1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi 5 * Copyright (C) 2011-2016 Luigi Rizzo 6 * Copyright (C) 2011-2016 Giuseppe Lettieri 7 * Copyright (C) 2011-2016 Vincenzo Maffione 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 33 /* 34 * $FreeBSD$ 35 * 36 * This module supports memory mapped access to network devices, 37 * see netmap(4). 38 * 39 * The module uses a large, memory pool allocated by the kernel 40 * and accessible as mmapped memory by multiple userspace threads/processes. 41 * The memory pool contains packet buffers and "netmap rings", 42 * i.e. user-accessible copies of the interface's queues. 43 * 44 * Access to the network card works like this: 45 * 1. a process/thread issues one or more open() on /dev/netmap, to create 46 * select()able file descriptor on which events are reported. 47 * 2. on each descriptor, the process issues an ioctl() to identify 48 * the interface that should report events to the file descriptor. 49 * 3. on each descriptor, the process issues an mmap() request to 50 * map the shared memory region within the process' address space. 51 * The list of interesting queues is indicated by a location in 52 * the shared memory region. 53 * 4. using the functions in the netmap(4) userspace API, a process 54 * can look up the occupation state of a queue, access memory buffers, 55 * and retrieve received packets or enqueue packets to transmit. 56 * 5. using some ioctl()s the process can synchronize the userspace view 57 * of the queue with the actual status in the kernel. This includes both 58 * receiving the notification of new packets, and transmitting new 59 * packets on the output interface. 60 * 6. select() or poll() can be used to wait for events on individual 61 * transmit or receive queues (or all queues for a given interface). 62 * 63 64 SYNCHRONIZATION (USER) 65 66 The netmap rings and data structures may be shared among multiple 67 user threads or even independent processes. 68 Any synchronization among those threads/processes is delegated 69 to the threads themselves. Only one thread at a time can be in 70 a system call on the same netmap ring. The OS does not enforce 71 this and only guarantees against system crashes in case of 72 invalid usage. 73 74 LOCKING (INTERNAL) 75 76 Within the kernel, access to the netmap rings is protected as follows: 77 78 - a spinlock on each ring, to handle producer/consumer races on 79 RX rings attached to the host stack (against multiple host 80 threads writing from the host stack to the same ring), 81 and on 'destination' rings attached to a VALE switch 82 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 83 protecting multiple active senders for the same destination) 84 85 - an atomic variable to guarantee that there is at most one 86 instance of *_*xsync() on the ring at any time. 87 For rings connected to user file 88 descriptors, an atomic_test_and_set() protects this, and the 89 lock on the ring is not actually used. 90 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 91 is also used to prevent multiple executions (the driver might indeed 92 already guarantee this). 93 For NIC TX rings connected to a VALE switch, the lock arbitrates 94 access to the queue (both when allocating buffers and when pushing 95 them out). 96 97 - *xsync() should be protected against initializations of the card. 98 On FreeBSD most devices have the reset routine protected by 99 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 100 the RING protection on rx_reset(), this should be added. 101 102 On linux there is an external lock on the tx path, which probably 103 also arbitrates access to the reset routine. XXX to be revised 104 105 - a per-interface core_lock protecting access from the host stack 106 while interfaces may be detached from netmap mode. 107 XXX there should be no need for this lock if we detach the interfaces 108 only while they are down. 109 110 111 --- VALE SWITCH --- 112 113 NMG_LOCK() serializes all modifications to switches and ports. 114 A switch cannot be deleted until all ports are gone. 115 116 For each switch, an SX lock (RWlock on linux) protects 117 deletion of ports. When configuring or deleting a new port, the 118 lock is acquired in exclusive mode (after holding NMG_LOCK). 119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 120 The lock is held throughout the entire forwarding cycle, 121 during which the thread may incur in a page fault. 122 Hence it is important that sleepable shared locks are used. 123 124 On the rx ring, the per-port lock is grabbed initially to reserve 125 a number of slot in the ring, then the lock is released, 126 packets are copied from source to destination, and then 127 the lock is acquired again and the receive ring is updated. 128 (A similar thing is done on the tx ring for NIC and host stack 129 ports attached to the switch) 130 131 */ 132 133 134 /* --- internals ---- 135 * 136 * Roadmap to the code that implements the above. 137 * 138 * > 1. a process/thread issues one or more open() on /dev/netmap, to create 139 * > select()able file descriptor on which events are reported. 140 * 141 * Internally, we allocate a netmap_priv_d structure, that will be 142 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d 143 * structure for each open(). 144 * 145 * os-specific: 146 * FreeBSD: see netmap_open() (netmap_freebsd.c) 147 * linux: see linux_netmap_open() (netmap_linux.c) 148 * 149 * > 2. on each descriptor, the process issues an ioctl() to identify 150 * > the interface that should report events to the file descriptor. 151 * 152 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0. 153 * Most important things happen in netmap_get_na() and 154 * netmap_do_regif(), called from there. Additional details can be 155 * found in the comments above those functions. 156 * 157 * In all cases, this action creates/takes-a-reference-to a 158 * netmap_*_adapter describing the port, and allocates a netmap_if 159 * and all necessary netmap rings, filling them with netmap buffers. 160 * 161 * In this phase, the sync callbacks for each ring are set (these are used 162 * in steps 5 and 6 below). The callbacks depend on the type of adapter. 163 * The adapter creation/initialization code puts them in the 164 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they 165 * are copied from there to the netmap_kring's during netmap_do_regif(), by 166 * the nm_krings_create() callback. All the nm_krings_create callbacks 167 * actually call netmap_krings_create() to perform this and the other 168 * common stuff. netmap_krings_create() also takes care of the host rings, 169 * if needed, by setting their sync callbacks appropriately. 170 * 171 * Additional actions depend on the kind of netmap_adapter that has been 172 * registered: 173 * 174 * - netmap_hw_adapter: [netmap.c] 175 * This is a system netdev/ifp with native netmap support. 176 * The ifp is detached from the host stack by redirecting: 177 * - transmissions (from the network stack) to netmap_transmit() 178 * - receive notifications to the nm_notify() callback for 179 * this adapter. The callback is normally netmap_notify(), unless 180 * the ifp is attached to a bridge using bwrap, in which case it 181 * is netmap_bwrap_intr_notify(). 182 * 183 * - netmap_generic_adapter: [netmap_generic.c] 184 * A system netdev/ifp without native netmap support. 185 * 186 * (the decision about native/non native support is taken in 187 * netmap_get_hw_na(), called by netmap_get_na()) 188 * 189 * - netmap_vp_adapter [netmap_vale.c] 190 * Returned by netmap_get_bdg_na(). 191 * This is a persistent or ephemeral VALE port. Ephemeral ports 192 * are created on the fly if they don't already exist, and are 193 * always attached to a bridge. 194 * Persistent VALE ports must must be created separately, and i 195 * then attached like normal NICs. The NIOCREGIF we are examining 196 * will find them only if they had previously been created and 197 * attached (see VALE_CTL below). 198 * 199 * - netmap_pipe_adapter [netmap_pipe.c] 200 * Returned by netmap_get_pipe_na(). 201 * Both pipe ends are created, if they didn't already exist. 202 * 203 * - netmap_monitor_adapter [netmap_monitor.c] 204 * Returned by netmap_get_monitor_na(). 205 * If successful, the nm_sync callbacks of the monitored adapter 206 * will be intercepted by the returned monitor. 207 * 208 * - netmap_bwrap_adapter [netmap_vale.c] 209 * Cannot be obtained in this way, see VALE_CTL below 210 * 211 * 212 * os-specific: 213 * linux: we first go through linux_netmap_ioctl() to 214 * adapt the FreeBSD interface to the linux one. 215 * 216 * 217 * > 3. on each descriptor, the process issues an mmap() request to 218 * > map the shared memory region within the process' address space. 219 * > The list of interesting queues is indicated by a location in 220 * > the shared memory region. 221 * 222 * os-specific: 223 * FreeBSD: netmap_mmap_single (netmap_freebsd.c). 224 * linux: linux_netmap_mmap (netmap_linux.c). 225 * 226 * > 4. using the functions in the netmap(4) userspace API, a process 227 * > can look up the occupation state of a queue, access memory buffers, 228 * > and retrieve received packets or enqueue packets to transmit. 229 * 230 * these actions do not involve the kernel. 231 * 232 * > 5. using some ioctl()s the process can synchronize the userspace view 233 * > of the queue with the actual status in the kernel. This includes both 234 * > receiving the notification of new packets, and transmitting new 235 * > packets on the output interface. 236 * 237 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC 238 * cases. They invoke the nm_sync callbacks on the netmap_kring 239 * structures, as initialized in step 2 and maybe later modified 240 * by a monitor. Monitors, however, will always call the original 241 * callback before doing anything else. 242 * 243 * 244 * > 6. select() or poll() can be used to wait for events on individual 245 * > transmit or receive queues (or all queues for a given interface). 246 * 247 * Implemented in netmap_poll(). This will call the same nm_sync() 248 * callbacks as in step 5 above. 249 * 250 * os-specific: 251 * linux: we first go through linux_netmap_poll() to adapt 252 * the FreeBSD interface to the linux one. 253 * 254 * 255 * ---- VALE_CTL ----- 256 * 257 * VALE switches are controlled by issuing a NIOCREGIF with a non-null 258 * nr_cmd in the nmreq structure. These subcommands are handled by 259 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created 260 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF 261 * subcommands, respectively. 262 * 263 * Any network interface known to the system (including a persistent VALE 264 * port) can be attached to a VALE switch by issuing the 265 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports 266 * look exactly like ephemeral VALE ports (as created in step 2 above). The 267 * attachment of other interfaces, instead, requires the creation of a 268 * netmap_bwrap_adapter. Moreover, the attached interface must be put in 269 * netmap mode. This may require the creation of a netmap_generic_adapter if 270 * we have no native support for the interface, or if generic adapters have 271 * been forced by sysctl. 272 * 273 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(), 274 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach() 275 * callback. In the case of the bwrap, the callback creates the 276 * netmap_bwrap_adapter. The initialization of the bwrap is then 277 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl() 278 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c). 279 * A generic adapter for the wrapped ifp will be created if needed, when 280 * netmap_get_bdg_na() calls netmap_get_hw_na(). 281 * 282 * 283 * ---- DATAPATHS ----- 284 * 285 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =- 286 * 287 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach() 288 * 289 * - tx from netmap userspace: 290 * concurrently: 291 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 292 * kring->nm_sync() == DEVICE_netmap_txsync() 293 * 2) device interrupt handler 294 * na->nm_notify() == netmap_notify() 295 * - rx from netmap userspace: 296 * concurrently: 297 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 298 * kring->nm_sync() == DEVICE_netmap_rxsync() 299 * 2) device interrupt handler 300 * na->nm_notify() == netmap_notify() 301 * - rx from host stack 302 * concurrently: 303 * 1) host stack 304 * netmap_transmit() 305 * na->nm_notify == netmap_notify() 306 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context 307 * kring->nm_sync() == netmap_rxsync_from_host 308 * netmap_rxsync_from_host(na, NULL, NULL) 309 * - tx to host stack 310 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 311 * kring->nm_sync() == netmap_txsync_to_host 312 * netmap_txsync_to_host(na) 313 * nm_os_send_up() 314 * FreeBSD: na->if_input() == ether_input() 315 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX 316 * 317 * 318 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =- 319 * 320 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach() 321 * 322 * - tx from netmap userspace: 323 * concurrently: 324 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 325 * kring->nm_sync() == generic_netmap_txsync() 326 * nm_os_generic_xmit_frame() 327 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX 328 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 329 * gna->save_start_xmit == orig. dev. start_xmit 330 * FreeBSD: na->if_transmit() == orig. dev if_transmit 331 * 2) generic_mbuf_destructor() 332 * na->nm_notify() == netmap_notify() 333 * - rx from netmap userspace: 334 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 335 * kring->nm_sync() == generic_netmap_rxsync() 336 * mbq_safe_dequeue() 337 * 2) device driver 338 * generic_rx_handler() 339 * mbq_safe_enqueue() 340 * na->nm_notify() == netmap_notify() 341 * - rx from host stack 342 * FreeBSD: same as native 343 * Linux: same as native except: 344 * 1) host stack 345 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX 346 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 347 * netmap_transmit() 348 * na->nm_notify() == netmap_notify() 349 * - tx to host stack (same as native): 350 * 351 * 352 * -= VALE =- 353 * 354 * INCOMING: 355 * 356 * - VALE ports: 357 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 358 * kring->nm_sync() == netmap_vp_txsync() 359 * 360 * - system device with native support: 361 * from cable: 362 * interrupt 363 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 364 * kring->nm_sync() == DEVICE_netmap_rxsync() 365 * netmap_vp_txsync() 366 * kring->nm_sync() == DEVICE_netmap_rxsync() 367 * from host stack: 368 * netmap_transmit() 369 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 370 * kring->nm_sync() == netmap_rxsync_from_host() 371 * netmap_vp_txsync() 372 * 373 * - system device with generic support: 374 * from device driver: 375 * generic_rx_handler() 376 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 377 * kring->nm_sync() == generic_netmap_rxsync() 378 * netmap_vp_txsync() 379 * kring->nm_sync() == generic_netmap_rxsync() 380 * from host stack: 381 * netmap_transmit() 382 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 383 * kring->nm_sync() == netmap_rxsync_from_host() 384 * netmap_vp_txsync() 385 * 386 * (all cases) --> nm_bdg_flush() 387 * dest_na->nm_notify() == (see below) 388 * 389 * OUTGOING: 390 * 391 * - VALE ports: 392 * concurrently: 393 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 394 * kring->nm_sync() == netmap_vp_rxsync() 395 * 2) from nm_bdg_flush() 396 * na->nm_notify() == netmap_notify() 397 * 398 * - system device with native support: 399 * to cable: 400 * na->nm_notify() == netmap_bwrap_notify() 401 * netmap_vp_rxsync() 402 * kring->nm_sync() == DEVICE_netmap_txsync() 403 * netmap_vp_rxsync() 404 * to host stack: 405 * netmap_vp_rxsync() 406 * kring->nm_sync() == netmap_txsync_to_host 407 * netmap_vp_rxsync_locked() 408 * 409 * - system device with generic adapter: 410 * to device driver: 411 * na->nm_notify() == netmap_bwrap_notify() 412 * netmap_vp_rxsync() 413 * kring->nm_sync() == generic_netmap_txsync() 414 * netmap_vp_rxsync() 415 * to host stack: 416 * netmap_vp_rxsync() 417 * kring->nm_sync() == netmap_txsync_to_host 418 * netmap_vp_rxsync() 419 * 420 */ 421 422 /* 423 * OS-specific code that is used only within this file. 424 * Other OS-specific code that must be accessed by drivers 425 * is present in netmap_kern.h 426 */ 427 428 #if defined(__FreeBSD__) 429 #include <sys/cdefs.h> /* prerequisite */ 430 #include <sys/types.h> 431 #include <sys/errno.h> 432 #include <sys/param.h> /* defines used in kernel.h */ 433 #include <sys/kernel.h> /* types used in module initialization */ 434 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 435 #include <sys/filio.h> /* FIONBIO */ 436 #include <sys/sockio.h> 437 #include <sys/socketvar.h> /* struct socket */ 438 #include <sys/malloc.h> 439 #include <sys/poll.h> 440 #include <sys/proc.h> 441 #include <sys/rwlock.h> 442 #include <sys/socket.h> /* sockaddrs */ 443 #include <sys/selinfo.h> 444 #include <sys/sysctl.h> 445 #include <sys/jail.h> 446 #include <sys/epoch.h> 447 #include <net/vnet.h> 448 #include <net/if.h> 449 #include <net/if_var.h> 450 #include <net/bpf.h> /* BIOCIMMEDIATE */ 451 #include <machine/bus.h> /* bus_dmamap_* */ 452 #include <sys/endian.h> 453 #include <sys/refcount.h> 454 #include <net/ethernet.h> /* ETHER_BPF_MTAP */ 455 456 457 #elif defined(linux) 458 459 #include "bsd_glue.h" 460 461 #elif defined(__APPLE__) 462 463 #warning OSX support is only partial 464 #include "osx_glue.h" 465 466 #elif defined (_WIN32) 467 468 #include "win_glue.h" 469 470 #else 471 472 #error Unsupported platform 473 474 #endif /* unsupported */ 475 476 /* 477 * common headers 478 */ 479 #include <net/netmap.h> 480 #include <dev/netmap/netmap_kern.h> 481 #include <dev/netmap/netmap_mem2.h> 482 483 484 /* user-controlled variables */ 485 int netmap_verbose; 486 #ifdef CONFIG_NETMAP_DEBUG 487 int netmap_debug; 488 #endif /* CONFIG_NETMAP_DEBUG */ 489 490 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 491 int netmap_no_pendintr = 1; 492 int netmap_txsync_retry = 2; 493 static int netmap_fwd = 0; /* force transparent forwarding */ 494 495 /* 496 * netmap_admode selects the netmap mode to use. 497 * Invalid values are reset to NETMAP_ADMODE_BEST 498 */ 499 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 500 NETMAP_ADMODE_NATIVE, /* either native or none */ 501 NETMAP_ADMODE_GENERIC, /* force generic */ 502 NETMAP_ADMODE_LAST }; 503 static int netmap_admode = NETMAP_ADMODE_BEST; 504 505 /* netmap_generic_mit controls mitigation of RX notifications for 506 * the generic netmap adapter. The value is a time interval in 507 * nanoseconds. */ 508 int netmap_generic_mit = 100*1000; 509 510 /* We use by default netmap-aware qdiscs with generic netmap adapters, 511 * even if there can be a little performance hit with hardware NICs. 512 * However, using the qdisc is the safer approach, for two reasons: 513 * 1) it prevents non-fifo qdiscs to break the TX notification 514 * scheme, which is based on mbuf destructors when txqdisc is 515 * not used. 516 * 2) it makes it possible to transmit over software devices that 517 * change skb->dev, like bridge, veth, ... 