1 /* 2 * Copyright (C) 2011-2012 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #define NM_BRIDGE 27 28 /* 29 * This module supports memory mapped access to network devices, 30 * see netmap(4). 31 * 32 * The module uses a large, memory pool allocated by the kernel 33 * and accessible as mmapped memory by multiple userspace threads/processes. 34 * The memory pool contains packet buffers and "netmap rings", 35 * i.e. user-accessible copies of the interface's queues. 36 * 37 * Access to the network card works like this: 38 * 1. a process/thread issues one or more open() on /dev/netmap, to create 39 * select()able file descriptor on which events are reported. 40 * 2. on each descriptor, the process issues an ioctl() to identify 41 * the interface that should report events to the file descriptor. 42 * 3. on each descriptor, the process issues an mmap() request to 43 * map the shared memory region within the process' address space. 44 * The list of interesting queues is indicated by a location in 45 * the shared memory region. 46 * 4. using the functions in the netmap(4) userspace API, a process 47 * can look up the occupation state of a queue, access memory buffers, 48 * and retrieve received packets or enqueue packets to transmit. 49 * 5. using some ioctl()s the process can synchronize the userspace view 50 * of the queue with the actual status in the kernel. This includes both 51 * receiving the notification of new packets, and transmitting new 52 * packets on the output interface. 53 * 6. select() or poll() can be used to wait for events on individual 54 * transmit or receive queues (or all queues for a given interface). 55 */ 56 57 #ifdef linux 58 #include "bsd_glue.h" 59 static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev); 60 #endif /* linux */ 61 62 #ifdef __APPLE__ 63 #include "osx_glue.h" 64 #endif /* __APPLE__ */ 65 66 #ifdef __FreeBSD__ 67 #include <sys/cdefs.h> /* prerequisite */ 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/types.h> 71 #include <sys/module.h> 72 #include <sys/errno.h> 73 #include <sys/param.h> /* defines used in kernel.h */ 74 #include <sys/jail.h> 75 #include <sys/kernel.h> /* types used in module initialization */ 76 #include <sys/conf.h> /* cdevsw struct */ 77 #include <sys/uio.h> /* uio struct */ 78 #include <sys/sockio.h> 79 #include <sys/socketvar.h> /* struct socket */ 80 #include <sys/malloc.h> 81 #include <sys/mman.h> /* PROT_EXEC */ 82 #include <sys/poll.h> 83 #include <sys/proc.h> 84 #include <vm/vm.h> /* vtophys */ 85 #include <vm/pmap.h> /* vtophys */ 86 #include <sys/socket.h> /* sockaddrs */ 87 #include <machine/bus.h> 88 #include <sys/selinfo.h> 89 #include <sys/sysctl.h> 90 #include <net/if.h> 91 #include <net/bpf.h> /* BIOCIMMEDIATE */ 92 #include <net/vnet.h> 93 #include <machine/bus.h> /* bus_dmamap_* */ 94 95 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 96 #endif /* __FreeBSD__ */ 97 98 #include <net/netmap.h> 99 #include <dev/netmap/netmap_kern.h> 100 101 u_int netmap_total_buffers; 102 u_int netmap_buf_size; 103 char *netmap_buffer_base; /* address of an invalid buffer */ 104 105 /* user-controlled variables */ 106 int netmap_verbose; 107 108 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 109 110 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 111 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 112 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 113 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 114 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 115 int netmap_mitigate = 1; 116 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 117 int netmap_no_pendintr = 1; 118 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 119 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 120 121 int netmap_drop = 0; /* debugging */ 122 int netmap_flags = 0; /* debug flags */ 123 int netmap_fwd = 0; /* force transparent mode */ 124 int netmap_copy = 0; /* debugging, copy content */ 125 126 SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , ""); 127 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 128 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , ""); 129 SYSCTL_INT(_dev_netmap, OID_AUTO, copy, CTLFLAG_RW, &netmap_copy, 0 , ""); 130 131 #ifdef NM_BRIDGE /* support for netmap bridge */ 132 133 /* 134 * system parameters. 135 * 136 * All switched ports have prefix NM_NAME. 137 * The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap, 138 * so a practical upper bound is 64). 139 * Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet). 140 * The virtual interfaces use per-queue lock instead of core lock. 141 * In the tx loop, we aggregate traffic in batches to make all operations 142 * faster. The batch size is NM_BDG_BATCH 143 */ 144 #define NM_NAME "vale" /* prefix for the interface */ 145 #define NM_BDG_MAXPORTS 16 /* up to 64 ? */ 146 #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ 147 #define NM_BDG_HASH 1024 /* forwarding table entries */ 148 #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ 149 #define NM_BRIDGES 4 /* number of bridges */ 150 int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */ 151 SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , ""); 152 153 #ifdef linux 154 #define ADD_BDG_REF(ifp) (NA(ifp)->if_refcount++) 155 #define DROP_BDG_REF(ifp) (NA(ifp)->if_refcount-- <= 1) 156 #else /* !linux */ 157 #define ADD_BDG_REF(ifp) (ifp)->if_refcount++ 158 #define DROP_BDG_REF(ifp) refcount_release(&(ifp)->if_refcount) 159 #ifdef __FreeBSD__ 160 #include <sys/endian.h> 161 #include <sys/refcount.h> 162 #endif /* __FreeBSD__ */ 163 #define prefetch(x) __builtin_prefetch(x) 164 #endif /* !linux */ 165 166 static void bdg_netmap_attach(struct ifnet *ifp); 167 static int bdg_netmap_reg(struct ifnet *ifp, int onoff); 168 /* per-tx-queue entry */ 169 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 170 void *buf; 171 uint64_t dst; /* dst mask */ 172 uint32_t src; /* src index ? */ 173 uint16_t len; /* src len */ 174 }; 175 176 struct nm_hash_ent { 177 uint64_t mac; /* the top 2 bytes are the epoch */ 178 uint64_t ports; 179 }; 180 181 /* 182 * Interfaces for a bridge are all in ports[]. 183 * The array has fixed size, an empty entry does not terminate 184 * the search. 185 */ 186 struct nm_bridge { 187 struct ifnet *bdg_ports[NM_BDG_MAXPORTS]; 188 int n_ports; 189 uint64_t act_ports; 190 int freelist; /* first buffer index */ 191 NM_SELINFO_T si; /* poll/select wait queue */ 192 NM_LOCK_T bdg_lock; /* protect the selinfo ? */ 193 194 /* the forwarding table, MAC+ports */ 195 struct nm_hash_ent ht[NM_BDG_HASH]; 196 197 int namelen; /* 0 means free */ 198 char basename[IFNAMSIZ]; 199 }; 200 201 struct nm_bridge nm_bridges[NM_BRIDGES]; 202 203 #define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock) 204 #define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock) 205 206 /* 207 * NA(ifp)->bdg_port port index 208 */ 209 210 // XXX only for multiples of 64 bytes, non overlapped. 211 static inline void 212 pkt_copy(void *_src, void *_dst, int l) 213 { 214 uint64_t *src = _src; 215 uint64_t *dst = _dst; 216 if (unlikely(l >= 1024)) { 217 bcopy(src, dst, l); 218 return; 219 } 220 for (; likely(l > 0); l-=64) { 221 *dst++ = *src++; 222 *dst++ = *src++; 223 *dst++ = *src++; 224 *dst++ = *src++; 225 *dst++ = *src++; 226 *dst++ = *src++; 227 *dst++ = *src++; 228 *dst++ = *src++; 229 } 230 } 231 232 /* 233 * locate a bridge among the existing ones. 234 * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. 235 * We assume that this is called with a name of at least NM_NAME chars. 236 */ 237 static struct nm_bridge * 238 nm_find_bridge(const char *name) 239 { 240 int i, l, namelen, e; 241 struct nm_bridge *b = NULL; 242 243 namelen = strlen(NM_NAME); /* base length */ 244 l = strlen(name); /* actual length */ 245 for (i = namelen + 1; i < l; i++) { 246 if (name[i] == ':') { 247 namelen = i; 248 break; 249 } 250 } 251 if (namelen >= IFNAMSIZ) 252 namelen = IFNAMSIZ; 253 ND("--- prefix is '%.*s' ---", namelen, name); 254 255 /* use the first entry for locking */ 256 BDG_LOCK(nm_bridges); // XXX do better 257 for (e = -1, i = 1; i < NM_BRIDGES; i++) { 258 b = nm_bridges + i; 259 if (b->namelen == 0) 260 e = i; /* record empty slot */ 261 else if (strncmp(name, b->basename, namelen) == 0) { 262 ND("found '%.*s' at %d", namelen, name, i); 263 break; 264 } 265 } 266 if (i == NM_BRIDGES) { /* all full */ 267 if (e == -1) { /* no empty slot */ 268 b = NULL; 269 } else { 270 b = nm_bridges + e; 271 strncpy(b->basename, name, namelen); 272 b->namelen = namelen; 273 } 274 } 275 BDG_UNLOCK(nm_bridges); 276 return b; 277 } 278 #endif /* NM_BRIDGE */ 279 280 281 /* 282 * Fetch configuration from the device, to cope with dynamic 283 * reconfigurations after loading the module. 