail < rhead */
1678 		/* we need head outside rtail .. rhead */
1679 		NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1680 
1681 		/* two cases now: head <= rtail or head >= rhead  */
1682 		if (head <= kring->rtail) {
1683 			/* want head <= cur <= rtail */
1684 			NM_FAIL_ON(cur < head || cur > kring->rtail);
1685 		} else { /* head >= rhead */
1686 			/* cur must be outside rtail..head */
1687 			NM_FAIL_ON(cur > kring->rtail && cur < head);
1688 		}
1689 	}
1690 	if (ring->tail != kring->rtail) {
1691 		nm_prlim(5, "%s tail overwritten was %d need %d", kring->name,
1692 			ring->tail, kring->rtail);
1693 		ring->tail = kring->rtail;
1694 	}
1695 	kring->rhead = head;
1696 	kring->rcur = cur;
1697 	return head;
1698 }
1699 
1700 
1701 /*
1702  * validate parameters on entry for *_rxsync()
1703  * Returns ring->head if ok, kring->nkr_num_slots on error.
1704  *
1705  * For a valid configuration,
1706  * hwcur <= head <= cur <= tail <= hwtail
1707  *
1708  * We only consider head and cur.
1709  * hwcur and hwtail are reliable.
1710  *
1711  */
1712 u_int
1713 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1714 {
1715 	uint32_t const n = kring->nkr_num_slots;
1716 	uint32_t head, cur;
1717 
1718 	nm_prdis(5,"%s kc %d kt %d h %d c %d t %d",
1719 		kring->name,
1720 		kring->nr_hwcur, kring->nr_hwtail,
1721 		ring->head, ring->cur, ring->tail);
1722 	/*
1723 	 * Before storing the new values, we should check they do not
1724 	 * move backwards. However:
1725 	 * - head is not an issue because the previous value is hwcur;
1726 	 * - cur could in principle go back, however it does not matter
1727 	 *   because we are processing a brand new rxsync()
1728 	 */
1729 	cur = kring->rcur = ring->cur;	/* read only once */
1730 	head = kring->rhead = ring->head;	/* read only once */
1731 #if 1 /* kernel sanity checks */
1732 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1733 #endif /* kernel sanity checks */
1734 	/* user sanity checks */
1735 	if (kring->nr_hwtail >= kring->nr_hwcur) {
1736 		/* want hwcur <= rhead <= hwtail */
1737 		NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1738 		/* and also rhead <= rcur <= hwtail */
1739 		NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1740 	} else {
1741 		/* we need rhead outside hwtail..hwcur */
1742 		NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1743 		/* two cases now: head <= hwtail or head >= hwcur  */
1744 		if (head <= kring->nr_hwtail) {
1745 			/* want head <= cur <= hwtail */
1746 			NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1747 		} else {
1748 			/* cur must be outside hwtail..head */
1749 			NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1750 		}
1751 	}
1752 	if (ring->tail != kring->rtail) {
1753 		nm_prlim(5, "%s tail overwritten was %d need %d",
1754 			kring->name,
1755 			ring->tail, kring->rtail);
1756 		ring->tail = kring->rtail;
1757 	}
1758 	return head;
1759 }
1760 
1761 
1762 /*
1763  * Error routine called when txsync/rxsync detects an error.
1764  * Can't do much more than resetting head = cur = hwcur, tail = hwtail
1765  * Return 1 on reinit.
1766  *
1767  * This routine is only called by the upper half of the kernel.
1768  * It only reads hwcur (which is changed only by the upper half, too)
1769  * and hwtail (which may be changed by the lower half, but only on
1770  * a tx ring and only to increase it, so any error will be recovered
1771  * on the next call). For the above, we don't strictly need to call
1772  * it under lock.
1773  */
1774 int
1775 netmap_ring_reinit(struct netmap_kring *kring)
1776 {
1777 	struct netmap_ring *ring = kring->ring;
1778 	u_int i, lim = kring->nkr_num_slots - 1;
1779 	int errors = 0;
1780 
1781 	// XXX KASSERT nm_kr_tryget
1782 	nm_prlim(10, "called for %s", kring->name);
1783 	// XXX probably wrong to trust userspace
1784 	kring->rhead = ring->head;
1785 	kring->rcur  = ring->cur;
1786 	kring->rtail = ring->tail;
1787 
1788 	if (ring->cur > lim)
1789 		errors++;
1790 	if (ring->head > lim)
1791 		errors++;
1792 	if (ring->tail > lim)
1793 		errors++;
1794 	for (i = 0; i <= lim; i++) {
1795 		u_int idx = ring->slot[i].buf_idx;
1796 		u_int len = ring->slot[i].len;
1797 		if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1798 			nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1799 			ring->slot[i].buf_idx = 0;
1800 			ring->slot[i].len = 0;
1801 		} else if (len > NETMAP_BUF_SIZE(kring->na)) {
1802 			ring->slot[i].len = 0;
1803 			nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len);
1804 		}
1805 	}
1806 	if (errors) {
1807 		nm_prlim(10, "total %d errors", errors);
1808 		nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d",
1809 			kring->name,
1810 			ring->cur, kring->nr_hwcur,
1811 			ring->tail, kring->nr_hwtail);
1812 		ring->head = kring->rhead = kring->nr_hwcur;
1813 		ring->cur  = kring->rcur  = kring->nr_hwcur;
1814 		ring->tail = kring->rtail = kring->nr_hwtail;
1815 	}
1816 	return (errors ? 1 : 0);
1817 }
1818 
1819 /* interpret the ringid and flags fields of an nmreq, by translating them
1820  * into a pair of intervals of ring indices:
1821  *
1822  * [priv->np_txqfirst, priv->np_txqlast) and
1823  * [priv->np_rxqfirst, priv->np_rxqlast)
1824  *
1825  */
1826 int
1827 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1828 			uint16_t nr_ringid, uint64_t nr_flags)
1829 {
1830 	struct netmap_adapter *na = priv->np_na;
1831 	int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1832 	enum txrx t;
1833 	u_int j;
1834 
1835 	for_rx_tx(t) {
1836 		if (nr_flags & excluded_direction[t]) {
1837 			priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1838 			continue;
1839 		}
1840 		switch (nr_mode) {
1841 		case NR_REG_ALL_NIC:
1842 		case NR_REG_NULL:
1843 			priv->np_qfirst[t] = 0;
1844 			priv->np_qlast[t] = nma_get_nrings(na, t);
1845 			nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1846 				priv->np_qfirst[t], priv->np_qlast[t]);
1847 			break;
1848 		case NR_REG_SW:
1849 		case NR_REG_NIC_SW:
1850 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1851 				nm_prerr("host rings not supported");
1852 				return EINVAL;
1853 			}
1854 			priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1855 				nma_get_nrings(na, t) : 0);
1856 			priv->np_qlast[t] = netmap_all_rings(na, t);
1857 			nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1858 				nm_txrx2str(t),
1859 				priv->np_qfirst[t], priv->np_qlast[t]);
1860 			break;
1861 		case NR_REG_ONE_NIC:
1862 			if (nr_ringid >= na->num_tx_rings &&
1863 					nr_ringid >= na->num_rx_rings) {
1864 				nm_prerr("invalid ring id %d", nr_ringid);
1865 				return EINVAL;
1866 			}
1867 			/* if not enough rings, use the first one */
1868 			j = nr_ringid;
1869 			if (j >= nma_get_nrings(na, t))
1870 				j = 0;
1871 			priv->np_qfirst[t] = j;
1872 			priv->np_qlast[t] = j + 1;
1873 			nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t),
1874 				priv->np_qfirst[t], priv->np_qlast[t]);
1875 			break;
1876 		case NR_REG_ONE_SW:
1877 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1878 				nm_prerr("host rings not supported");
1879 				return EINVAL;
1880 			}
1881 			if (nr_ringid >= na->num_host_tx_rings &&
1882 					nr_ringid >= na->num_host_rx_rings) {
1883 				nm_prerr("invalid ring id %d", nr_ringid);
1884 				return EINVAL;
1885 			}
1886 			/* if not enough rings, use the first one */
1887 			j = nr_ringid;
1888 			if (j >= nma_get_host_nrings(na, t))
1889 				j = 0;
1890 			priv->np_qfirst[t] = nma_get_nrings(na, t) + j;
1891 			priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1;
1892 			nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t),
1893 				priv->np_qfirst[t], priv->np_qlast[t]);
1894 			break;
1895 		default:
1896 			nm_prerr("invalid regif type %d", nr_mode);
1897 			return EINVAL;
1898 		}
1899 	}
1900 	priv->np_flags = nr_flags;
1901 
1902 	/* Allow transparent forwarding mode in the host --> nic
1903 	 * direction only if all the TX hw rings have been opened. */
1904 	if (priv->np_qfirst[NR_TX] == 0 &&
1905 			priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1906 		priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1907 	}
1908 
1909 	if (netmap_verbose) {
1910 		nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d",
1911 			na->name,
1912 			priv->np_qfirst[NR_TX],
1913 			priv->np_qlast[NR_TX],
1914 			priv->np_qfirst[NR_RX],
1915 			priv->np_qlast[NR_RX],
1916 			nr_ringid);
1917 	}
1918 	return 0;
1919 }
1920 
1921 
1922 /*
1923  * Set the ring ID. For devices with a single queue, a request
1924  * for all rings is the same as a single ring.
1925  */
1926 static int
1927 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1928 		uint16_t nr_ringid, uint64_t nr_flags)
1929 {
1930 	struct netmap_adapter *na = priv->np_na;
1931 	int error;
1932 	enum txrx t;
1933 
1934 	error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags);
1935 	if (error) {
1936 		return error;
1937 	}
1938 
1939 	priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1;
1940 
1941 	/* optimization: count the users registered for more than
1942 	 * one ring, which are the ones sleeping on the global queue.
1943 	 * The default netmap_notify() callback will then
1944 	 * avoid signaling the global queue if nobody is using it
1945 	 */
1946 	for_rx_tx(t) {
1947 		if (nm_si_user(priv, t))
1948 			na->si_users[t]++;
1949 	}
1950 	return 0;
1951 }
1952 
1953 static void
1954 netmap_unset_ringid(struct netmap_priv_d *priv)
1955 {
1956 	struct netmap_adapter *na = priv->np_na;
1957 	enum txrx t;
1958 
1959 	for_rx_tx(t) {
1960 		if (nm_si_user(priv, t))
1961 			na->si_users[t]--;
1962 		priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1963 	}
1964 	priv->np_flags = 0;
1965 	priv->np_txpoll = 0;
1966 	priv->np_kloop_state = 0;
1967 }
1968 
1969 
1970 /* Set the nr_pending_mode for the requested rings.
1971  * If requested, also try to get exclusive access to the rings, provided
1972  * the rings we want to bind are not exclusively owned by a previous bind.