518 * 519 * Anyway users looking for the best performance should 520 * use native adapters. 521 */ 522 #ifdef linux 523 int netmap_generic_txqdisc = 1; 524 #endif 525 526 /* Default number of slots and queues for generic adapters. */ 527 int netmap_generic_ringsize = 1024; 528 int netmap_generic_rings = 1; 529 530 /* Non-zero to enable checksum offloading in NIC drivers */ 531 int netmap_generic_hwcsum = 0; 532 533 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */ 534 int ptnet_vnet_hdr = 1; 535 536 /* 537 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated 538 * in some other operating systems 539 */ 540 SYSBEGIN(main_init); 541 542 SYSCTL_DECL(_dev_netmap); 543 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 544 "Netmap args"); 545 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 546 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 547 #ifdef CONFIG_NETMAP_DEBUG 548 SYSCTL_INT(_dev_netmap, OID_AUTO, debug, 549 CTLFLAG_RW, &netmap_debug, 0, "Debug messages"); 550 #endif /* CONFIG_NETMAP_DEBUG */ 551 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 552 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 553 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr, 554 0, "Always look for new received packets."); 555 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 556 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush."); 557 558 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0, 559 "Force NR_FORWARD mode"); 560 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0, 561 "Adapter mode. 0 selects the best option available," 562 "1 forces native adapter, 2 forces emulated adapter"); 563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum, 564 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default)," 565 "1 to enable checksum generation by the NIC"); 566 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 567 0, "RX notification interval in nanoseconds"); 568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, 569 &netmap_generic_ringsize, 0, 570 "Number of per-ring slots for emulated netmap mode"); 571 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW, 572 &netmap_generic_rings, 0, 573 "Number of TX/RX queues for emulated netmap adapters"); 574 #ifdef linux 575 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW, 576 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters"); 577 #endif 578 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr, 579 0, "Allow ptnet devices to use virtio-net headers"); 580 581 SYSEND; 582 583 NMG_LOCK_T netmap_global_lock; 584 585 /* 586 * mark the ring as stopped, and run through the locks 587 * to make sure other users get to see it. 588 * stopped must be either NR_KR_STOPPED (for unbounded stop) 589 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes) 590 */ 591 static void 592 netmap_disable_ring(struct netmap_kring *kr, int stopped) 593 { 594 nm_kr_stop(kr, stopped); 595 // XXX check if nm_kr_stop is sufficient 596 mtx_lock(&kr->q_lock); 597 mtx_unlock(&kr->q_lock); 598 nm_kr_put(kr); 599 } 600 601 /* stop or enable a single ring */ 602 void 603 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped) 604 { 605 if (stopped) 606 netmap_disable_ring(NMR(na, t)[ring_id], stopped); 607 else 608 NMR(na, t)[ring_id]->nkr_stopped = 0; 609 } 610 611 612 /* stop or enable all the rings of na */ 613 void 614 netmap_set_all_rings(struct netmap_adapter *na, int stopped) 615 { 616 int i; 617 enum txrx t; 618 619 if (!nm_netmap_on(na)) 620 return; 621 622 if (netmap_verbose) { 623 nm_prinf("%s: %sable all rings", na->name, 624 (stopped ? "dis" : "en")); 625 } 626 for_rx_tx(t) { 627 for (i = 0; i < netmap_real_rings(na, t); i++) { 628 netmap_set_ring(na, i, t, stopped); 629 } 630 } 631 } 632 633 /* 634 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s 635 * to finish and prevents any new one from starting. Call this before turning 636 * netmap mode off, or before removing the hardware rings (e.g., on module 637 * onload). 638 */ 639 void 640 netmap_disable_all_rings(struct ifnet *ifp) 641 { 642 if (NM_NA_VALID(ifp)) { 643 netmap_set_all_rings(NA(ifp), NM_KR_LOCKED); 644 } 645 } 646 647 /* 648 * Convenience function used in drivers. Re-enables rxsync and txsync on the 649 * adapter's rings In linux drivers, this should be placed near each 650 * napi_enable(). 651 */ 652 void 653 netmap_enable_all_rings(struct ifnet *ifp) 654 { 655 if (NM_NA_VALID(ifp)) { 656 netmap_set_all_rings(NA(ifp), 0 /* enabled */); 657 } 658 } 659 660 void 661 netmap_make_zombie(struct ifnet *ifp) 662 { 663 if (NM_NA_VALID(ifp)) { 664 struct netmap_adapter *na = NA(ifp); 665 netmap_set_all_rings(na, NM_KR_LOCKED); 666 na->na_flags |= NAF_ZOMBIE; 667 netmap_set_all_rings(na, 0); 668 } 669 } 670 671 void 672 netmap_undo_zombie(struct ifnet *ifp) 673 { 674 if (NM_NA_VALID(ifp)) { 675 struct netmap_adapter *na = NA(ifp); 676 if (na->na_flags & NAF_ZOMBIE) { 677 netmap_set_all_rings(na, NM_KR_LOCKED); 678 na->na_flags &= ~NAF_ZOMBIE; 679 netmap_set_all_rings(na, 0); 680 } 681 } 682 } 683 684 /* 685 * generic bound_checking function 686 */ 687 u_int 688 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 689 { 690 u_int oldv = *v; 691 const char *op = NULL; 692 693 if (dflt < lo) 694 dflt = lo; 695 if (dflt > hi) 696 dflt = hi; 697 if (oldv < lo) { 698 *v = dflt; 699 op = "Bump"; 700 } else if (oldv > hi) { 701 *v = hi; 702 op = "Clamp"; 703 } 704 if (op && msg) 705 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv); 706 return *v; 707 } 708 709 710 /* 711 * packet-dump function, user-supplied or static buffer. 712 * The destination buffer must be at least 30+4*len 713 */ 714 const char * 715 nm_dump_buf(char *p, int len, int lim, char *dst) 716 { 717 static char _dst[8192]; 718 int i, j, i0; 719 static char hex[] ="0123456789abcdef"; 720 char *o; /* output position */ 721 722 #define P_HI(x) hex[((x) & 0xf0)>>4] 723 #define P_LO(x) hex[((x) & 0xf)] 724 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 725 if (!dst) 726 dst = _dst; 727 if (lim <= 0 || lim > len) 728 lim = len; 729 o = dst; 730 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 731 o += strlen(o); 732 /* hexdump routine */ 733 for (i = 0; i < lim; ) { 734 sprintf(o, "%5d: ", i); 735 o += strlen(o); 736 memset(o, ' ', 48); 737 i0 = i; 738 for (j=0; j < 16 && i < lim; i++, j++) { 739 o[j*3] = P_HI(p[i]); 740 o[j*3+1] = P_LO(p[i]); 741 } 742 i = i0; 743 for (j=0; j < 16 && i < lim; i++, j++) 744 o[j + 48] = P_C(p[i]); 745 o[j+48] = '\n'; 746 o += j+49; 747 } 748 *o = '\0'; 749 #undef P_HI 750 #undef P_LO 751 #undef P_C 752 return dst; 753 } 754 755 756 /* 757 * Fetch configuration from the device, to cope with dynamic 758 * reconfigurations after loading the module. 759 */ 760 /* call with NMG_LOCK held */ 761 int 762 netmap_update_config(struct netmap_adapter *na) 763 { 764 struct nm_config_info info; 765 766 bzero(&info, sizeof(info)); 767 if (na->nm_config == NULL || 768 na->nm_config(na, &info)) { 769 /* take whatever we had at init time */ 770 info.num_tx_rings = na->num_tx_rings; 771 info.num_tx_descs = na->num_tx_desc; 772 info.num_rx_rings = na->num_rx_rings; 773 info.num_rx_descs = na->num_rx_desc; 774 info.rx_buf_maxsize = na->rx_buf_maxsize; 775 } 776 777 if (na->num_tx_rings == info.num_tx_rings && 778 na->num_tx_desc == info.num_tx_descs && 779 na->num_rx_rings == info.num_rx_rings && 780 na->num_rx_desc == info.num_rx_descs && 781 na->rx_buf_maxsize == info.rx_buf_maxsize) 782 return 0; /* nothing changed */ 783 if (na->active_fds == 0) { 784 na->num_tx_rings = info.num_tx_rings; 785 na->num_tx_desc = info.num_tx_descs; 786 na->num_rx_rings = info.num_rx_rings; 787 na->num_rx_desc = info.num_rx_descs; 788 na->rx_buf_maxsize = info.rx_buf_maxsize; 789 if (netmap_verbose) 790 nm_prinf("configuration changed for %s: txring %d x %d, " 791 "rxring %d x %d, rxbufsz %d", 792 na->name, na->num_tx_rings, na->num_tx_desc, 793 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize); 794 return 0; 795 } 796 nm_prerr("WARNING: configuration changed for %s while active: " 797 "txring %d x %d, rxring %d x %d, rxbufsz %d", 798 na->name, info.num_tx_rings, info.num_tx_descs, 799 info.num_rx_rings, info.num_rx_descs, 800 info.rx_buf_maxsize); 801 return 1; 802 } 803 804 /* nm_sync callbacks for the host rings */ 805 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags); 806 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags); 807 808 static int 809 netmap_default_bufcfg(struct netmap_kring *kring, uint64_t target) 810 { 811 kring->hwbuf_len = target; 812 kring->buf_align = 0; /* no alignment */ 813 return 0; 814 } 815 816 /* create the krings array and initialize the fields common to all adapters. 817 * The array layout is this: 818 * 819 * +----------+ 820 * na->tx_rings ----->| | \ 821 * | | } na->num_tx_ring 822 * | | / 823 * +----------+ 824 * | | host tx kring 825 * na->rx_rings ----> +----------+ 826 * | | \ 827 * | | } na->num_rx_rings 828 * | | / 829 * +----------+ 830 * | | host rx kring 831 * +----------+ 832 * na->tailroom ----->| | \ 833 * | | } tailroom bytes 834 * | | / 835 * +----------+ 836 * 837 * Note: for compatibility, host krings are created even when not needed. 838 * The tailroom space is currently used by vale ports for allocating leases. 839 */ 840 /* call with NMG_LOCK held */ 841 int 842 netmap_krings_create(struct netmap_adapter *na, u_int tailroom) 843 { 844 u_int i, len, ndesc; 845 struct netmap_kring *kring; 846 u_int n[NR_TXRX]; 847 enum txrx t; 848 int err = 0; 849 850 if (na->tx_rings != NULL) { 851 if (netmap_debug & NM_DEBUG_ON) 852 nm_prerr("warning: krings were already created"); 853 return 0; 854 } 855 856 /* account for the (possibly fake) host rings */ 857 n[NR_TX] = netmap_all_rings(na, NR_TX); 858 n[NR_RX] = netmap_all_rings(na, NR_RX); 859 860 len = (n[NR_TX] + n[NR_RX]) * 861 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *)) 862 + tailroom; 863 864 na->tx_rings = nm_os_malloc((size_t)len); 865 if (na->tx_rings == NULL) { 866 nm_prerr("Cannot allocate krings"); 867 return ENOMEM; 868 } 869 na->rx_rings = na->tx_rings + n[NR_TX]; 870 na->tailroom = na->rx_rings + n[NR_RX]; 871 872 /* link the krings in the krings array */ 873 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom); 874 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) { 875 na->tx_rings[i] = kring; 876 kring++; 877 } 878 879 /* 880 * All fields in krings are 0 except the one initialized below. 881 * but better be explicit on important kring fields. 882 */ 883 for_rx_tx(t) { 884 ndesc = nma_get_ndesc(na, t); 885 for (i = 0; i < n[t]; i++) { 886 kring = NMR(na, t)[i]; 887 bzero(kring, sizeof(*kring)); 888 kring->notify_na = na; 889 kring->ring_id = i; 890 kring->tx = t; 891 kring->nkr_num_slots = ndesc; 892 kring->nr_mode = NKR_NETMAP_OFF; 893 kring->nr_pending_mode = NKR_NETMAP_OFF; 894 if (i < nma_get_nrings(na, t)) { 895 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync); 896 kring->nm_bufcfg = na->nm_bufcfg; 897 if (kring->nm_bufcfg == NULL) 898 kring->nm_bufcfg = netmap_default_bufcfg; 899 } else { 900 if (!(na->na_flags & NAF_HOST_RINGS)) 901 kring->nr_kflags |= NKR_FAKERING; 902 kring->nm_sync = (t == NR_TX ? 903 netmap_txsync_to_host: 904 netmap_rxsync_from_host); 905 kring->nm_bufcfg = netmap_default_bufcfg; 906 } 907 kring->nm_notify = na->nm_notify; 908 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 909 /* 910 * IMPORTANT: Always keep one slot empty. 911 */ 912 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0); 913 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name, 914 nm_txrx2str(t), i); 915 nm_prdis("ktx %s h %d c %d t %d", 916 kring->name, kring->rhead, kring->rcur, kring->rtail); 917 err = nm_os_selinfo_init(&kring->si, kring->name); 918 if (err) { 919 netmap_krings_delete(na); 920 return err; 921 } 922 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF); 923 kring->na = na; /* setting this field marks the mutex as initialized */ 924 } 925 err = nm_os_selinfo_init(&na->si[t], na->name); 926 if (err) { 927 netmap_krings_delete(na); 928 return err; 929 } 930 } 931 932 return 0; 933 } 934 935 936 /* undo the actions performed by netmap_krings_create */ 937 /* call with NMG_LOCK held */ 938 void 939 netmap_krings_delete(struct netmap_adapter *na) 940 { 941 struct netmap_kring **kring = na->tx_rings; 942 enum txrx t; 943 944 if (na->tx_rings == NULL) { 945 if (netmap_debug & NM_DEBUG_ON) 946 nm_prerr("warning: krings were already deleted"); 947 return; 948 } 949 950 for_rx_tx(t) 951 nm_os_selinfo_uninit(&na->si[t]); 952 953 /* we rely on the krings layout described above */ 954 for ( ; kring != na->tailroom; kring++) { 955 if ((*kring)->na != NULL) 956 mtx_destroy(&(*kring)->q_lock); 957 nm_os_selinfo_uninit(&(*kring)->si); 958 } 959 nm_os_free(na->tx_rings); 960 na->tx_rings = na->rx_rings = na->tailroom = NULL; 961 } 962 963 964 /* 965 * Destructor for NIC ports. They also have an mbuf queue 966 * on the rings connected to the host so we need to purge 967 * them first. 968 */ 969 /* call with NMG_LOCK held */ 970 void 971 netmap_hw_krings_delete(struct netmap_adapter *na) 972 { 973 u_int lim = netmap_real_rings(na, NR_RX), i; 974 975 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) { 976 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue; 977 nm_prdis("destroy sw mbq with len %d", mbq_len(q)); 978 mbq_purge(q); 979 mbq_safe_fini(q); 980 } 981 netmap_krings_delete(na); 982 } 983 984 void 985 netmap_mem_restore(struct netmap_adapter *na) 986 { 987 if (na->nm_mem_prev) { 988 netmap_mem_put(na->nm_mem); 989 na->nm_mem = na->nm_mem_prev; 990 na->nm_mem_prev = NULL; 991 } 992 } 993 994 static void 995 netmap_mem_drop(struct netmap_adapter *na) 996 { 997 /* if the native allocator had been overridden on regif, 998 * restore it now and drop the temporary one 999 */ 1000 if (netmap_mem_deref(na->nm_mem, na)) { 1001 netmap_mem_restore(na); 1002 } 1003 } 1004 1005 /* 1006 * Undo everything that was done in netmap_do_regif(). In particular, 1007 * call nm_register(ifp,0) to stop netmap mode on the interface and 1008 * revert to normal operation. 1009 */ 1010 /* call with NMG_LOCK held */ 1011 static void netmap_unset_ringid(struct netmap_priv_d *); 1012 static void netmap_krings_put(struct netmap_priv_d *); 1013 void 1014 netmap_do_unregif(struct netmap_priv_d *priv) 1015 { 1016 struct netmap_adapter *na = priv->np_na; 1017 1018 NMG_LOCK_ASSERT(); 1019 na->active_fds--; 1020 /* unset nr_pending_mode and possibly release exclusive mode */ 1021 netmap_krings_put(priv); 1022 1023 #ifdef WITH_MONITOR 1024 /* XXX check whether we have to do something with monitor 1025 * when rings change nr_mode. */ 1026 if (na->active_fds <= 0) { 1027 /* walk through all the rings and tell any monitor 1028 * that the port is going to exit netmap mode 1029 */ 1030 netmap_monitor_stop(na); 1031 } 1032 #endif 1033 1034 if (na->active_fds <= 0 || nm_kring_pending(priv)) { 1035 na->nm_register(na, 0); 1036 } 1037 1038 /* delete rings and buffers that are no longer needed */ 1039 netmap_mem_rings_delete(na); 1040 1041 if (na->active_fds <= 0) { /* last instance */ 1042 /* 1043 * (TO CHECK) We enter here 1044 * when the last reference to this file descriptor goes 1045 * away. This means we cannot have any pending poll() 1046 * or interrupt routine operating on the structure. 1047 * XXX The file may be closed in a thread while 1048 * another thread is using it. 1049 * Linux keeps the file opened until the last reference 1050 * by any outstanding ioctl/poll or mmap is gone. 1051 * FreeBSD does not track mmap()s (but we do) and 1052 * wakes up any sleeping poll(). Need to check what 1053 * happens if the close() occurs while a concurrent 1054 * syscall is running. 