284 */ 285 static int 286 netmap_update_config(struct netmap_adapter *na) 287 { 288 struct ifnet *ifp = na->ifp; 289 u_int txr, txd, rxr, rxd; 290 291 txr = txd = rxr = rxd = 0; 292 if (na->nm_config) { 293 na->nm_config(ifp, &txr, &txd, &rxr, &rxd); 294 } else { 295 /* take whatever we had at init time */ 296 txr = na->num_tx_rings; 297 txd = na->num_tx_desc; 298 rxr = na->num_rx_rings; 299 rxd = na->num_rx_desc; 300 } 301 302 if (na->num_tx_rings == txr && na->num_tx_desc == txd && 303 na->num_rx_rings == rxr && na->num_rx_desc == rxd) 304 return 0; /* nothing changed */ 305 if (netmap_verbose || na->refcount > 0) { 306 D("stored config %s: txring %d x %d, rxring %d x %d", 307 ifp->if_xname, 308 na->num_tx_rings, na->num_tx_desc, 309 na->num_rx_rings, na->num_rx_desc); 310 D("new config %s: txring %d x %d, rxring %d x %d", 311 ifp->if_xname, txr, txd, rxr, rxd); 312 } 313 if (na->refcount == 0) { 314 D("configuration changed (but fine)"); 315 na->num_tx_rings = txr; 316 na->num_tx_desc = txd; 317 na->num_rx_rings = rxr; 318 na->num_rx_desc = rxd; 319 return 0; 320 } 321 D("configuration changed while active, this is bad..."); 322 return 1; 323 } 324 325 /*------------- memory allocator -----------------*/ 326 #ifdef NETMAP_MEM2 327 #include "netmap_mem2.c" 328 #else /* !NETMAP_MEM2 */ 329 #include "netmap_mem1.c" 330 #endif /* !NETMAP_MEM2 */ 331 /*------------ end of memory allocator ----------*/ 332 333 334 /* Structure associated to each thread which registered an interface. 335 * 336 * The first 4 fields of this structure are written by NIOCREGIF and 337 * read by poll() and NIOC?XSYNC. 338 * There is low contention among writers (actually, a correct user program 339 * should have no contention among writers) and among writers and readers, 340 * so we use a single global lock to protect the structure initialization. 341 * Since initialization involves the allocation of memory, we reuse the memory 342 * allocator lock. 343 * Read access to the structure is lock free. Readers must check that 344 * np_nifp is not NULL before using the other fields. 345 * If np_nifp is NULL initialization has not been performed, so they should 346 * return an error to userlevel. 347 * 348 * The ref_done field is used to regulate access to the refcount in the 349 * memory allocator. The refcount must be incremented at most once for 350 * each open("/dev/netmap"). The increment is performed by the first 351 * function that calls netmap_get_memory() (currently called by 352 * mmap(), NIOCGINFO and NIOCREGIF). 353 * If the refcount is incremented, it is then decremented when the 354 * private structure is destroyed. 355 */ 356 struct netmap_priv_d { 357 struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */ 358 359 struct ifnet *np_ifp; /* device for which we hold a reference */ 360 int np_ringid; /* from the ioctl */ 361 u_int np_qfirst, np_qlast; /* range of rings to scan */ 362 uint16_t np_txpoll; 363 364 unsigned long ref_done; /* use with NMA_LOCK held */ 365 }; 366 367 368 static int 369 netmap_get_memory(struct netmap_priv_d* p) 370 { 371 int error = 0; 372 NMA_LOCK(); 373 if (!p->ref_done) { 374 error = netmap_memory_finalize(); 375 if (!error) 376 p->ref_done = 1; 377 } 378 NMA_UNLOCK(); 379 return error; 380 } 381 382 /* 383 * File descriptor's private data destructor. 384 * 385 * Call nm_register(ifp,0) to stop netmap mode on the interface and 386 * revert to normal operation. We expect that np_ifp has not gone. 387 */ 388 /* call with NMA_LOCK held */ 389 static void 390 netmap_dtor_locked(void *data) 391 { 392 struct netmap_priv_d *priv = data; 393 struct ifnet *ifp = priv->np_ifp; 394 struct netmap_adapter *na = NA(ifp); 395 struct netmap_if *nifp = priv->np_nifp; 396 397 na->refcount--; 398 if (na->refcount <= 0) { /* last instance */ 399 u_int i, j, lim; 400 401 if (netmap_verbose) 402 D("deleting last instance for %s", ifp->if_xname); 403 /* 404 * there is a race here with *_netmap_task() and 405 * netmap_poll(), which don't run under NETMAP_REG_LOCK. 406 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 407 * (aka NETMAP_DELETING(na)) are a unique marker that the 408 * device is dying. 409 * Before destroying stuff we sleep a bit, and then complete 410 * the job. NIOCREG should realize the condition and 411 * loop until they can continue; the other routines 412 * should check the condition at entry and quit if 413 * they cannot run. 414 */ 415 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 416 tsleep(na, 0, "NIOCUNREG", 4); 417 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 418 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 419 /* Wake up any sleeping threads. netmap_poll will 420 * then return POLLERR 421 */ 422 for (i = 0; i < na->num_tx_rings + 1; i++) 423 selwakeuppri(&na->tx_rings[i].si, PI_NET); 424 for (i = 0; i < na->num_rx_rings + 1; i++) 425 selwakeuppri(&na->rx_rings[i].si, PI_NET); 426 selwakeuppri(&na->tx_si, PI_NET); 427 selwakeuppri(&na->rx_si, PI_NET); 428 /* release all buffers */ 429 for (i = 0; i < na->num_tx_rings + 1; i++) { 430 struct netmap_ring *ring = na->tx_rings[i].ring; 431 lim = na->tx_rings[i].nkr_num_slots; 432 for (j = 0; j < lim; j++) 433 netmap_free_buf(nifp, ring->slot[j].buf_idx); 434 /* knlist_destroy(&na->tx_rings[i].si.si_note); */ 435 mtx_destroy(&na->tx_rings[i].q_lock); 436 } 437 for (i = 0; i < na->num_rx_rings + 1; i++) { 438 struct netmap_ring *ring = na->rx_rings[i].ring; 439 lim = na->rx_rings[i].nkr_num_slots; 440 for (j = 0; j < lim; j++) 441 netmap_free_buf(nifp, ring->slot[j].buf_idx); 442 /* knlist_destroy(&na->rx_rings[i].si.si_note); */ 443 mtx_destroy(&na->rx_rings[i].q_lock); 444 } 445 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 446 /* knlist_destroy(&na->tx_si.si_note); */ 447 /* knlist_destroy(&na->rx_si.si_note); */ 448 netmap_free_rings(na); 449 wakeup(na); 450 } 451 netmap_if_free(nifp); 452 } 453 454 static void 455 nm_if_rele(struct ifnet *ifp) 456 { 457 #ifndef NM_BRIDGE 458 if_rele(ifp); 459 #else /* NM_BRIDGE */ 460 int i, full; 461 struct nm_bridge *b; 462 463 if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) { 464 if_rele(ifp); 465 return; 466 } 467 if (!DROP_BDG_REF(ifp)) 468 return; 469 b = ifp->if_bridge; 470 BDG_LOCK(nm_bridges); 471 BDG_LOCK(b); 472 ND("want to disconnect %s from the bridge", ifp->if_xname); 473 full = 0; 474 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 475 if (b->bdg_ports[i] == ifp) { 476 b->bdg_ports[i] = NULL; 477 bzero(ifp, sizeof(*ifp)); 478 free(ifp, M_DEVBUF); 479 break; 480 } 481 else if (b->bdg_ports[i] != NULL) 482 full = 1; 483 } 484 BDG_UNLOCK(b); 485 if (full == 0) { 486 ND("freeing bridge %d", b - nm_bridges); 487 b->namelen = 0; 488 } 489 BDG_UNLOCK(nm_bridges); 490 if (i == NM_BDG_MAXPORTS) 491 D("ouch, cannot find ifp to remove"); 492 #endif /* NM_BRIDGE */ 493 } 494 495 static void 496 netmap_dtor(void *data) 497 { 498 struct netmap_priv_d *priv = data; 499 struct ifnet *ifp = priv->np_ifp; 500 struct netmap_adapter *na; 501 502 NMA_LOCK(); 503 if (ifp) { 504 na = NA(ifp); 505 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 506 netmap_dtor_locked(data); 507 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 508 509 nm_if_rele(ifp); 510 } 511 if (priv->ref_done) { 512 netmap_memory_deref(); 513 } 514 NMA_UNLOCK(); 515 bzero(priv, sizeof(*priv)); /* XXX for safety */ 516 free(priv, M_DEVBUF); 517 } 518 519 #ifdef __FreeBSD__ 520 #include <vm/vm.h> 521 #include <vm/vm_param.h> 522 #include <vm/vm_object.h> 523 #include <vm/vm_page.h> 524 #include <vm/vm_pager.h> 525 #include <vm/uma.h> 526 527 static struct cdev_pager_ops saved_cdev_pager_ops; 528 529 static int 530 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 531 vm_ooffset_t foff, struct ucred *cred, u_short *color) 532 { 533 if (netmap_verbose) 534 D("first mmap for %p", handle); 535 return saved_cdev_pager_ops.cdev_pg_ctor(handle, 536 size, prot, foff, cred, color); 537 } 538 539 static void 540 netmap_dev_pager_dtor(void *handle) 541 { 542 saved_cdev_pager_ops.cdev_pg_dtor(handle); 543 ND("ready to release memory for %p", handle); 544 } 545 546 547 static struct cdev_pager_ops netmap_cdev_pager_ops = { 548 .cdev_pg_ctor = netmap_dev_pager_ctor, 549 .cdev_pg_dtor = netmap_dev_pager_dtor, 550 .cdev_pg_fault = NULL, 551 }; 552 553 static int 554 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 555 vm_size_t objsize, vm_object_t *objp, int prot) 556 { 557 vm_object_t obj; 558 559 ND("cdev %p foff %jd size %jd objp %p prot %d", cdev, 560 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 561 obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff, 562 curthread->td_ucred); 563 ND("returns obj %p", obj); 564 if (obj == NULL) 565 return EINVAL; 566 if (saved_cdev_pager_ops.cdev_pg_fault == NULL) { 567 ND("initialize cdev_pager_ops"); 568 saved_cdev_pager_ops = *(obj->un_pager.devp.ops); 569 netmap_cdev_pager_ops.cdev_pg_fault = 570 saved_cdev_pager_ops.cdev_pg_fault; 571 }; 572 obj->un_pager.devp.ops = &netmap_cdev_pager_ops; 573 *objp = obj; 574 return 0; 575 } 576 #endif /* __FreeBSD__ */ 577 578 579 /* 580 * mmap(2) support for the "netmap" device. 581 * 582 * Expose all the memory previously allocated by our custom memory 583 * allocator: this way the user has only to issue a single mmap(2), and 584 * can work on all the data structures flawlessly. 585 * 586 * Return 0 on success, -1 otherwise. 587 */ 588 589 #ifdef __FreeBSD__ 590 static int 591 netmap_mmap(__unused struct cdev *dev, 592 #if __FreeBSD_version < 900000 593 vm_offset_t offset, vm_paddr_t *paddr, int nprot 594 #else 595 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 596 __unused vm_memattr_t *memattr 597 #endif 598 ) 599 { 600 int error = 0; 601 struct netmap_priv_d *priv; 602 603 if (nprot & PROT_EXEC) 604 return (-1); // XXX -1 or EINVAL ? 605 606 error = devfs_get_cdevpriv((void **)&priv); 607 if (error == EBADF) { /* called on fault, memory is initialized */ 608 ND(5, "handling fault at ofs 0x%x", offset); 609 error = 0; 610 } else if (error == 0) /* make sure memory is set */ 611 error = netmap_get_memory(priv); 612 if (error) 613 return (error); 614 615 ND("request for offset 0x%x", (uint32_t)offset); 616 *paddr = netmap_ofstophys(offset); 617 618 return (*paddr ? 