1973  */
1974 static int
1975 netmap_krings_get(struct netmap_priv_d *priv)
1976 {
1977 	struct netmap_adapter *na = priv->np_na;
1978 	u_int i;
1979 	struct netmap_kring *kring;
1980 	int excl = (priv->np_flags & NR_EXCLUSIVE);
1981 	enum txrx t;
1982 
1983 	if (netmap_debug & NM_DEBUG_ON)
1984 		nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)",
1985 			na->name,
1986 			priv->np_qfirst[NR_TX],
1987 			priv->np_qlast[NR_TX],
1988 			priv->np_qfirst[NR_RX],
1989 			priv->np_qlast[NR_RX]);
1990 
1991 	/* first round: check that all the requested rings
1992 	 * are neither alread exclusively owned, nor we
1993 	 * want exclusive ownership when they are already in use
1994 	 */
1995 	for_rx_tx(t) {
1996 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1997 			kring = NMR(na, t)[i];
1998 			if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
1999 			    (kring->users && excl))
2000 			{
2001 				nm_prdis("ring %s busy", kring->name);
2002 				return EBUSY;
2003 			}
2004 		}
2005 	}
2006 
2007 	/* second round: increment usage count (possibly marking them
2008 	 * as exclusive) and set the nr_pending_mode
2009 	 */
2010 	for_rx_tx(t) {
2011 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2012 			kring = NMR(na, t)[i];
2013 			kring->users++;
2014 			if (excl)
2015 				kring->nr_kflags |= NKR_EXCLUSIVE;
2016 	                kring->nr_pending_mode = NKR_NETMAP_ON;
2017 		}
2018 	}
2019 
2020 	return 0;
2021 
2022 }
2023 
2024 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
2025  * if was asked on regif, and unset the nr_pending_mode if we are the
2026  * last users of the involved rings. */
2027 static void
2028 netmap_krings_put(struct netmap_priv_d *priv)
2029 {
2030 	struct netmap_adapter *na = priv->np_na;
2031 	u_int i;
2032 	struct netmap_kring *kring;
2033 	int excl = (priv->np_flags & NR_EXCLUSIVE);
2034 	enum txrx t;
2035 
2036 	nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)",
2037 			na->name,
2038 			priv->np_qfirst[NR_TX],
2039 			priv->np_qlast[NR_TX],
2040 			priv->np_qfirst[NR_RX],
2041 			priv->np_qlast[MR_RX]);
2042 
2043 	for_rx_tx(t) {
2044 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2045 			kring = NMR(na, t)[i];
2046 			if (excl)
2047 				kring->nr_kflags &= ~NKR_EXCLUSIVE;
2048 			kring->users--;
2049 			if (kring->users == 0)
2050 				kring->nr_pending_mode = NKR_NETMAP_OFF;
2051 		}
2052 	}
2053 }
2054 
2055 static int
2056 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2057 {
2058 	return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2059 }
2060 
2061 /* Validate the CSB entries for both directions (atok and ktoa).
2062  * To be called under NMG_LOCK(). */
2063 static int
2064 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo)
2065 {
2066 	struct nm_csb_atok *csb_atok_base =
2067 		(struct nm_csb_atok *)(uintptr_t)csbo->csb_atok;
2068 	struct nm_csb_ktoa *csb_ktoa_base =
2069 		(struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa;
2070 	enum txrx t;
2071 	int num_rings[NR_TXRX], tot_rings;
2072 	size_t entry_size[2];
2073 	void *csb_start[2];
2074 	int i;
2075 
2076 	if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) {
2077 		nm_prerr("Cannot update CSB while kloop is running");
2078 		return EBUSY;
2079 	}
2080 
2081 	tot_rings = 0;
2082 	for_rx_tx(t) {
2083 		num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t];
2084 		tot_rings += num_rings[t];
2085 	}
2086 	if (tot_rings <= 0)
2087 		return 0;
2088 
2089 	if (!(priv->np_flags & NR_EXCLUSIVE)) {
2090 		nm_prerr("CSB mode requires NR_EXCLUSIVE");
2091 		return EINVAL;
2092 	}
2093 
2094 	entry_size[0] = sizeof(*csb_atok_base);
2095 	entry_size[1] = sizeof(*csb_ktoa_base);
2096 	csb_start[0] = (void *)csb_atok_base;
2097 	csb_start[1] = (void *)csb_ktoa_base;
2098 
2099 	for (i = 0; i < 2; i++) {
2100 		/* On Linux we could use access_ok() to simplify
2101 		 * the validation. However, the advantage of
2102 		 * this approach is that it works also on
2103 		 * FreeBSD. */
2104 		size_t csb_size = tot_rings * entry_size[i];
2105 		void *tmp;
2106 		int err;
2107 
2108 		if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) {
2109 			nm_prerr("Unaligned CSB address");
2110 			return EINVAL;
2111 		}
2112 
2113 		tmp = nm_os_malloc(csb_size);
2114 		if (!tmp)
2115 			return ENOMEM;
2116 		if (i == 0) {
2117 			/* Application --> kernel direction. */
2118 			err = copyin(csb_start[i], tmp, csb_size);
2119 		} else {
2120 			/* Kernel --> application direction. */
2121 			memset(tmp, 0, csb_size);
2122 			err = copyout(tmp, csb_start[i], csb_size);
2123 		}
2124 		nm_os_free(tmp);
2125 		if (err) {
2126 			nm_prerr("Invalid CSB address");
2127 			return err;
2128 		}
2129 	}
2130 
2131 	priv->np_csb_atok_base = csb_atok_base;
2132 	priv->np_csb_ktoa_base = csb_ktoa_base;
2133 
2134 	/* Initialize the CSB. */
2135 	for_rx_tx(t) {
2136 		for (i = 0; i < num_rings[t]; i++) {
2137 			struct netmap_kring *kring =
2138 				NMR(priv->np_na, t)[i + priv->np_qfirst[t]];
2139 			struct nm_csb_atok *csb_atok = csb_atok_base + i;
2140 			struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i;
2141 
2142 			if (t == NR_RX) {
2143 				csb_atok += num_rings[NR_TX];
2144 				csb_ktoa += num_rings[NR_TX];
2145 			}
2146 
2147 			CSB_WRITE(csb_atok, head, kring->rhead);
2148 			CSB_WRITE(csb_atok, cur, kring->rcur);
2149 			CSB_WRITE(csb_atok, appl_need_kick, 1);
2150 			CSB_WRITE(csb_atok, sync_flags, 1);
2151 			CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur);
2152 			CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail);
2153 			CSB_WRITE(csb_ktoa, kern_need_kick, 1);
2154 
2155 			nm_prinf("csb_init for kring %s: head %u, cur %u, "
2156 				"hwcur %u, hwtail %u", kring->name,
2157 				kring->rhead, kring->rcur, kring->nr_hwcur,
2158 				kring->nr_hwtail);
2159 		}
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 /* Ensure that the netmap adapter can support the given MTU.
2166  * @return EINVAL if the na cannot be set to mtu, 0 otherwise.
2167  */
2168 int
2169 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) {
2170 	unsigned nbs = NETMAP_BUF_SIZE(na);
2171 
2172 	if (mtu <= na->rx_buf_maxsize) {
2173 		/* The MTU fits a single NIC slot. We only
2174 		 * Need to check that netmap buffers are
2175 		 * large enough to hold an MTU. NS_MOREFRAG
2176 		 * cannot be used in this case. */
2177 		if (nbs < mtu) {
2178 			nm_prerr("error: netmap buf size (%u) "
2179 				 "< device MTU (%u)", nbs, mtu);
2180 			return EINVAL;
2181 		}
2182 	} else {
2183 		/* More NIC slots may be needed to receive
2184 		 * or transmit a single packet. Check that
2185 		 * the adapter supports NS_MOREFRAG and that
2186 		 * netmap buffers are large enough to hold
2187 		 * the maximum per-slot size. */
2188 		if (!(na->na_flags & NAF_MOREFRAG)) {
2189 			nm_prerr("error: large MTU (%d) needed "
2190 				 "but %s does not support "
2191 				 "NS_MOREFRAG", mtu,
2192 				 na->ifp->if_xname);
2193 			return EINVAL;
2194 		} else if (nbs < na->rx_buf_maxsize) {
2195 			nm_prerr("error: using NS_MOREFRAG on "
2196 				 "%s requires netmap buf size "
2197 				 ">= %u", na->ifp->if_xname,
2198 				 na->rx_buf_maxsize);
2199 			return EINVAL;
2200 		} else {
2201 			nm_prinf("info: netmap application on "
2202 				 "%s needs to support "
2203 				 "NS_MOREFRAG "
2204 				 "(MTU=%u,netmap_buf_size=%u)",
2205 				 na->ifp->if_xname, mtu, nbs);
2206 		}
2207 	}
2208 	return 0;
2209 }
2210 
2211 
2212 /*
2213  * possibly move the interface to netmap-mode.
2214  * If success it returns a pointer to netmap_if, otherwise NULL.
2215  * This must be called with NMG_LOCK held.
2216  *
2217  * The following na callbacks are called in the process:
2218  *
2219  * na->nm_config()			[by netmap_update_config]
2220  * (get current number and size of rings)
2221  *
2222  *  	We have a generic one for linux (netmap_linux_config).
2223  *  	The bwrap has to override this, since it has to forward
2224  *  	the request to the wrapped adapter (netmap_bwrap_config).
2225  *
2226  *
2227  * na->nm_krings_create()
2228  * (create and init the krings array)
2229  *
2230  * 	One of the following:
2231  *
2232  *	* netmap_hw_krings_create, 			(hw ports)
2233  *		creates the standard layout for the krings
2234  * 		and adds the mbq (used for the host rings).
2235  *
2236  * 	* netmap_vp_krings_create			(VALE ports)
2237  * 		add leases and scratchpads
2238  *
2239  * 	* netmap_pipe_krings_create			(pipes)
2240  * 		create the krings and rings of both ends and
2241  * 		cross-link them
2242  *
2243  *      * netmap_monitor_krings_create 			(monitors)
2244  *      	avoid allocating the mbq
2245  *
2246  *      * netmap_bwrap_krings_create			(bwraps)
2247  *      	create both the brap krings array,
2248  *      	the krings array of the wrapped adapter, and
2249  *      	(if needed) the fake array for the host adapter
2250  *
2251  * na->nm_register(, 1)
2252  * (put the adapter in netmap mode)
2253  *
2254  * 	This may be one of the following:
2255  *
2256  * 	* netmap_hw_reg				        (hw ports)
2257  * 		checks that the ifp is still there, then calls
2258  * 		the hardware specific callback;
2259  *
2260  * 	* netmap_vp_reg					(VALE ports)
2261  *		If the port is connected to a bridge,
2262  *		set the NAF_NETMAP_ON flag under the
2263  *		bridge write lock.
2264  *
2265  *	* netmap_pipe_reg				(pipes)
2266  *		inform the other pipe end that it is no
2267  *		longer responsible for the lifetime of this
2268  *		pipe end
2269  *
2270  *	* netmap_monitor_reg				(monitors)
2271  *		intercept the sync callbacks of the monitored
2272  *		rings
2273  *
2274  *	* netmap_bwrap_reg				(bwraps)
2275  *		cross-link the bwrap and hwna rings,
2276  *		forward the request to the hwna, override
2277  *		the hwna notify callback (to get the frames
2278  *		coming from outside go through the bridge).
2279  *
2280  *
2281  */
2282 int
2283 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2284 	uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags)
2285 {
2286 	struct netmap_if *nifp = NULL;
2287 	int error;
2288 
2289 	NMG_LOCK_ASSERT();
2290 	priv->np_na = na;     /* store the reference */
2291 	error = netmap_mem_finalize(na->nm_mem, na);
2292 	if (error)
2293 		goto err;
2294 
2295 	if (na->active_fds == 0) {
2296 
2297 		/* cache the allocator info in the na */
2298 		error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2299 		if (error)
2300 			goto err_drop_mem;
2301 		nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2302 					    na->na_lut.objsize);
2303 
2304 		/* ring configuration may have changed, fetch from the card */
2305 		netmap_update_config(na);
2306 	}
2307 
2308 	/* compute the range of tx and rx rings to monitor */
2309 	error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags);
2310 	if (error)
2311 		goto err_put_lut;
2312 
2313 	if (na->active_fds == 0) {
2314 		/*
2315 		 * If this is the first registration of the adapter,
2316 		 * perform sanity checks and create the in-kernel view
2317 		 * of the netmap rings (the netmap krings).