1055 */ 1056 if (netmap_debug & NM_DEBUG_ON) 1057 nm_prinf("deleting last instance for %s", na->name); 1058 1059 if (nm_netmap_on(na)) { 1060 nm_prerr("BUG: netmap on while going to delete the krings"); 1061 } 1062 1063 na->nm_krings_delete(na); 1064 1065 /* restore the default number of host tx and rx rings */ 1066 if (na->na_flags & NAF_HOST_RINGS) { 1067 na->num_host_tx_rings = 1; 1068 na->num_host_rx_rings = 1; 1069 } else { 1070 na->num_host_tx_rings = 0; 1071 na->num_host_rx_rings = 0; 1072 } 1073 } 1074 1075 /* possibly decrement counter of tx_si/rx_si users */ 1076 netmap_unset_ringid(priv); 1077 /* delete the nifp */ 1078 netmap_mem_if_delete(na, priv->np_nifp); 1079 /* drop the allocator */ 1080 netmap_mem_drop(na); 1081 /* mark the priv as unregistered */ 1082 priv->np_na = NULL; 1083 priv->np_nifp = NULL; 1084 } 1085 1086 struct netmap_priv_d* 1087 netmap_priv_new(void) 1088 { 1089 struct netmap_priv_d *priv; 1090 1091 priv = nm_os_malloc(sizeof(struct netmap_priv_d)); 1092 if (priv == NULL) 1093 return NULL; 1094 priv->np_refs = 1; 1095 nm_os_get_module(); 1096 return priv; 1097 } 1098 1099 /* 1100 * Destructor of the netmap_priv_d, called when the fd is closed 1101 * Action: undo all the things done by NIOCREGIF, 1102 * On FreeBSD we need to track whether there are active mmap()s, 1103 * and we use np_active_mmaps for that. On linux, the field is always 0. 1104 * Return: 1 if we can free priv, 0 otherwise. 1105 * 1106 */ 1107 /* call with NMG_LOCK held */ 1108 void 1109 netmap_priv_delete(struct netmap_priv_d *priv) 1110 { 1111 struct netmap_adapter *na = priv->np_na; 1112 1113 /* number of active references to this fd */ 1114 if (--priv->np_refs > 0) { 1115 return; 1116 } 1117 nm_os_put_module(); 1118 if (na) { 1119 netmap_do_unregif(priv); 1120 } 1121 netmap_unget_na(na, priv->np_ifp); 1122 bzero(priv, sizeof(*priv)); /* for safety */ 1123 nm_os_free(priv); 1124 } 1125 1126 1127 /* call with NMG_LOCK *not* held */ 1128 void 1129 netmap_dtor(void *data) 1130 { 1131 struct netmap_priv_d *priv = data; 1132 1133 NMG_LOCK(); 1134 netmap_priv_delete(priv); 1135 NMG_UNLOCK(); 1136 } 1137 1138 1139 /* 1140 * Handlers for synchronization of the rings from/to the host stack. 1141 * These are associated to a network interface and are just another 1142 * ring pair managed by userspace. 1143 * 1144 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD 1145 * flags): 1146 * 1147 * - Before releasing buffers on hw RX rings, the application can mark 1148 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they 1149 * will be forwarded to the host stack, similarly to what happened if 1150 * the application moved them to the host TX ring. 1151 * 1152 * - Before releasing buffers on the host RX ring, the application can 1153 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(), 1154 * they will be forwarded to the hw TX rings, saving the application 1155 * from doing the same task in user-space. 1156 * 1157 * Transparent forwarding can be enabled per-ring, by setting the NR_FORWARD 1158 * flag, or globally with the netmap_fwd sysctl. 1159 * 1160 * The transfer NIC --> host is relatively easy, just encapsulate 1161 * into mbufs and we are done. The host --> NIC side is slightly 1162 * harder because there might not be room in the tx ring so it 1163 * might take a while before releasing the buffer. 1164 */ 1165 1166 1167 /* 1168 * Pass a whole queue of mbufs to the host stack as coming from 'dst' 1169 * We do not need to lock because the queue is private. 1170 * After this call the queue is empty. 1171 */ 1172 static void 1173 netmap_send_up(struct ifnet *dst, struct mbq *q) 1174 { 1175 struct mbuf *m; 1176 struct mbuf *head = NULL, *prev = NULL; 1177 #ifdef __FreeBSD__ 1178 struct epoch_tracker et; 1179 1180 NET_EPOCH_ENTER(et); 1181 #endif /* __FreeBSD__ */ 1182 /* Send packets up, outside the lock; head/prev machinery 1183 * is only useful for Windows. */ 1184 while ((m = mbq_dequeue(q)) != NULL) { 1185 if (netmap_debug & NM_DEBUG_HOST) 1186 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m)); 1187 prev = nm_os_send_up(dst, m, prev); 1188 if (head == NULL) 1189 head = prev; 1190 } 1191 if (head) 1192 nm_os_send_up(dst, NULL, head); 1193 #ifdef __FreeBSD__ 1194 NET_EPOCH_EXIT(et); 1195 #endif /* __FreeBSD__ */ 1196 mbq_fini(q); 1197 } 1198 1199 1200 /* 1201 * Scan the buffers from hwcur to ring->head, and put a copy of those 1202 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs. 1203 * Drop remaining packets in the unlikely event 1204 * of an mbuf shortage. 1205 */ 1206 static void 1207 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 1208 { 1209 u_int const lim = kring->nkr_num_slots - 1; 1210 u_int const head = kring->rhead; 1211 u_int n; 1212 struct netmap_adapter *na = kring->na; 1213 1214 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) { 1215 struct mbuf *m; 1216 struct netmap_slot *slot = &kring->ring->slot[n]; 1217 1218 if ((slot->flags & NS_FORWARD) == 0 && !force) 1219 continue; 1220 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) { 1221 nm_prlim(5, "bad pkt at %d len %d", n, slot->len); 1222 continue; 1223 } 1224 slot->flags &= ~NS_FORWARD; // XXX needed ? 1225 /* XXX TODO: adapt to the case of a multisegment packet */ 1226 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL); 1227 1228 if (m == NULL) 1229 break; 1230 mbq_enqueue(q, m); 1231 } 1232 } 1233 1234 static inline int 1235 _nm_may_forward(struct netmap_kring *kring) 1236 { 1237 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) && 1238 kring->na->na_flags & NAF_HOST_RINGS && 1239 kring->tx == NR_RX); 1240 } 1241 1242 static inline int 1243 nm_may_forward_up(struct netmap_kring *kring) 1244 { 1245 return _nm_may_forward(kring) && 1246 kring->ring_id != kring->na->num_rx_rings; 1247 } 1248 1249 static inline int 1250 nm_may_forward_down(struct netmap_kring *kring, int sync_flags) 1251 { 1252 return _nm_may_forward(kring) && 1253 (sync_flags & NAF_CAN_FORWARD_DOWN) && 1254 kring->ring_id == kring->na->num_rx_rings; 1255 } 1256 1257 /* 1258 * Send to the NIC rings packets marked NS_FORWARD between 1259 * kring->nr_hwcur and kring->rhead. 1260 * Called under kring->rx_queue.lock on the sw rx ring. 1261 * 1262 * It can only be called if the user opened all the TX hw rings, 1263 * see NAF_CAN_FORWARD_DOWN flag. 1264 * We can touch the TX netmap rings (slots, head and cur) since 1265 * we are in poll/ioctl system call context, and the application 1266 * is not supposed to touch the ring (using a different thread) 1267 * during the execution of the system call. 1268 */ 1269 static u_int 1270 netmap_sw_to_nic(struct netmap_adapter *na) 1271 { 1272 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings]; 1273 struct netmap_slot *rxslot = kring->ring->slot; 1274 u_int i, rxcur = kring->nr_hwcur; 1275 u_int const head = kring->rhead; 1276 u_int const src_lim = kring->nkr_num_slots - 1; 1277 u_int sent = 0; 1278 1279 /* scan rings to find space, then fill as much as possible */ 1280 for (i = 0; i < na->num_tx_rings; i++) { 1281 struct netmap_kring *kdst = na->tx_rings[i]; 1282 struct netmap_ring *rdst = kdst->ring; 1283 u_int const dst_lim = kdst->nkr_num_slots - 1; 1284 1285 /* XXX do we trust ring or kring->rcur,rtail ? */ 1286 for (; rxcur != head && !nm_ring_empty(rdst); 1287 rxcur = nm_next(rxcur, src_lim) ) { 1288 struct netmap_slot *src, *dst, tmp; 1289 u_int dst_head = rdst->head; 1290 1291 src = &rxslot[rxcur]; 1292 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd) 1293 continue; 1294 1295 sent++; 1296 1297 dst = &rdst->slot[dst_head]; 1298 1299 tmp = *src; 1300 1301 src->buf_idx = dst->buf_idx; 1302 src->flags = NS_BUF_CHANGED; 1303 1304 dst->buf_idx = tmp.buf_idx; 1305 dst->len = tmp.len; 1306 dst->flags = NS_BUF_CHANGED; 1307 1308 rdst->head = rdst->cur = nm_next(dst_head, dst_lim); 1309 } 1310 /* if (sent) XXX txsync ? it would be just an optimization */ 1311 } 1312 return sent; 1313 } 1314 1315 1316 /* 1317 * netmap_txsync_to_host() passes packets up. We are called from a 1318 * system call in user process context, and the only contention 1319 * can be among multiple user threads erroneously calling 1320 * this routine concurrently. 1321 */ 1322 static int 1323 netmap_txsync_to_host(struct netmap_kring *kring, int flags) 1324 { 1325 struct netmap_adapter *na = kring->na; 1326 u_int const lim = kring->nkr_num_slots - 1; 1327 u_int const head = kring->rhead; 1328 struct mbq q; 1329 1330 /* Take packets from hwcur to head and pass them up. 1331 * Force hwcur = head since netmap_grab_packets() stops at head 1332 */ 1333 mbq_init(&q); 1334 netmap_grab_packets(kring, &q, 1 /* force */); 1335 nm_prdis("have %d pkts in queue", mbq_len(&q)); 1336 kring->nr_hwcur = head; 1337 kring->nr_hwtail = head + lim; 1338 if (kring->nr_hwtail > lim) 1339 kring->nr_hwtail -= lim + 1; 1340 1341 netmap_send_up(na->ifp, &q); 1342 return 0; 1343 } 1344 1345 1346 /* 1347 * rxsync backend for packets coming from the host stack. 1348 * They have been put in kring->rx_queue by netmap_transmit(). 1349 * We protect access to the kring using kring->rx_queue.lock 1350 * 1351 * also moves to the nic hw rings any packet the user has marked 1352 * for transparent-mode forwarding, then sets the NR_FORWARD 1353 * flag in the kring to let the caller push them out 1354 */ 1355 static int 1356 netmap_rxsync_from_host(struct netmap_kring *kring, int flags) 1357 { 1358 struct netmap_adapter *na = kring->na; 1359 struct netmap_ring *ring = kring->ring; 1360 u_int nm_i, n; 1361 u_int const lim = kring->nkr_num_slots - 1; 1362 u_int const head = kring->rhead; 1363 int ret = 0; 1364 struct mbq *q = &kring->rx_queue, fq; 1365 1366 mbq_init(&fq); /* fq holds packets to be freed */ 1367 1368 mbq_lock(q); 1369 1370 /* First part: import newly received packets */ 1371 n = mbq_len(q); 1372 if (n) { /* grab packets from the queue */ 1373 struct mbuf *m; 1374 uint32_t stop_i; 1375 1376 nm_i = kring->nr_hwtail; 1377 stop_i = nm_prev(kring->nr_hwcur, lim); 1378 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) { 1379 int len = MBUF_LEN(m); 1380 struct netmap_slot *slot = &ring->slot[nm_i]; 1381 1382 m_copydata(m, 0, len, NMB(na, slot)); 1383 nm_prdis("nm %d len %d", nm_i, len); 1384 if (netmap_debug & NM_DEBUG_HOST) 1385 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL)); 1386 1387 slot->len = len; 1388 slot->flags = 0; 1389 nm_i = nm_next(nm_i, lim); 1390 mbq_enqueue(&fq, m); 1391 } 1392 kring->nr_hwtail = nm_i; 1393 } 1394 1395 /* 1396 * Second part: skip past packets that userspace has released. 1397 */ 1398 nm_i = kring->nr_hwcur; 1399 if (nm_i != head) { /* something was released */ 1400 if (nm_may_forward_down(kring, flags)) { 1401 ret = netmap_sw_to_nic(na); 1402 if (ret > 0) { 1403 kring->nr_kflags |= NR_FORWARD; 1404 ret = 0; 1405 } 1406 } 1407 kring->nr_hwcur = head; 1408 } 1409 1410 mbq_unlock(q); 1411 1412 mbq_purge(&fq); 1413 mbq_fini(&fq); 1414 1415 return ret; 1416 } 1417 1418 1419 /* Get a netmap adapter for the port. 1420 * 1421 * If it is possible to satisfy the request, return 0 1422 * with *na containing the netmap adapter found. 1423 * Otherwise return an error code, with *na containing NULL. 1424 * 1425 * When the port is attached to a bridge, we always return 1426 * EBUSY. 1427 * Otherwise, if the port is already bound to a file descriptor, 1428 * then we unconditionally return the existing adapter into *na. 1429 * In all the other cases, we return (into *na) either native, 1430 * generic or NULL, according to the following table: 1431 * 1432 * native_support 1433 * active_fds dev.netmap.admode YES NO 1434 * ------------------------------------------------------- 1435 * >0 * NA(ifp) NA(ifp) 1436 * 1437 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 1438 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 1439 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 1440 * 1441 */ 1442 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */ 1443 int 1444 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na) 1445 { 1446 /* generic support */ 1447 int i = netmap_admode; /* Take a snapshot. */ 1448 struct netmap_adapter *prev_na; 1449 int error = 0; 1450 1451 *na = NULL; /* default */ 1452 1453 /* reset in case of invalid value */ 1454 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 1455 i = netmap_admode = NETMAP_ADMODE_BEST; 1456 1457 if (NM_NA_VALID(ifp)) { 1458 prev_na = NA(ifp); 1459 /* If an adapter already exists, return it if 1460 * there are active file descriptors or if 1461 * netmap is not forced to use generic 1462 * adapters. 1463 */ 1464 if (NETMAP_OWNED_BY_ANY(prev_na) 1465 || i != NETMAP_ADMODE_GENERIC 1466 || prev_na->na_flags & NAF_FORCE_NATIVE 1467 #ifdef WITH_PIPES 1468 /* ugly, but we cannot allow an adapter switch 1469 * if some pipe is referring to this one 1470 */ 1471 || prev_na->na_next_pipe > 0 1472 #endif 1473 ) { 1474 *na = prev_na; 1475 goto assign_mem; 1476 } 1477 } 1478 1479 /* If there isn't native support and netmap is not allowed 1480 * to use generic adapters, we cannot satisfy the request. 1481 */ 1482 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE) 1483 return EOPNOTSUPP; 1484 1485 /* Otherwise, create a generic adapter and return it, 1486 * saving the previously used netmap adapter, if any. 1487 * 1488 * Note that here 'prev_na', if not NULL, MUST be a 1489 * native adapter, and CANNOT be a generic one. This is 1490 * true because generic adapters are created on demand, and 1491 * destroyed when not used anymore. Therefore, if the adapter 1492 * currently attached to an interface 'ifp' is generic, it 1493 * must be that 1494 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1495 * Consequently, if NA(ifp) is generic, we will enter one of 1496 * the branches above. This ensures that we never override 1497 * a generic adapter with another generic adapter. 1498 */ 1499 error = generic_netmap_attach(ifp); 1500 if (error) 1501 return error; 1502 1503 *na = NA(ifp); 1504 1505 assign_mem: 1506 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) && 1507 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) { 1508 (*na)->nm_mem_prev = (*na)->nm_mem; 1509 (*na)->nm_mem = netmap_mem_get(nmd); 1510 } 1511 1512 return 0; 1513 } 1514 1515 /* 1516 * MUST BE CALLED UNDER NMG_LOCK() 1517 * 1518 * Get a refcounted reference to a netmap adapter attached 1519 * to the interface specified by req. 1520 * This is always called in the execution of an ioctl(). 1521 * 1522 * Return ENXIO if the interface specified by the request does 1523 * not exist, ENOTSUP if netmap is not supported by the interface, 1524 * EBUSY if the interface is already attached to a bridge, 1525 * EINVAL if parameters are invalid, ENOMEM if needed resources 1526 * could not be allocated. 1527 * If successful, hold a reference to the netmap adapter. 1528 * 1529 * If the interface specified by req is a system one, also keep 1530 * a reference to it and return a valid *ifp. 1531 */ 1532 int 1533 netmap_get_na(struct nmreq_header *hdr, 1534 struct netmap_adapter **na, struct ifnet **ifp, 1535 struct netmap_mem_d *nmd, int create) 1536 { 1537 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body; 1538 int error = 0; 1539 struct netmap_adapter *ret = NULL; 1540 int nmd_ref = 0; 1541 1542 *na = NULL; /* default return value */ 1543 *ifp = NULL; 1544 1545 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { 1546 return EINVAL; 1547 } 1548 1549 if (req->nr_mode == NR_REG_PIPE_MASTER || 1550 req->nr_mode == NR_REG_PIPE_SLAVE) { 1551 /* Do not accept deprecated pipe modes. */ 1552 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax"); 1553 return EINVAL; 1554 } 1555 1556 NMG_LOCK_ASSERT(); 1557 1558 /* if the request contain a memid, try to find the 1559 * corresponding memory region 1560 */ 1561 if (nmd == NULL && req->nr_mem_id) { 1562 nmd = netmap_mem_find(req->nr_mem_id); 1563 if (nmd == NULL) 1564 return EINVAL; 1565 /* keep the rereference */ 1566 nmd_ref = 1; 1567 } 1568 1569 /* We cascade through all possible types of netmap adapter. 1570 * All netmap_get_*_na() functions return an error and an na, 1571 * with the following combinations: 1572 * 1573 * error na 1574 * 0 NULL type doesn't match 1575 * !0 NULL type matches, but na creation/lookup failed 1576 * 0 !NULL type matches and na created/found 1577 * !0 !NULL impossible 1578 */ 1579 error = netmap_get_null_na(hdr, na, nmd, create); 1580 if (error || *na != NULL) 1581 goto out; 1582 1583 /* try to see if this is a monitor port */ 1584 error = netmap_get_monitor_na(hdr, na, nmd, create); 1585 if (error || *na != NULL) 1586 goto out; 1587 1588 /* try to see if this is a pipe port */ 1589 error = netmap_get_pipe_na(hdr, na, nmd, create); 1590 if (error || *na != NULL) 1591 goto out; 1592 1593 /* try to see if this is a vale port */ 1594 error = netmap_get_vale_na(hdr, na, nmd, create); 1595 if (error) 1596 goto out; 1597 1598 if (*na != NULL) /* valid match in netmap_get_bdg_na() */ 1599 goto out; 1600 1601 /* 1602 * This must be a hardware na, lookup the name in the system. 1603 * Note that by hardware we actually mean "it shows up in ifconfig". 