0 : ENOMEM); 619 } 620 621 static int 622 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 623 { 624 if (netmap_verbose) 625 D("dev %p fflag 0x%x devtype %d td %p", 626 dev, fflag, devtype, td); 627 return 0; 628 } 629 630 static int 631 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 632 { 633 struct netmap_priv_d *priv; 634 int error; 635 636 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 637 M_NOWAIT | M_ZERO); 638 if (priv == NULL) 639 return ENOMEM; 640 641 error = devfs_set_cdevpriv(priv, netmap_dtor); 642 if (error) 643 return error; 644 645 return 0; 646 } 647 #endif /* __FreeBSD__ */ 648 649 650 /* 651 * Handlers for synchronization of the queues from/to the host. 652 * Netmap has two operating modes: 653 * - in the default mode, the rings connected to the host stack are 654 * just another ring pair managed by userspace; 655 * - in transparent mode (XXX to be defined) incoming packets 656 * (from the host or the NIC) are marked as NS_FORWARD upon 657 * arrival, and the user application has a chance to reset the 658 * flag for packets that should be dropped. 659 * On the RXSYNC or poll(), packets in RX rings between 660 * kring->nr_kcur and ring->cur with NS_FORWARD still set are moved 661 * to the other side. 662 * The transfer NIC --> host is relatively easy, just encapsulate 663 * into mbufs and we are done. The host --> NIC side is slightly 664 * harder because there might not be room in the tx ring so it 665 * might take a while before releasing the buffer. 666 */ 667 668 /* 669 * pass a chain of buffers to the host stack as coming from 'dst' 670 */ 671 static void 672 netmap_send_up(struct ifnet *dst, struct mbuf *head) 673 { 674 struct mbuf *m; 675 676 /* send packets up, outside the lock */ 677 while ((m = head) != NULL) { 678 head = head->m_nextpkt; 679 m->m_nextpkt = NULL; 680 if (netmap_verbose & NM_VERB_HOST) 681 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 682 NM_SEND_UP(dst, m); 683 } 684 } 685 686 struct mbq { 687 struct mbuf *head; 688 struct mbuf *tail; 689 int count; 690 }; 691 692 /* 693 * put a copy of the buffers marked NS_FORWARD into an mbuf chain. 694 * Run from hwcur to cur - reserved 695 */ 696 static void 697 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 698 { 699 /* Take packets from hwcur to cur-reserved and pass them up. 700 * In case of no buffers we give up. At the end of the loop, 701 * the queue is drained in all cases. 702 * XXX handle reserved 703 */ 704 int k = kring->ring->cur - kring->ring->reserved; 705 u_int n, lim = kring->nkr_num_slots - 1; 706 struct mbuf *m, *tail = q->tail; 707 708 if (k < 0) 709 k = k + kring->nkr_num_slots; 710 for (n = kring->nr_hwcur; n != k;) { 711 struct netmap_slot *slot = &kring->ring->slot[n]; 712 713 n = (n == lim) ? 0 : n + 1; 714 if ((slot->flags & NS_FORWARD) == 0 && !force) 715 continue; 716 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 717 D("bad pkt at %d len %d", n, slot->len); 718 continue; 719 } 720 slot->flags &= ~NS_FORWARD; // XXX needed ? 721 m = m_devget(NMB(slot), slot->len, 0, kring->na->ifp, NULL); 722 723 if (m == NULL) 724 break; 725 if (tail) 726 tail->m_nextpkt = m; 727 else 728 q->head = m; 729 tail = m; 730 q->count++; 731 m->m_nextpkt = NULL; 732 } 733 q->tail = tail; 734 } 735 736 /* 737 * called under main lock to send packets from the host to the NIC 738 * The host ring has packets from nr_hwcur to (cur - reserved) 739 * to be sent down. We scan the tx rings, which have just been 740 * flushed so nr_hwcur == cur. Pushing packets down means 741 * increment cur and decrement avail. 742 * XXX to be verified 743 */ 744 static void 745 netmap_sw_to_nic(struct netmap_adapter *na) 746 { 747 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 748 struct netmap_kring *k1 = &na->tx_rings[0]; 749 int i, howmany, src_lim, dst_lim; 750 751 howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */ 752 753 src_lim = kring->nkr_num_slots; 754 for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) { 755 ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail); 756 dst_lim = k1->nkr_num_slots; 757 while (howmany > 0 && k1->ring->avail > 0) { 758 struct netmap_slot *src, *dst, tmp; 759 src = &kring->ring->slot[kring->nr_hwcur]; 760 dst = &k1->ring->slot[k1->ring->cur]; 761 tmp = *src; 762 src->buf_idx = dst->buf_idx; 763 src->flags = NS_BUF_CHANGED; 764 765 dst->buf_idx = tmp.buf_idx; 766 dst->len = tmp.len; 767 dst->flags = NS_BUF_CHANGED; 768 ND("out len %d buf %d from %d to %d", 769 dst->len, dst->buf_idx, 770 kring->nr_hwcur, k1->ring->cur); 771 772 if (++kring->nr_hwcur >= src_lim) 773 kring->nr_hwcur = 0; 774 howmany--; 775 kring->nr_hwavail--; 776 if (++k1->ring->cur >= dst_lim) 777 k1->ring->cur = 0; 778 k1->ring->avail--; 779 } 780 kring->ring->cur = kring->nr_hwcur; // XXX 781 k1++; 782 } 783 } 784 785 /* 786 * netmap_sync_to_host() passes packets up. We are called from a 787 * system call in user process context, and the only contention 788 * can be among multiple user threads erroneously calling 789 * this routine concurrently. 790 */ 791 static void 792 netmap_sync_to_host(struct netmap_adapter *na) 793 { 794 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 795 struct netmap_ring *ring = kring->ring; 796 u_int k, lim = kring->nkr_num_slots - 1; 797 struct mbq q = { NULL, NULL }; 798 799 k = ring->cur; 800 if (k > lim) { 801 netmap_ring_reinit(kring); 802 return; 803 } 804 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 805 806 /* Take packets from hwcur to cur and pass them up. 807 * In case of no buffers we give up. At the end of the loop, 808 * the queue is drained in all cases. 809 */ 810 netmap_grab_packets(kring, &q, 1); 811 kring->nr_hwcur = k; 812 kring->nr_hwavail = ring->avail = lim; 813 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 814 815 netmap_send_up(na->ifp, q.head); 816 } 817 818 /* 819 * rxsync backend for packets coming from the host stack. 820 * They have been put in the queue by netmap_start() so we 821 * need to protect access to the kring using a lock. 822 * 823 * This routine also does the selrecord if called from the poll handler 824 * (we know because td != NULL). 825 * 826 * NOTE: on linux, selrecord() is defined as a macro and uses pwait 827 * as an additional hidden argument. 828 */ 829 static void 830 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 831 { 832 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 833 struct netmap_ring *ring = kring->ring; 834 u_int j, n, lim = kring->nkr_num_slots; 835 u_int k = ring->cur, resvd = ring->reserved; 836 837 (void)pwait; /* disable unused warnings */ 838 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 839 if (k >= lim) { 840 netmap_ring_reinit(kring); 841 return; 842 } 843 /* new packets are already set in nr_hwavail */ 844 /* skip past packets that userspace has released */ 845 j = kring->nr_hwcur; 846 if (resvd > 0) { 847 if (resvd + ring->avail >= lim + 1) { 848 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 849 ring->reserved = resvd = 0; // XXX panic... 850 } 851 k = (k >= resvd) ? k - resvd : k + lim - resvd; 852 } 853 if (j != k) { 854 n = k >= j ? k - j : k + lim - j; 855 kring->nr_hwavail -= n; 856 kring->nr_hwcur = k; 857 } 858 k = ring->avail = kring->nr_hwavail - resvd; 859 if (k == 0 && td) 860 selrecord(td, &kring->si); 861 if (k && (netmap_verbose & NM_VERB_HOST)) 862 D("%d pkts from stack", k); 863 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 864 } 865 866 867 /* 868 * get a refcounted reference to an interface. 869 * Return ENXIO if the interface does not exist, EINVAL if netmap 870 * is not supported by the interface. 871 * If successful, hold a reference. 872 */ 873 static int 874 get_ifp(const char *name, struct ifnet **ifp) 875 { 876 #ifdef NM_BRIDGE 877 struct ifnet *iter = NULL; 878 879 do { 880 struct nm_bridge *b; 881 int i, l, cand = -1; 882 883 if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) 884 break; 885 b = nm_find_bridge(name); 886 if (b == NULL) { 887 D("no bridges available for '%s'", name); 888 return (ENXIO); 889 } 890 /* XXX locking */ 891 BDG_LOCK(b); 892 /* lookup in the local list of ports */ 893 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 894 iter = b->bdg_ports[i]; 895 if (iter == NULL) { 896 if (cand == -1) 897 cand = i; /* potential insert point */ 898 continue; 899 } 900 if (!strcmp(iter->if_xname, name)) { 901 ADD_BDG_REF(iter); 902 ND("found existing interface"); 903 BDG_UNLOCK(b); 904 break; 905 } 906 } 907 if (i < NM_BDG_MAXPORTS) /* already unlocked */ 908 break; 909 if (cand == -1) { 910 D("bridge full, cannot create new port"); 911 no_port: 912 BDG_UNLOCK(b); 913 *ifp = NULL; 914 return EINVAL; 915 } 916 ND("create new bridge port %s", name); 917 /* space for forwarding list after the ifnet */ 918 l = sizeof(*iter) + 919 sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ; 920 iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO); 921 if (!iter) 922 goto no_port; 923 strcpy(iter->if_xname, name); 924 bdg_netmap_attach(iter); 925 b->bdg_ports[cand] = iter; 926 iter->if_bridge = b; 927 ADD_BDG_REF(iter); 928 BDG_UNLOCK(b); 929 ND("attaching virtual bridge %p", b); 930 } while (0); 931 *ifp = iter; 932 if (! *ifp) 933 #endif /* NM_BRIDGE */ 934 *ifp = ifunit_ref(name); 935 if (*ifp == NULL) 936 return (ENXIO); 937 /* can do this if the capability exists and if_pspare[0] 938 * points to the netmap descriptor. 