2318 		 */
2319 		if (na->ifp && nm_priv_rx_enabled(priv)) {
2320 			/* This netmap adapter is attached to an ifnet. */
2321 			unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2322 
2323 			nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2324 				na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na));
2325 
2326 			if (na->rx_buf_maxsize == 0) {
2327 				nm_prerr("%s: error: rx_buf_maxsize == 0", na->name);
2328 				error = EIO;
2329 				goto err_drop_mem;
2330 			}
2331 
2332 			error = netmap_buf_size_validate(na, mtu);
2333 			if (error)
2334 				goto err_drop_mem;
2335 		}
2336 
2337 		/*
2338 		 * Depending on the adapter, this may also create
2339 		 * the netmap rings themselves
2340 		 */
2341 		error = na->nm_krings_create(na);
2342 		if (error)
2343 			goto err_put_lut;
2344 
2345 	}
2346 
2347 	/* now the krings must exist and we can check whether some
2348 	 * previous bind has exclusive ownership on them, and set
2349 	 * nr_pending_mode
2350 	 */
2351 	error = netmap_krings_get(priv);
2352 	if (error)
2353 		goto err_del_krings;
2354 
2355 	/* create all needed missing netmap rings */
2356 	error = netmap_mem_rings_create(na);
2357 	if (error)
2358 		goto err_rel_excl;
2359 
2360 	/* in all cases, create a new netmap if */
2361 	nifp = netmap_mem_if_new(na, priv);
2362 	if (nifp == NULL) {
2363 		error = ENOMEM;
2364 		goto err_rel_excl;
2365 	}
2366 
2367 	if (nm_kring_pending(priv)) {
2368 		/* Some kring is switching mode, tell the adapter to
2369 		 * react on this. */
2370 		error = na->nm_register(na, 1);
2371 		if (error)
2372 			goto err_del_if;
2373 	}
2374 
2375 	/* Commit the reference. */
2376 	na->active_fds++;
2377 
2378 	/*
2379 	 * advertise that the interface is ready by setting np_nifp.
2380 	 * The barrier is needed because readers (poll, *SYNC and mmap)
2381 	 * check for priv->np_nifp != NULL without locking
2382 	 */
2383 	mb(); /* make sure previous writes are visible to all CPUs */
2384 	priv->np_nifp = nifp;
2385 
2386 	return 0;
2387 
2388 err_del_if:
2389 	netmap_mem_if_delete(na, nifp);
2390 err_rel_excl:
2391 	netmap_krings_put(priv);
2392 	netmap_mem_rings_delete(na);
2393 err_del_krings:
2394 	if (na->active_fds == 0)
2395 		na->nm_krings_delete(na);
2396 err_put_lut:
2397 	if (na->active_fds == 0)
2398 		memset(&na->na_lut, 0, sizeof(na->na_lut));
2399 err_drop_mem:
2400 	netmap_mem_drop(na);
2401 err:
2402 	priv->np_na = NULL;
2403 	return error;
2404 }
2405 
2406 
2407 /*
2408  * update kring and ring at the end of rxsync/txsync.
2409  */
2410 static inline void
2411 nm_sync_finalize(struct netmap_kring *kring)
2412 {
2413 	/*
2414 	 * Update ring tail to what the kernel knows
2415 	 * After txsync: head/rhead/hwcur might be behind cur/rcur
2416 	 * if no carrier.
2417 	 */
2418 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
2419 
2420 	nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2421 		kring->name, kring->nr_hwcur, kring->nr_hwtail,
2422 		kring->rhead, kring->rcur, kring->rtail);
2423 }
2424 
2425 /* set ring timestamp */
2426 static inline void
2427 ring_timestamp_set(struct netmap_ring *ring)
2428 {
2429 	if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2430 		microtime(&ring->ts);
2431 	}
2432 }
2433 
2434 static int nmreq_copyin(struct nmreq_header *, int);
2435 static int nmreq_copyout(struct nmreq_header *, int);
2436 static int nmreq_checkoptions(struct nmreq_header *);
2437 
2438 /*
2439  * ioctl(2) support for the "netmap" device.
2440  *
2441  * Following a list of accepted commands:
2442  * - NIOCCTRL		device control API
2443  * - NIOCTXSYNC		sync TX rings
2444  * - NIOCRXSYNC		sync RX rings
2445  * - SIOCGIFADDR	just for convenience
2446  * - NIOCGINFO		deprecated (legacy API)
2447  * - NIOCREGIF		deprecated (legacy API)
2448  *
2449  * Return 0 on success, errno otherwise.
2450  */
2451 int
2452 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2453 		struct thread *td, int nr_body_is_user)
2454 {
2455 	struct mbq q;	/* packets from RX hw queues to host stack */
2456 	struct netmap_adapter *na = NULL;
2457 	struct netmap_mem_d *nmd = NULL;
2458 	struct ifnet *ifp = NULL;
2459 	int error = 0;
2460 	u_int i, qfirst, qlast;
2461 	struct netmap_kring **krings;
2462 	int sync_flags;
2463 	enum txrx t;
2464 
2465 	switch (cmd) {
2466 	case NIOCCTRL: {
2467 		struct nmreq_header *hdr = (struct nmreq_header *)data;
2468 
2469 		if (hdr->nr_version < NETMAP_MIN_API ||
2470 		    hdr->nr_version > NETMAP_MAX_API) {
2471 			nm_prerr("API mismatch: got %d need %d",
2472 				hdr->nr_version, NETMAP_API);
2473 			return EINVAL;
2474 		}
2475 
2476 		/* Make a kernel-space copy of the user-space nr_body.
2477 		 * For convenince, the nr_body pointer and the pointers
2478 		 * in the options list will be replaced with their
2479 		 * kernel-space counterparts. The original pointers are
2480 		 * saved internally and later restored by nmreq_copyout
2481 		 */
2482 		error = nmreq_copyin(hdr, nr_body_is_user);
2483 		if (error) {
2484 			return error;
2485 		}
2486 
2487 		/* Sanitize hdr->nr_name. */
2488 		hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2489 
2490 		switch (hdr->nr_reqtype) {
2491 		case NETMAP_REQ_REGISTER: {
2492 			struct nmreq_register *req =
2493 				(struct nmreq_register *)(uintptr_t)hdr->nr_body;
2494 			struct netmap_if *nifp;
2495 
2496 			/* Protect access to priv from concurrent requests. */
2497 			NMG_LOCK();
2498 			do {
2499 				struct nmreq_option *opt;
2500 				u_int memflags;
2501 
2502 				if (priv->np_nifp != NULL) {	/* thread already registered */
2503 					error = EBUSY;
2504 					break;
2505 				}
2506 
2507 #ifdef WITH_EXTMEM
2508 				opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options,
2509 						NETMAP_REQ_OPT_EXTMEM);
2510 				if (opt != NULL) {
2511 					struct nmreq_opt_extmem *e =
2512 						(struct nmreq_opt_extmem *)opt;
2513 
2514 					error = nmreq_checkduplicate(opt);
2515 					if (error) {
2516 						opt->nro_status = error;
2517 						break;
2518 					}
2519 					nmd = netmap_mem_ext_create(e->nro_usrptr,
2520 							&e->nro_info, &error);
2521 					opt->nro_status = error;
2522 					if (nmd == NULL)
2523 						break;
2524 				}
2525 #endif /* WITH_EXTMEM */
2526 
2527 				if (nmd == NULL && req->nr_mem_id) {
2528 					/* find the allocator and get a reference */
2529 					nmd = netmap_mem_find(req->nr_mem_id);
2530 					if (nmd == NULL) {
2531 						if (netmap_verbose) {
2532 							nm_prerr("%s: failed to find mem_id %u",
2533 									hdr->nr_name, req->nr_mem_id);
2534 						}
2535 						error = EINVAL;
2536 						break;
2537 					}
2538 				}
2539 				/* find the interface and a reference */
2540 				error = netmap_get_na(hdr, &na, &ifp, nmd,
2541 						      1 /* create */); /* keep reference */
2542 				if (error)
2543 					break;
2544 				if (NETMAP_OWNED_BY_KERN(na)) {
2545 					error = EBUSY;
2546 					break;
2547 				}
2548 
2549 				if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2550 					nm_prerr("virt_hdr_len=%d, but application does "
2551 						"not accept it", na->virt_hdr_len);
2552 					error = EIO;
2553 					break;
2554 				}
2555 
2556 				error = netmap_do_regif(priv, na, req->nr_mode,
2557 							req->nr_ringid, req->nr_flags);
2558 				if (error) {    /* reg. failed, release priv and ref */
2559 					break;
2560 				}
2561 
2562 				opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options,
2563 							NETMAP_REQ_OPT_CSB);
2564 				if (opt != NULL) {
2565 					struct nmreq_opt_csb *csbo =
2566 						(struct nmreq_opt_csb *)opt;
2567 					error = nmreq_checkduplicate(opt);
2568 					if (!error) {
2569 						error = netmap_csb_validate(priv, csbo);
2570 					}
2571 					opt->nro_status = error;
2572 					if (error) {
2573 						netmap_do_unregif(priv);
2574 						break;
2575 					}
2576 				}
2577 
2578 				nifp = priv->np_nifp;
2579 
2580 				/* return the offset of the netmap_if object */
2581 				req->nr_rx_rings = na->num_rx_rings;
2582 				req->nr_tx_rings = na->num_tx_rings;
2583 				req->nr_rx_slots = na->num_rx_desc;
2584 				req->nr_tx_slots = na->num_tx_desc;
2585 				req->nr_host_tx_rings = na->num_host_tx_rings;
2586 				req->nr_host_rx_rings = na->num_host_rx_rings;
2587 				error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2588 					&req->nr_mem_id);
2589 				if (error) {
2590 					netmap_do_unregif(priv);
2591 					break;
2592 				}
2593 				if (memflags & NETMAP_MEM_PRIVATE) {
2594 					*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2595 				}
2596 				for_rx_tx(t) {
2597 					priv->np_si[t] = nm_si_user(priv, t) ?