1604 * This may still be a tap, a veth/epair, or even a 1605 * persistent VALE port. 1606 */ 1607 *ifp = ifunit_ref(hdr->nr_name); 1608 if (*ifp == NULL) { 1609 error = ENXIO; 1610 goto out; 1611 } 1612 1613 error = netmap_get_hw_na(*ifp, nmd, &ret); 1614 if (error) 1615 goto out; 1616 1617 *na = ret; 1618 netmap_adapter_get(ret); 1619 1620 /* 1621 * if the adapter supports the host rings and it is not already open, 1622 * try to set the number of host rings as requested by the user 1623 */ 1624 if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) { 1625 if (req->nr_host_tx_rings) 1626 (*na)->num_host_tx_rings = req->nr_host_tx_rings; 1627 if (req->nr_host_rx_rings) 1628 (*na)->num_host_rx_rings = req->nr_host_rx_rings; 1629 } 1630 nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings, 1631 (*na)->num_host_rx_rings); 1632 1633 out: 1634 if (error) { 1635 if (ret) 1636 netmap_adapter_put(ret); 1637 if (*ifp) { 1638 if_rele(*ifp); 1639 *ifp = NULL; 1640 } 1641 } 1642 if (nmd_ref) 1643 netmap_mem_put(nmd); 1644 1645 return error; 1646 } 1647 1648 /* undo netmap_get_na() */ 1649 void 1650 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp) 1651 { 1652 if (ifp) 1653 if_rele(ifp); 1654 if (na) 1655 netmap_adapter_put(na); 1656 } 1657 1658 1659 #define NM_FAIL_ON(t) do { \ 1660 if (unlikely(t)) { \ 1661 nm_prlim(5, "%s: fail '" #t "' " \ 1662 "h %d c %d t %d " \ 1663 "rh %d rc %d rt %d " \ 1664 "hc %d ht %d", \ 1665 kring->name, \ 1666 head, cur, ring->tail, \ 1667 kring->rhead, kring->rcur, kring->rtail, \ 1668 kring->nr_hwcur, kring->nr_hwtail); \ 1669 return kring->nkr_num_slots; \ 1670 } \ 1671 } while (0) 1672 1673 /* 1674 * validate parameters on entry for *_txsync() 1675 * Returns ring->cur if ok, or something >= kring->nkr_num_slots 1676 * in case of error. 1677 * 1678 * rhead, rcur and rtail=hwtail are stored from previous round. 1679 * hwcur is the next packet to send to the ring. 1680 * 1681 * We want 1682 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail 1683 * 1684 * hwcur, rhead, rtail and hwtail are reliable 1685 */ 1686 u_int 1687 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1688 { 1689 u_int head = ring->head; /* read only once */ 1690 u_int cur = ring->cur; /* read only once */ 1691 u_int n = kring->nkr_num_slots; 1692 1693 nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d", 1694 kring->name, 1695 kring->nr_hwcur, kring->nr_hwtail, 1696 ring->head, ring->cur, ring->tail); 1697 #if 1 /* kernel sanity checks; but we can trust the kring. */ 1698 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n || 1699 kring->rtail >= n || kring->nr_hwtail >= n); 1700 #endif /* kernel sanity checks */ 1701 /* 1702 * user sanity checks. We only use head, 1703 * A, B, ... are possible positions for head: 1704 * 1705 * 0 A rhead B rtail C n-1 1706 * 0 D rtail E rhead F n-1 1707 * 1708 * B, F, D are valid. A, C, E are wrong 1709 */ 1710 if (kring->rtail >= kring->rhead) { 1711 /* want rhead <= head <= rtail */ 1712 NM_FAIL_ON(head < kring->rhead || head > kring->rtail); 1713 /* and also head <= cur <= rtail */ 1714 NM_FAIL_ON(cur < head || cur > kring->rtail); 1715 } else { /* here rtail < rhead */ 1716 /* we need head outside rtail .. rhead */ 1717 NM_FAIL_ON(head > kring->rtail && head < kring->rhead); 1718 1719 /* two cases now: head <= rtail or head >= rhead */ 1720 if (head <= kring->rtail) { 1721 /* want head <= cur <= rtail */ 1722 NM_FAIL_ON(cur < head || cur > kring->rtail); 1723 } else { /* head >= rhead */ 1724 /* cur must be outside rtail..head */ 1725 NM_FAIL_ON(cur > kring->rtail && cur < head); 1726 } 1727 } 1728 if (ring->tail != kring->rtail) { 1729 nm_prlim(5, "%s tail overwritten was %d need %d", kring->name, 1730 ring->tail, kring->rtail); 1731 ring->tail = kring->rtail; 1732 } 1733 kring->rhead = head; 1734 kring->rcur = cur; 1735 return head; 1736 } 1737 1738 1739 /* 1740 * validate parameters on entry for *_rxsync() 1741 * Returns ring->head if ok, kring->nkr_num_slots on error. 1742 * 1743 * For a valid configuration, 1744 * hwcur <= head <= cur <= tail <= hwtail 1745 * 1746 * We only consider head and cur. 1747 * hwcur and hwtail are reliable. 1748 * 1749 */ 1750 u_int 1751 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1752 { 1753 uint32_t const n = kring->nkr_num_slots; 1754 uint32_t head, cur; 1755 1756 nm_prdis(5,"%s kc %d kt %d h %d c %d t %d", 1757 kring->name, 1758 kring->nr_hwcur, kring->nr_hwtail, 1759 ring->head, ring->cur, ring->tail); 1760 /* 1761 * Before storing the new values, we should check they do not 1762 * move backwards. However: 1763 * - head is not an issue because the previous value is hwcur; 1764 * - cur could in principle go back, however it does not matter 1765 * because we are processing a brand new rxsync() 1766 */ 1767 cur = kring->rcur = ring->cur; /* read only once */ 1768 head = kring->rhead = ring->head; /* read only once */ 1769 #if 1 /* kernel sanity checks */ 1770 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n); 1771 #endif /* kernel sanity checks */ 1772 /* user sanity checks */ 1773 if (kring->nr_hwtail >= kring->nr_hwcur) { 1774 /* want hwcur <= rhead <= hwtail */ 1775 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail); 1776 /* and also rhead <= rcur <= hwtail */ 1777 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1778 } else { 1779 /* we need rhead outside hwtail..hwcur */ 1780 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail); 1781 /* two cases now: head <= hwtail or head >= hwcur */ 1782 if (head <= kring->nr_hwtail) { 1783 /* want head <= cur <= hwtail */ 1784 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1785 } else { 1786 /* cur must be outside hwtail..head */ 1787 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail); 1788 } 1789 } 1790 if (ring->tail != kring->rtail) { 1791 nm_prlim(5, "%s tail overwritten was %d need %d", 1792 kring->name, 1793 ring->tail, kring->rtail); 1794 ring->tail = kring->rtail; 1795 } 1796 return head; 1797 } 1798 1799 1800 /* 1801 * Error routine called when txsync/rxsync detects an error. 1802 * Can't do much more than resetting head = cur = hwcur, tail = hwtail 1803 * Return 1 on reinit. 1804 * 1805 * This routine is only called by the upper half of the kernel. 1806 * It only reads hwcur (which is changed only by the upper half, too) 1807 * and hwtail (which may be changed by the lower half, but only on 1808 * a tx ring and only to increase it, so any error will be recovered 1809 * on the next call). For the above, we don't strictly need to call 1810 * it under lock. 1811 */ 1812 int 1813 netmap_ring_reinit(struct netmap_kring *kring) 1814 { 1815 struct netmap_ring *ring = kring->ring; 1816 u_int i, lim = kring->nkr_num_slots - 1; 1817 int errors = 0; 1818 1819 // XXX KASSERT nm_kr_tryget 1820 nm_prlim(10, "called for %s", kring->name); 1821 // XXX probably wrong to trust userspace 1822 kring->rhead = ring->head; 1823 kring->rcur = ring->cur; 1824 kring->rtail = ring->tail; 1825 1826 if (ring->cur > lim) 1827 errors++; 1828 if (ring->head > lim) 1829 errors++; 1830 if (ring->tail > lim) 1831 errors++; 1832 for (i = 0; i <= lim; i++) { 1833 u_int idx = ring->slot[i].buf_idx; 1834 u_int len = ring->slot[i].len; 1835 if (idx < 2 || idx >= kring->na->na_lut.objtotal) { 1836 nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len); 1837 ring->slot[i].buf_idx = 0; 1838 ring->slot[i].len = 0; 1839 } else if (len > NETMAP_BUF_SIZE(kring->na)) { 1840 ring->slot[i].len = 0; 1841 nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len); 1842 } 1843 } 1844 if (errors) { 1845 nm_prlim(10, "total %d errors", errors); 1846 nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d", 1847 kring->name, 1848 ring->cur, kring->nr_hwcur, 1849 ring->tail, kring->nr_hwtail); 1850 ring->head = kring->rhead = kring->nr_hwcur; 1851 ring->cur = kring->rcur = kring->nr_hwcur; 1852 ring->tail = kring->rtail = kring->nr_hwtail; 1853 } 1854 return (errors ? 1 : 0); 1855 } 1856 1857 /* interpret the ringid and flags fields of an nmreq, by translating them 1858 * into a pair of intervals of ring indices: 1859 * 1860 * [priv->np_txqfirst, priv->np_txqlast) and 1861 * [priv->np_rxqfirst, priv->np_rxqlast) 1862 * 1863 */ 1864 int 1865 netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr) 1866 { 1867 struct netmap_adapter *na = priv->np_na; 1868 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body; 1869 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY }; 1870 enum txrx t; 1871 u_int j; 1872 u_int nr_flags = reg->nr_flags, nr_mode = reg->nr_mode, 1873 nr_ringid = reg->nr_ringid; 1874 1875 for_rx_tx(t) { 1876 if (nr_flags & excluded_direction[t]) { 1877 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1878 continue; 1879 } 1880 switch (nr_mode) { 1881 case NR_REG_ALL_NIC: 1882 case NR_REG_NULL: 1883 priv->np_qfirst[t] = 0; 1884 priv->np_qlast[t] = nma_get_nrings(na, t); 1885 nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t), 1886 priv->np_qfirst[t], priv->np_qlast[t]); 1887 break; 1888 case NR_REG_SW: 1889 case NR_REG_NIC_SW: 1890 if (!(na->na_flags & NAF_HOST_RINGS)) { 1891 nm_prerr("host rings not supported"); 1892 return EINVAL; 1893 } 1894 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ? 1895 nma_get_nrings(na, t) : 0); 1896 priv->np_qlast[t] = netmap_all_rings(na, t); 1897 nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW", 1898 nm_txrx2str(t), 1899 priv->np_qfirst[t], priv->np_qlast[t]); 1900 break; 1901 case NR_REG_ONE_NIC: 1902 if (nr_ringid >= na->num_tx_rings && 1903 nr_ringid >= na->num_rx_rings) { 1904 nm_prerr("invalid ring id %d", nr_ringid); 1905 return EINVAL; 1906 } 1907 /* if not enough rings, use the first one */ 1908 j = nr_ringid; 1909 if (j >= nma_get_nrings(na, t)) 1910 j = 0; 1911 priv->np_qfirst[t] = j; 1912 priv->np_qlast[t] = j + 1; 1913 nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t), 1914 priv->np_qfirst[t], priv->np_qlast[t]); 1915 break; 1916 case NR_REG_ONE_SW: 1917 if (!(na->na_flags & NAF_HOST_RINGS)) { 1918 nm_prerr("host rings not supported"); 1919 return EINVAL; 1920 } 1921 if (nr_ringid >= na->num_host_tx_rings && 1922 nr_ringid >= na->num_host_rx_rings) { 1923 nm_prerr("invalid ring id %d", nr_ringid); 1924 return EINVAL; 1925 } 1926 /* if not enough rings, use the first one */ 1927 j = nr_ringid; 1928 if (j >= nma_get_host_nrings(na, t)) 1929 j = 0; 1930 priv->np_qfirst[t] = nma_get_nrings(na, t) + j; 1931 priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1; 1932 nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t), 1933 priv->np_qfirst[t], priv->np_qlast[t]); 1934 break; 1935 default: 1936 nm_prerr("invalid regif type %d", nr_mode); 1937 return EINVAL; 1938 } 1939 } 1940 priv->np_flags = nr_flags; 1941 1942 /* Allow transparent forwarding mode in the host --> nic 1943 * direction only if all the TX hw rings have been opened. */ 1944 if (priv->np_qfirst[NR_TX] == 0 && 1945 priv->np_qlast[NR_TX] >= na->num_tx_rings) { 1946 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN; 1947 } 1948 1949 if (netmap_verbose) { 1950 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d", 1951 na->name, 1952 priv->np_qfirst[NR_TX], 1953 priv->np_qlast[NR_TX], 1954 priv->np_qfirst[NR_RX], 1955 priv->np_qlast[NR_RX], 1956 nr_ringid); 1957 } 1958 return 0; 1959 } 1960 1961 1962 /* 1963 * Set the ring ID. For devices with a single queue, a request 1964 * for all rings is the same as a single ring. 1965 */ 1966 static int 1967 netmap_set_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr) 1968 { 1969 struct netmap_adapter *na = priv->np_na; 1970 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body; 1971 int error; 1972 enum txrx t; 1973 1974 error = netmap_interp_ringid(priv, hdr); 1975 if (error) { 1976 return error; 1977 } 1978 1979 priv->np_txpoll = (reg->nr_flags & NR_NO_TX_POLL) ? 0 : 1; 1980 1981 /* optimization: count the users registered for more than 1982 * one ring, which are the ones sleeping on the global queue. 1983 * The default netmap_notify() callback will then 1984 * avoid signaling the global queue if nobody is using it 1985 */ 1986 for_rx_tx(t) { 1987 if (nm_si_user(priv, t)) 1988 na->si_users[t]++; 1989 } 1990 return 0; 1991 } 1992 1993 static void 1994 netmap_unset_ringid(struct netmap_priv_d *priv) 1995 { 1996 struct netmap_adapter *na = priv->np_na; 1997 enum txrx t; 1998 1999 for_rx_tx(t) { 2000 if (nm_si_user(priv, t)) 2001 na->si_users[t]--; 2002 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 2003 } 2004 priv->np_flags = 0; 2005 priv->np_txpoll = 0; 2006 priv->np_kloop_state = 0; 2007 } 2008 2009 #define within_sel(p_, t_, i_) \ 2010 ((i_) < (p_)->np_qlast[(t_)]) 2011 #define nonempty_sel(p_, t_) \ 2012 (within_sel((p_), (t_), (p_)->np_qfirst[(t_)])) 2013 #define foreach_selected_ring(p_, t_, i_, kring_) \ 2014 for ((t_) = nonempty_sel((p_), NR_RX) ? NR_RX : NR_TX, \ 2015 (i_) = (p_)->np_qfirst[(t_)]; \ 2016 (t_ == NR_RX || \ 2017 (t == NR_TX && within_sel((p_), (t_), (i_)))) && \ 2018 ((kring_) = NMR((p_)->np_na, (t_))[(i_)]); \ 2019 (i_) = within_sel((p_), (t_), (i_) + 1) ? (i_) + 1 : \ 2020 (++(t_) < NR_TXRX ? (p_)->np_qfirst[(t_)] : (i_))) 2021 2022 2023 /* Set the nr_pending_mode for the requested rings. 2024 * If requested, also try to get exclusive access to the rings, provided 2025 * the rings we want to bind are not exclusively owned by a previous bind. 2026 */ 2027 static int 2028 netmap_krings_get(struct netmap_priv_d *priv) 2029 { 2030 struct netmap_adapter *na = priv->np_na; 2031 u_int i; 2032 struct netmap_kring *kring; 2033 int excl = (priv->np_flags & NR_EXCLUSIVE); 2034 enum txrx t; 2035 2036 if (netmap_debug & NM_DEBUG_ON) 2037 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)", 2038 na->name, 2039 priv->np_qfirst[NR_TX], 2040 priv->np_qlast[NR_TX], 2041 priv->np_qfirst[NR_RX], 2042 priv->np_qlast[NR_RX]); 2043 2044 /* first round: check that all the requested rings 2045 * are neither already exclusively owned, nor we 2046 * want exclusive ownership when they are already in use 2047 */ 2048 foreach_selected_ring(priv, t, i, kring) { 2049 if ((kring->nr_kflags & NKR_EXCLUSIVE) || 2050 (kring->users && excl)) 2051 { 2052 nm_prdis("ring %s busy", kring->name); 2053 return EBUSY; 2054 } 2055 } 2056 2057 /* second round: increment usage count (possibly marking them 2058 * as exclusive) and set the nr_pending_mode 2059 */ 2060 foreach_selected_ring(priv, t, i, kring) { 2061 kring->users++; 2062 if (excl) 2063 kring->nr_kflags |= NKR_EXCLUSIVE; 2064 kring->nr_pending_mode = NKR_NETMAP_ON; 2065 } 2066 2067 return 0; 2068 2069 } 2070 2071 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode 2072 * if was asked on regif, and unset the nr_pending_mode if we are the 2073 * last users of the involved rings. */ 2074 static void 2075 netmap_krings_put(struct netmap_priv_d *priv) 2076 { 2077 u_int i; 2078 struct netmap_kring *kring; 2079 int excl = (priv->np_flags & NR_EXCLUSIVE); 2080 enum txrx t; 2081 2082 nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)", 2083 na->name, 2084 priv->np_qfirst[NR_TX], 2085 priv->np_qlast[NR_TX], 2086 priv->np_qfirst[NR_RX], 2087 priv->np_qlast[MR_RX]); 2088 2089 foreach_selected_ring(priv, t, i, kring) { 2090 if (excl) 2091 kring->nr_kflags &= ~NKR_EXCLUSIVE; 2092 kring->users--; 2093 if (kring->users == 0) 2094 kring->nr_pending_mode = NKR_NETMAP_OFF; 2095 } 2096 } 2097 2098 static int 2099 nm_priv_rx_enabled(struct netmap_priv_d *priv) 2100 { 2101 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]); 2102 } 2103 2104 /* Validate the CSB entries for both directions (atok and ktoa). 2105 * To be called under NMG_LOCK(). */ 2106 static int 2107 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo) 2108 { 2109 struct nm_csb_atok *csb_atok_base = 2110 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok; 2111 struct nm_csb_ktoa *csb_ktoa_base = 2112 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa; 2113 enum txrx t; 2114 int num_rings[NR_TXRX], tot_rings; 2115 size_t entry_size[2]; 2116 void *csb_start[2]; 2117 int i; 2118 2119 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) { 2120 nm_prerr("Cannot update CSB while kloop is running"); 2121 return EBUSY; 2122 } 2123 2124 tot_rings = 0; 2125 for_rx_tx(t) { 2126 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t]; 2127 tot_rings += num_rings[t]; 2128 } 2129 if (tot_rings <= 0) 2130 return 0; 2131 2132 if (!(priv->np_flags & NR_EXCLUSIVE)) { 2133 nm_prerr("CSB mode requires NR_EXCLUSIVE"); 2134 return EINVAL; 2135 } 2136 2137 entry_size[0] = sizeof(*csb_atok_base); 2138 entry_size[1] = sizeof(*csb_ktoa_base); 2139 csb_start[0] = (void *)csb_atok_base; 2140 csb_start[1] = (void *)csb_ktoa_base; 2141 2142 for (i = 0; i < 2; i++) { 2143 /* On Linux we could use access_ok() to simplify 2144 * the validation. However, the advantage of 2145 * this approach is that it works also on 2146 * FreeBSD. */ 2147 size_t csb_size = tot_rings * entry_size[i]; 2148 void *tmp; 2149 int err; 2150 2151 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) { 2152 nm_prerr("Unaligned CSB address"); 2153 return EINVAL; 2154 } 2155 2156 tmp = nm_os_malloc(csb_size); 2157 if (!tmp) 2158 return ENOMEM; 2159 if (i == 0) { 2160 /* Application --> kernel direction. */ 2161 err = copyin(csb_start[i], tmp, csb_size); 2162 } else { 2163 /* Kernel --> application direction. */ 2164 memset(tmp, 0, csb_size); 2165 err = copyout(tmp, csb_start[i], csb_size); 2166 } 2167 nm_os_free(tmp); 2168 if (err) { 2169 nm_prerr("Invalid CSB address"); 2170 return err; 2171 } 2172 } 2173 2174 priv->np_csb_atok_base = csb_atok_base; 2175 priv->np_csb_ktoa_base = csb_ktoa_base; 2176 2177 /* Initialize the CSB. */ 2178 for_rx_tx(t) { 2179 for (i = 0; i < num_rings[t]; i++) { 2180 struct netmap_kring *kring = 2181 NMR(priv->np_na, t)[i + priv->np_qfirst[t]]; 2182 struct nm_csb_atok *csb_atok = csb_atok_base + i; 2183 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i; 2184 2185 if (t == NR_RX) { 2186 csb_atok += num_rings[NR_TX]; 2187 csb_ktoa += num_rings[NR_TX]; 2188 } 2189 2190 CSB_WRITE(csb_atok, head, kring->rhead); 2191 CSB_WRITE(csb_atok, cur, kring->rcur); 2192 CSB_WRITE(csb_atok, appl_need_kick, 1); 2193 CSB_WRITE(csb_atok, sync_flags, 1); 2194 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur); 2195 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail); 2196 CSB_WRITE(csb_ktoa, kern_need_kick, 1); 2197 2198 nm_prinf("csb_init for kring %s: head %u, cur %u, " 2199 "hwcur %u, hwtail %u", kring->name, 2200 kring->rhead, kring->rcur, kring->nr_hwcur, 2201 kring->nr_hwtail); 2202 } 2203 } 2204 2205 return 0; 2206 } 2207 2208 /* Ensure that the netmap adapter can support the given MTU. 2209 * @return EINVAL if the na cannot be set to mtu, 0 otherwise. 