939 */ 940 if (NETMAP_CAPABLE(*ifp)) 941 return 0; /* valid pointer, we hold the refcount */ 942 nm_if_rele(*ifp); 943 return EINVAL; // not NETMAP capable 944 } 945 946 947 /* 948 * Error routine called when txsync/rxsync detects an error. 949 * Can't do much more than resetting cur = hwcur, avail = hwavail. 950 * Return 1 on reinit. 951 * 952 * This routine is only called by the upper half of the kernel. 953 * It only reads hwcur (which is changed only by the upper half, too) 954 * and hwavail (which may be changed by the lower half, but only on 955 * a tx ring and only to increase it, so any error will be recovered 956 * on the next call). For the above, we don't strictly need to call 957 * it under lock. 958 */ 959 int 960 netmap_ring_reinit(struct netmap_kring *kring) 961 { 962 struct netmap_ring *ring = kring->ring; 963 u_int i, lim = kring->nkr_num_slots - 1; 964 int errors = 0; 965 966 RD(10, "called for %s", kring->na->ifp->if_xname); 967 if (ring->cur > lim) 968 errors++; 969 for (i = 0; i <= lim; i++) { 970 u_int idx = ring->slot[i].buf_idx; 971 u_int len = ring->slot[i].len; 972 if (idx < 2 || idx >= netmap_total_buffers) { 973 if (!errors++) 974 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 975 ring->slot[i].buf_idx = 0; 976 ring->slot[i].len = 0; 977 } else if (len > NETMAP_BUF_SIZE) { 978 ring->slot[i].len = 0; 979 if (!errors++) 980 D("bad len %d at slot %d idx %d", 981 len, i, idx); 982 } 983 } 984 if (errors) { 985 int pos = kring - kring->na->tx_rings; 986 int n = kring->na->num_tx_rings + 1; 987 988 RD(10, "total %d errors", errors); 989 errors++; 990 RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 991 kring->na->ifp->if_xname, 992 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 993 ring->cur, kring->nr_hwcur, 994 ring->avail, kring->nr_hwavail); 995 ring->cur = kring->nr_hwcur; 996 ring->avail = kring->nr_hwavail; 997 } 998 return (errors ? 1 : 0); 999 } 1000 1001 1002 /* 1003 * Set the ring ID. For devices with a single queue, a request 1004 * for all rings is the same as a single ring. 1005 */ 1006 static int 1007 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 1008 { 1009 struct ifnet *ifp = priv->np_ifp; 1010 struct netmap_adapter *na = NA(ifp); 1011 u_int i = ringid & NETMAP_RING_MASK; 1012 /* initially (np_qfirst == np_qlast) we don't want to lock */ 1013 int need_lock = (priv->np_qfirst != priv->np_qlast); 1014 int lim = na->num_rx_rings; 1015 1016 if (na->num_tx_rings > lim) 1017 lim = na->num_tx_rings; 1018 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 1019 D("invalid ring id %d", i); 1020 return (EINVAL); 1021 } 1022 if (need_lock) 1023 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1024 priv->np_ringid = ringid; 1025 if (ringid & NETMAP_SW_RING) { 1026 priv->np_qfirst = NETMAP_SW_RING; 1027 priv->np_qlast = 0; 1028 } else if (ringid & NETMAP_HW_RING) { 1029 priv->np_qfirst = i; 1030 priv->np_qlast = i + 1; 1031 } else { 1032 priv->np_qfirst = 0; 1033 priv->np_qlast = NETMAP_HW_RING ; 1034 } 1035 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 1036 if (need_lock) 1037 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1038 if (netmap_verbose) { 1039 if (ringid & NETMAP_SW_RING) 1040 D("ringid %s set to SW RING", ifp->if_xname); 1041 else if (ringid & NETMAP_HW_RING) 1042 D("ringid %s set to HW RING %d", ifp->if_xname, 1043 priv->np_qfirst); 1044 else 1045 D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); 1046 } 1047 return 0; 1048 } 1049 1050 /* 1051 * ioctl(2) support for the "netmap" device. 1052 * 1053 * Following a list of accepted commands: 1054 * - NIOCGINFO 1055 * - SIOCGIFADDR just for convenience 1056 * - NIOCREGIF 1057 * - NIOCUNREGIF 1058 * - NIOCTXSYNC 1059 * - NIOCRXSYNC 1060 * 1061 * Return 0 on success, errno otherwise. 1062 */ 1063 static int 1064 netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 1065 int fflag, struct thread *td) 1066 { 1067 struct netmap_priv_d *priv = NULL; 1068 struct ifnet *ifp; 1069 struct nmreq *nmr = (struct nmreq *) data; 1070 struct netmap_adapter *na; 1071 int error; 1072 u_int i, lim; 1073 struct netmap_if *nifp; 1074 1075 (void)dev; /* UNUSED */ 1076 (void)fflag; /* UNUSED */ 1077 #ifdef linux 1078 #define devfs_get_cdevpriv(pp) \ 1079 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 1080 (*pp ? 0 : ENOENT); }) 1081 1082 /* devfs_set_cdevpriv cannot fail on linux */ 1083 #define devfs_set_cdevpriv(p, fn) \ 1084 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 1085 1086 1087 #define devfs_clear_cdevpriv() do { \ 1088 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 1089 } while (0) 1090 #endif /* linux */ 1091 1092 CURVNET_SET(TD_TO_VNET(td)); 1093 1094 error = devfs_get_cdevpriv((void **)&priv); 1095 if (error) { 1096 CURVNET_RESTORE(); 1097 /* XXX ENOENT should be impossible, since the priv 1098 * is now created in the open */ 1099 return (error == ENOENT ? ENXIO : error); 1100 } 1101 1102 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 1103 switch (cmd) { 1104 case NIOCGINFO: /* return capabilities etc */ 1105 if (nmr->nr_version != NETMAP_API) { 1106 D("API mismatch got %d have %d", 1107 nmr->nr_version, NETMAP_API); 1108 nmr->nr_version = NETMAP_API; 1109 error = EINVAL; 1110 break; 1111 } 1112 /* update configuration */ 1113 error = netmap_get_memory(priv); 1114 ND("get_memory returned %d", error); 1115 if (error) 1116 break; 1117 /* memsize is always valid */ 1118 nmr->nr_memsize = nm_mem.nm_totalsize; 1119 nmr->nr_offset = 0; 1120 nmr->nr_rx_rings = nmr->nr_tx_rings = 0; 1121 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 1122 if (nmr->nr_name[0] == '\0') /* just get memory info */ 1123 break; 1124 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 1125 if (error) 1126 break; 1127 na = NA(ifp); /* retrieve netmap_adapter */ 1128 netmap_update_config(na); 1129 nmr->nr_rx_rings = na->num_rx_rings; 1130 nmr->nr_tx_rings = na->num_tx_rings; 1131 nmr->nr_rx_slots = na->num_rx_desc; 1132 nmr->nr_tx_slots = na->num_tx_desc; 1133 nm_if_rele(ifp); /* return the refcount */ 1134 break; 1135 1136 case NIOCREGIF: 1137 if (nmr->nr_version != NETMAP_API) { 1138 nmr->nr_version = NETMAP_API; 1139 error = EINVAL; 1140 break; 1141 } 1142 /* ensure allocators are ready */ 1143 error = netmap_get_memory(priv); 1144 ND("get_memory returned %d", error); 1145 if (error) 1146 break; 1147 1148 /* protect access to priv from concurrent NIOCREGIF */ 1149 NMA_LOCK(); 1150 if (priv->np_ifp != NULL) { /* thread already registered */ 1151 error = netmap_set_ringid(priv, nmr->nr_ringid); 1152 NMA_UNLOCK(); 1153 break; 1154 } 1155 /* find the interface and a reference */ 1156 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1157 if (error) { 1158 NMA_UNLOCK(); 1159 break; 1160 } 1161 na = NA(ifp); /* retrieve netmap adapter */ 1162 1163 for (i = 10; i > 0; i--) { 1164 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 1165 if (!NETMAP_DELETING(na)) 1166 break; 1167 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1168 tsleep(na, 0, "NIOCREGIF", hz/10); 1169 } 1170 if (i == 0) { 1171 D("too many NIOCREGIF attempts, give up"); 1172 error = EINVAL; 1173 nm_if_rele(ifp); /* return the refcount */ 1174 NMA_UNLOCK(); 1175 break; 1176 } 1177 1178 /* ring configuration may have changed, fetch from the card */ 1179 netmap_update_config(na); 1180 priv->np_ifp = ifp; /* store the reference */ 1181 error = netmap_set_ringid(priv, nmr->nr_ringid); 1182 if (error) 1183 goto error; 1184 nifp = netmap_if_new(nmr->nr_name, na); 1185 if (nifp == NULL) { /* allocation failed */ 1186 error = ENOMEM; 1187 } else if (ifp->if_capenable & IFCAP_NETMAP) { 1188 /* was already set */ 1189 } else { 1190 /* Otherwise set the card in netmap mode 1191 * and make it use the shared buffers. 1192 */ 1193 for (i = 0 ; i < na->num_tx_rings + 1; i++) 1194 mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF); 1195 for (i = 0 ; i < na->num_rx_rings + 1; i++) { 1196 mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF); 1197 } 1198 error = na->nm_register(ifp, 1); /* mode on */ 1199 if (error) { 1200 netmap_dtor_locked(priv); 1201 netmap_if_free(nifp); 1202 } 1203 } 1204 1205 if (error) { /* reg. failed, release priv and ref */ 1206 error: 1207 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1208 nm_if_rele(ifp); /* return the refcount */ 1209 priv->np_ifp = NULL; 1210 priv->np_nifp = NULL; 1211 NMA_UNLOCK(); 1212 break; 1213 } 1214 1215 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1216 1217 /* the following assignment is a commitment. 1218 * Readers (i.e., poll and *SYNC) check for 1219 * np_nifp != NULL without locking 1220 */ 1221 wmb(); /* make sure previous writes are visible to all CPUs */ 1222 priv->np_nifp = nifp; 1223 NMA_UNLOCK(); 1224 1225 /* return the offset of the netmap_if object */ 1226 nmr->nr_rx_rings = na->num_rx_rings; 1227 nmr->nr_tx_rings = na->num_tx_rings; 1228 nmr->nr_rx_slots = na->num_rx_desc; 1229 nmr->nr_tx_slots = na->num_tx_desc; 1230 nmr->nr_memsize = nm_mem.nm_totalsize; 1231 nmr->nr_offset = netmap_if_offset(nifp); 1232 break; 1233 1234 case NIOCUNREGIF: 1235 // XXX we have no data here ? 