2598 						&na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2599 				}
2600 
2601 				if (req->nr_extra_bufs) {
2602 					if (netmap_verbose)
2603 						nm_prinf("requested %d extra buffers",
2604 							req->nr_extra_bufs);
2605 					req->nr_extra_bufs = netmap_extra_alloc(na,
2606 						&nifp->ni_bufs_head, req->nr_extra_bufs);
2607 					if (netmap_verbose)
2608 						nm_prinf("got %d extra buffers", req->nr_extra_bufs);
2609 				}
2610 				req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2611 
2612 				error = nmreq_checkoptions(hdr);
2613 				if (error) {
2614 					netmap_do_unregif(priv);
2615 					break;
2616 				}
2617 
2618 				/* store ifp reference so that priv destructor may release it */
2619 				priv->np_ifp = ifp;
2620 			} while (0);
2621 			if (error) {
2622 				netmap_unget_na(na, ifp);
2623 			}
2624 			/* release the reference from netmap_mem_find() or
2625 			 * netmap_mem_ext_create()
2626 			 */
2627 			if (nmd)
2628 				netmap_mem_put(nmd);
2629 			NMG_UNLOCK();
2630 			break;
2631 		}
2632 
2633 		case NETMAP_REQ_PORT_INFO_GET: {
2634 			struct nmreq_port_info_get *req =
2635 				(struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2636 
2637 			NMG_LOCK();
2638 			do {
2639 				u_int memflags;
2640 
2641 				if (hdr->nr_name[0] != '\0') {
2642 					/* Build a nmreq_register out of the nmreq_port_info_get,
2643 					 * so that we can call netmap_get_na(). */
2644 					struct nmreq_register regreq;
2645 					bzero(&regreq, sizeof(regreq));
2646 					regreq.nr_mode = NR_REG_ALL_NIC;
2647 					regreq.nr_tx_slots = req->nr_tx_slots;
2648 					regreq.nr_rx_slots = req->nr_rx_slots;
2649 					regreq.nr_tx_rings = req->nr_tx_rings;
2650 					regreq.nr_rx_rings = req->nr_rx_rings;
2651 					regreq.nr_host_tx_rings = req->nr_host_tx_rings;
2652 					regreq.nr_host_rx_rings = req->nr_host_rx_rings;
2653 					regreq.nr_mem_id = req->nr_mem_id;
2654 
2655 					/* get a refcount */
2656 					hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2657 					hdr->nr_body = (uintptr_t)&regreq;
2658 					error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2659 					hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2660 					hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2661 					if (error) {
2662 						na = NULL;
2663 						ifp = NULL;
2664 						break;
2665 					}
2666 					nmd = na->nm_mem; /* get memory allocator */
2667 				} else {
2668 					nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2669 					if (nmd == NULL) {
2670 						if (netmap_verbose)
2671 							nm_prerr("%s: failed to find mem_id %u",
2672 									hdr->nr_name,
2673 									req->nr_mem_id ? req->nr_mem_id : 1);
2674 						error = EINVAL;
2675 						break;
2676 					}
2677 				}
2678 
2679 				error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2680 					&req->nr_mem_id);
2681 				if (error)
2682 					break;
2683 				if (na == NULL) /* only memory info */
2684 					break;
2685 				netmap_update_config(na);
2686 				req->nr_rx_rings = na->num_rx_rings;
2687 				req->nr_tx_rings = na->num_tx_rings;
2688 				req->nr_rx_slots = na->num_rx_desc;
2689 				req->nr_tx_slots = na->num_tx_desc;
2690 				req->nr_host_tx_rings = na->num_host_tx_rings;
2691 				req->nr_host_rx_rings = na->num_host_rx_rings;
2692 			} while (0);
2693 			netmap_unget_na(na, ifp);
2694 			NMG_UNLOCK();
2695 			break;
2696 		}
2697 #ifdef WITH_VALE
2698 		case NETMAP_REQ_VALE_ATTACH: {
2699 			error = netmap_vale_attach(hdr, NULL /* userspace request */);
2700 			break;
2701 		}
2702 
2703 		case NETMAP_REQ_VALE_DETACH: {
2704 			error = netmap_vale_detach(hdr, NULL /* userspace request */);
2705 			break;
2706 		}
2707 
2708 		case NETMAP_REQ_VALE_LIST: {
2709 			error = netmap_vale_list(hdr);
2710 			break;
2711 		}
2712 
2713 		case NETMAP_REQ_PORT_HDR_SET: {
2714 			struct nmreq_port_hdr *req =
2715 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2716 			/* Build a nmreq_register out of the nmreq_port_hdr,
2717 			 * so that we can call netmap_get_bdg_na(). */
2718 			struct nmreq_register regreq;
2719 			bzero(&regreq, sizeof(regreq));
2720 			regreq.nr_mode = NR_REG_ALL_NIC;
2721 
2722 			/* For now we only support virtio-net headers, and only for
2723 			 * VALE ports, but this may change in future. Valid lengths
2724 			 * for the virtio-net header are 0 (no header), 10 and 12. */
2725 			if (req->nr_hdr_len != 0 &&
2726 				req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
2727 					req->nr_hdr_len != 12) {
2728 				if (netmap_verbose)
2729 					nm_prerr("invalid hdr_len %u", req->nr_hdr_len);
2730 				error = EINVAL;
2731 				break;
2732 			}
2733 			NMG_LOCK();
2734 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2735 			hdr->nr_body = (uintptr_t)&regreq;
2736 			error = netmap_get_vale_na(hdr, &na, NULL, 0);
2737 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
2738 			hdr->nr_body = (uintptr_t)req;
2739 			if (na && !error) {
2740 				struct netmap_vp_adapter *vpna =
2741 					(struct netmap_vp_adapter *)na;
2742 				na->virt_hdr_len = req->nr_hdr_len;
2743 				if (na->virt_hdr_len) {
2744 					vpna->mfs = NETMAP_BUF_SIZE(na);
2745 				}
2746 				if (netmap_verbose)
2747 					nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
2748 				netmap_adapter_put(na);
2749 			} else if (!na) {
2750 				error = ENXIO;
2751 			}
2752 			NMG_UNLOCK();
2753 			break;
2754 		}
2755 
2756 		case NETMAP_REQ_PORT_HDR_GET: {
2757 			/* Get vnet-header length for this netmap port */
2758 			struct nmreq_port_hdr *req =
2759 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2760 			/* Build a nmreq_register out of the nmreq_port_hdr,
2761 			 * so that we can call netmap_get_bdg_na(). */
2762 			struct nmreq_register regreq;
2763 			struct ifnet *ifp;
2764 
2765 			bzero(&regreq, sizeof(regreq));
2766 			regreq.nr_mode = NR_REG_ALL_NIC;
2767 			NMG_LOCK();
2768 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2769 			hdr->nr_body = (uintptr_t)&regreq;
2770 			error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
2771 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
2772 			hdr->nr_body = (uintptr_t)req;
2773 			if (na && !error) {
2774 				req->nr_hdr_len = na->virt_hdr_len;
2775 			}
2776 			netmap_unget_na(na, ifp);
2777 			NMG_UNLOCK();
2778 			break;
2779 		}
2780 
2781 		case NETMAP_REQ_VALE_NEWIF: {
2782 			error = nm_vi_create(hdr);
2783 			break;
2784 		}
2785 
2786 		case NETMAP_REQ_VALE_DELIF: {
2787 			error = nm_vi_destroy(hdr->nr_name);
2788 			break;
2789 		}
2790 
2791 		case NETMAP_REQ_VALE_POLLING_ENABLE:
2792 		case NETMAP_REQ_VALE_POLLING_DISABLE: {
2793 			error = nm_bdg_polling(hdr);
2794 			break;
2795 		}
2796 #endif  /* WITH_VALE */
2797 		case NETMAP_REQ_POOLS_INFO_GET: {
2798 			/* Get information from the memory allocator used for
2799 			 * hdr->nr_name. */
2800 			struct nmreq_pools_info *req =
2801 				(struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
2802 			NMG_LOCK();
2803 			do {
2804 				/* Build a nmreq_register out of the nmreq_pools_info,
2805 				 * so that we can call netmap_get_na(). */
2806 				struct nmreq_register regreq;
2807 				bzero(&regreq, sizeof(regreq));
2808 				regreq.nr_mem_id = req->nr_mem_id;
2809 				regreq.nr_mode = NR_REG_ALL_NIC;
2810 
2811 				hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2812 				hdr->nr_body = (uintptr_t)&regreq;
2813 				error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2814 				hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */
2815 				hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2816 				if (error) {
2817 					na = NULL;
2818 					ifp = NULL;
2819 					break;
2820 				}
2821 				nmd = na->nm_mem; /* grab the memory allocator */
2822 				if (nmd == NULL) {
2823 					error = EINVAL;
2824 					break;
2825 				}
2826 
2827 				/* Finalize the memory allocator, get the pools
2828 				 * information and release the allocator. */
2829 				error = netmap_mem_finalize(nmd, na);
2830 				if (error) {
2831 					break;
2832 				}
2833 				error = netmap_mem_pools_info_get(req, nmd);
2834 				netmap_mem_drop(na);
2835 			} while (0);
2836 			netmap_unget_na(na, ifp);
2837 			NMG_UNLOCK();
2838 			break;
2839 		}
2840 
2841 		case NETMAP_REQ_CSB_ENABLE: {
2842 			struct nmreq_option *opt;
2843 
2844 			opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options,
2845 						NETMAP_REQ_OPT_CSB);
2846 			if (opt == NULL) {
2847 				error = EINVAL;
2848 			} else {
2849 				struct nmreq_opt_csb *csbo =
2850 					(struct nmreq_opt_csb *)opt;
2851 				error = nmreq_checkduplicate(opt);
2852 				if (!error) {
2853 					NMG_LOCK();
2854 					error = netmap_csb_validate(priv, csbo);
2855 					NMG_UNLOCK();
2856 				}
2857 				opt->nro_status = error;
2858 			}
2859 			break;
2860 		}
2861 
2862 		case NETMAP_REQ_SYNC_KLOOP_START: {
2863 			error = netmap_sync_kloop(priv, hdr);
2864 			break;
2865 		}
2866 
2867 		case NETMAP_REQ_SYNC_KLOOP_STOP: {
2868 			error = netmap_sync_kloop_stop(priv);
2869 			break;
2870 		}
2871 
2872 		default: {
2873 			error = EINVAL;
2874 			break;
2875 		}
2876 		}
2877 		/* Write back request body to userspace and reset the
2878 		 * user-space pointer. */
2879 		error = nmreq_copyout(hdr, error);
2880 		break;
2881 	}
2882 
2883 	case NIOCTXSYNC:
2884 	case NIOCRXSYNC: {
2885 		if (unlikely(priv->np_nifp == NULL)) {
2886 			error = ENXIO;
2887 			break;
2888 		}
2889 		mb(); /* make sure following reads are not from cache */
2890 
2891 		if (unlikely(priv->np_csb_atok_base)) {
2892 			nm_prerr("Invalid sync in CSB mode");
2893 			error = EBUSY;
2894 			break;
2895 		}
2896 
2897 		na = priv->np_na;      /* we have a reference */
2898 
2899 		mbq_init(&q);
2900 		t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
2901 		krings = NMR(na, t);
2902 		qfirst = priv->np_qfirst[t];
2903 		qlast = priv->np_qlast[t];
2904 		sync_flags = priv->np_sync_flags;
2905 
2906 		for (i = qfirst; i < qlast; i++) {
2907 			struct netmap_kring *kring = krings[i];
2908 			struct netmap_ring *ring = kring->ring;
2909 
2910 			if (unlikely(nm_kr_tryget(kring, 1, &error))) {
2911 				error = (error ? EIO : 0);
2912 				continue;
2913 			}
2914 