2210 */ 2211 int 2212 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) { 2213 unsigned nbs = NETMAP_BUF_SIZE(na); 2214 2215 if (mtu <= na->rx_buf_maxsize) { 2216 /* The MTU fits a single NIC slot. We only 2217 * Need to check that netmap buffers are 2218 * large enough to hold an MTU. NS_MOREFRAG 2219 * cannot be used in this case. */ 2220 if (nbs < mtu) { 2221 nm_prerr("error: netmap buf size (%u) " 2222 "< device MTU (%u)", nbs, mtu); 2223 return EINVAL; 2224 } 2225 } else { 2226 /* More NIC slots may be needed to receive 2227 * or transmit a single packet. Check that 2228 * the adapter supports NS_MOREFRAG and that 2229 * netmap buffers are large enough to hold 2230 * the maximum per-slot size. */ 2231 if (!(na->na_flags & NAF_MOREFRAG)) { 2232 nm_prerr("error: large MTU (%d) needed " 2233 "but %s does not support " 2234 "NS_MOREFRAG", mtu, 2235 na->ifp->if_xname); 2236 return EINVAL; 2237 } else if (nbs < na->rx_buf_maxsize) { 2238 nm_prerr("error: using NS_MOREFRAG on " 2239 "%s requires netmap buf size " 2240 ">= %u", na->ifp->if_xname, 2241 na->rx_buf_maxsize); 2242 return EINVAL; 2243 } else { 2244 nm_prinf("info: netmap application on " 2245 "%s needs to support " 2246 "NS_MOREFRAG " 2247 "(MTU=%u,netmap_buf_size=%u)", 2248 na->ifp->if_xname, mtu, nbs); 2249 } 2250 } 2251 return 0; 2252 } 2253 2254 /* Handle the offset option, if present in the hdr. 2255 * Returns 0 on success, or an error. 2256 */ 2257 static int 2258 netmap_offsets_init(struct netmap_priv_d *priv, struct nmreq_header *hdr) 2259 { 2260 struct nmreq_opt_offsets *opt; 2261 struct netmap_adapter *na = priv->np_na; 2262 struct netmap_kring *kring; 2263 uint64_t mask = 0, bits = 0, maxbits = sizeof(uint64_t) * 8, 2264 max_offset = 0, initial_offset = 0, min_gap = 0; 2265 u_int i; 2266 enum txrx t; 2267 int error = 0; 2268 2269 opt = (struct nmreq_opt_offsets *) 2270 nmreq_getoption(hdr, NETMAP_REQ_OPT_OFFSETS); 2271 if (opt == NULL) 2272 return 0; 2273 2274 if (!(na->na_flags & NAF_OFFSETS)) { 2275 if (netmap_verbose) 2276 nm_prerr("%s does not support offsets", 2277 na->name); 2278 error = EOPNOTSUPP; 2279 goto out; 2280 } 2281 2282 /* check sanity of the opt values */ 2283 max_offset = opt->nro_max_offset; 2284 min_gap = opt->nro_min_gap; 2285 initial_offset = opt->nro_initial_offset; 2286 bits = opt->nro_offset_bits; 2287 2288 if (bits > maxbits) { 2289 if (netmap_verbose) 2290 nm_prerr("bits: %llu too large (max %llu)", 2291 (unsigned long long)bits, 2292 (unsigned long long)maxbits); 2293 error = EINVAL; 2294 goto out; 2295 } 2296 /* we take bits == 0 as a request to use the entire field */ 2297 if (bits == 0 || bits == maxbits) { 2298 /* shifting a type by sizeof(type) is undefined */ 2299 bits = maxbits; 2300 mask = 0xffffffffffffffff; 2301 } else { 2302 mask = (1ULL << bits) - 1; 2303 } 2304 if (max_offset > NETMAP_BUF_SIZE(na)) { 2305 if (netmap_verbose) 2306 nm_prerr("max offset %llu > buf size %u", 2307 (unsigned long long)max_offset, NETMAP_BUF_SIZE(na)); 2308 error = EINVAL; 2309 goto out; 2310 } 2311 if ((max_offset & mask) != max_offset) { 2312 if (netmap_verbose) 2313 nm_prerr("max offset %llu to large for %llu bits", 2314 (unsigned long long)max_offset, 2315 (unsigned long long)bits); 2316 error = EINVAL; 2317 goto out; 2318 } 2319 if (initial_offset > max_offset) { 2320 if (netmap_verbose) 2321 nm_prerr("initial offset %llu > max offset %llu", 2322 (unsigned long long)initial_offset, 2323 (unsigned long long)max_offset); 2324 error = EINVAL; 2325 goto out; 2326 } 2327 2328 /* initialize the kring and ring fields. */ 2329 foreach_selected_ring(priv, t, i, kring) { 2330 struct netmap_kring *kring = NMR(na, t)[i]; 2331 struct netmap_ring *ring = kring->ring; 2332 u_int j; 2333 2334 /* it the ring is already in use we check that the 2335 * new request is compatible with the existing one 2336 */ 2337 if (kring->offset_mask) { 2338 if ((kring->offset_mask & mask) != mask || 2339 kring->offset_max < max_offset) { 2340 if (netmap_verbose) 2341 nm_prinf("%s: cannot increase" 2342 "offset mask and/or max" 2343 "(current: mask=%llx,max=%llu", 2344 kring->name, 2345 (unsigned long long)kring->offset_mask, 2346 (unsigned long long)kring->offset_max); 2347 error = EBUSY; 2348 goto out; 2349 } 2350 mask = kring->offset_mask; 2351 max_offset = kring->offset_max; 2352 } else { 2353 kring->offset_mask = mask; 2354 *(uint64_t *)(uintptr_t)&ring->offset_mask = mask; 2355 kring->offset_max = max_offset; 2356 kring->offset_gap = min_gap; 2357 } 2358 2359 /* if there is an initial offset, put it into 2360 * all the slots 2361 * 2362 * Note: we cannot change the offsets if the 2363 * ring is already in use. 2364 */ 2365 if (!initial_offset || kring->users > 1) 2366 continue; 2367 2368 for (j = 0; j < kring->nkr_num_slots; j++) { 2369 struct netmap_slot *slot = ring->slot + j; 2370 2371 nm_write_offset(kring, slot, initial_offset); 2372 } 2373 } 2374 2375 out: 2376 opt->nro_opt.nro_status = error; 2377 if (!error) { 2378 opt->nro_max_offset = max_offset; 2379 } 2380 return error; 2381 2382 } 2383 2384 2385 /* set the hardware buffer length in each one of the newly opened rings 2386 * (hwbuf_len field in the kring struct). The purpose it to select 2387 * the maximum supported input buffer lenght that will not cause writes 2388 * outside of the available space, even when offsets are in use. 2389 */ 2390 static int 2391 netmap_compute_buf_len(struct netmap_priv_d *priv) 2392 { 2393 enum txrx t; 2394 u_int i; 2395 struct netmap_kring *kring; 2396 int error = 0; 2397 unsigned mtu = 0; 2398 struct netmap_adapter *na = priv->np_na; 2399 uint64_t target; 2400 2401 foreach_selected_ring(priv, t, i, kring) { 2402 /* rings that are already active have their hwbuf_len 2403 * already set and we cannot change it. 2404 */ 2405 if (kring->users > 1) 2406 continue; 2407 2408 /* For netmap buffers which are not shared among several ring 2409 * slots (the normal case), the available space is the buf size 2410 * minus the max offset declared by the user at open time. If 2411 * the user plans to have several slots pointing to different 2412 * offsets into the same large buffer, she must also declare a 2413 * "minimum gap" between two such consecutive offsets. In this 2414 * case the user-declared 'offset_gap' is taken as the 2415 * available space and offset_max is ignored. 2416 */ 2417 2418 /* start with the normal case (unshared buffers) */ 2419 target = NETMAP_BUF_SIZE(kring->na) - 2420 kring->offset_max; 2421 /* if offset_gap is zero, the user does not intend to use 2422 * shared buffers. In this case the minimum gap between 2423 * two consective offsets into the same buffer can be 2424 * assumed to be equal to the buffer size. In this way 2425 * offset_gap always contains the available space ignoring 2426 * offset_max. This may be used by drivers of NICs that 2427 * are guaranteed to never write more than MTU bytes, even 2428 * if the input buffer is larger: if the MTU is less 2429 * than the target they can set hwbuf_len to offset_gap. 2430 */ 2431 if (!kring->offset_gap) 2432 kring->offset_gap = 2433 NETMAP_BUF_SIZE(kring->na); 2434 2435 if (kring->offset_gap < target) 2436 target = kring->offset_gap; 2437 error = kring->nm_bufcfg(kring, target); 2438 if (error) 2439 goto out; 2440 2441 *(uint64_t *)(uintptr_t)&kring->ring->buf_align = kring->buf_align; 2442 2443 if (mtu && t == NR_RX && kring->hwbuf_len < mtu) { 2444 if (!(na->na_flags & NAF_MOREFRAG)) { 2445 nm_prerr("error: large MTU (%d) needed " 2446 "but %s does not support " 2447 "NS_MOREFRAG", mtu, 2448 na->name); 2449 error = EINVAL; 2450 goto out; 2451 } else { 2452 nm_prinf("info: netmap application on " 2453 "%s needs to support " 2454 "NS_MOREFRAG " 2455 "(MTU=%u,buf_size=%llu)", 2456 kring->name, mtu, 2457 (unsigned long long)kring->hwbuf_len); 2458 } 2459 } 2460 } 2461 out: 2462 return error; 2463 } 2464 2465 /* 2466 * possibly move the interface to netmap-mode. 2467 * If success it returns a pointer to netmap_if, otherwise NULL. 2468 * This must be called with NMG_LOCK held. 2469 * 2470 * The following na callbacks are called in the process: 2471 * 2472 * na->nm_config() [by netmap_update_config] 2473 * (get current number and size of rings) 2474 * 2475 * We have a generic one for linux (netmap_linux_config). 2476 * The bwrap has to override this, since it has to forward 2477 * the request to the wrapped adapter (netmap_bwrap_config). 2478 * 2479 * 2480 * na->nm_krings_create() 2481 * (create and init the krings array) 2482 * 2483 * One of the following: 2484 * 2485 * * netmap_hw_krings_create, (hw ports) 2486 * creates the standard layout for the krings 2487 * and adds the mbq (used for the host rings). 2488 * 2489 * * netmap_vp_krings_create (VALE ports) 2490 * add leases and scratchpads 2491 * 2492 * * netmap_pipe_krings_create (pipes) 2493 * create the krings and rings of both ends and 2494 * cross-link them 2495 * 2496 * * netmap_monitor_krings_create (monitors) 2497 * avoid allocating the mbq 2498 * 2499 * * netmap_bwrap_krings_create (bwraps) 2500 * create both the brap krings array, 2501 * the krings array of the wrapped adapter, and 2502 * (if needed) the fake array for the host adapter 2503 * 2504 * na->nm_register(, 1) 2505 * (put the adapter in netmap mode) 2506 * 2507 * This may be one of the following: 2508 * 2509 * * netmap_hw_reg (hw ports) 2510 * checks that the ifp is still there, then calls 2511 * the hardware specific callback; 2512 * 2513 * * netmap_vp_reg (VALE ports) 2514 * If the port is connected to a bridge, 2515 * set the NAF_NETMAP_ON flag under the 2516 * bridge write lock. 2517 * 2518 * * netmap_pipe_reg (pipes) 2519 * inform the other pipe end that it is no 2520 * longer responsible for the lifetime of this 2521 * pipe end 2522 * 2523 * * netmap_monitor_reg (monitors) 2524 * intercept the sync callbacks of the monitored 2525 * rings 2526 * 2527 * * netmap_bwrap_reg (bwraps) 2528 * cross-link the bwrap and hwna rings, 2529 * forward the request to the hwna, override 2530 * the hwna notify callback (to get the frames 2531 * coming from outside go through the bridge). 2532 * 2533 * 2534 */ 2535 int 2536 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 2537 struct nmreq_header *hdr) 2538 { 2539 struct netmap_if *nifp = NULL; 2540 int error; 2541 2542 NMG_LOCK_ASSERT(); 2543 priv->np_na = na; /* store the reference */ 2544 error = netmap_mem_finalize(na->nm_mem, na); 2545 if (error) 2546 goto err; 2547 2548 if (na->active_fds == 0) { 2549 2550 /* cache the allocator info in the na */ 2551 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut); 2552 if (error) 2553 goto err_drop_mem; 2554 nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal, 2555 na->na_lut.objsize); 2556 2557 /* ring configuration may have changed, fetch from the card */ 2558 netmap_update_config(na); 2559 } 2560 2561 /* compute the range of tx and rx rings to monitor */ 2562 error = netmap_set_ringid(priv, hdr); 2563 if (error) 2564 goto err_put_lut; 2565 2566 if (na->active_fds == 0) { 2567 /* 2568 * If this is the first registration of the adapter, 2569 * perform sanity checks and create the in-kernel view 2570 * of the netmap rings (the netmap krings). 2571 */ 2572 if (na->ifp && nm_priv_rx_enabled(priv)) { 2573 /* This netmap adapter is attached to an ifnet. */ 2574 unsigned mtu = nm_os_ifnet_mtu(na->ifp); 2575 2576 nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d", 2577 na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na)); 2578 2579 if (na->rx_buf_maxsize == 0) { 2580 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name); 2581 error = EIO; 2582 goto err_drop_mem; 2583 } 2584 2585 error = netmap_buf_size_validate(na, mtu); 2586 if (error) 2587 goto err_drop_mem; 2588 } 2589 2590 /* 2591 * Depending on the adapter, this may also create 2592 * the netmap rings themselves 2593 */ 2594 error = na->nm_krings_create(na); 2595 if (error) 2596 goto err_put_lut; 2597 2598 } 2599 2600 /* now the krings must exist and we can check whether some 2601 * previous bind has exclusive ownership on them, and set 2602 * nr_pending_mode 2603 */ 2604 error = netmap_krings_get(priv); 2605 if (error) 2606 goto err_del_krings; 2607 2608 /* create all needed missing netmap rings */ 2609 error = netmap_mem_rings_create(na); 2610 if (error) 2611 goto err_rel_excl; 2612 2613 /* initialize offsets if requested */ 2614 error = netmap_offsets_init(priv, hdr); 2615 if (error) 2616 goto err_rel_excl; 2617 2618 /* compute and validate the buf lengths */ 2619 error = netmap_compute_buf_len(priv); 2620 if (error) 2621 goto err_rel_excl; 2622 2623 /* in all cases, create a new netmap if */ 2624 nifp = netmap_mem_if_new(na, priv); 2625 if (nifp == NULL) { 2626 error = ENOMEM; 2627 goto err_rel_excl; 2628 } 2629 2630 if (nm_kring_pending(priv)) { 2631 /* Some kring is switching mode, tell the adapter to 2632 * react on this. */ 2633 error = na->nm_register(na, 1); 2634 if (error) 2635 goto err_del_if; 2636 } 2637 2638 /* Commit the reference. */ 2639 na->active_fds++; 2640 2641 /* 2642 * advertise that the interface is ready by setting np_nifp. 2643 * The barrier is needed because readers (poll, *SYNC and mmap) 2644 * check for priv->np_nifp != NULL without locking 2645 */ 2646 mb(); /* make sure previous writes are visible to all CPUs */ 2647 priv->np_nifp = nifp; 2648 2649 return 0; 2650 2651 err_del_if: 2652 netmap_mem_if_delete(na, nifp); 2653 err_rel_excl: 2654 netmap_krings_put(priv); 2655 netmap_mem_rings_delete(na); 2656 err_del_krings: 2657 if (na->active_fds == 0) 2658 na->nm_krings_delete(na); 2659 err_put_lut: 2660 if (na->active_fds == 0) 2661 memset(&na->na_lut, 0, sizeof(na->na_lut)); 2662 err_drop_mem: 2663 netmap_mem_drop(na); 2664 err: 2665 priv->np_na = NULL; 2666 return error; 2667 } 2668 2669 2670 /* 2671 * update kring and ring at the end of rxsync/txsync. 2672 */ 2673 static inline void 2674 nm_sync_finalize(struct netmap_kring *kring) 2675 { 2676 /* 2677 * Update ring tail to what the kernel knows 2678 * After txsync: head/rhead/hwcur might be behind cur/rcur 2679 * if no carrier. 2680 */ 2681 kring->ring->tail = kring->rtail = kring->nr_hwtail; 2682 2683 nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", 2684 kring->name, kring->nr_hwcur, kring->nr_hwtail, 2685 kring->rhead, kring->rcur, kring->rtail); 2686 } 2687 2688 /* set ring timestamp */ 2689 static inline void 2690 ring_timestamp_set(struct netmap_ring *ring) 2691 { 2692 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) { 2693 microtime(&ring->ts); 2694 } 2695 } 2696 2697 static int nmreq_copyin(struct nmreq_header *, int); 2698 static int nmreq_copyout(struct nmreq_header *, int); 2699 static int nmreq_checkoptions(struct nmreq_header *); 2700 2701 /* 2702 * ioctl(2) support for the "netmap" device. 2703 * 2704 * Following a list of accepted commands: 2705 * - NIOCCTRL device control API 2706 * - NIOCTXSYNC sync TX rings 2707 * - NIOCRXSYNC sync RX rings 2708 * - SIOCGIFADDR just for convenience 2709 * - NIOCGINFO deprecated (legacy API) 2710 * - NIOCREGIF deprecated (legacy API) 2711 * 2712 * Return 0 on success, errno otherwise. 