1236 D("deprecated, data is %p", nmr); 1237 error = EINVAL; 1238 break; 1239 1240 case NIOCTXSYNC: 1241 case NIOCRXSYNC: 1242 nifp = priv->np_nifp; 1243 1244 if (nifp == NULL) { 1245 error = ENXIO; 1246 break; 1247 } 1248 rmb(); /* make sure following reads are not from cache */ 1249 1250 1251 ifp = priv->np_ifp; /* we have a reference */ 1252 1253 if (ifp == NULL) { 1254 D("Internal error: nifp != NULL && ifp == NULL"); 1255 error = ENXIO; 1256 break; 1257 } 1258 1259 na = NA(ifp); /* retrieve netmap adapter */ 1260 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 1261 if (cmd == NIOCTXSYNC) 1262 netmap_sync_to_host(na); 1263 else 1264 netmap_sync_from_host(na, NULL, NULL); 1265 break; 1266 } 1267 /* find the last ring to scan */ 1268 lim = priv->np_qlast; 1269 if (lim == NETMAP_HW_RING) 1270 lim = (cmd == NIOCTXSYNC) ? 1271 na->num_tx_rings : na->num_rx_rings; 1272 1273 for (i = priv->np_qfirst; i < lim; i++) { 1274 if (cmd == NIOCTXSYNC) { 1275 struct netmap_kring *kring = &na->tx_rings[i]; 1276 if (netmap_verbose & NM_VERB_TXSYNC) 1277 D("pre txsync ring %d cur %d hwcur %d", 1278 i, kring->ring->cur, 1279 kring->nr_hwcur); 1280 na->nm_txsync(ifp, i, 1 /* do lock */); 1281 if (netmap_verbose & NM_VERB_TXSYNC) 1282 D("post txsync ring %d cur %d hwcur %d", 1283 i, kring->ring->cur, 1284 kring->nr_hwcur); 1285 } else { 1286 na->nm_rxsync(ifp, i, 1 /* do lock */); 1287 microtime(&na->rx_rings[i].ring->ts); 1288 } 1289 } 1290 1291 break; 1292 1293 #ifdef __FreeBSD__ 1294 case BIOCIMMEDIATE: 1295 case BIOCGHDRCMPLT: 1296 case BIOCSHDRCMPLT: 1297 case BIOCSSEESENT: 1298 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1299 break; 1300 1301 default: /* allow device-specific ioctls */ 1302 { 1303 struct socket so; 1304 bzero(&so, sizeof(so)); 1305 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1306 if (error) 1307 break; 1308 so.so_vnet = ifp->if_vnet; 1309 // so->so_proto not null. 1310 error = ifioctl(&so, cmd, data, td); 1311 nm_if_rele(ifp); 1312 break; 1313 } 1314 1315 #else /* linux */ 1316 default: 1317 error = EOPNOTSUPP; 1318 #endif /* linux */ 1319 } 1320 1321 CURVNET_RESTORE(); 1322 return (error); 1323 } 1324 1325 1326 /* 1327 * select(2) and poll(2) handlers for the "netmap" device. 1328 * 1329 * Can be called for one or more queues. 1330 * Return true the event mask corresponding to ready events. 1331 * If there are no ready events, do a selrecord on either individual 1332 * selfd or on the global one. 1333 * Device-dependent parts (locking and sync of tx/rx rings) 1334 * are done through callbacks. 1335 * 1336 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1337 * The first one is remapped to pwait as selrecord() uses the name as an 1338 * hidden argument. 1339 */ 1340 static int 1341 netmap_poll(struct cdev *dev, int events, struct thread *td) 1342 { 1343 struct netmap_priv_d *priv = NULL; 1344 struct netmap_adapter *na; 1345 struct ifnet *ifp; 1346 struct netmap_kring *kring; 1347 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1348 u_int lim_tx, lim_rx, host_forwarded = 0; 1349 struct mbq q = { NULL, NULL, 0 }; 1350 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1351 void *pwait = dev; /* linux compatibility */ 1352 1353 (void)pwait; 1354 1355 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1356 return POLLERR; 1357 1358 if (priv->np_nifp == NULL) { 1359 D("No if registered"); 1360 return POLLERR; 1361 } 1362 rmb(); /* make sure following reads are not from cache */ 1363 1364 ifp = priv->np_ifp; 1365 // XXX check for deleting() ? 1366 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1367 return POLLERR; 1368 1369 if (netmap_verbose & 0x8000) 1370 D("device %s events 0x%x", ifp->if_xname, events); 1371 want_tx = events & (POLLOUT | POLLWRNORM); 1372 want_rx = events & (POLLIN | POLLRDNORM); 1373 1374 na = NA(ifp); /* retrieve netmap adapter */ 1375 1376 lim_tx = na->num_tx_rings; 1377 lim_rx = na->num_rx_rings; 1378 /* how many queues we are scanning */ 1379 if (priv->np_qfirst == NETMAP_SW_RING) { 1380 if (priv->np_txpoll || want_tx) { 1381 /* push any packets up, then we are always ready */ 1382 kring = &na->tx_rings[lim_tx]; 1383 netmap_sync_to_host(na); 1384 revents |= want_tx; 1385 } 1386 if (want_rx) { 1387 kring = &na->rx_rings[lim_rx]; 1388 if (kring->ring->avail == 0) 1389 netmap_sync_from_host(na, td, dev); 1390 if (kring->ring->avail > 0) { 1391 revents |= want_rx; 1392 } 1393 } 1394 return (revents); 1395 } 1396 1397 /* if we are in transparent mode, check also the host rx ring */ 1398 kring = &na->rx_rings[lim_rx]; 1399 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 1400 && want_rx 1401 && (netmap_fwd || kring->ring->flags & NR_FORWARD) ) { 1402 if (kring->ring->avail == 0) 1403 netmap_sync_from_host(na, td, dev); 1404 if (kring->ring->avail > 0) 1405 revents |= want_rx; 1406 } 1407 1408 /* 1409 * check_all is set if the card has more than one queue and 1410 * the client is polling all of them. If true, we sleep on 1411 * the "global" selfd, otherwise we sleep on individual selfd 1412 * (we can only sleep on one of them per direction). 1413 * The interrupt routine in the driver should always wake on 1414 * the individual selfd, and also on the global one if the card 1415 * has more than one ring. 1416 * 1417 * If the card has only one lock, we just use that. 1418 * If the card has separate ring locks, we just use those 1419 * unless we are doing check_all, in which case the whole 1420 * loop is wrapped by the global lock. 1421 * We acquire locks only when necessary: if poll is called 1422 * when buffers are available, we can just return without locks. 1423 * 1424 * rxsync() is only called if we run out of buffers on a POLLIN. 1425 * txsync() is called if we run out of buffers on POLLOUT, or 1426 * there are pending packets to send. The latter can be disabled 1427 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1428 */ 1429 check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); 1430 1431 /* 1432 * core_lock indicates what to do with the core lock. 1433 * The core lock is used when either the card has no individual 1434 * locks, or it has individual locks but we are cheking all 1435 * rings so we need the core lock to avoid missing wakeup events. 1436 * 1437 * It has three possible states: 1438 * NO_CL we don't need to use the core lock, e.g. 1439 * because we are protected by individual locks. 1440 * NEED_CL we need the core lock. In this case, when we 1441 * call the lock routine, move to LOCKED_CL 1442 * to remember to release the lock once done. 1443 * LOCKED_CL core lock is set, so we need to release it. 1444 */ 1445 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1446 #ifdef NM_BRIDGE 1447 /* the bridge uses separate locks */ 1448 if (na->nm_register == bdg_netmap_reg) { 1449 ND("not using core lock for %s", ifp->if_xname); 1450 core_lock = NO_CL; 1451 } 1452 #endif /* NM_BRIDGE */ 1453 if (priv->np_qlast != NETMAP_HW_RING) { 1454 lim_tx = lim_rx = priv->np_qlast; 1455 } 1456 1457 /* 1458 * We start with a lock free round which is good if we have 1459 * data available. If this fails, then lock and call the sync 1460 * routines. 1461 */ 1462 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 1463 kring = &na->rx_rings[i]; 1464 if (kring->ring->avail > 0) { 1465 revents |= want_rx; 1466 want_rx = 0; /* also breaks the loop */ 1467 } 1468 } 1469 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 1470 kring = &na->tx_rings[i]; 1471 if (kring->ring->avail > 0) { 1472 revents |= want_tx; 1473 want_tx = 0; /* also breaks the loop */ 1474 } 1475 } 1476 1477 /* 1478 * If we to push packets out (priv->np_txpoll) or want_tx is 1479 * still set, we do need to run the txsync calls (on all rings, 1480 * to avoid that the tx rings stall). 1481 */ 1482 if (priv->np_txpoll || want_tx) { 1483 flush_tx: 1484 for (i = priv->np_qfirst; i < lim_tx; i++) { 1485 kring = &na->tx_rings[i]; 1486 /* 1487 * Skip the current ring if want_tx == 0 1488 * (we have already done a successful sync on 1489 * a previous ring) AND kring->cur == kring->hwcur 1490 * (there are no pending transmissions for this ring). 1491 */ 1492 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1493 continue; 1494 if (core_lock == NEED_CL) { 1495 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1496 core_lock = LOCKED_CL; 1497 } 1498 if (na->separate_locks) 1499 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 1500 if (netmap_verbose & NM_VERB_TXSYNC) 1501 D("send %d on %s %d", 1502 kring->ring->cur, 1503 ifp->if_xname, i); 1504 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 1505 revents |= POLLERR; 1506 1507 /* Check avail/call selrecord only if called with POLLOUT */ 1508 if (want_tx) { 1509 if (kring->ring->avail > 0) { 1510 /* stop at the first ring. We don't risk 1511 * starvation. 1512 */ 1513 revents |= want_tx; 1514 want_tx = 0; 1515 } else if (!check_all) 1516 selrecord(td, &kring->si); 1517 } 1518 if (na->separate_locks) 1519 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 1520 } 1521 } 1522 1523 /* 1524 * now if want_rx is still set we need to lock and rxsync. 1525 * Do it on all rings because otherwise we starve. 