2915 			if (cmd == NIOCTXSYNC) {
2916 				if (netmap_debug & NM_DEBUG_TXSYNC)
2917 					nm_prinf("pre txsync ring %d cur %d hwcur %d",
2918 					    i, ring->cur,
2919 					    kring->nr_hwcur);
2920 				if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2921 					netmap_ring_reinit(kring);
2922 				} else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
2923 					nm_sync_finalize(kring);
2924 				}
2925 				if (netmap_debug & NM_DEBUG_TXSYNC)
2926 					nm_prinf("post txsync ring %d cur %d hwcur %d",
2927 					    i, ring->cur,
2928 					    kring->nr_hwcur);
2929 			} else {
2930 				if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2931 					netmap_ring_reinit(kring);
2932 				}
2933 				if (nm_may_forward_up(kring)) {
2934 					/* transparent forwarding, see netmap_poll() */
2935 					netmap_grab_packets(kring, &q, netmap_fwd);
2936 				}
2937 				if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
2938 					nm_sync_finalize(kring);
2939 				}
2940 				ring_timestamp_set(ring);
2941 			}
2942 			nm_kr_put(kring);
2943 		}
2944 
2945 		if (mbq_peek(&q)) {
2946 			netmap_send_up(na->ifp, &q);
2947 		}
2948 
2949 		break;
2950 	}
2951 
2952 	default: {
2953 		return netmap_ioctl_legacy(priv, cmd, data, td);
2954 		break;
2955 	}
2956 	}
2957 
2958 	return (error);
2959 }
2960 
2961 size_t
2962 nmreq_size_by_type(uint16_t nr_reqtype)
2963 {
2964 	switch (nr_reqtype) {
2965 	case NETMAP_REQ_REGISTER:
2966 		return sizeof(struct nmreq_register);
2967 	case NETMAP_REQ_PORT_INFO_GET:
2968 		return sizeof(struct nmreq_port_info_get);
2969 	case NETMAP_REQ_VALE_ATTACH:
2970 		return sizeof(struct nmreq_vale_attach);
2971 	case NETMAP_REQ_VALE_DETACH:
2972 		return sizeof(struct nmreq_vale_detach);
2973 	case NETMAP_REQ_VALE_LIST:
2974 		return sizeof(struct nmreq_vale_list);
2975 	case NETMAP_REQ_PORT_HDR_SET:
2976 	case NETMAP_REQ_PORT_HDR_GET:
2977 		return sizeof(struct nmreq_port_hdr);
2978 	case NETMAP_REQ_VALE_NEWIF:
2979 		return sizeof(struct nmreq_vale_newif);
2980 	case NETMAP_REQ_VALE_DELIF:
2981 	case NETMAP_REQ_SYNC_KLOOP_STOP:
2982 	case NETMAP_REQ_CSB_ENABLE:
2983 		return 0;
2984 	case NETMAP_REQ_VALE_POLLING_ENABLE:
2985 	case NETMAP_REQ_VALE_POLLING_DISABLE:
2986 		return sizeof(struct nmreq_vale_polling);
2987 	case NETMAP_REQ_POOLS_INFO_GET:
2988 		return sizeof(struct nmreq_pools_info);
2989 	case NETMAP_REQ_SYNC_KLOOP_START:
2990 		return sizeof(struct nmreq_sync_kloop_start);
2991 	}
2992 	return 0;
2993 }
2994 
2995 static size_t
2996 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size)
2997 {
2998 	size_t rv = sizeof(struct nmreq_option);
2999 #ifdef NETMAP_REQ_OPT_DEBUG
3000 	if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
3001 		return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
3002 #endif /* NETMAP_REQ_OPT_DEBUG */
3003 	switch (nro_reqtype) {
3004 #ifdef WITH_EXTMEM
3005 	case NETMAP_REQ_OPT_EXTMEM:
3006 		rv = sizeof(struct nmreq_opt_extmem);
3007 		break;
3008 #endif /* WITH_EXTMEM */
3009 	case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS:
3010 		if (nro_size >= rv)
3011 			rv = nro_size;
3012 		break;
3013 	case NETMAP_REQ_OPT_CSB:
3014 		rv = sizeof(struct nmreq_opt_csb);
3015 		break;
3016 	case NETMAP_REQ_OPT_SYNC_KLOOP_MODE:
3017 		rv = sizeof(struct nmreq_opt_sync_kloop_mode);
3018 		break;
3019 	}
3020 	/* subtract the common header */
3021 	return rv - sizeof(struct nmreq_option);
3022 }
3023 
3024 int
3025 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
3026 {
3027 	size_t rqsz, optsz, bufsz;
3028 	int error;
3029 	char *ker = NULL, *p;
3030 	struct nmreq_option **next, *src;
3031 	struct nmreq_option buf;
3032 	uint64_t *ptrs;
3033 
3034 	if (hdr->nr_reserved) {
3035 		if (netmap_verbose)
3036 			nm_prerr("nr_reserved must be zero");
3037 		return EINVAL;
3038 	}
3039 
3040 	if (!nr_body_is_user)
3041 		return 0;
3042 
3043 	hdr->nr_reserved = nr_body_is_user;
3044 
3045 	/* compute the total size of the buffer */
3046 	rqsz = nmreq_size_by_type(hdr->nr_reqtype);
3047 	if (rqsz > NETMAP_REQ_MAXSIZE) {
3048 		error = EMSGSIZE;
3049 		goto out_err;
3050 	}
3051 	if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
3052 		(!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
3053 		/* Request body expected, but not found; or
3054 		 * request body found but unexpected. */
3055 		if (netmap_verbose)
3056 			nm_prerr("nr_body expected but not found, or vice versa");
3057 		error = EINVAL;
3058 		goto out_err;
3059 	}
3060 
3061 	bufsz = 2 * sizeof(void *) + rqsz;
3062 	optsz = 0;
3063 	for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src;
3064 	     src = (struct nmreq_option *)(uintptr_t)buf.nro_next)
3065 	{
3066 		error = copyin(src, &buf, sizeof(*src));
3067 		if (error)
3068 			goto out_err;
3069 		optsz += sizeof(*src);
3070 		optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size);
3071 		if (rqsz + optsz > NETMAP_REQ_MAXSIZE) {
3072 			error = EMSGSIZE;
3073 			goto out_err;
3074 		}
3075 		bufsz += optsz + sizeof(void *);
3076 	}
3077 
3078 	ker = nm_os_malloc(bufsz);
3079 	if (ker == NULL) {
3080 		error = ENOMEM;
3081 		goto out_err;
3082 	}
3083 	p = ker;
3084 
3085 	/* make a copy of the user pointers */
3086 	ptrs = (uint64_t*)p;
3087 	*ptrs++ = hdr->nr_body;
3088 	*ptrs++ = hdr->nr_options;
3089 	p = (char *)ptrs;
3090 
3091 	/* copy the body */
3092 	error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz);
3093 	if (error)
3094 		goto out_restore;
3095 	/* overwrite the user pointer with the in-kernel one */
3096 	hdr->nr_body = (uintptr_t)p;
3097 	p += rqsz;
3098 
3099 	/* copy the options */
3100 	next = (struct nmreq_option **)&hdr->nr_options;
3101 	src = *next;
3102 	while (src) {
3103 		struct nmreq_option *opt;
3104 
3105 		/* copy the option header */
3106 		ptrs = (uint64_t *)p;
3107 		opt = (struct nmreq_option *)(ptrs + 1);
3108 		error = copyin(src, opt, sizeof(*src));
3109 		if (error)
3110 			goto out_restore;
3111 		/* make a copy of the user next pointer */
3112 		*ptrs = opt->nro_next;
3113 		/* overwrite the user pointer with the in-kernel one */
3114 		*next = opt;
3115 
3116 		/* initialize the option as not supported.
3117 		 * Recognized options will update this field.
3118 		 */
3119 		opt->nro_status = EOPNOTSUPP;
3120 
3121 		p = (char *)(opt + 1);
3122 
3123 		/* copy the option body */
3124 		optsz = nmreq_opt_size_by_type(opt->nro_reqtype,
3125 						opt->nro_size);
3126 		if (optsz) {
3127 			/* the option body follows the option header */
3128 			error = copyin(src + 1, p, optsz);
3129 			if (error)
3130 				goto out_restore;
3131 			p += optsz;
3132 		}
3133 
3134 		/* move to next option */
3135 		next = (struct nmreq_option **)&opt->nro_next;
3136 		src = *next;
3137 	}
3138 	return 0;
3139 
3140 out_restore:
3141 	ptrs = (uint64_t *)ker;
3142 	hdr->nr_body = *ptrs++;
3143 	hdr->nr_options = *ptrs++;
3144 	hdr->nr_reserved = 0;
3145 	nm_os_free(ker);
3146 out_err:
3147 	return error;
3148 }
3149 
3150 static int
3151 nmreq_copyout(struct nmreq_header *hdr, int rerror)
3152 {
3153 	struct nmreq_option *src, *dst;
3154 	void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
3155 	uint64_t *ptrs;
3156 	size_t bodysz;
3157 	int error;
3158 
3159 	if (!hdr->nr_reserved)
3160 		return rerror;
3161 
3162 	/* restore the user pointers in the header */
3163 	ptrs = (uint64_t *)ker - 2;
3164 	bufstart = ptrs;
3165 	hdr->nr_body = *ptrs++;
3166 	src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3167 	hdr->nr_options = *ptrs;
3168 
3169 	if (!rerror) {
3170 		/* copy the body */
3171 		bodysz = nmreq_size_by_type(hdr->nr_reqtype);
3172 		error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
3173 		if (error) {
3174 			rerror = error;
3175 			goto out;
3176 		}
3177 	}
3178 
3179 	/* copy the options */
3180 	dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3181 	while (src) {
3182 		size_t optsz;
3183 		uint64_t next;
3184 
3185 		/* restore the user pointer */
3186 		next = src->nro_next;
3187 		ptrs = (uint64_t *)src - 1;
3188 		src->nro_next = *ptrs;
3189 
3190 		/* always copy the option header */
3191 		error = copyout(src, dst, sizeof(*src));
3192 		if (error) {
3193 			rerror = error;
3194 			goto out;
3195 		}
3196 
3197 		/* copy the option body only if there was no error */
3198 		if (!rerror && !src->nro_status) {
3199 			optsz = nmreq_opt_size_by_type(src->nro_reqtype,
3200 							src->nro_size);
3201 			if (optsz) {
3202 				error = copyout(src + 1, dst + 1, optsz);
3203 				if (error) {
3204 					rerror = error;
3205 					goto out;
3206 				}
3207 			}
3208 		}
3209 		src = (struct nmreq_option *)(uintptr_t)next;
3210 		dst = (struct nmreq_option *)(uintptr_t)*ptrs;
3211 	}
3212 
3213 
3214 out:
3215 	hdr->nr_reserved = 0;
3216 	nm_os_free(bufstart);
3217 	return rerror;
3218 }
3219 
3220 struct nmreq_option *
3221 nmreq_findoption(struct nmreq_option *opt, uint16_t reqtype)
3222 {
3223 	for ( ; opt; opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3224 		if (opt->nro_reqtype == reqtype)
3225 			return opt;
3226 	return NULL;
3227 }
3228 
3229 int
3230 nmreq_checkduplicate(struct nmreq_option *opt) {
3231 	uint16_t type = opt->nro_reqtype;
3232 	int dup = 0;
3233 
3234 	while ((opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)opt->nro_next,
3235 			type))) {
3236 		dup++;
3237 		opt->nro_status = EINVAL;
3238 	}
3239 	return (dup ? EINVAL : 0);
3240 }
3241 
3242 static int
3243 nmreq_checkoptions(struct nmreq_header *hdr)
3244 {
3245 	struct nmreq_option *opt;
3246 	/* return error if there is still any option
3247 	 * marked as not supported
3248 	 */
3249 
3250 	for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
3251 	     opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3252 		if (opt->nro_status == EOPNOTSUPP)
3253 			return EOPNOTSUPP;
3254 
3255 	return 0;
3256 }
3257 
3258 /*
3259  * select(2) and poll(2) handlers for the "netmap" device.
3260  *
3261  * Can be called for one or more queues.
3262  * Return true the event mask corresponding to ready events.
3263  * If there are no ready events (and 'sr' is not NULL), do a
3264  * selrecord on either individual selinfo or on the global one.