2713 */ 2714 int 2715 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 2716 struct thread *td, int nr_body_is_user) 2717 { 2718 struct mbq q; /* packets from RX hw queues to host stack */ 2719 struct netmap_adapter *na = NULL; 2720 struct netmap_mem_d *nmd = NULL; 2721 struct ifnet *ifp = NULL; 2722 int error = 0; 2723 u_int i, qfirst, qlast; 2724 struct netmap_kring **krings; 2725 int sync_flags; 2726 enum txrx t; 2727 2728 switch (cmd) { 2729 case NIOCCTRL: { 2730 struct nmreq_header *hdr = (struct nmreq_header *)data; 2731 2732 if (hdr->nr_version < NETMAP_MIN_API || 2733 hdr->nr_version > NETMAP_MAX_API) { 2734 nm_prerr("API mismatch: got %d need %d", 2735 hdr->nr_version, NETMAP_API); 2736 return EINVAL; 2737 } 2738 2739 /* Make a kernel-space copy of the user-space nr_body. 2740 * For convenience, the nr_body pointer and the pointers 2741 * in the options list will be replaced with their 2742 * kernel-space counterparts. The original pointers are 2743 * saved internally and later restored by nmreq_copyout 2744 */ 2745 error = nmreq_copyin(hdr, nr_body_is_user); 2746 if (error) { 2747 return error; 2748 } 2749 2750 /* Sanitize hdr->nr_name. */ 2751 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0'; 2752 2753 switch (hdr->nr_reqtype) { 2754 case NETMAP_REQ_REGISTER: { 2755 struct nmreq_register *req = 2756 (struct nmreq_register *)(uintptr_t)hdr->nr_body; 2757 struct netmap_if *nifp; 2758 2759 /* Protect access to priv from concurrent requests. */ 2760 NMG_LOCK(); 2761 do { 2762 struct nmreq_option *opt; 2763 u_int memflags; 2764 2765 if (priv->np_nifp != NULL) { /* thread already registered */ 2766 error = EBUSY; 2767 break; 2768 } 2769 2770 #ifdef WITH_EXTMEM 2771 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM); 2772 if (opt != NULL) { 2773 struct nmreq_opt_extmem *e = 2774 (struct nmreq_opt_extmem *)opt; 2775 2776 nmd = netmap_mem_ext_create(e->nro_usrptr, 2777 &e->nro_info, &error); 2778 opt->nro_status = error; 2779 if (nmd == NULL) 2780 break; 2781 } 2782 #endif /* WITH_EXTMEM */ 2783 2784 if (nmd == NULL && req->nr_mem_id) { 2785 /* find the allocator and get a reference */ 2786 nmd = netmap_mem_find(req->nr_mem_id); 2787 if (nmd == NULL) { 2788 if (netmap_verbose) { 2789 nm_prerr("%s: failed to find mem_id %u", 2790 hdr->nr_name, req->nr_mem_id); 2791 } 2792 error = EINVAL; 2793 break; 2794 } 2795 } 2796 /* find the interface and a reference */ 2797 error = netmap_get_na(hdr, &na, &ifp, nmd, 2798 1 /* create */); /* keep reference */ 2799 if (error) 2800 break; 2801 if (NETMAP_OWNED_BY_KERN(na)) { 2802 error = EBUSY; 2803 break; 2804 } 2805 2806 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) { 2807 nm_prerr("virt_hdr_len=%d, but application does " 2808 "not accept it", na->virt_hdr_len); 2809 error = EIO; 2810 break; 2811 } 2812 2813 error = netmap_do_regif(priv, na, hdr); 2814 if (error) { /* reg. failed, release priv and ref */ 2815 break; 2816 } 2817 2818 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB); 2819 if (opt != NULL) { 2820 struct nmreq_opt_csb *csbo = 2821 (struct nmreq_opt_csb *)opt; 2822 error = netmap_csb_validate(priv, csbo); 2823 opt->nro_status = error; 2824 if (error) { 2825 netmap_do_unregif(priv); 2826 break; 2827 } 2828 } 2829 2830 nifp = priv->np_nifp; 2831 2832 /* return the offset of the netmap_if object */ 2833 req->nr_rx_rings = na->num_rx_rings; 2834 req->nr_tx_rings = na->num_tx_rings; 2835 req->nr_rx_slots = na->num_rx_desc; 2836 req->nr_tx_slots = na->num_tx_desc; 2837 req->nr_host_tx_rings = na->num_host_tx_rings; 2838 req->nr_host_rx_rings = na->num_host_rx_rings; 2839 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags, 2840 &req->nr_mem_id); 2841 if (error) { 2842 netmap_do_unregif(priv); 2843 break; 2844 } 2845 if (memflags & NETMAP_MEM_PRIVATE) { 2846 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 2847 } 2848 for_rx_tx(t) { 2849 priv->np_si[t] = nm_si_user(priv, t) ? 2850 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si; 2851 } 2852 2853 if (req->nr_extra_bufs) { 2854 if (netmap_verbose) 2855 nm_prinf("requested %d extra buffers", 2856 req->nr_extra_bufs); 2857 req->nr_extra_bufs = netmap_extra_alloc(na, 2858 &nifp->ni_bufs_head, req->nr_extra_bufs); 2859 if (netmap_verbose) 2860 nm_prinf("got %d extra buffers", req->nr_extra_bufs); 2861 } 2862 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 2863 2864 error = nmreq_checkoptions(hdr); 2865 if (error) { 2866 netmap_do_unregif(priv); 2867 break; 2868 } 2869 2870 /* store ifp reference so that priv destructor may release it */ 2871 priv->np_ifp = ifp; 2872 } while (0); 2873 if (error) { 2874 netmap_unget_na(na, ifp); 2875 } 2876 /* release the reference from netmap_mem_find() or 2877 * netmap_mem_ext_create() 2878 */ 2879 if (nmd) 2880 netmap_mem_put(nmd); 2881 NMG_UNLOCK(); 2882 break; 2883 } 2884 2885 case NETMAP_REQ_PORT_INFO_GET: { 2886 struct nmreq_port_info_get *req = 2887 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body; 2888 int nmd_ref = 0; 2889 2890 NMG_LOCK(); 2891 do { 2892 u_int memflags; 2893 2894 if (hdr->nr_name[0] != '\0') { 2895 /* Build a nmreq_register out of the nmreq_port_info_get, 2896 * so that we can call netmap_get_na(). */ 2897 struct nmreq_register regreq; 2898 bzero(®req, sizeof(regreq)); 2899 regreq.nr_mode = NR_REG_ALL_NIC; 2900 regreq.nr_tx_slots = req->nr_tx_slots; 2901 regreq.nr_rx_slots = req->nr_rx_slots; 2902 regreq.nr_tx_rings = req->nr_tx_rings; 2903 regreq.nr_rx_rings = req->nr_rx_rings; 2904 regreq.nr_host_tx_rings = req->nr_host_tx_rings; 2905 regreq.nr_host_rx_rings = req->nr_host_rx_rings; 2906 regreq.nr_mem_id = req->nr_mem_id; 2907 2908 /* get a refcount */ 2909 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2910 hdr->nr_body = (uintptr_t)®req; 2911 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2912 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */ 2913 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2914 if (error) { 2915 na = NULL; 2916 ifp = NULL; 2917 break; 2918 } 2919 nmd = na->nm_mem; /* get memory allocator */ 2920 } else { 2921 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1); 2922 if (nmd == NULL) { 2923 if (netmap_verbose) 2924 nm_prerr("%s: failed to find mem_id %u", 2925 hdr->nr_name, 2926 req->nr_mem_id ? req->nr_mem_id : 1); 2927 error = EINVAL; 2928 break; 2929 } 2930 nmd_ref = 1; 2931 } 2932 2933 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags, 2934 &req->nr_mem_id); 2935 if (error) 2936 break; 2937 if (na == NULL) /* only memory info */ 2938 break; 2939 netmap_update_config(na); 2940 req->nr_rx_rings = na->num_rx_rings; 2941 req->nr_tx_rings = na->num_tx_rings; 2942 req->nr_rx_slots = na->num_rx_desc; 2943 req->nr_tx_slots = na->num_tx_desc; 2944 req->nr_host_tx_rings = na->num_host_tx_rings; 2945 req->nr_host_rx_rings = na->num_host_rx_rings; 2946 } while (0); 2947 netmap_unget_na(na, ifp); 2948 if (nmd_ref) 2949 netmap_mem_put(nmd); 2950 NMG_UNLOCK(); 2951 break; 2952 } 2953 #ifdef WITH_VALE 2954 case NETMAP_REQ_VALE_ATTACH: { 2955 error = netmap_bdg_attach(hdr, NULL /* userspace request */); 2956 break; 2957 } 2958 2959 case NETMAP_REQ_VALE_DETACH: { 2960 error = netmap_bdg_detach(hdr, NULL /* userspace request */); 2961 break; 2962 } 2963 2964 case NETMAP_REQ_PORT_HDR_SET: { 2965 struct nmreq_port_hdr *req = 2966 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2967 /* Build a nmreq_register out of the nmreq_port_hdr, 2968 * so that we can call netmap_get_bdg_na(). */ 2969 struct nmreq_register regreq; 2970 bzero(®req, sizeof(regreq)); 2971 regreq.nr_mode = NR_REG_ALL_NIC; 2972 2973 /* For now we only support virtio-net headers, and only for 2974 * VALE ports, but this may change in future. Valid lengths 2975 * for the virtio-net header are 0 (no header), 10 and 12. */ 2976 if (req->nr_hdr_len != 0 && 2977 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) && 2978 req->nr_hdr_len != 12) { 2979 if (netmap_verbose) 2980 nm_prerr("invalid hdr_len %u", req->nr_hdr_len); 2981 error = EINVAL; 2982 break; 2983 } 2984 NMG_LOCK(); 2985 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2986 hdr->nr_body = (uintptr_t)®req; 2987 error = netmap_get_vale_na(hdr, &na, NULL, 0); 2988 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET; 2989 hdr->nr_body = (uintptr_t)req; 2990 if (na && !error) { 2991 struct netmap_vp_adapter *vpna = 2992 (struct netmap_vp_adapter *)na; 2993 na->virt_hdr_len = req->nr_hdr_len; 2994 if (na->virt_hdr_len) { 2995 vpna->mfs = NETMAP_BUF_SIZE(na); 2996 } 2997 if (netmap_verbose) 2998 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na); 2999 netmap_adapter_put(na); 3000 } else if (!na) { 3001 error = ENXIO; 3002 } 3003 NMG_UNLOCK(); 3004 break; 3005 } 3006 3007 case NETMAP_REQ_PORT_HDR_GET: { 3008 /* Get vnet-header length for this netmap port */ 3009 struct nmreq_port_hdr *req = 3010 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 3011 /* Build a nmreq_register out of the nmreq_port_hdr, 3012 * so that we can call netmap_get_bdg_na(). */ 3013 struct nmreq_register regreq; 3014 struct ifnet *ifp; 3015 3016 bzero(®req, sizeof(regreq)); 3017 regreq.nr_mode = NR_REG_ALL_NIC; 3018 NMG_LOCK(); 3019 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 3020 hdr->nr_body = (uintptr_t)®req; 3021 error = netmap_get_na(hdr, &na, &ifp, NULL, 0); 3022 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET; 3023 hdr->nr_body = (uintptr_t)req; 3024 if (na && !error) { 3025 req->nr_hdr_len = na->virt_hdr_len; 3026 } 3027 netmap_unget_na(na, ifp); 3028 NMG_UNLOCK(); 3029 break; 3030 } 3031 3032 case NETMAP_REQ_VALE_LIST: { 3033 error = netmap_vale_list(hdr); 3034 break; 3035 } 3036 3037 case NETMAP_REQ_VALE_NEWIF: { 3038 error = nm_vi_create(hdr); 3039 break; 3040 } 3041 3042 case NETMAP_REQ_VALE_DELIF: { 3043 error = nm_vi_destroy(hdr->nr_name); 3044 break; 3045 } 3046 #endif /* WITH_VALE */ 3047 3048 case NETMAP_REQ_VALE_POLLING_ENABLE: 3049 case NETMAP_REQ_VALE_POLLING_DISABLE: { 3050 error = nm_bdg_polling(hdr); 3051 break; 3052 } 3053 case NETMAP_REQ_POOLS_INFO_GET: { 3054 /* Get information from the memory allocator used for 3055 * hdr->nr_name. */ 3056 struct nmreq_pools_info *req = 3057 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body; 3058 NMG_LOCK(); 3059 do { 3060 /* Build a nmreq_register out of the nmreq_pools_info, 3061 * so that we can call netmap_get_na(). */ 3062 struct nmreq_register regreq; 3063 bzero(®req, sizeof(regreq)); 3064 regreq.nr_mem_id = req->nr_mem_id; 3065 regreq.nr_mode = NR_REG_ALL_NIC; 3066 3067 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 3068 hdr->nr_body = (uintptr_t)®req; 3069 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 3070 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */ 3071 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 3072 if (error) { 3073 na = NULL; 3074 ifp = NULL; 3075 break; 3076 } 3077 nmd = na->nm_mem; /* grab the memory allocator */ 3078 if (nmd == NULL) { 3079 error = EINVAL; 3080 break; 3081 } 3082 3083 /* Finalize the memory allocator, get the pools 3084 * information and release the allocator. */ 3085 error = netmap_mem_finalize(nmd, na); 3086 if (error) { 3087 break; 3088 } 3089 error = netmap_mem_pools_info_get(req, nmd); 3090 netmap_mem_drop(na); 3091 } while (0); 3092 netmap_unget_na(na, ifp); 3093 NMG_UNLOCK(); 3094 break; 3095 } 3096 3097 case NETMAP_REQ_CSB_ENABLE: { 3098 struct nmreq_option *opt; 3099 3100 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB); 3101 if (opt == NULL) { 3102 error = EINVAL; 3103 } else { 3104 struct nmreq_opt_csb *csbo = 3105 (struct nmreq_opt_csb *)opt; 3106 NMG_LOCK(); 3107 error = netmap_csb_validate(priv, csbo); 3108 NMG_UNLOCK(); 3109 opt->nro_status = error; 3110 } 3111 break; 3112 } 3113 3114 case NETMAP_REQ_SYNC_KLOOP_START: { 3115 error = netmap_sync_kloop(priv, hdr); 3116 break; 3117 } 3118 3119 case NETMAP_REQ_SYNC_KLOOP_STOP: { 3120 error = netmap_sync_kloop_stop(priv); 3121 break; 3122 } 3123 3124 default: { 3125 error = EINVAL; 3126 break; 3127 } 3128 } 3129 /* Write back request body to userspace and reset the 3130 * user-space pointer. */ 3131 error = nmreq_copyout(hdr, error); 3132 break; 3133 } 3134 3135 case NIOCTXSYNC: 3136 case NIOCRXSYNC: { 3137 if (unlikely(priv->np_nifp == NULL)) { 3138 error = ENXIO; 3139 break; 3140 } 3141 mb(); /* make sure following reads are not from cache */ 3142 3143 if (unlikely(priv->np_csb_atok_base)) { 3144 nm_prerr("Invalid sync in CSB mode"); 3145 error = EBUSY; 3146 break; 3147 } 3148 3149 na = priv->np_na; /* we have a reference */ 3150 3151 mbq_init(&q); 3152 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX); 3153 krings = NMR(na, t); 3154 qfirst = priv->np_qfirst[t]; 3155 qlast = priv->np_qlast[t]; 3156 sync_flags = priv->np_sync_flags; 3157 3158 for (i = qfirst; i < qlast; i++) { 3159 struct netmap_kring *kring = krings[i]; 3160 struct netmap_ring *ring = kring->ring; 3161 3162 if (unlikely(nm_kr_tryget(kring, 1, &error))) { 3163 error = (error ? EIO : 0); 3164 continue; 3165 } 3166 3167 if (cmd == NIOCTXSYNC) { 3168 if (netmap_debug & NM_DEBUG_TXSYNC) 3169 nm_prinf("pre txsync ring %d cur %d hwcur %d", 3170 i, ring->cur, 3171 kring->nr_hwcur); 3172 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3173 netmap_ring_reinit(kring); 3174 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) { 3175 nm_sync_finalize(kring); 3176 } 3177 if (netmap_debug & NM_DEBUG_TXSYNC) 3178 nm_prinf("post txsync ring %d cur %d hwcur %d", 3179 i, ring->cur, 3180 kring->nr_hwcur); 3181 } else { 3182 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3183 netmap_ring_reinit(kring); 3184 } 3185 if (nm_may_forward_up(kring)) { 3186 /* transparent forwarding, see netmap_poll() */ 3187 netmap_grab_packets(kring, &q, netmap_fwd); 3188 } 3189 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) { 3190 nm_sync_finalize(kring); 3191 } 3192 ring_timestamp_set(ring); 3193 } 3194 nm_kr_put(kring); 3195 } 3196 3197 if (mbq_peek(&q)) { 3198 netmap_send_up(na->ifp, &q); 3199 } 3200 3201 break; 3202 } 3203 3204 default: { 3205 return netmap_ioctl_legacy(priv, cmd, data, td); 3206 break; 3207 } 3208 } 3209 3210 return (error); 3211 } 3212 3213 size_t 3214 nmreq_size_by_type(uint16_t nr_reqtype) 3215 { 3216 switch (nr_reqtype) { 3217 case NETMAP_REQ_REGISTER: 3218 return sizeof(struct nmreq_register); 3219 case NETMAP_REQ_PORT_INFO_GET: 3220 return sizeof(struct nmreq_port_info_get); 3221 case NETMAP_REQ_VALE_ATTACH: 3222 return sizeof(struct nmreq_vale_attach); 3223 case NETMAP_REQ_VALE_DETACH: 3224 return sizeof(struct nmreq_vale_detach); 3225 case NETMAP_REQ_VALE_LIST: 3226 return sizeof(struct nmreq_vale_list); 3227 case NETMAP_REQ_PORT_HDR_SET: 3228 case NETMAP_REQ_PORT_HDR_GET: 3229 return sizeof(struct nmreq_port_hdr); 3230 case NETMAP_REQ_VALE_NEWIF: 3231 return sizeof(struct nmreq_vale_newif); 3232 case NETMAP_REQ_VALE_DELIF: 3233 case NETMAP_REQ_SYNC_KLOOP_STOP: 3234 case NETMAP_REQ_CSB_ENABLE: 3235 return 0; 3236 case NETMAP_REQ_VALE_POLLING_ENABLE: 3237 case NETMAP_REQ_VALE_POLLING_DISABLE: 3238 return sizeof(struct nmreq_vale_polling); 3239 case NETMAP_REQ_POOLS_INFO_GET: 3240 return sizeof(struct nmreq_pools_info); 3241 case NETMAP_REQ_SYNC_KLOOP_START: 3242 return sizeof(struct nmreq_sync_kloop_start); 3243 } 3244 return 0; 3245 } 3246 3247 static size_t 3248 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size) 3249 { 3250 size_t rv = sizeof(struct nmreq_option); 3251 #ifdef NETMAP_REQ_OPT_DEBUG 3252 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG) 3253 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG); 3254 #endif /* NETMAP_REQ_OPT_DEBUG */ 3255 switch (nro_reqtype) { 3256 #ifdef WITH_EXTMEM 3257 case NETMAP_REQ_OPT_EXTMEM: 3258 rv = sizeof(struct nmreq_opt_extmem); 3259 break; 3260 #endif /* WITH_EXTMEM */ 3261 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS: 3262 if (nro_size >= rv) 3263 rv = nro_size; 3264 break; 3265 case NETMAP_REQ_OPT_CSB: 3266 rv = sizeof(struct nmreq_opt_csb); 3267 break; 3268 case NETMAP_REQ_OPT_SYNC_KLOOP_MODE: 3269 rv = sizeof(struct nmreq_opt_sync_kloop_mode); 3270 break; 3271 case NETMAP_REQ_OPT_OFFSETS: 3272 rv = sizeof(struct nmreq_opt_offsets); 3273 break; 3274 } 3275 /* subtract the common header */ 3276 return rv - sizeof(struct nmreq_option); 3277 } 3278 3279 /* 3280 * nmreq_copyin: create an in-kernel version of the request. 3281 * 3282 * We build the following data structure: 3283 * 3284 * hdr -> +-------+ buf 3285 * | | +---------------+ 3286 * +-------+ |usr body ptr | 3287 * |options|-. +---------------+ 3288 * +-------+ | |usr options ptr| 3289 * |body |--------->+---------------+ 3290 * +-------+ | | | 3291 * | | copy of body | 3292 * | | | 3293 * | +---------------+ 3294 * | | NULL | 3295 * | +---------------+ 3296 * | .---| |\ 3297 * | | +---------------+ | 3298 * | .------| | | 3299 * | | | +---------------+ \ option table 3300 * | | | | ... | / indexed by option 3301 * | | | +---------------+ | type 3302 * | | | | | | 3303 * | | | +---------------+/ 3304 * | | | |usr next ptr 1 | 3305 * `-|----->+---------------+ 3306 * | | | copy of opt 1 | 3307 * | | | | 3308 * | | .-| nro_next | 3309 * | | | +---------------+ 3310 * | | | |usr next ptr 2 | 3311 * | `-`>+---------------+ 3312 * | | copy of opt 2 | 3313 * | | | 3314 * | .-| nro_next | 3315 * | | +---------------+ 3316 * | | | | 3317 * ~ ~ ~ ... ~ 3318 * | .-| | 3319 * `----->+---------------+ 3320 * | |usr next ptr n | 3321 * `>+---------------+ 3322 * | copy of opt n | 3323 * | | 3324 * | nro_next(NULL)| 3325 * +---------------+ 3326 * 3327 * The options and body fields of the hdr structure are overwritten 3328 * with in-kernel valid pointers inside the buf. The original user 3329 * pointers are saved in the buf and restored on copyout. 3330 * The list of options is copied and the pointers adjusted. The 3331 * original pointers are saved before the option they belonged. 3332 * 3333 * The option table has an entry for every available option. Entries 3334 * for options that have not been passed contain NULL. 3335 * 3336 */ 3337 3338 int 3339 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user) 3340 { 3341 size_t rqsz, optsz, bufsz; 3342 int error = 0; 3343 char *ker = NULL, *p; 3344 struct nmreq_option **next, *src, **opt_tab; 3345 struct nmreq_option buf; 3346 uint64_t *ptrs; 3347 3348 if (hdr->nr_reserved) { 3349 if (netmap_verbose) 3350 nm_prerr("nr_reserved must be zero"); 3351 return EINVAL; 3352 } 3353 3354 if (!nr_body_is_user) 3355 return 0; 3356 3357 hdr->nr_reserved = nr_body_is_user; 3358 3359 /* compute the total size of the buffer */ 3360 rqsz = nmreq_size_by_type(hdr->nr_reqtype); 3361 if (rqsz > NETMAP_REQ_MAXSIZE) { 3362 error = EMSGSIZE; 3363 goto out_err; 3364 } 3365 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) || 3366 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) { 3367 /* Request body expected, but not found; or 3368 * request body found but unexpected. */ 3369 if (netmap_verbose) 3370 nm_prerr("nr_body expected but not found, or vice versa"); 3371 error = EINVAL; 3372 goto out_err; 3373 } 3374 3375 bufsz = 2 * sizeof(void *) + rqsz + 3376 NETMAP_REQ_OPT_MAX * sizeof(opt_tab); 3377 /* compute the size of the buf below the option table. 