1526 */ 1527 if (want_rx) { 1528 for (i = priv->np_qfirst; i < lim_rx; i++) { 1529 kring = &na->rx_rings[i]; 1530 if (core_lock == NEED_CL) { 1531 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1532 core_lock = LOCKED_CL; 1533 } 1534 if (na->separate_locks) 1535 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 1536 if (netmap_fwd ||kring->ring->flags & NR_FORWARD) { 1537 ND(10, "forwarding some buffers up %d to %d", 1538 kring->nr_hwcur, kring->ring->cur); 1539 netmap_grab_packets(kring, &q, netmap_fwd); 1540 } 1541 1542 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 1543 revents |= POLLERR; 1544 if (netmap_no_timestamp == 0 || 1545 kring->ring->flags & NR_TIMESTAMP) { 1546 microtime(&kring->ring->ts); 1547 } 1548 1549 if (kring->ring->avail > 0) 1550 revents |= want_rx; 1551 else if (!check_all) 1552 selrecord(td, &kring->si); 1553 if (na->separate_locks) 1554 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 1555 } 1556 } 1557 if (check_all && revents == 0) { /* signal on the global queue */ 1558 if (want_tx) 1559 selrecord(td, &na->tx_si); 1560 if (want_rx) 1561 selrecord(td, &na->rx_si); 1562 } 1563 1564 /* forward host to the netmap ring */ 1565 kring = &na->rx_rings[lim_rx]; 1566 if (kring->nr_hwavail > 0) 1567 ND("host rx %d has %d packets", lim_rx, kring->nr_hwavail); 1568 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 1569 && (netmap_fwd || kring->ring->flags & NR_FORWARD) 1570 && kring->nr_hwavail > 0 && !host_forwarded) { 1571 if (core_lock == NEED_CL) { 1572 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1573 core_lock = LOCKED_CL; 1574 } 1575 netmap_sw_to_nic(na); 1576 host_forwarded = 1; /* prevent another pass */ 1577 want_rx = 0; 1578 goto flush_tx; 1579 } 1580 1581 if (core_lock == LOCKED_CL) 1582 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1583 if (q.head) 1584 netmap_send_up(na->ifp, q.head); 1585 1586 return (revents); 1587 } 1588 1589 /*------- driver support routines ------*/ 1590 1591 /* 1592 * default lock wrapper. 1593 */ 1594 static void 1595 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 1596 { 1597 struct netmap_adapter *na = NA(dev); 1598 1599 switch (what) { 1600 #ifdef linux /* some system do not need lock on register */ 1601 case NETMAP_REG_LOCK: 1602 case NETMAP_REG_UNLOCK: 1603 break; 1604 #endif /* linux */ 1605 1606 case NETMAP_CORE_LOCK: 1607 mtx_lock(&na->core_lock); 1608 break; 1609 1610 case NETMAP_CORE_UNLOCK: 1611 mtx_unlock(&na->core_lock); 1612 break; 1613 1614 case NETMAP_TX_LOCK: 1615 mtx_lock(&na->tx_rings[queueid].q_lock); 1616 break; 1617 1618 case NETMAP_TX_UNLOCK: 1619 mtx_unlock(&na->tx_rings[queueid].q_lock); 1620 break; 1621 1622 case NETMAP_RX_LOCK: 1623 mtx_lock(&na->rx_rings[queueid].q_lock); 1624 break; 1625 1626 case NETMAP_RX_UNLOCK: 1627 mtx_unlock(&na->rx_rings[queueid].q_lock); 1628 break; 1629 } 1630 } 1631 1632 1633 /* 1634 * Initialize a ``netmap_adapter`` object created by driver on attach. 1635 * We allocate a block of memory with room for a struct netmap_adapter 1636 * plus two sets of N+2 struct netmap_kring (where N is the number 1637 * of hardware rings): 1638 * krings 0..N-1 are for the hardware queues. 1639 * kring N is for the host stack queue 1640 * kring N+1 is only used for the selinfo for all queues. 1641 * Return 0 on success, ENOMEM otherwise. 1642 * 1643 * By default the receive and transmit adapter ring counts are both initialized 1644 * to num_queues. na->num_tx_rings can be set for cards with different tx/rx 1645 * setups. 1646 */ 1647 int 1648 netmap_attach(struct netmap_adapter *arg, int num_queues) 1649 { 1650 struct netmap_adapter *na = NULL; 1651 struct ifnet *ifp = arg ? arg->ifp : NULL; 1652 1653 if (arg == NULL || ifp == NULL) 1654 goto fail; 1655 na = malloc(sizeof(*na), M_DEVBUF, M_NOWAIT | M_ZERO); 1656 if (na == NULL) 1657 goto fail; 1658 WNA(ifp) = na; 1659 *na = *arg; /* copy everything, trust the driver to not pass junk */ 1660 NETMAP_SET_CAPABLE(ifp); 1661 if (na->num_tx_rings == 0) 1662 na->num_tx_rings = num_queues; 1663 na->num_rx_rings = num_queues; 1664 na->refcount = na->na_single = na->na_multi = 0; 1665 /* Core lock initialized here, others after netmap_if_new. */ 1666 mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF); 1667 if (na->nm_lock == NULL) { 1668 ND("using default locks for %s", ifp->if_xname); 1669 na->nm_lock = netmap_lock_wrapper; 1670 } 1671 #ifdef linux 1672 if (ifp->netdev_ops) { 1673 ND("netdev_ops %p", ifp->netdev_ops); 1674 /* prepare a clone of the netdev ops */ 1675 na->nm_ndo = *ifp->netdev_ops; 1676 } 1677 na->nm_ndo.ndo_start_xmit = linux_netmap_start; 1678 #endif 1679 D("success for %s", ifp->if_xname); 1680 return 0; 1681 1682 fail: 1683 D("fail, arg %p ifp %p na %p", arg, ifp, na); 1684 return (na ? EINVAL : ENOMEM); 1685 } 1686 1687 1688 /* 1689 * Free the allocated memory linked to the given ``netmap_adapter`` 1690 * object. 1691 */ 1692 void 1693 netmap_detach(struct ifnet *ifp) 1694 { 1695 struct netmap_adapter *na = NA(ifp); 1696 1697 if (!na) 1698 return; 1699 1700 mtx_destroy(&na->core_lock); 1701 1702 if (na->tx_rings) { /* XXX should not happen */ 1703 D("freeing leftover tx_rings"); 1704 free(na->tx_rings, M_DEVBUF); 1705 } 1706 bzero(na, sizeof(*na)); 1707 WNA(ifp) = NULL; 1708 free(na, M_DEVBUF); 1709 } 1710 1711 1712 /* 1713 * Intercept packets from the network stack and pass them 1714 * to netmap as incoming packets on the 'software' ring. 1715 * We are not locked when called. 1716 */ 1717 int 1718 netmap_start(struct ifnet *ifp, struct mbuf *m) 1719 { 1720 struct netmap_adapter *na = NA(ifp); 1721 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1722 u_int i, len = MBUF_LEN(m); 1723 u_int error = EBUSY, lim = kring->nkr_num_slots - 1; 1724 struct netmap_slot *slot; 1725 1726 if (netmap_verbose & NM_VERB_HOST) 1727 D("%s packet %d len %d from the stack", ifp->if_xname, 1728 kring->nr_hwcur + kring->nr_hwavail, len); 1729 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1730 if (kring->nr_hwavail >= lim) { 1731 if (netmap_verbose) 1732 D("stack ring %s full\n", ifp->if_xname); 1733 goto done; /* no space */ 1734 } 1735 if (len > NETMAP_BUF_SIZE) { 1736 D("%s from_host, drop packet size %d > %d", ifp->if_xname, 1737 len, NETMAP_BUF_SIZE); 1738 goto done; /* too long for us */ 1739 } 1740 1741 /* compute the insert position */ 1742 i = kring->nr_hwcur + kring->nr_hwavail; 1743 if (i > lim) 1744 i -= lim + 1; 1745 slot = &kring->ring->slot[i]; 1746 m_copydata(m, 0, len, NMB(slot)); 1747 slot->len = len; 1748 slot->flags = kring->nkr_slot_flags; 1749 kring->nr_hwavail++; 1750 if (netmap_verbose & NM_VERB_HOST) 1751 D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); 1752 selwakeuppri(&kring->si, PI_NET); 1753 error = 0; 1754 done: 1755 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1756 1757 /* release the mbuf in either cases of success or failure. As an 1758 * alternative, put the mbuf in a free list and free the list 1759 * only when really necessary. 1760 */ 1761 m_freem(m); 1762 1763 return (error); 1764 } 1765 1766 1767 /* 1768 * netmap_reset() is called by the driver routines when reinitializing 1769 * a ring. The driver is in charge of locking to protect the kring. 1770 * If netmap mode is not set just return NULL. 1771 */ 1772 struct netmap_slot * 1773 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1774 u_int new_cur) 1775 { 1776 struct netmap_kring *kring; 1777 int new_hwofs, lim; 1778 1779 if (na == NULL) 1780 return NULL; /* no netmap support here */ 1781 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1782 return NULL; /* nothing to reinitialize */ 1783 1784 if (tx == NR_TX) { 1785 if (n >= na->num_tx_rings) 1786 return NULL; 1787 kring = na->tx_rings + n; 1788 new_hwofs = kring->nr_hwcur - new_cur; 1789 } else { 1790 if (n >= na->num_rx_rings) 1791 return NULL; 1792 kring = na->rx_rings + n; 1793 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1794 } 1795 lim = kring->nkr_num_slots - 1; 1796 if (new_hwofs > lim) 1797 new_hwofs -= lim + 1; 1798 1799 /* Alwayws set the new offset value and realign the ring. */ 1800 kring->nkr_hwofs = new_hwofs; 1801 if (tx == NR_TX) 1802 kring->nr_hwavail = kring->nkr_num_slots - 1; 1803 ND(10, "new hwofs %d on %s %s[%d]", 1804 kring->nkr_hwofs, na->ifp->if_xname, 1805 tx == NR_TX ? "TX" : "RX", n); 1806 1807 #if 0 // def linux 1808 /* XXX check that the mappings are correct */ 1809 /* need ring_nr, adapter->pdev, direction */ 1810 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 1811 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1812 D("error mapping rx netmap buffer %d", i); 1813 // XXX fix error handling 1814 } 1815 1816 #endif /* linux */ 1817 /* 1818 * Wakeup on the individual and global lock 1819 * We do the wakeup here, but the ring is not yet reconfigured. 1820 * However, we are under lock so there are no races. 1821 */ 1822 selwakeuppri(&kring->si, PI_NET); 1823 selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); 1824 return kring->ring->slot; 1825 } 1826 1827 1828 /* 1829 * Default functions to handle rx/tx interrupts 1830 * we have 4 cases: 1831 * 1 ring, single lock: 1832 * lock(core); wake(i=0); unlock(core) 1833 * N rings, single lock: 1834 * lock(core); wake(i); wake(N+1) unlock(core) 1835 * 1 ring, separate locks: (i=0) 1836 * lock(i); wake(i); unlock(i) 1837 * N rings, separate locks: 1838 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 1839 * work_done is non-null on the RX path. 1840 */ 1841 int 1842 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 1843 { 1844 struct netmap_adapter *na; 1845 struct netmap_kring *r; 1846 NM_SELINFO_T *main_wq; 1847 1848 if (!