3265  * Device-dependent parts (locking and sync of tx/rx rings)
3266  * are done through callbacks.
3267  *
3268  * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3269  * The first one is remapped to pwait as selrecord() uses the name as an
3270  * hidden argument.
3271  */
3272 int
3273 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3274 {
3275 	struct netmap_adapter *na;
3276 	struct netmap_kring *kring;
3277 	struct netmap_ring *ring;
3278 	u_int i, want[NR_TXRX], revents = 0;
3279 	NM_SELINFO_T *si[NR_TXRX];
3280 #define want_tx want[NR_TX]
3281 #define want_rx want[NR_RX]
3282 	struct mbq q;	/* packets from RX hw queues to host stack */
3283 
3284 	/*
3285 	 * In order to avoid nested locks, we need to "double check"
3286 	 * txsync and rxsync if we decide to do a selrecord().
3287 	 * retry_tx (and retry_rx, later) prevent looping forever.
3288 	 */
3289 	int retry_tx = 1, retry_rx = 1;
3290 
3291 	/* Transparent mode: send_down is 1 if we have found some
3292 	 * packets to forward (host RX ring --> NIC) during the rx
3293 	 * scan and we have not sent them down to the NIC yet.
3294 	 * Transparent mode requires to bind all rings to a single
3295 	 * file descriptor.
3296 	 */
3297 	int send_down = 0;
3298 	int sync_flags = priv->np_sync_flags;
3299 
3300 	mbq_init(&q);
3301 
3302 	if (unlikely(priv->np_nifp == NULL)) {
3303 		return POLLERR;
3304 	}
3305 	mb(); /* make sure following reads are not from cache */
3306 
3307 	na = priv->np_na;
3308 
3309 	if (unlikely(!nm_netmap_on(na)))
3310 		return POLLERR;
3311 
3312 	if (unlikely(priv->np_csb_atok_base)) {
3313 		nm_prerr("Invalid poll in CSB mode");
3314 		return POLLERR;
3315 	}
3316 
3317 	if (netmap_debug & NM_DEBUG_ON)
3318 		nm_prinf("device %s events 0x%x", na->name, events);
3319 	want_tx = events & (POLLOUT | POLLWRNORM);
3320 	want_rx = events & (POLLIN | POLLRDNORM);
3321 
3322 	/*
3323 	 * If the card has more than one queue AND the file descriptor is
3324 	 * bound to all of them, we sleep on the "global" selinfo, otherwise
3325 	 * we sleep on individual selinfo (FreeBSD only allows two selinfo's
3326 	 * per file descriptor).
3327 	 * The interrupt routine in the driver wake one or the other
3328 	 * (or both) depending on which clients are active.
3329 	 *
3330 	 * rxsync() is only called if we run out of buffers on a POLLIN.
3331 	 * txsync() is called if we run out of buffers on POLLOUT, or
3332 	 * there are pending packets to send. The latter can be disabled
3333 	 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3334 	 */
3335 	si[NR_RX] = priv->np_si[NR_RX];
3336 	si[NR_TX] = priv->np_si[NR_TX];
3337 
3338 #ifdef __FreeBSD__
3339 	/*
3340 	 * We start with a lock free round which is cheap if we have
3341 	 * slots available. If this fails, then lock and call the sync
3342 	 * routines. We can't do this on Linux, as the contract says
3343 	 * that we must call nm_os_selrecord() unconditionally.
3344 	 */
3345 	if (want_tx) {
3346 		const enum txrx t = NR_TX;
3347 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3348 			kring = NMR(na, t)[i];
3349 			if (kring->ring->cur != kring->ring->tail) {
3350 				/* Some unseen TX space is available, so what
3351 				 * we don't need to run txsync. */
3352 				revents |= want[t];
3353 				want[t] = 0;
3354 				break;
3355 			}
3356 		}
3357 	}
3358 	if (want_rx) {
3359 		const enum txrx t = NR_RX;
3360 		int rxsync_needed = 0;
3361 
3362 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3363 			kring = NMR(na, t)[i];
3364 			if (kring->ring->cur == kring->ring->tail
3365 				|| kring->rhead != kring->ring->head) {
3366 				/* There are no unseen packets on this ring,
3367 				 * or there are some buffers to be returned
3368 				 * to the netmap port. We therefore go ahead
3369 				 * and run rxsync. */
3370 				rxsync_needed = 1;
3371 				break;
3372 			}
3373 		}
3374 		if (!rxsync_needed) {
3375 			revents |= want_rx;
3376 			want_rx = 0;
3377 		}
3378 	}
3379 #endif
3380 
3381 #ifdef linux
3382 	/* The selrecord must be unconditional on linux. */
3383 	nm_os_selrecord(sr, si[NR_RX]);
3384 	nm_os_selrecord(sr, si[NR_TX]);
3385 #endif /* linux */
3386 
3387 	/*
3388 	 * If we want to push packets out (priv->np_txpoll) or
3389 	 * want_tx is still set, we must issue txsync calls
3390 	 * (on all rings, to avoid that the tx rings stall).
3391 	 * Fortunately, normal tx mode has np_txpoll set.
3392 	 */
3393 	if (priv->np_txpoll || want_tx) {
3394 		/*
3395 		 * The first round checks if anyone is ready, if not
3396 		 * do a selrecord and another round to handle races.
3397 		 * want_tx goes to 0 if any space is found, and is
3398 		 * used to skip rings with no pending transmissions.
3399 		 */
3400 flush_tx:
3401 		for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3402 			int found = 0;
3403 
3404 			kring = na->tx_rings[i];
3405 			ring = kring->ring;
3406 
3407 			/*
3408 			 * Don't try to txsync this TX ring if we already found some
3409 			 * space in some of the TX rings (want_tx == 0) and there are no
3410 			 * TX slots in this ring that need to be flushed to the NIC
3411 			 * (head == hwcur).
3412 			 */
3413 			if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3414 				continue;
3415 
3416 			if (nm_kr_tryget(kring, 1, &revents))
3417 				continue;
3418 
3419 			if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3420 				netmap_ring_reinit(kring);
3421 				revents |= POLLERR;
3422 			} else {
3423 				if (kring->nm_sync(kring, sync_flags))
3424 					revents |= POLLERR;
3425 				else
3426 					nm_sync_finalize(kring);
3427 			}
3428 
3429 			/*
3430 			 * If we found new slots, notify potential
3431 			 * listeners on the same ring.
3432 			 * Since we just did a txsync, look at the copies
3433 			 * of cur,tail in the kring.
3434 			 */
3435 			found = kring->rcur != kring->rtail;
3436 			nm_kr_put(kring);
3437 			if (found) { /* notify other listeners */
3438 				revents |= want_tx;
3439 				want_tx = 0;
3440 #ifndef linux
3441 				kring->nm_notify(kring, 0);
3442 #endif /* linux */
3443 			}
3444 		}
3445 		/* if there were any packet to forward we must have handled them by now */
3446 		send_down = 0;
3447 		if (want_tx && retry_tx && sr) {
3448 #ifndef linux
3449 			nm_os_selrecord(sr, si[NR_TX]);
3450 #endif /* !linux */
3451 			retry_tx = 0;
3452 			goto flush_tx;
3453 		}
3454 	}
3455 
3456 	/*
3457 	 * If want_rx is still set scan receive rings.
3458 	 * Do it on all rings because otherwise we starve.
3459 	 */
3460 	if (want_rx) {
3461 		/* two rounds here for race avoidance */
3462 do_retry_rx:
3463 		for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3464 			int found = 0;
3465 
3466 			kring = na->rx_rings[i];
3467 			ring = kring->ring;
3468 
3469 			if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3470 				continue;
3471 
3472 			if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3473 				netmap_ring_reinit(kring);
3474 				revents |= POLLERR;
3475 			}
3476 			/* now we can use kring->rcur, rtail */
3477 
3478 			/*
3479 			 * transparent mode support: collect packets from
3480 			 * hw rxring(s) that have been released by the user
3481 			 */
3482 			if (nm_may_forward_up(kring)) {
3483 				netmap_grab_packets(kring, &q, netmap_fwd);
3484 			}
3485 
3486 			/* Clear the NR_FORWARD flag anyway, it may be set by
3487 			 * the nm_sync() below only on for the host RX ring (see
3488 			 * netmap_rxsync_from_host()). */
3489 			kring->nr_kflags &= ~NR_FORWARD;
3490 			if (kring->nm_sync(kring, sync_flags))
3491 				revents |= POLLERR;
3492 			else
3493 				nm_sync_finalize(kring);
3494 			send_down |= (kring->nr_kflags & NR_FORWARD);
3495 			ring_timestamp_set(ring);
3496 			found = kring->rcur != kring->rtail;
3497 			nm_kr_put(kring);
3498 			if (found) {
3499 				revents |= want_rx;
3500 				retry_rx = 0;
3501 #ifndef linux
3502 				kring->nm_notify(kring, 0);
3503 #endif /* linux */
3504 			}
3505 		}
3506 
3507 #ifndef linux
3508 		if (retry_rx && sr) {
3509 			nm_os_selrecord(sr, si[NR_RX]);
3510 		}
3511 #endif /* !linux */
3512 		if (send_down || retry_rx) {
3513 			retry_rx = 0;
3514 			if (send_down)
3515 				goto flush_tx; /* and retry_rx */
3516 			else
3517 				goto do_retry_rx;
3518 		}
3519 	}
3520 
3521 	/*
3522 	 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3523 	 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3524 	 * to the host stack.
3525 	 */
3526 
3527 	if (mbq_peek(&q)) {
3528 		netmap_send_up(na->ifp, &q);
3529 	}
3530 
3531 	return (revents);
3532 #undef want_tx
3533 #undef want_rx
3534 }
3535 
3536 int
3537 nma_intr_enable(struct netmap_adapter *na, int onoff)
3538 {
3539 	bool changed = false;
3540 	enum txrx t;
3541 	int i;
3542 
3543 	for_rx_tx(t) {
3544 		for (i = 0; i < nma_get_nrings(na, t); i++) {
3545 			struct netmap_kring *kring = NMR(na, t)[i];
3546 			int on = !(kring->nr_kflags & NKR_NOINTR);
3547 
3548 			if (!!onoff != !!on) {
3549 				changed = true;
3550 			}
3551 			if (onoff) {
3552 				kring->nr_kflags &= ~NKR_NOINTR;
3553 			} else {
3554 				kring->nr_kflags |= NKR_NOINTR;
3555 			}
3556 		}
3557 	}
3558 
3559 	if (!changed) {
3560 		return 0; /* nothing to do */
3561 	}
3562 
3563 	if (!na->nm_intr) {
3564 		nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3565 		  na->name);
3566 		return -1;
3567 	}
3568 
3569 	na->nm_intr(na, onoff);
3570 
3571 	return 0;
3572 }
3573 
3574 
3575 /*-------------------- driver support routines -------------------*/
3576 
3577 /* default notify callback */
3578 static int
3579 netmap_notify(struct netmap_kring *kring, int flags)
3580 {
3581 	struct netmap_adapter *na = kring->notify_na;
3582 	enum txrx t = kring->tx;
3583 
3584 	nm_os_selwakeup(&kring->si);
3585 	/* optimization: avoid a wake up on the global
3586 	 * queue if nobody has registered for more
3587 	 * than one ring
3588 	 */
3589 	if (na->si_users[t] > 0)
3590 		nm_os_selwakeup(&na->si[t]);
3591 
3592 	return NM_IRQ_COMPLETED;
3593 }
3594 
3595 /* called by all routines that create netmap_adapters.