3378 * It must contain a copy of every received option structure. 3379 * For every option we also need to store a copy of the user 3380 * list pointer. 3381 */ 3382 optsz = 0; 3383 for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src; 3384 src = (struct nmreq_option *)(uintptr_t)buf.nro_next) 3385 { 3386 error = copyin(src, &buf, sizeof(*src)); 3387 if (error) 3388 goto out_err; 3389 optsz += sizeof(*src); 3390 optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size); 3391 if (rqsz + optsz > NETMAP_REQ_MAXSIZE) { 3392 error = EMSGSIZE; 3393 goto out_err; 3394 } 3395 bufsz += sizeof(void *); 3396 } 3397 bufsz += optsz; 3398 3399 ker = nm_os_malloc(bufsz); 3400 if (ker == NULL) { 3401 error = ENOMEM; 3402 goto out_err; 3403 } 3404 p = ker; /* write pointer into the buffer */ 3405 3406 /* make a copy of the user pointers */ 3407 ptrs = (uint64_t*)p; 3408 *ptrs++ = hdr->nr_body; 3409 *ptrs++ = hdr->nr_options; 3410 p = (char *)ptrs; 3411 3412 /* copy the body */ 3413 error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz); 3414 if (error) 3415 goto out_restore; 3416 /* overwrite the user pointer with the in-kernel one */ 3417 hdr->nr_body = (uintptr_t)p; 3418 p += rqsz; 3419 /* start of the options table */ 3420 opt_tab = (struct nmreq_option **)p; 3421 p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX; 3422 3423 /* copy the options */ 3424 next = (struct nmreq_option **)&hdr->nr_options; 3425 src = *next; 3426 while (src) { 3427 struct nmreq_option *opt; 3428 3429 /* copy the option header */ 3430 ptrs = (uint64_t *)p; 3431 opt = (struct nmreq_option *)(ptrs + 1); 3432 error = copyin(src, opt, sizeof(*src)); 3433 if (error) 3434 goto out_restore; 3435 /* make a copy of the user next pointer */ 3436 *ptrs = opt->nro_next; 3437 /* overwrite the user pointer with the in-kernel one */ 3438 *next = opt; 3439 3440 /* initialize the option as not supported. 3441 * Recognized options will update this field. 3442 */ 3443 opt->nro_status = EOPNOTSUPP; 3444 3445 /* check for invalid types */ 3446 if (opt->nro_reqtype < 1) { 3447 if (netmap_verbose) 3448 nm_prinf("invalid option type: %u", opt->nro_reqtype); 3449 opt->nro_status = EINVAL; 3450 error = EINVAL; 3451 goto next; 3452 } 3453 3454 if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) { 3455 /* opt->nro_status is already EOPNOTSUPP */ 3456 error = EOPNOTSUPP; 3457 goto next; 3458 } 3459 3460 /* if the type is valid, index the option in the table 3461 * unless it is a duplicate. 3462 */ 3463 if (opt_tab[opt->nro_reqtype] != NULL) { 3464 if (netmap_verbose) 3465 nm_prinf("duplicate option: %u", opt->nro_reqtype); 3466 opt->nro_status = EINVAL; 3467 opt_tab[opt->nro_reqtype]->nro_status = EINVAL; 3468 error = EINVAL; 3469 goto next; 3470 } 3471 opt_tab[opt->nro_reqtype] = opt; 3472 3473 p = (char *)(opt + 1); 3474 3475 /* copy the option body */ 3476 optsz = nmreq_opt_size_by_type(opt->nro_reqtype, 3477 opt->nro_size); 3478 if (optsz) { 3479 /* the option body follows the option header */ 3480 error = copyin(src + 1, p, optsz); 3481 if (error) 3482 goto out_restore; 3483 p += optsz; 3484 } 3485 3486 next: 3487 /* move to next option */ 3488 next = (struct nmreq_option **)&opt->nro_next; 3489 src = *next; 3490 } 3491 if (error) 3492 nmreq_copyout(hdr, error); 3493 return error; 3494 3495 out_restore: 3496 ptrs = (uint64_t *)ker; 3497 hdr->nr_body = *ptrs++; 3498 hdr->nr_options = *ptrs++; 3499 hdr->nr_reserved = 0; 3500 nm_os_free(ker); 3501 out_err: 3502 return error; 3503 } 3504 3505 static int 3506 nmreq_copyout(struct nmreq_header *hdr, int rerror) 3507 { 3508 struct nmreq_option *src, *dst; 3509 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart; 3510 uint64_t *ptrs; 3511 size_t bodysz; 3512 int error; 3513 3514 if (!hdr->nr_reserved) 3515 return rerror; 3516 3517 /* restore the user pointers in the header */ 3518 ptrs = (uint64_t *)ker - 2; 3519 bufstart = ptrs; 3520 hdr->nr_body = *ptrs++; 3521 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3522 hdr->nr_options = *ptrs; 3523 3524 if (!rerror) { 3525 /* copy the body */ 3526 bodysz = nmreq_size_by_type(hdr->nr_reqtype); 3527 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz); 3528 if (error) { 3529 rerror = error; 3530 goto out; 3531 } 3532 } 3533 3534 /* copy the options */ 3535 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3536 while (src) { 3537 size_t optsz; 3538 uint64_t next; 3539 3540 /* restore the user pointer */ 3541 next = src->nro_next; 3542 ptrs = (uint64_t *)src - 1; 3543 src->nro_next = *ptrs; 3544 3545 /* always copy the option header */ 3546 error = copyout(src, dst, sizeof(*src)); 3547 if (error) { 3548 rerror = error; 3549 goto out; 3550 } 3551 3552 /* copy the option body only if there was no error */ 3553 if (!rerror && !src->nro_status) { 3554 optsz = nmreq_opt_size_by_type(src->nro_reqtype, 3555 src->nro_size); 3556 if (optsz) { 3557 error = copyout(src + 1, dst + 1, optsz); 3558 if (error) { 3559 rerror = error; 3560 goto out; 3561 } 3562 } 3563 } 3564 src = (struct nmreq_option *)(uintptr_t)next; 3565 dst = (struct nmreq_option *)(uintptr_t)*ptrs; 3566 } 3567 3568 3569 out: 3570 hdr->nr_reserved = 0; 3571 nm_os_free(bufstart); 3572 return rerror; 3573 } 3574 3575 struct nmreq_option * 3576 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype) 3577 { 3578 struct nmreq_option **opt_tab; 3579 3580 if (!hdr->nr_options) 3581 return NULL; 3582 3583 opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) - 3584 (NETMAP_REQ_OPT_MAX + 1); 3585 return opt_tab[reqtype]; 3586 } 3587 3588 static int 3589 nmreq_checkoptions(struct nmreq_header *hdr) 3590 { 3591 struct nmreq_option *opt; 3592 /* return error if there is still any option 3593 * marked as not supported 3594 */ 3595 3596 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt; 3597 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3598 if (opt->nro_status == EOPNOTSUPP) 3599 return EOPNOTSUPP; 3600 3601 return 0; 3602 } 3603 3604 /* 3605 * select(2) and poll(2) handlers for the "netmap" device. 3606 * 3607 * Can be called for one or more queues. 3608 * Return true the event mask corresponding to ready events. 3609 * If there are no ready events (and 'sr' is not NULL), do a 3610 * selrecord on either individual selinfo or on the global one. 3611 * Device-dependent parts (locking and sync of tx/rx rings) 3612 * are done through callbacks. 3613 * 3614 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 3615 * The first one is remapped to pwait as selrecord() uses the name as an 3616 * hidden argument. 3617 */ 3618 int 3619 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr) 3620 { 3621 struct netmap_adapter *na; 3622 struct netmap_kring *kring; 3623 struct netmap_ring *ring; 3624 u_int i, want[NR_TXRX], revents = 0; 3625 NM_SELINFO_T *si[NR_TXRX]; 3626 #define want_tx want[NR_TX] 3627 #define want_rx want[NR_RX] 3628 struct mbq q; /* packets from RX hw queues to host stack */ 3629 3630 /* 3631 * In order to avoid nested locks, we need to "double check" 3632 * txsync and rxsync if we decide to do a selrecord(). 3633 * retry_tx (and retry_rx, later) prevent looping forever. 3634 */ 3635 int retry_tx = 1, retry_rx = 1; 3636 3637 /* Transparent mode: send_down is 1 if we have found some 3638 * packets to forward (host RX ring --> NIC) during the rx 3639 * scan and we have not sent them down to the NIC yet. 3640 * Transparent mode requires to bind all rings to a single 3641 * file descriptor. 3642 */ 3643 int send_down = 0; 3644 int sync_flags = priv->np_sync_flags; 3645 3646 mbq_init(&q); 3647 3648 if (unlikely(priv->np_nifp == NULL)) { 3649 return POLLERR; 3650 } 3651 mb(); /* make sure following reads are not from cache */ 3652 3653 na = priv->np_na; 3654 3655 if (unlikely(!nm_netmap_on(na))) 3656 return POLLERR; 3657 3658 if (unlikely(priv->np_csb_atok_base)) { 3659 nm_prerr("Invalid poll in CSB mode"); 3660 return POLLERR; 3661 } 3662 3663 if (netmap_debug & NM_DEBUG_ON) 3664 nm_prinf("device %s events 0x%x", na->name, events); 3665 want_tx = events & (POLLOUT | POLLWRNORM); 3666 want_rx = events & (POLLIN | POLLRDNORM); 3667 3668 /* 3669 * If the card has more than one queue AND the file descriptor is 3670 * bound to all of them, we sleep on the "global" selinfo, otherwise 3671 * we sleep on individual selinfo (FreeBSD only allows two selinfo's 3672 * per file descriptor). 3673 * The interrupt routine in the driver wake one or the other 3674 * (or both) depending on which clients are active. 3675 * 3676 * rxsync() is only called if we run out of buffers on a POLLIN. 3677 * txsync() is called if we run out of buffers on POLLOUT, or 3678 * there are pending packets to send. The latter can be disabled 3679 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 3680 */ 3681 si[NR_RX] = priv->np_si[NR_RX]; 3682 si[NR_TX] = priv->np_si[NR_TX]; 3683 3684 #ifdef __FreeBSD__ 3685 /* 3686 * We start with a lock free round which is cheap if we have 3687 * slots available. If this fails, then lock and call the sync 3688 * routines. We can't do this on Linux, as the contract says 3689 * that we must call nm_os_selrecord() unconditionally. 3690 */ 3691 if (want_tx) { 3692 const enum txrx t = NR_TX; 3693 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3694 kring = NMR(na, t)[i]; 3695 if (kring->ring->cur != kring->ring->tail) { 3696 /* Some unseen TX space is available, so what 3697 * we don't need to run txsync. */ 3698 revents |= want[t]; 3699 want[t] = 0; 3700 break; 3701 } 3702 } 3703 } 3704 if (want_rx) { 3705 const enum txrx t = NR_RX; 3706 int rxsync_needed = 0; 3707 3708 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3709 kring = NMR(na, t)[i]; 3710 if (kring->ring->cur == kring->ring->tail 3711 || kring->rhead != kring->ring->head) { 3712 /* There are no unseen packets on this ring, 3713 * or there are some buffers to be returned 3714 * to the netmap port. We therefore go ahead 3715 * and run rxsync. */ 3716 rxsync_needed = 1; 3717 break; 3718 } 3719 } 3720 if (!rxsync_needed) { 3721 revents |= want_rx; 3722 want_rx = 0; 3723 } 3724 } 3725 #endif 3726 3727 #ifdef linux 3728 /* The selrecord must be unconditional on linux. */ 3729 nm_os_selrecord(sr, si[NR_RX]); 3730 nm_os_selrecord(sr, si[NR_TX]); 3731 #endif /* linux */ 3732 3733 /* 3734 * If we want to push packets out (priv->np_txpoll) or 3735 * want_tx is still set, we must issue txsync calls 3736 * (on all rings, to avoid that the tx rings stall). 3737 * Fortunately, normal tx mode has np_txpoll set. 3738 */ 3739 if (priv->np_txpoll || want_tx) { 3740 /* 3741 * The first round checks if anyone is ready, if not 3742 * do a selrecord and another round to handle races. 3743 * want_tx goes to 0 if any space is found, and is 3744 * used to skip rings with no pending transmissions. 3745 */ 3746 flush_tx: 3747 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) { 3748 int found = 0; 3749 3750 kring = na->tx_rings[i]; 3751 ring = kring->ring; 3752 3753 /* 3754 * Don't try to txsync this TX ring if we already found some 3755 * space in some of the TX rings (want_tx == 0) and there are no 3756 * TX slots in this ring that need to be flushed to the NIC 3757 * (head == hwcur). 3758 */ 3759 if (!send_down && !want_tx && ring->head == kring->nr_hwcur) 3760 continue; 3761 3762 if (nm_kr_tryget(kring, 1, &revents)) 3763 continue; 3764 3765 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3766 netmap_ring_reinit(kring); 3767 revents |= POLLERR; 3768 } else { 3769 if (kring->nm_sync(kring, sync_flags)) 3770 revents |= POLLERR; 3771 else 3772 nm_sync_finalize(kring); 3773 } 3774 3775 /* 3776 * If we found new slots, notify potential 3777 * listeners on the same ring. 3778 * Since we just did a txsync, look at the copies 3779 * of cur,tail in the kring. 3780 */ 3781 found = kring->rcur != kring->rtail; 3782 nm_kr_put(kring); 3783 if (found) { /* notify other listeners */ 3784 revents |= want_tx; 3785 want_tx = 0; 3786 #ifndef linux 3787 kring->nm_notify(kring, 0); 3788 #endif /* linux */ 3789 } 3790 } 3791 /* if there were any packet to forward we must have handled them by now */ 3792 send_down = 0; 3793 if (want_tx && retry_tx && sr) { 3794 #ifndef linux 3795 nm_os_selrecord(sr, si[NR_TX]); 3796 #endif /* !linux */ 3797 retry_tx = 0; 3798 goto flush_tx; 3799 } 3800 } 3801 3802 /* 3803 * If want_rx is still set scan receive rings. 3804 * Do it on all rings because otherwise we starve. 3805 */ 3806 if (want_rx) { 3807 /* two rounds here for race avoidance */ 3808 do_retry_rx: 3809 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) { 3810 int found = 0; 3811 3812 kring = na->rx_rings[i]; 3813 ring = kring->ring; 3814 3815 if (unlikely(nm_kr_tryget(kring, 1, &revents))) 3816 continue; 3817 3818 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3819 netmap_ring_reinit(kring); 3820 revents |= POLLERR; 3821 } 3822 /* now we can use kring->rcur, rtail */ 3823 3824 /* 3825 * transparent mode support: collect packets from 3826 * hw rxring(s) that have been released by the user 3827 */ 3828 if (nm_may_forward_up(kring)) { 3829 netmap_grab_packets(kring, &q, netmap_fwd); 3830 } 3831 3832 /* Clear the NR_FORWARD flag anyway, it may be set by 3833 * the nm_sync() below only on for the host RX ring (see 3834 * netmap_rxsync_from_host()). */ 3835 kring->nr_kflags &= ~NR_FORWARD; 3836 if (kring->nm_sync(kring, sync_flags)) 3837 revents |= POLLERR; 3838 else 3839 nm_sync_finalize(kring); 3840 send_down |= (kring->nr_kflags & NR_FORWARD); 3841 ring_timestamp_set(ring); 3842 found = kring->rcur != kring->rtail; 3843 nm_kr_put(kring); 3844 if (found) { 3845 revents |= want_rx; 3846 retry_rx = 0; 3847 #ifndef linux 3848 kring->nm_notify(kring, 0); 3849 #endif /* linux */ 3850 } 3851 } 3852 3853 #ifndef linux 3854 if (retry_rx && sr) { 3855 nm_os_selrecord(sr, si[NR_RX]); 3856 } 3857 #endif /* !linux */ 3858 if (send_down || retry_rx) { 3859 retry_rx = 0; 3860 if (send_down) 3861 goto flush_tx; /* and retry_rx */ 3862 else 3863 goto do_retry_rx; 3864 } 3865 } 3866 3867 /* 3868 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and 3869 * ring->head) marked with NS_FORWARD on hw rx rings are passed up 3870 * to the host stack. 3871 */ 3872 3873 if (mbq_peek(&q)) { 3874 netmap_send_up(na->ifp, &q); 3875 } 3876 3877 return (revents); 3878 #undef want_tx 3879 #undef want_rx 3880 } 3881 3882 int 3883 nma_intr_enable(struct netmap_adapter *na, int onoff) 3884 { 3885 bool changed = false; 3886 enum txrx t; 3887 int i; 3888 3889 for_rx_tx(t) { 3890 for (i = 0; i < nma_get_nrings(na, t); i++) { 3891 struct netmap_kring *kring = NMR(na, t)[i]; 3892 int on = !(kring->nr_kflags & NKR_NOINTR); 3893 3894 if (!!onoff != !!on) { 3895 changed = true; 3896 } 3897 if (onoff) { 3898 kring->nr_kflags &= ~NKR_NOINTR; 3899 } else { 3900 kring->nr_kflags |= NKR_NOINTR; 3901 } 3902 } 3903 } 3904 3905 if (!changed) { 3906 return 0; /* nothing to do */ 3907 } 3908 3909 if (!na->nm_intr) { 3910 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable", 3911 na->name); 3912 return -1; 3913 } 3914 3915 na->nm_intr(na, onoff); 3916 3917 return 0; 3918 } 3919 3920 3921 /*-------------------- driver support routines -------------------*/ 3922 3923 /* default notify callback */ 3924 static int 3925 netmap_notify(struct netmap_kring *kring, int flags) 3926 { 3927 struct netmap_adapter *na = kring->notify_na; 3928 enum txrx t = kring->tx; 3929 3930 nm_os_selwakeup(&kring->si); 3931 /* optimization: avoid a wake up on the global 3932 * queue if nobody has registered for more 3933 * than one ring 3934 */ 3935 if (na->si_users[t] > 0) 3936 nm_os_selwakeup(&na->si[t]); 3937 3938 return NM_IRQ_COMPLETED; 3939 } 3940 3941 /* called by all routines that create netmap_adapters. 3942 * provide some defaults and get a reference to the 3943 * memory allocator 3944 */ 3945 int 3946 netmap_attach_common(struct netmap_adapter *na) 3947 { 3948 if (!na->rx_buf_maxsize) { 3949 /* Set a conservative default (larger is safer). */ 3950 na->rx_buf_maxsize = PAGE_SIZE; 3951 } 3952 3953 #ifdef __FreeBSD__ 3954 if (na->na_flags & NAF_HOST_RINGS && na->ifp) { 3955 na->if_input = na->ifp->if_input; /* for netmap_send_up */ 3956 } 3957 na->pdev = na; /* make sure netmap_mem_map() is called */ 3958 #endif /* __FreeBSD__ */ 3959 if (na->na_flags & NAF_HOST_RINGS) { 3960 if (na->num_host_rx_rings == 0) 3961 na->num_host_rx_rings = 1; 3962 if (na->num_host_tx_rings == 0) 3963 na->num_host_tx_rings = 1; 3964 } 3965 if (na->nm_krings_create == NULL) { 3966 /* we assume that we have been called by a driver, 3967 * since other port types all provide their own 3968 * nm_krings_create 3969 */ 3970 na->nm_krings_create = netmap_hw_krings_create; 3971 na->nm_krings_delete = netmap_hw_krings_delete; 3972 } 3973 if (na->nm_notify == NULL) 3974 na->nm_notify = netmap_notify; 3975 na->active_fds = 0; 3976 3977 if (na->nm_mem == NULL) { 3978 /* use iommu or global allocator */ 3979 na->nm_mem = netmap_mem_get_iommu(na); 3980 } 3981 if (na->nm_bdg_attach == NULL) 3982 /* no special nm_bdg_attach callback. On VALE 3983 * attach, we need to interpose a bwrap 3984 */ 3985 na->nm_bdg_attach = netmap_default_bdg_attach; 3986 3987 return 0; 3988 } 3989 3990 /* Wrapper for the register callback provided netmap-enabled 3991 * hardware drivers. 