(ifp->if_capenable & IFCAP_NETMAP)) 1849 return 0; 1850 ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 1851 na = NA(ifp); 1852 if (na->na_flags & NAF_SKIP_INTR) { 1853 ND("use regular interrupt"); 1854 return 0; 1855 } 1856 1857 if (work_done) { /* RX path */ 1858 if (q >= na->num_rx_rings) 1859 return 0; // regular queue 1860 r = na->rx_rings + q; 1861 r->nr_kflags |= NKR_PENDINTR; 1862 main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; 1863 } else { /* tx path */ 1864 if (q >= na->num_tx_rings) 1865 return 0; // regular queue 1866 r = na->tx_rings + q; 1867 main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; 1868 work_done = &q; /* dummy */ 1869 } 1870 if (na->separate_locks) { 1871 mtx_lock(&r->q_lock); 1872 selwakeuppri(&r->si, PI_NET); 1873 mtx_unlock(&r->q_lock); 1874 if (main_wq) { 1875 mtx_lock(&na->core_lock); 1876 selwakeuppri(main_wq, PI_NET); 1877 mtx_unlock(&na->core_lock); 1878 } 1879 } else { 1880 mtx_lock(&na->core_lock); 1881 selwakeuppri(&r->si, PI_NET); 1882 if (main_wq) 1883 selwakeuppri(main_wq, PI_NET); 1884 mtx_unlock(&na->core_lock); 1885 } 1886 *work_done = 1; /* do not fire napi again */ 1887 return 1; 1888 } 1889 1890 1891 #ifdef linux /* linux-specific routines */ 1892 1893 /* 1894 * Remap linux arguments into the FreeBSD call. 1895 * - pwait is the poll table, passed as 'dev'; 1896 * If pwait == NULL someone else already woke up before. We can report 1897 * events but they are filtered upstream. 1898 * If pwait != NULL, then pwait->key contains the list of events. 1899 * - events is computed from pwait as above. 1900 * - file is passed as 'td'; 1901 */ 1902 static u_int 1903 linux_netmap_poll(struct file * file, struct poll_table_struct *pwait) 1904 { 1905 #if LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0) 1906 int events = pwait ? pwait->key : POLLIN | POLLOUT; 1907 #else /* in 3.4.0 field 'key' was renamed to '_key' */ 1908 int events = pwait ? pwait->_key : POLLIN | POLLOUT; 1909 #endif 1910 return netmap_poll((void *)pwait, events, (void *)file); 1911 } 1912 1913 static int 1914 linux_netmap_mmap(struct file *f, struct vm_area_struct *vma) 1915 { 1916 int lut_skip, i, j; 1917 int user_skip = 0; 1918 struct lut_entry *l_entry; 1919 int error = 0; 1920 unsigned long off, tomap; 1921 /* 1922 * vma->vm_start: start of mapping user address space 1923 * vma->vm_end: end of the mapping user address space 1924 * vma->vm_pfoff: offset of first page in the device 1925 */ 1926 1927 // XXX security checks 1928 1929 error = netmap_get_memory(f->private_data); 1930 ND("get_memory returned %d", error); 1931 if (error) 1932 return -error; 1933 1934 off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */ 1935 tomap = vma->vm_end - vma->vm_start; 1936 for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */ 1937 const struct netmap_obj_pool *p = &nm_mem.pools[i]; 1938 /* 1939 * In each pool memory is allocated in clusters 1940 * of size _clustsize, each containing clustentries 1941 * entries. For each object k we already store the 1942 * vtophys mapping in lut[k] so we use that, scanning 1943 * the lut[] array in steps of clustentries, 1944 * and we map each cluster (not individual pages, 1945 * it would be overkill). 1946 */ 1947 1948 /* 1949 * We interpret vm_pgoff as an offset into the whole 1950 * netmap memory, as if all clusters where contiguous. 1951 */ 1952 for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) { 1953 unsigned long paddr, mapsize; 1954 if (p->_clustsize <= off) { 1955 off -= p->_clustsize; 1956 continue; 1957 } 1958 l_entry = &p->lut[lut_skip]; /* first obj in the cluster */ 1959 paddr = l_entry->paddr + off; 1960 mapsize = p->_clustsize - off; 1961 off = 0; 1962 if (mapsize > tomap) 1963 mapsize = tomap; 1964 ND("remap_pfn_range(%lx, %lx, %lx)", 1965 vma->vm_start + user_skip, 1966 paddr >> PAGE_SHIFT, mapsize); 1967 if (remap_pfn_range(vma, vma->vm_start + user_skip, 1968 paddr >> PAGE_SHIFT, mapsize, 1969 vma->vm_page_prot)) 1970 return -EAGAIN; // XXX check return value 1971 user_skip += mapsize; 1972 tomap -= mapsize; 1973 if (tomap == 0) 1974 goto done; 1975 } 1976 } 1977 done: 1978 1979 return 0; 1980 } 1981 1982 static netdev_tx_t 1983 linux_netmap_start(struct sk_buff *skb, struct net_device *dev) 1984 { 1985 netmap_start(dev, skb); 1986 return (NETDEV_TX_OK); 1987 } 1988 1989 1990 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38 1991 #define LIN_IOCTL_NAME .ioctl 1992 int 1993 linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */) 1994 #else 1995 #define LIN_IOCTL_NAME .unlocked_ioctl 1996 long 1997 linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */) 1998 #endif 1999 { 2000 int ret; 2001 struct nmreq nmr; 2002 bzero(&nmr, sizeof(nmr)); 2003 2004 if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0) 2005 return -EFAULT; 2006 ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file); 2007 if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0) 2008 return -EFAULT; 2009 return -ret; 2010 } 2011 2012 2013 static int 2014 netmap_release(struct inode *inode, struct file *file) 2015 { 2016 (void)inode; /* UNUSED */ 2017 if (file->private_data) 2018 netmap_dtor(file->private_data); 2019 return (0); 2020 } 2021 2022 static int 2023 linux_netmap_open(struct inode *inode, struct file *file) 2024 { 2025 struct netmap_priv_d *priv; 2026 (void)inode; /* UNUSED */ 2027 2028 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 2029 M_NOWAIT | M_ZERO); 2030 if (priv == NULL) 2031 return -ENOMEM; 2032 2033 file->private_data = priv; 2034 2035 return (0); 2036 } 2037 2038 static struct file_operations netmap_fops = { 2039 .open = linux_netmap_open, 2040 .mmap = linux_netmap_mmap, 2041 LIN_IOCTL_NAME = linux_netmap_ioctl, 2042 .poll = linux_netmap_poll, 2043 .release = netmap_release, 2044 }; 2045 2046 static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */ 2047 MISC_DYNAMIC_MINOR, 2048 "netmap", 2049 &netmap_fops, 2050 }; 2051 2052 static int netmap_init(void); 2053 static void netmap_fini(void); 2054 2055 /* Errors have negative values on linux */ 2056 static int linux_netmap_init(void) 2057 { 2058 return -netmap_init(); 2059 } 2060 2061 module_init(linux_netmap_init); 2062 module_exit(netmap_fini); 2063 /* export certain symbols to other modules */ 2064 EXPORT_SYMBOL(netmap_attach); // driver attach routines 2065 EXPORT_SYMBOL(netmap_detach); // driver detach routines 2066 EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error 2067 EXPORT_SYMBOL(netmap_buffer_lut); 2068 EXPORT_SYMBOL(netmap_total_buffers); // index check 2069 EXPORT_SYMBOL(netmap_buffer_base); 2070 EXPORT_SYMBOL(netmap_reset); // ring init routines 2071 EXPORT_SYMBOL(netmap_buf_size); 2072 EXPORT_SYMBOL(netmap_rx_irq); // default irq handler 2073 EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away 2074 2075 2076 MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/"); 2077 MODULE_DESCRIPTION("The netmap packet I/O framework"); 2078 MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */ 2079 2080 #else /* __FreeBSD__ */ 2081 2082 static struct cdevsw netmap_cdevsw = { 2083 .d_version = D_VERSION, 2084 .d_name = "netmap", 2085 .d_open = netmap_open, 2086 .d_mmap = netmap_mmap, 2087 .d_mmap_single = netmap_mmap_single, 2088 .d_ioctl = netmap_ioctl, 2089 .d_poll = netmap_poll, 2090 .d_close = netmap_close, 2091 }; 2092 #endif /* __FreeBSD__ */ 2093 2094 #ifdef NM_BRIDGE 2095 /* 2096 *---- support for virtual bridge ----- 2097 */ 2098 2099 /* ----- FreeBSD if_bridge hash function ------- */ 2100 2101 /* 2102 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2103 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2104 * 2105 * http://www.burtleburtle.net/bob/hash/spooky.html 2106 */ 2107 #define mix(a, b, c) \ 2108 do { \ 2109 a -= b; a -= c; a ^= (c >> 13); \ 2110 b -= c; b -= a; b ^= (a << 8); \ 2111 c -= a; c -= b; c ^= (b >> 13); \ 2112 a -= b; a -= c; a ^= (c >> 12); \ 2113 b -= c; b -= a; b ^= (a << 16); \ 2114 c -= a; c -= b; c ^= (b >> 5); \ 2115 a -= b; a -= c; a ^= (c >> 3); \ 2116 b -= c; b -= a; b ^= (a << 10); \ 2117 c -= a; c -= b; c ^= (b >> 15); \ 2118 } while (/*CONSTCOND*/0) 2119 2120 static __inline uint32_t 2121 nm_bridge_rthash(const uint8_t *addr) 2122 { 2123 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key 2124 2125 b += addr[5] << 8; 2126 b += addr[4]; 2127 a += addr[3] << 24; 2128 a += addr[2] << 16; 2129 a += addr[1] << 8; 2130 a += addr[0]; 2131 2132 mix(a, b, c); 2133 #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) 2134 return (c & BRIDGE_RTHASH_MASK); 2135 } 2136 2137 #undef mix 2138 2139 2140 static int 2141 bdg_netmap_reg(struct ifnet *ifp, int onoff) 2142 { 2143 int i, err = 0; 2144 struct nm_bridge *b = ifp->if_bridge; 2145 2146 BDG_LOCK(b); 2147 if (onoff) { 2148 /* the interface must be already in the list. 2149 * only need to mark the port as active 2150 */ 2151 ND("should attach %s to the bridge", ifp->if_xname); 2152 for (i=0; i < NM_BDG_MAXPORTS; i++) 2153 if (b->bdg_ports[i] == ifp) 2154 break; 2155 if (i == NM_BDG_MAXPORTS) { 2156 D("no more ports available"); 2157 err = EINVAL; 2158 goto done; 2159 } 2160 ND("setting %s in netmap mode", ifp->if_xname); 2161 ifp->if_capenable |= IFCAP_NETMAP; 2162 NA(ifp)->bdg_port = i; 2163 b->act_ports |= (1<<i); 2164 b->bdg_ports[i] = ifp; 2165 } else { 2166 /* should be in the list, too -- remove from the mask */ 2167 ND("removing %s from netmap mode", ifp->if_xname); 2168 ifp->if_capenable &= ~IFCAP_NETMAP; 2169 i = NA(ifp)->bdg_port; 2170 b->act_ports &= ~(1<<i); 2171 } 2172 done: 2173 BDG_UNLOCK(b); 2174 return err; 2175 } 2176 2177 2178 static int 2179 