3596  * provide some defaults and get a reference to the
3597  * memory allocator
3598  */
3599 int
3600 netmap_attach_common(struct netmap_adapter *na)
3601 {
3602 	if (!na->rx_buf_maxsize) {
3603 		/* Set a conservative default (larger is safer). */
3604 		na->rx_buf_maxsize = PAGE_SIZE;
3605 	}
3606 
3607 #ifdef __FreeBSD__
3608 	if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3609 		na->if_input = na->ifp->if_input; /* for netmap_send_up */
3610 	}
3611 	na->pdev = na; /* make sure netmap_mem_map() is called */
3612 #endif /* __FreeBSD__ */
3613 	if (na->na_flags & NAF_HOST_RINGS) {
3614 		if (na->num_host_rx_rings == 0)
3615 			na->num_host_rx_rings = 1;
3616 		if (na->num_host_tx_rings == 0)
3617 			na->num_host_tx_rings = 1;
3618 	}
3619 	if (na->nm_krings_create == NULL) {
3620 		/* we assume that we have been called by a driver,
3621 		 * since other port types all provide their own
3622 		 * nm_krings_create
3623 		 */
3624 		na->nm_krings_create = netmap_hw_krings_create;
3625 		na->nm_krings_delete = netmap_hw_krings_delete;
3626 	}
3627 	if (na->nm_notify == NULL)
3628 		na->nm_notify = netmap_notify;
3629 	na->active_fds = 0;
3630 
3631 	if (na->nm_mem == NULL) {
3632 		/* use the global allocator */
3633 		na->nm_mem = netmap_mem_get(&nm_mem);
3634 	}
3635 #ifdef WITH_VALE
3636 	if (na->nm_bdg_attach == NULL)
3637 		/* no special nm_bdg_attach callback. On VALE
3638 		 * attach, we need to interpose a bwrap
3639 		 */
3640 		na->nm_bdg_attach = netmap_default_bdg_attach;
3641 #endif
3642 
3643 	return 0;
3644 }
3645 
3646 /* Wrapper for the register callback provided netmap-enabled
3647  * hardware drivers.
3648  * nm_iszombie(na) means that the driver module has been
3649  * unloaded, so we cannot call into it.
3650  * nm_os_ifnet_lock() must guarantee mutual exclusion with
3651  * module unloading.
3652  */
3653 static int
3654 netmap_hw_reg(struct netmap_adapter *na, int onoff)
3655 {
3656 	struct netmap_hw_adapter *hwna =
3657 		(struct netmap_hw_adapter*)na;
3658 	int error = 0;
3659 
3660 	nm_os_ifnet_lock();
3661 
3662 	if (nm_iszombie(na)) {
3663 		if (onoff) {
3664 			error = ENXIO;
3665 		} else if (na != NULL) {
3666 			na->na_flags &= ~NAF_NETMAP_ON;
3667 		}
3668 		goto out;
3669 	}
3670 
3671 	error = hwna->nm_hw_register(na, onoff);
3672 
3673 out:
3674 	nm_os_ifnet_unlock();
3675 
3676 	return error;
3677 }
3678 
3679 static void
3680 netmap_hw_dtor(struct netmap_adapter *na)
3681 {
3682 	if (na->ifp == NULL)
3683 		return;
3684 
3685 	NM_DETACH_NA(na->ifp);
3686 }
3687 
3688 
3689 /*
3690  * Allocate a netmap_adapter object, and initialize it from the
3691  * 'arg' passed by the driver on attach.
3692  * We allocate a block of memory of 'size' bytes, which has room
3693  * for struct netmap_adapter plus additional room private to
3694  * the caller.
3695  * Return 0 on success, ENOMEM otherwise.
3696  */
3697 int
3698 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
3699 {
3700 	struct netmap_hw_adapter *hwna = NULL;
3701 	struct ifnet *ifp = NULL;
3702 
3703 	if (size < sizeof(struct netmap_hw_adapter)) {
3704 		if (netmap_debug & NM_DEBUG_ON)
3705 			nm_prerr("Invalid netmap adapter size %d", (int)size);
3706 		return EINVAL;
3707 	}
3708 
3709 	if (arg == NULL || arg->ifp == NULL) {
3710 		if (netmap_debug & NM_DEBUG_ON)
3711 			nm_prerr("either arg or arg->ifp is NULL");
3712 		return EINVAL;
3713 	}
3714 
3715 	if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) {
3716 		if (netmap_debug & NM_DEBUG_ON)
3717 			nm_prerr("%s: invalid rings tx %d rx %d",
3718 				arg->name, arg->num_tx_rings, arg->num_rx_rings);
3719 		return EINVAL;
3720 	}
3721 
3722 	ifp = arg->ifp;
3723 	if (NM_NA_CLASH(ifp)) {
3724 		/* If NA(ifp) is not null but there is no valid netmap
3725 		 * adapter it means that someone else is using the same
3726 		 * pointer (e.g. ax25_ptr on linux). This happens for
3727 		 * instance when also PF_RING is in use. */
3728 		nm_prerr("Error: netmap adapter hook is busy");
3729 		return EBUSY;
3730 	}
3731 
3732 	hwna = nm_os_malloc(size);
3733 	if (hwna == NULL)
3734 		goto fail;
3735 	hwna->up = *arg;
3736 	hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
3737 	strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name));
3738 	if (override_reg) {
3739 		hwna->nm_hw_register = hwna->up.nm_register;
3740 		hwna->up.nm_register = netmap_hw_reg;
3741 	}
3742 	if (netmap_attach_common(&hwna->up)) {
3743 		nm_os_free(hwna);
3744 		goto fail;
3745 	}
3746 	netmap_adapter_get(&hwna->up);
3747 
3748 	NM_ATTACH_NA(ifp, &hwna->up);
3749 
3750 	nm_os_onattach(ifp);
3751 
3752 	if (arg->nm_dtor == NULL) {
3753 		hwna->up.nm_dtor = netmap_hw_dtor;
3754 	}
3755 
3756 	if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
3757 	    hwna->up.num_tx_rings, hwna->up.num_tx_desc,
3758 	    hwna->up.num_rx_rings, hwna->up.num_rx_desc);
3759 	return 0;
3760 
3761 fail:
3762 	nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna);
3763 	return (hwna ? EINVAL : ENOMEM);
3764 }
3765 
3766 
3767 int
3768 netmap_attach(struct netmap_adapter *arg)
3769 {
3770 	return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
3771 			1 /* override nm_reg */);
3772 }
3773 
3774 
3775 void
3776 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
3777 {
3778 	if (!na) {
3779 		return;
3780 	}
3781 
3782 	refcount_acquire(&na->na_refcount);
3783 }
3784 
3785 
3786 /* returns 1 iff the netmap_adapter is destroyed */
3787 int
3788 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
3789 {
3790 	if (!na)
3791 		return 1;
3792 
3793 	if (!refcount_release(&na->na_refcount))
3794 		return 0;
3795 
3796 	if (na->nm_dtor)
3797 		na->nm_dtor(na);
3798 
3799 	if (na->tx_rings) { /* XXX should not happen */
3800 		if (netmap_debug & NM_DEBUG_ON)
3801 			nm_prerr("freeing leftover tx_rings");
3802 		na->nm_krings_delete(na);
3803 	}
3804 	netmap_pipe_dealloc(na);
3805 	if (na->nm_mem)
3806 		netmap_mem_put(na->nm_mem);
3807 	bzero(na, sizeof(*na));
3808 	nm_os_free(na);
3809 
3810 	return 1;
3811 }
3812 
3813 /* nm_krings_create callback for all hardware native adapters */
3814 int
3815 netmap_hw_krings_create(struct netmap_adapter *na)
3816 {
3817 	int ret = netmap_krings_create(na, 0);
3818 	if (ret == 0) {
3819 		/* initialize the mbq for the sw rx ring */
3820 		u_int lim = netmap_real_rings(na, NR_RX), i;
3821 		for (i = na->num_rx_rings; i < lim; i++) {
3822 			mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue);
3823 		}
3824 		nm_prdis("initialized sw rx queue %d", na->num_rx_rings);
3825 	}
3826 	return ret;
3827 }
3828 
3829 
3830 
3831 /*
3832  * Called on module unload by the netmap-enabled drivers
3833  */
3834 void
3835 netmap_detach(struct ifnet *ifp)
3836 {
3837 	struct netmap_adapter *na = NA(ifp);
3838 
3839 	if (!na)
3840 		return;
3841 
3842 	NMG_LOCK();
3843 	netmap_set_all_rings(na, NM_KR_LOCKED);
3844 	/*
3845 	 * if the netmap adapter is not native, somebody
3846 	 * changed it, so we can not release it here.
3847 	 * The NAF_ZOMBIE flag will notify the new owner that
3848 	 * the driver is gone.
3849 	 */
3850 	if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
3851 		na->na_flags |= NAF_ZOMBIE;
3852 	}
3853 	/* give active users a chance to notice that NAF_ZOMBIE has been
3854 	 * turned on, so that they can stop and return an error to userspace.
3855 	 * Note that this becomes a NOP if there are no active users and,
3856 	 * therefore, the put() above has deleted the na, since now NA(ifp) is
3857 	 * NULL.
3858 	 */
3859 	netmap_enable_all_rings(ifp);
3860 	NMG_UNLOCK();
3861 }
3862 
3863 
3864 /*
3865  * Intercept packets from the network stack and pass them
3866  * to netmap as incoming packets on the 'software' ring.
3867  *
3868  * We only store packets in a bounded mbq and then copy them
3869  * in the relevant rxsync routine.
3870  *
3871  * We rely on the OS to make sure that the ifp and na do not go
3872  * away (typically the caller checks for IFF_DRV_RUNNING or the like).
3873  * In nm_register() or whenever there is a reinitialization,
3874  * we make sure to make the mode change visible here.
3875  */
3876 int
3877 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
3878 {
3879 	struct netmap_adapter *na = NA(ifp);
3880 	struct netmap_kring *kring, *tx_kring;
3881 	u_int len = MBUF_LEN(m);
3882 	u_int error = ENOBUFS;
3883 	unsigned int txr;
3884 	struct mbq *q;
3885 	int busy;
3886 	u_int i;
3887 
3888 	i = MBUF_TXQ(m);
3889 	if (i >= na->num_host_rx_rings) {
3890 		i = i % na->num_host_rx_rings;
3891 	}
3892 	kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i];
3893 
3894 	// XXX [Linux] we do not need this lock
3895 	// if we follow the down/configure/up protocol -gl
3896 	// mtx_lock(&na->core_lock);
3897 
3898 	if (!nm_netmap_on(na)) {
3899 		nm_prerr("%s not in netmap mode anymore", na->name);
3900 		error = ENXIO;
3901 		goto done;
3902 	}
3903 
3904 	txr = MBUF_TXQ(m);
3905 	if (txr >= na->num_tx_rings) {
3906 		txr %= na->num_tx_rings;
3907 	}
3908 	tx_kring = NMR(na, NR_TX)[txr];
3909 
3910 	if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
3911 		return MBUF_TRANSMIT(na, ifp, m);
3912 	}
3913 
3914 	q = &kring->rx_queue;
3915 
3916 	// XXX reconsider long packets if we handle fragments
3917 	if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
3918 		nm_prerr("%s from_host, drop packet size %d > %d", na->name,
3919 			len, NETMAP_BUF_SIZE(na));
3920 		goto done;
3921 	}
3922 
3923 	if (!netmap_generic_hwcsum) {
3924 		if (nm_os_mbuf_has_csum_offld(m)) {
3925 			nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name);
3926 			goto done;
3927 		}
3928 	}
3929 
3930 	if (nm_os_mbuf_has_seg_offld(m)) {
3931 		nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name);
3932 		goto done;
3933 	}
3934 
3935 #ifdef __FreeBSD__
3936 	ETHER_BPF_MTAP(ifp, m);
3937 #endif /* __FreeBSD__ */
3938 
3939 	/* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
3940 	 * and maybe other instances of netmap_transmit (the latter
3941 	 * not possible on Linux).