3992 * nm_iszombie(na) means that the driver module has been 3993 * unloaded, so we cannot call into it. 3994 * nm_os_ifnet_lock() must guarantee mutual exclusion with 3995 * module unloading. 3996 */ 3997 static int 3998 netmap_hw_reg(struct netmap_adapter *na, int onoff) 3999 { 4000 struct netmap_hw_adapter *hwna = 4001 (struct netmap_hw_adapter*)na; 4002 int error = 0; 4003 4004 nm_os_ifnet_lock(); 4005 4006 if (nm_iszombie(na)) { 4007 if (onoff) { 4008 error = ENXIO; 4009 } else if (na != NULL) { 4010 na->na_flags &= ~NAF_NETMAP_ON; 4011 } 4012 goto out; 4013 } 4014 4015 error = hwna->nm_hw_register(na, onoff); 4016 4017 out: 4018 nm_os_ifnet_unlock(); 4019 4020 return error; 4021 } 4022 4023 static void 4024 netmap_hw_dtor(struct netmap_adapter *na) 4025 { 4026 if (na->ifp == NULL) 4027 return; 4028 4029 NM_DETACH_NA(na->ifp); 4030 } 4031 4032 4033 /* 4034 * Allocate a netmap_adapter object, and initialize it from the 4035 * 'arg' passed by the driver on attach. 4036 * We allocate a block of memory of 'size' bytes, which has room 4037 * for struct netmap_adapter plus additional room private to 4038 * the caller. 4039 * Return 0 on success, ENOMEM otherwise. 4040 */ 4041 int 4042 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg) 4043 { 4044 struct netmap_hw_adapter *hwna = NULL; 4045 struct ifnet *ifp = NULL; 4046 4047 if (size < sizeof(struct netmap_hw_adapter)) { 4048 if (netmap_debug & NM_DEBUG_ON) 4049 nm_prerr("Invalid netmap adapter size %d", (int)size); 4050 return EINVAL; 4051 } 4052 4053 if (arg == NULL || arg->ifp == NULL) { 4054 if (netmap_debug & NM_DEBUG_ON) 4055 nm_prerr("either arg or arg->ifp is NULL"); 4056 return EINVAL; 4057 } 4058 4059 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) { 4060 if (netmap_debug & NM_DEBUG_ON) 4061 nm_prerr("%s: invalid rings tx %d rx %d", 4062 arg->name, arg->num_tx_rings, arg->num_rx_rings); 4063 return EINVAL; 4064 } 4065 4066 ifp = arg->ifp; 4067 if (NM_NA_CLASH(ifp)) { 4068 /* If NA(ifp) is not null but there is no valid netmap 4069 * adapter it means that someone else is using the same 4070 * pointer (e.g. ax25_ptr on linux). This happens for 4071 * instance when also PF_RING is in use. */ 4072 nm_prerr("Error: netmap adapter hook is busy"); 4073 return EBUSY; 4074 } 4075 4076 hwna = nm_os_malloc(size); 4077 if (hwna == NULL) 4078 goto fail; 4079 hwna->up = *arg; 4080 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE; 4081 strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name)); 4082 if (override_reg) { 4083 hwna->nm_hw_register = hwna->up.nm_register; 4084 hwna->up.nm_register = netmap_hw_reg; 4085 } 4086 if (netmap_attach_common(&hwna->up)) { 4087 nm_os_free(hwna); 4088 goto fail; 4089 } 4090 netmap_adapter_get(&hwna->up); 4091 4092 NM_ATTACH_NA(ifp, &hwna->up); 4093 4094 nm_os_onattach(ifp); 4095 4096 if (arg->nm_dtor == NULL) { 4097 hwna->up.nm_dtor = netmap_hw_dtor; 4098 } 4099 4100 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n", 4101 hwna->up.num_tx_rings, hwna->up.num_tx_desc, 4102 hwna->up.num_rx_rings, hwna->up.num_rx_desc); 4103 return 0; 4104 4105 fail: 4106 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna); 4107 return (hwna ? EINVAL : ENOMEM); 4108 } 4109 4110 4111 int 4112 netmap_attach(struct netmap_adapter *arg) 4113 { 4114 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter), 4115 1 /* override nm_reg */); 4116 } 4117 4118 4119 void 4120 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 4121 { 4122 if (!na) { 4123 return; 4124 } 4125 4126 refcount_acquire(&na->na_refcount); 4127 } 4128 4129 4130 /* returns 1 iff the netmap_adapter is destroyed */ 4131 int 4132 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 4133 { 4134 if (!na) 4135 return 1; 4136 4137 if (!refcount_release(&na->na_refcount)) 4138 return 0; 4139 4140 if (na->nm_dtor) 4141 na->nm_dtor(na); 4142 4143 if (na->tx_rings) { /* XXX should not happen */ 4144 if (netmap_debug & NM_DEBUG_ON) 4145 nm_prerr("freeing leftover tx_rings"); 4146 na->nm_krings_delete(na); 4147 } 4148 netmap_pipe_dealloc(na); 4149 if (na->nm_mem) 4150 netmap_mem_put(na->nm_mem); 4151 bzero(na, sizeof(*na)); 4152 nm_os_free(na); 4153 4154 return 1; 4155 } 4156 4157 /* nm_krings_create callback for all hardware native adapters */ 4158 int 4159 netmap_hw_krings_create(struct netmap_adapter *na) 4160 { 4161 int ret = netmap_krings_create(na, 0); 4162 if (ret == 0) { 4163 /* initialize the mbq for the sw rx ring */ 4164 u_int lim = netmap_real_rings(na, NR_RX), i; 4165 for (i = na->num_rx_rings; i < lim; i++) { 4166 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue); 4167 } 4168 nm_prdis("initialized sw rx queue %d", na->num_rx_rings); 4169 } 4170 return ret; 4171 } 4172 4173 4174 4175 /* 4176 * Called on module unload by the netmap-enabled drivers 4177 */ 4178 void 4179 netmap_detach(struct ifnet *ifp) 4180 { 4181 struct netmap_adapter *na = NA(ifp); 4182 4183 if (!na) 4184 return; 4185 4186 NMG_LOCK(); 4187 netmap_set_all_rings(na, NM_KR_LOCKED); 4188 /* 4189 * if the netmap adapter is not native, somebody 4190 * changed it, so we can not release it here. 4191 * The NAF_ZOMBIE flag will notify the new owner that 4192 * the driver is gone. 4193 */ 4194 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) { 4195 na->na_flags |= NAF_ZOMBIE; 4196 } 4197 /* give active users a chance to notice that NAF_ZOMBIE has been 4198 * turned on, so that they can stop and return an error to userspace. 4199 * Note that this becomes a NOP if there are no active users and, 4200 * therefore, the put() above has deleted the na, since now NA(ifp) is 4201 * NULL. 4202 */ 4203 netmap_enable_all_rings(ifp); 4204 NMG_UNLOCK(); 4205 } 4206 4207 4208 /* 4209 * Intercept packets from the network stack and pass them 4210 * to netmap as incoming packets on the 'software' ring. 4211 * 4212 * We only store packets in a bounded mbq and then copy them 4213 * in the relevant rxsync routine. 4214 * 4215 * We rely on the OS to make sure that the ifp and na do not go 4216 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 4217 * In nm_register() or whenever there is a reinitialization, 4218 * we make sure to make the mode change visible here. 4219 */ 4220 int 4221 netmap_transmit(struct ifnet *ifp, struct mbuf *m) 4222 { 4223 struct netmap_adapter *na = NA(ifp); 4224 struct netmap_kring *kring, *tx_kring; 4225 u_int len = MBUF_LEN(m); 4226 u_int error = ENOBUFS; 4227 unsigned int txr; 4228 struct mbq *q; 4229 int busy; 4230 u_int i; 4231 4232 i = MBUF_TXQ(m); 4233 if (i >= na->num_host_rx_rings) { 4234 i = i % na->num_host_rx_rings; 4235 } 4236 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i]; 4237 4238 // XXX [Linux] we do not need this lock 4239 // if we follow the down/configure/up protocol -gl 4240 // mtx_lock(&na->core_lock); 4241 4242 if (!nm_netmap_on(na)) { 4243 nm_prerr("%s not in netmap mode anymore", na->name); 4244 error = ENXIO; 4245 goto done; 4246 } 4247 4248 txr = MBUF_TXQ(m); 4249 if (txr >= na->num_tx_rings) { 4250 txr %= na->num_tx_rings; 4251 } 4252 tx_kring = NMR(na, NR_TX)[txr]; 4253 4254 if (tx_kring->nr_mode == NKR_NETMAP_OFF) { 4255 return MBUF_TRANSMIT(na, ifp, m); 4256 } 4257 4258 q = &kring->rx_queue; 4259 4260 // XXX reconsider long packets if we handle fragments 4261 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */ 4262 nm_prerr("%s from_host, drop packet size %d > %d", na->name, 4263 len, NETMAP_BUF_SIZE(na)); 4264 goto done; 4265 } 4266 4267 if (!netmap_generic_hwcsum) { 4268 if (nm_os_mbuf_has_csum_offld(m)) { 4269 nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name); 4270 goto done; 4271 } 4272 } 4273 4274 if (nm_os_mbuf_has_seg_offld(m)) { 4275 nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name); 4276 goto done; 4277 } 4278 4279 #ifdef __FreeBSD__ 4280 ETHER_BPF_MTAP(ifp, m); 4281 #endif /* __FreeBSD__ */ 4282 4283 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic() 4284 * and maybe other instances of netmap_transmit (the latter 4285 * not possible on Linux). 4286 * We enqueue the mbuf only if we are sure there is going to be 4287 * enough room in the host RX ring, otherwise we drop it. 4288 */ 4289 mbq_lock(q); 4290 4291 busy = kring->nr_hwtail - kring->nr_hwcur; 4292 if (busy < 0) 4293 busy += kring->nkr_num_slots; 4294 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) { 4295 nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name, 4296 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q)); 4297 } else { 4298 mbq_enqueue(q, m); 4299 nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q)); 4300 /* notify outside the lock */ 4301 m = NULL; 4302 error = 0; 4303 } 4304 mbq_unlock(q); 4305 4306 done: 4307 if (m) 4308 m_freem(m); 4309 /* unconditionally wake up listeners */ 4310 kring->nm_notify(kring, 0); 4311 /* this is normally netmap_notify(), but for nics 4312 * connected to a bridge it is netmap_bwrap_intr_notify(), 4313 * that possibly forwards the frames through the switch 4314 */ 4315 4316 return (error); 4317 } 4318 4319 4320 /* 4321 * Reset function to be called by the driver routines when reinitializing 4322 * a hardware ring. The driver is in charge of locking to protect the kring 4323 * while this operation is being performed. This is normally achieved by 4324 * calling netmap_disable_all_rings() before triggering a reset. 4325 * If the kring is not in netmap mode, return NULL to inform the caller 4326 * that this is the case. 4327 * If the kring is in netmap mode, set hwofs so that the netmap indices 4328 * seen by userspace (head/cut/tail) do not change, although the internal 4329 * NIC indices have been reset to 0. 4330 * In any case, adjust kring->nr_mode. 4331 */ 4332 struct netmap_slot * 4333 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 4334 u_int new_cur) 4335 { 4336 struct netmap_kring *kring; 4337 u_int new_hwtail, new_hwofs; 4338 4339 if (!nm_native_on(na)) { 4340 nm_prdis("interface not in native netmap mode"); 4341 return NULL; /* nothing to reinitialize */ 4342 } 4343 4344 if (tx == NR_TX) { 4345 if (n >= na->num_tx_rings) 4346 return NULL; 4347 kring = na->tx_rings[n]; 4348 /* 4349 * Set hwofs to rhead, so that slots[rhead] is mapped to 4350 * the NIC internal slot 0, and thus the netmap buffer 4351 * at rhead is the next to be transmitted. Transmissions 4352 * that were pending before the reset are considered as 4353 * sent, so that we can have hwcur = rhead. All the slots 4354 * are now owned by the user, so we can also reinit hwtail. 4355 */ 4356 new_hwofs = kring->rhead; 4357 new_hwtail = nm_prev(kring->rhead, kring->nkr_num_slots - 1); 4358 } else { 4359 if (n >= na->num_rx_rings) 4360 return NULL; 4361 kring = na->rx_rings[n]; 4362 /* 4363 * Set hwofs to hwtail, so that slots[hwtail] is mapped to 4364 * the NIC internal slot 0, and thus the netmap buffer 4365 * at hwtail is the next to be given to the NIC. 4366 * Unread slots (the ones in [rhead,hwtail[) are owned by 4367 * the user, and thus the caller cannot give them 4368 * to the NIC right now. 4369 */ 4370 new_hwofs = kring->nr_hwtail; 4371 new_hwtail = kring->nr_hwtail; 4372 } 4373 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 4374 kring->nr_mode = NKR_NETMAP_OFF; 4375 return NULL; 4376 } 4377 if (netmap_verbose) { 4378 nm_prinf("%s, hc %u->%u, ht %u->%u, ho %u->%u", kring->name, 4379 kring->nr_hwcur, kring->rhead, 4380 kring->nr_hwtail, new_hwtail, 4381 kring->nkr_hwofs, new_hwofs); 4382 } 4383 kring->nr_hwcur = kring->rhead; 4384 kring->nr_hwtail = new_hwtail; 4385 kring->nkr_hwofs = new_hwofs; 4386 4387 /* 4388 * Wakeup on the individual and global selwait 4389 * We do the wakeup here, but the ring is not yet reconfigured. 4390 * However, we are under lock so there are no races. 4391 */ 4392 kring->nr_mode = NKR_NETMAP_ON; 4393 kring->nm_notify(kring, 0); 4394 return kring->ring->slot; 4395 } 4396 4397 4398 /* 4399 * Dispatch rx/tx interrupts to the netmap rings. 4400 * 4401 * "work_done" is non-null on the RX path, NULL for the TX path. 4402 * We rely on the OS to make sure that there is only one active 4403 * instance per queue, and that there is appropriate locking. 4404 * 4405 * The 'notify' routine depends on what the ring is attached to. 4406 * - for a netmap file descriptor, do a selwakeup on the individual 4407 * waitqueue, plus one on the global one if needed 4408 * (see netmap_notify) 4409 * - for a nic connected to a switch, call the proper forwarding routine 4410 * (see netmap_bwrap_intr_notify) 4411 */ 4412 int 4413 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 4414 { 4415 struct netmap_kring *kring; 4416 enum txrx t = (work_done ? NR_RX : NR_TX); 4417 4418 q &= NETMAP_RING_MASK; 4419 4420 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) { 4421 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 4422 } 4423 4424 if (q >= nma_get_nrings(na, t)) 4425 return NM_IRQ_PASS; // not a physical queue 4426 4427 kring = NMR(na, t)[q]; 4428 4429 if (kring->nr_mode == NKR_NETMAP_OFF) { 4430 return NM_IRQ_PASS; 4431 } 4432 4433 if (t == NR_RX) { 4434 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 4435 *work_done = 1; /* do not fire napi again */ 4436 } 4437 4438 return kring->nm_notify(kring, 0); 4439 } 4440 4441 4442 /* 4443 * Default functions to handle rx/tx interrupts from a physical device. 4444 * "work_done" is non-null on the RX path, NULL for the TX path. 4445 * 4446 * If the card is not in netmap mode, simply return NM_IRQ_PASS, 4447 * so that the caller proceeds with regular processing. 4448 * Otherwise call netmap_common_irq(). 4449 * 4450 * If the card is connected to a netmap file descriptor, 4451 * do a selwakeup on the individual queue, plus one on the global one 4452 * if needed (multiqueue card _and_ there are multiqueue listeners), 4453 * and return NR_IRQ_COMPLETED. 4454 * 4455 * Finally, if called on rx from an interface connected to a switch, 4456 * calls the proper forwarding routine. 4457 */ 4458 int 4459 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done) 4460 { 4461 struct netmap_adapter *na = NA(ifp); 4462 4463 /* 4464 * XXX emulated netmap mode sets NAF_SKIP_INTR so 4465 * we still use the regular driver even though the previous 4466 * check fails. It is unclear whether we should use 4467 * nm_native_on() here. 4468 */ 4469 if (!nm_netmap_on(na)) 4470 return NM_IRQ_PASS; 4471 4472 if (na->na_flags & NAF_SKIP_INTR) { 4473 nm_prdis("use regular interrupt"); 4474 return NM_IRQ_PASS; 4475 } 4476 4477 return netmap_common_irq(na, q, work_done); 4478 } 4479 4480 /* set/clear native flags and if_transmit/netdev_ops */ 4481 void 4482 nm_set_native_flags(struct netmap_adapter *na) 4483 { 4484 struct ifnet *ifp = na->ifp; 4485 4486 /* We do the setup for intercepting packets only if we are the 4487 * first user of this adapter. */ 4488 if (na->active_fds > 0) { 4489 return; 4490 } 4491 4492 na->na_flags |= NAF_NETMAP_ON; 4493 nm_os_onenter(ifp); 4494 nm_update_hostrings_mode(na); 4495 } 4496 4497 void 4498 nm_clear_native_flags(struct netmap_adapter *na) 4499 { 4500 struct ifnet *ifp = na->ifp; 4501 4502 /* We undo the setup for intercepting packets only if we are the 4503 * last user of this adapter. */ 4504 if (na->active_fds > 0) { 4505 return; 4506 } 4507 4508 nm_update_hostrings_mode(na); 4509 nm_os_onexit(ifp); 4510 4511 na->na_flags &= ~NAF_NETMAP_ON; 4512 } 4513 4514 void 4515 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff) 4516 { 4517 enum txrx t; 4518 4519 for_rx_tx(t) { 4520 int i; 4521 4522 for (i = 0; i < netmap_real_rings(na, t); i++) { 4523 struct netmap_kring *kring = NMR(na, t)[i]; 4524 4525 if (onoff && nm_kring_pending_on(kring)) 4526 kring->nr_mode = NKR_NETMAP_ON; 4527 else if (!onoff && nm_kring_pending_off(kring)) 4528 kring->nr_mode = NKR_NETMAP_OFF; 4529 } 4530 } 4531 } 4532 4533 /* 4534 * Module loader and unloader 4535 * 4536 * netmap_init() creates the /dev/netmap device and initializes 4537 * all global variables. Returns 0 on success, errno on failure 4538 * (but there is no chance) 4539 * 4540 * netmap_fini() destroys everything. 4541 */ 4542 4543 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 4544 extern struct cdevsw netmap_cdevsw; 4545 4546 4547 void 4548 netmap_fini(void) 4549 { 4550 if (netmap_dev) 4551 destroy_dev(netmap_dev); 4552 /* we assume that there are no longer netmap users */ 4553 nm_os_ifnet_fini(); 4554 netmap_uninit_bridges(); 4555 netmap_mem_fini(); 4556 NMG_LOCK_DESTROY(); 4557 nm_prinf("netmap: unloaded module."); 4558 } 4559 4560 4561 int 4562 netmap_init(void) 4563 { 4564 int error; 4565 4566 NMG_LOCK_INIT(); 4567 4568 error = netmap_mem_init(); 4569 if (error != 0) 4570 goto fail; 4571 /* 4572 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls 4573 * when the module is compiled in. 4574 * XXX could use make_dev_credv() to get error number 4575 */ 4576 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD, 4577 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, 4578 "netmap"); 4579 if (!netmap_dev) 4580 goto fail; 4581 4582 error = netmap_init_bridges(); 4583 if (error) 4584 goto fail; 4585 4586 #ifdef __FreeBSD__ 4587 nm_os_vi_init_index(); 4588 #endif 4589 4590 error = nm_os_ifnet_init(); 4591 if (error) 4592 goto fail; 4593 4594 #if !defined(__FreeBSD__) || defined(KLD_MODULE) 4595 nm_prinf("netmap: loaded module"); 4596 #endif 4597 return (0); 4598 fail: 4599 netmap_fini(); 4600 return (EINVAL); /* may be incorrect */ 4601 } 4602