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp) 2180 { 2181 int i, ifn; 2182 uint64_t all_dst, dst; 2183 uint32_t sh, dh; 2184 uint64_t mysrc = 1 << NA(ifp)->bdg_port; 2185 uint64_t smac, dmac; 2186 struct netmap_slot *slot; 2187 struct nm_bridge *b = ifp->if_bridge; 2188 2189 ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports); 2190 /* only consider valid destinations */ 2191 all_dst = (b->act_ports & ~mysrc); 2192 /* first pass: hash and find destinations */ 2193 for (i = 0; likely(i < n); i++) { 2194 uint8_t *buf = ft[i].buf; 2195 dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; 2196 smac = le64toh(*(uint64_t *)(buf + 4)); 2197 smac >>= 16; 2198 if (unlikely(netmap_verbose)) { 2199 uint8_t *s = buf+6, *d = buf; 2200 D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x", 2201 i, 2202 ft[i].len, 2203 s[0], s[1], s[2], s[3], s[4], s[5], 2204 d[0], d[1], d[2], d[3], d[4], d[5]); 2205 } 2206 /* 2207 * The hash is somewhat expensive, there might be some 2208 * worthwhile optimizations here. 2209 */ 2210 if ((buf[6] & 1) == 0) { /* valid src */ 2211 uint8_t *s = buf+6; 2212 sh = nm_bridge_rthash(buf+6); // XXX hash of source 2213 /* update source port forwarding entry */ 2214 b->ht[sh].mac = smac; /* XXX expire ? */ 2215 b->ht[sh].ports = mysrc; 2216 if (netmap_verbose) 2217 D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", 2218 s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port); 2219 } 2220 dst = 0; 2221 if ( (buf[0] & 1) == 0) { /* unicast */ 2222 uint8_t *d = buf; 2223 dh = nm_bridge_rthash(buf); // XXX hash of dst 2224 if (b->ht[dh].mac == dmac) { /* found dst */ 2225 dst = b->ht[dh].ports; 2226 if (netmap_verbose) 2227 D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x", 2228 d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16)); 2229 } 2230 } 2231 if (dst == 0) 2232 dst = all_dst; 2233 dst &= all_dst; /* only consider valid ports */ 2234 if (unlikely(netmap_verbose)) 2235 D("pkt goes to ports 0x%x", (uint32_t)dst); 2236 ft[i].dst = dst; 2237 } 2238 2239 /* second pass, scan interfaces and forward */ 2240 all_dst = (b->act_ports & ~mysrc); 2241 for (ifn = 0; all_dst; ifn++) { 2242 struct ifnet *dst_ifp = b->bdg_ports[ifn]; 2243 struct netmap_adapter *na; 2244 struct netmap_kring *kring; 2245 struct netmap_ring *ring; 2246 int j, lim, sent, locked; 2247 2248 if (!dst_ifp) 2249 continue; 2250 ND("scan port %d %s", ifn, dst_ifp->if_xname); 2251 dst = 1 << ifn; 2252 if ((dst & all_dst) == 0) /* skip if not set */ 2253 continue; 2254 all_dst &= ~dst; /* clear current node */ 2255 na = NA(dst_ifp); 2256 2257 ring = NULL; 2258 kring = NULL; 2259 lim = sent = locked = 0; 2260 /* inside, scan slots */ 2261 for (i = 0; likely(i < n); i++) { 2262 if ((ft[i].dst & dst) == 0) 2263 continue; /* not here */ 2264 if (!locked) { 2265 kring = &na->rx_rings[0]; 2266 ring = kring->ring; 2267 lim = kring->nkr_num_slots - 1; 2268 na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0); 2269 locked = 1; 2270 } 2271 if (unlikely(kring->nr_hwavail >= lim)) { 2272 if (netmap_verbose) 2273 D("rx ring full on %s", ifp->if_xname); 2274 break; 2275 } 2276 j = kring->nr_hwcur + kring->nr_hwavail; 2277 if (j > lim) 2278 j -= kring->nkr_num_slots; 2279 slot = &ring->slot[j]; 2280 ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j); 2281 pkt_copy(ft[i].buf, NMB(slot), ft[i].len); 2282 slot->len = ft[i].len; 2283 kring->nr_hwavail++; 2284 sent++; 2285 } 2286 if (locked) { 2287 ND("sent %d on %s", sent, dst_ifp->if_xname); 2288 if (sent) 2289 selwakeuppri(&kring->si, PI_NET); 2290 na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0); 2291 } 2292 } 2293 return 0; 2294 } 2295 2296 /* 2297 * main dispatch routine 2298 */ 2299 static int 2300 bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 2301 { 2302 struct netmap_adapter *na = NA(ifp); 2303 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 2304 struct netmap_ring *ring = kring->ring; 2305 int i, j, k, lim = kring->nkr_num_slots - 1; 2306 struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1); 2307 int ft_i; /* position in the forwarding table */ 2308 2309 k = ring->cur; 2310 if (k > lim) 2311 return netmap_ring_reinit(kring); 2312 if (do_lock) 2313 na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr); 2314 2315 if (netmap_bridge <= 0) { /* testing only */ 2316 j = k; // used all 2317 goto done; 2318 } 2319 if (netmap_bridge > NM_BDG_BATCH) 2320 netmap_bridge = NM_BDG_BATCH; 2321 2322 ft_i = 0; /* start from 0 */ 2323 for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) { 2324 struct netmap_slot *slot = &ring->slot[j]; 2325 int len = ft[ft_i].len = slot->len; 2326 char *buf = ft[ft_i].buf = NMB(slot); 2327 2328 prefetch(buf); 2329 if (unlikely(len < 14)) 2330 continue; 2331 if (unlikely(++ft_i == netmap_bridge)) 2332 ft_i = nm_bdg_flush(ft, ft_i, ifp); 2333 } 2334 if (ft_i) 2335 ft_i = nm_bdg_flush(ft, ft_i, ifp); 2336 /* count how many packets we sent */ 2337 i = k - j; 2338 if (i < 0) 2339 i += kring->nkr_num_slots; 2340 kring->nr_hwavail = kring->nkr_num_slots - 1 - i; 2341 if (j != k) 2342 D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail); 2343 2344 done: 2345 kring->nr_hwcur = j; 2346 ring->avail = kring->nr_hwavail; 2347 if (do_lock) 2348 na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr); 2349 2350 if (netmap_verbose) 2351 D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock); 2352 return 0; 2353 } 2354 2355 static int 2356 bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 2357 { 2358 struct netmap_adapter *na = NA(ifp); 2359 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 2360 struct netmap_ring *ring = kring->ring; 2361 u_int j, n, lim = kring->nkr_num_slots - 1; 2362 u_int k = ring->cur, resvd = ring->reserved; 2363 2364 ND("%s ring %d lock %d avail %d", 2365 ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail); 2366 2367 if (k > lim) 2368 return netmap_ring_reinit(kring); 2369 if (do_lock) 2370 na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr); 2371 2372 /* skip past packets that userspace has released */ 2373 j = kring->nr_hwcur; /* netmap ring index */ 2374 if (resvd > 0) { 2375 if (resvd + ring->avail >= lim + 1) { 2376 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 2377 ring->reserved = resvd = 0; // XXX panic... 2378 } 2379 k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd; 2380 } 2381 2382 if (j != k) { /* userspace has released some packets. */ 2383 n = k - j; 2384 if (n < 0) 2385 n += kring->nkr_num_slots; 2386 ND("userspace releases %d packets", n); 2387 for (n = 0; likely(j != k); n++) { 2388 struct netmap_slot *slot = &ring->slot[j]; 2389 void *addr = NMB(slot); 2390 2391 if (addr == netmap_buffer_base) { /* bad buf */ 2392 if (do_lock) 2393 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2394 return netmap_ring_reinit(kring); 2395 } 2396 /* decrease refcount for buffer */ 2397 2398 slot->flags &= ~NS_BUF_CHANGED; 2399 j = unlikely(j == lim) ? 0 : j + 1; 2400 } 2401 kring->nr_hwavail -= n; 2402 kring->nr_hwcur = k; 2403 } 2404 /* tell userspace that there are new packets */ 2405 ring->avail = kring->nr_hwavail - resvd; 2406 2407 if (do_lock) 2408 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2409 return 0; 2410 } 2411 2412 static void 2413 bdg_netmap_attach(struct ifnet *ifp) 2414 { 2415 struct netmap_adapter na; 2416 2417 ND("attaching virtual bridge"); 2418 bzero(&na, sizeof(na)); 2419 2420 na.ifp = ifp; 2421 na.separate_locks = 1; 2422 na.num_tx_desc = NM_BRIDGE_RINGSIZE; 2423 na.num_rx_desc = NM_BRIDGE_RINGSIZE; 2424 na.nm_txsync = bdg_netmap_txsync; 2425 na.nm_rxsync = bdg_netmap_rxsync; 2426 na.nm_register = bdg_netmap_reg; 2427 netmap_attach(&na, 1); 2428 } 2429 2430 #endif /* NM_BRIDGE */ 2431 2432 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 2433 2434 2435 /* 2436 * Module loader. 2437 * 2438 * Create the /dev/netmap device and initialize all global 2439 * variables. 2440 * 2441 * Return 0 on success, errno on failure. 2442 */ 2443 static int 2444 netmap_init(void) 2445 { 2446 int error; 2447 2448 error = netmap_memory_init(); 2449 if (error != 0) { 2450 printf("netmap: unable to initialize the memory allocator.\n"); 2451 return (error); 2452 } 2453 printf("netmap: loaded module\n"); 2454 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 2455 "netmap"); 2456 2457 #ifdef NM_BRIDGE 2458 { 2459 int i; 2460 for (i = 0; i < NM_BRIDGES; i++) 2461 mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF); 2462 } 2463 #endif 2464 return (error); 2465 } 2466 2467 2468 /* 2469 * Module unloader. 2470 * 2471 * Free all the memory, and destroy the ``/dev/netmap`` device. 2472 */ 2473 static void 2474 netmap_fini(void) 2475 { 2476 destroy_dev(netmap_dev); 2477 netmap_memory_fini(); 2478 printf("netmap: unloaded module.\n"); 2479 } 2480 2481 2482 #ifdef __FreeBSD__ 2483 /* 2484 * Kernel entry point. 2485 * 2486 * Initialize/finalize the module and return. 2487 * 2488 * Return 0 on success, errno on failure. 2489 */ 2490 static int 2491 netmap_loader(__unused struct module *module, int event, __unused void *arg) 2492 { 2493 int error = 0; 2494 2495 switch (event) { 2496 case MOD_LOAD: 2497 error = netmap_init(); 2498 break; 2499 2500 case MOD_UNLOAD: 2501 netmap_fini(); 2502 break; 2503 2504 default: 2505 error = EOPNOTSUPP; 2506 break; 2507 } 2508 2509 return (error); 2510 } 2511 2512 2513 DEV_MODULE(netmap, netmap_loader, NULL); 2514 #endif /* __FreeBSD__ */ 2515