3942 	 * We enqueue the mbuf only if we are sure there is going to be
3943 	 * enough room in the host RX ring, otherwise we drop it.
3944 	 */
3945 	mbq_lock(q);
3946 
3947 	busy = kring->nr_hwtail - kring->nr_hwcur;
3948 	if (busy < 0)
3949 		busy += kring->nkr_num_slots;
3950 	if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
3951 		nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
3952 			kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
3953 	} else {
3954 		mbq_enqueue(q, m);
3955 		nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q));
3956 		/* notify outside the lock */
3957 		m = NULL;
3958 		error = 0;
3959 	}
3960 	mbq_unlock(q);
3961 
3962 done:
3963 	if (m)
3964 		m_freem(m);
3965 	/* unconditionally wake up listeners */
3966 	kring->nm_notify(kring, 0);
3967 	/* this is normally netmap_notify(), but for nics
3968 	 * connected to a bridge it is netmap_bwrap_intr_notify(),
3969 	 * that possibly forwards the frames through the switch
3970 	 */
3971 
3972 	return (error);
3973 }
3974 
3975 
3976 /*
3977  * netmap_reset() is called by the driver routines when reinitializing
3978  * a ring. The driver is in charge of locking to protect the kring.
3979  * If native netmap mode is not set just return NULL.
3980  * If native netmap mode is set, in particular, we have to set nr_mode to
3981  * NKR_NETMAP_ON.
3982  */
3983 struct netmap_slot *
3984 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
3985 	u_int new_cur)
3986 {
3987 	struct netmap_kring *kring;
3988 	int new_hwofs, lim;
3989 
3990 	if (!nm_native_on(na)) {
3991 		nm_prdis("interface not in native netmap mode");
3992 		return NULL;	/* nothing to reinitialize */
3993 	}
3994 
3995 	/* XXX note- in the new scheme, we are not guaranteed to be
3996 	 * under lock (e.g. when called on a device reset).
3997 	 * In this case, we should set a flag and do not trust too
3998 	 * much the values. In practice: TODO
3999 	 * - set a RESET flag somewhere in the kring
4000 	 * - do the processing in a conservative way
4001 	 * - let the *sync() fixup at the end.
4002 	 */
4003 	if (tx == NR_TX) {
4004 		if (n >= na->num_tx_rings)
4005 			return NULL;
4006 
4007 		kring = na->tx_rings[n];
4008 
4009 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4010 			kring->nr_mode = NKR_NETMAP_OFF;
4011 			return NULL;
4012 		}
4013 
4014 		// XXX check whether we should use hwcur or rcur
4015 		new_hwofs = kring->nr_hwcur - new_cur;
4016 	} else {
4017 		if (n >= na->num_rx_rings)
4018 			return NULL;
4019 		kring = na->rx_rings[n];
4020 
4021 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4022 			kring->nr_mode = NKR_NETMAP_OFF;
4023 			return NULL;
4024 		}
4025 
4026 		new_hwofs = kring->nr_hwtail - new_cur;
4027 	}
4028 	lim = kring->nkr_num_slots - 1;
4029 	if (new_hwofs > lim)
4030 		new_hwofs -= lim + 1;
4031 
4032 	/* Always set the new offset value and realign the ring. */
4033 	if (netmap_debug & NM_DEBUG_ON)
4034 	    nm_prinf("%s %s%d hwofs %d -> %d, hwtail %d -> %d",
4035 		na->name,
4036 		tx == NR_TX ? "TX" : "RX", n,
4037 		kring->nkr_hwofs, new_hwofs,
4038 		kring->nr_hwtail,
4039 		tx == NR_TX ? lim : kring->nr_hwtail);
4040 	kring->nkr_hwofs = new_hwofs;
4041 	if (tx == NR_TX) {
4042 		kring->nr_hwtail = kring->nr_hwcur + lim;
4043 		if (kring->nr_hwtail > lim)
4044 			kring->nr_hwtail -= lim + 1;
4045 	}
4046 
4047 	/*
4048 	 * Wakeup on the individual and global selwait
4049 	 * We do the wakeup here, but the ring is not yet reconfigured.
4050 	 * However, we are under lock so there are no races.
4051 	 */
4052 	kring->nr_mode = NKR_NETMAP_ON;
4053 	kring->nm_notify(kring, 0);
4054 	return kring->ring->slot;
4055 }
4056 
4057 
4058 /*
4059  * Dispatch rx/tx interrupts to the netmap rings.
4060  *
4061  * "work_done" is non-null on the RX path, NULL for the TX path.
4062  * We rely on the OS to make sure that there is only one active
4063  * instance per queue, and that there is appropriate locking.
4064  *
4065  * The 'notify' routine depends on what the ring is attached to.
4066  * - for a netmap file descriptor, do a selwakeup on the individual
4067  *   waitqueue, plus one on the global one if needed
4068  *   (see netmap_notify)
4069  * - for a nic connected to a switch, call the proper forwarding routine
4070  *   (see netmap_bwrap_intr_notify)
4071  */
4072 int
4073 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
4074 {
4075 	struct netmap_kring *kring;
4076 	enum txrx t = (work_done ? NR_RX : NR_TX);
4077 
4078 	q &= NETMAP_RING_MASK;
4079 
4080 	if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) {
4081 	        nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
4082 	}
4083 
4084 	if (q >= nma_get_nrings(na, t))
4085 		return NM_IRQ_PASS; // not a physical queue
4086 
4087 	kring = NMR(na, t)[q];
4088 
4089 	if (kring->nr_mode == NKR_NETMAP_OFF) {
4090 		return NM_IRQ_PASS;
4091 	}
4092 
4093 	if (t == NR_RX) {
4094 		kring->nr_kflags |= NKR_PENDINTR;	// XXX atomic ?
4095 		*work_done = 1; /* do not fire napi again */
4096 	}
4097 
4098 	return kring->nm_notify(kring, 0);
4099 }
4100 
4101 
4102 /*
4103  * Default functions to handle rx/tx interrupts from a physical device.
4104  * "work_done" is non-null on the RX path, NULL for the TX path.
4105  *
4106  * If the card is not in netmap mode, simply return NM_IRQ_PASS,
4107  * so that the caller proceeds with regular processing.
4108  * Otherwise call netmap_common_irq().
4109  *
4110  * If the card is connected to a netmap file descriptor,
4111  * do a selwakeup on the individual queue, plus one on the global one
4112  * if needed (multiqueue card _and_ there are multiqueue listeners),
4113  * and return NR_IRQ_COMPLETED.
4114  *
4115  * Finally, if called on rx from an interface connected to a switch,
4116  * calls the proper forwarding routine.
4117  */
4118 int
4119 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
4120 {
4121 	struct netmap_adapter *na = NA(ifp);
4122 
4123 	/*
4124 	 * XXX emulated netmap mode sets NAF_SKIP_INTR so
4125 	 * we still use the regular driver even though the previous
4126 	 * check fails. It is unclear whether we should use
4127 	 * nm_native_on() here.
4128 	 */
4129 	if (!nm_netmap_on(na))
4130 		return NM_IRQ_PASS;
4131 
4132 	if (na->na_flags & NAF_SKIP_INTR) {
4133 		nm_prdis("use regular interrupt");
4134 		return NM_IRQ_PASS;
4135 	}
4136 
4137 	return netmap_common_irq(na, q, work_done);
4138 }
4139 
4140 /* set/clear native flags and if_transmit/netdev_ops */
4141 void
4142 nm_set_native_flags(struct netmap_adapter *na)
4143 {
4144 	struct ifnet *ifp = na->ifp;
4145 
4146 	/* We do the setup for intercepting packets only if we are the
4147 	 * first user of this adapapter. */
4148 	if (na->active_fds > 0) {
4149 		return;
4150 	}
4151 
4152 	na->na_flags |= NAF_NETMAP_ON;
4153 	nm_os_onenter(ifp);
4154 	nm_update_hostrings_mode(na);
4155 }
4156 
4157 void
4158 nm_clear_native_flags(struct netmap_adapter *na)
4159 {
4160 	struct ifnet *ifp = na->ifp;
4161 
4162 	/* We undo the setup for intercepting packets only if we are the
4163 	 * last user of this adapter. */
4164 	if (na->active_fds > 0) {
4165 		return;
4166 	}
4167 
4168 	nm_update_hostrings_mode(na);
4169 	nm_os_onexit(ifp);
4170 
4171 	na->na_flags &= ~NAF_NETMAP_ON;
4172 }
4173 
4174 void
4175 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff)
4176 {
4177 	enum txrx t;
4178 
4179 	for_rx_tx(t) {
4180 		int i;
4181 
4182 		for (i = 0; i < netmap_real_rings(na, t); i++) {
4183 			struct netmap_kring *kring = NMR(na, t)[i];
4184 
4185 			if (onoff && nm_kring_pending_on(kring))
4186 				kring->nr_mode = NKR_NETMAP_ON;
4187 			else if (!onoff && nm_kring_pending_off(kring))
4188 				kring->nr_mode = NKR_NETMAP_OFF;
4189 		}
4190 	}
4191 }
4192 
4193 /*
4194  * Module loader and unloader
4195  *
4196  * netmap_init() creates the /dev/netmap device and initializes
4197  * all global variables. Returns 0 on success, errno on failure
4198  * (but there is no chance)
4199  *
4200  * netmap_fini() destroys everything.
4201  */
4202 
4203 static struct cdev *netmap_dev; /* /dev/netmap character device. */
4204 extern struct cdevsw netmap_cdevsw;
4205 
4206 
4207 void
4208 netmap_fini(void)
4209 {
4210 	if (netmap_dev)
4211 		destroy_dev(netmap_dev);
4212 	/* we assume that there are no longer netmap users */
4213 	nm_os_ifnet_fini();
4214 	netmap_uninit_bridges();
4215 	netmap_mem_fini();
4216 	NMG_LOCK_DESTROY();
4217 	nm_prinf("netmap: unloaded module.");
4218 }
4219 
4220 
4221 int
4222 netmap_init(void)
4223 {
4224 	int error;
4225 
4226 	NMG_LOCK_INIT();
4227 
4228 	error = netmap_mem_init();
4229 	if (error != 0)
4230 		goto fail;
4231 	/*
4232 	 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
4233 	 * when the module is compiled in.
4234 	 * XXX could use make_dev_credv() to get error number
4235 	 */
4236 	netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
4237 		&netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
4238 			      "netmap");
4239 	if (!netmap_dev)
4240 		goto fail;
4241 
4242 	error = netmap_init_bridges();
4243 	if (error)
4244 		goto fail;
4245 
4246 #ifdef __FreeBSD__
4247 	nm_os_vi_init_index();
4248 #endif
4249 
4250 	error = nm_os_ifnet_init();
4251 	if (error)
4252 		goto fail;
4253 
4254 	nm_prinf("netmap: loaded module");
4255 	return (0);
4256 fail:
4257 	netmap_fini();
4258 	return (EINVAL); /* may be incorrect */
4259 }
4260