1 /* 2 * Copyright (C) 2011-2012 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #define NM_BRIDGE 27 28 /* 29 * This module supports memory mapped access to network devices, 30 * see netmap(4). 31 * 32 * The module uses a large, memory pool allocated by the kernel 33 * and accessible as mmapped memory by multiple userspace threads/processes. 34 * The memory pool contains packet buffers and "netmap rings", 35 * i.e. user-accessible copies of the interface's queues. 36 * 37 * Access to the network card works like this: 38 * 1. a process/thread issues one or more open() on /dev/netmap, to create 39 * select()able file descriptor on which events are reported. 40 * 2. on each descriptor, the process issues an ioctl() to identify 41 * the interface that should report events to the file descriptor. 42 * 3. on each descriptor, the process issues an mmap() request to 43 * map the shared memory region within the process' address space. 44 * The list of interesting queues is indicated by a location in 45 * the shared memory region. 46 * 4. using the functions in the netmap(4) userspace API, a process 47 * can look up the occupation state of a queue, access memory buffers, 48 * and retrieve received packets or enqueue packets to transmit. 49 * 5. using some ioctl()s the process can synchronize the userspace view 50 * of the queue with the actual status in the kernel. This includes both 51 * receiving the notification of new packets, and transmitting new 52 * packets on the output interface. 53 * 6. select() or poll() can be used to wait for events on individual 54 * transmit or receive queues (or all queues for a given interface). 55 */ 56 57 #ifdef linux 58 #include "bsd_glue.h" 59 static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev); 60 #endif /* linux */ 61 62 #ifdef __APPLE__ 63 #include "osx_glue.h" 64 #endif /* __APPLE__ */ 65 66 #ifdef __FreeBSD__ 67 #include <sys/cdefs.h> /* prerequisite */ 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/types.h> 71 #include <sys/module.h> 72 #include <sys/errno.h> 73 #include <sys/param.h> /* defines used in kernel.h */ 74 #include <sys/jail.h> 75 #include <sys/kernel.h> /* types used in module initialization */ 76 #include <sys/conf.h> /* cdevsw struct */ 77 #include <sys/uio.h> /* uio struct */ 78 #include <sys/sockio.h> 79 #include <sys/socketvar.h> /* struct socket */ 80 #include <sys/malloc.h> 81 #include <sys/mman.h> /* PROT_EXEC */ 82 #include <sys/poll.h> 83 #include <sys/proc.h> 84 #include <sys/rwlock.h> 85 #include <vm/vm.h> /* vtophys */ 86 #include <vm/pmap.h> /* vtophys */ 87 #include <sys/socket.h> /* sockaddrs */ 88 #include <machine/bus.h> 89 #include <sys/selinfo.h> 90 #include <sys/sysctl.h> 91 #include <net/if.h> 92 #include <net/bpf.h> /* BIOCIMMEDIATE */ 93 #include <net/vnet.h> 94 #include <machine/bus.h> /* bus_dmamap_* */ 95 96 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 97 #endif /* __FreeBSD__ */ 98 99 #include <net/netmap.h> 100 #include <dev/netmap/netmap_kern.h> 101 102 u_int netmap_total_buffers; 103 u_int netmap_buf_size; 104 char *netmap_buffer_base; /* address of an invalid buffer */ 105 106 /* user-controlled variables */ 107 int netmap_verbose; 108 109 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 110 111 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 112 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 113 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 114 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 115 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 116 int netmap_mitigate = 1; 117 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 118 int netmap_no_pendintr = 1; 119 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 120 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 121 122 int netmap_drop = 0; /* debugging */ 123 int netmap_flags = 0; /* debug flags */ 124 int netmap_fwd = 0; /* force transparent mode */ 125 int netmap_copy = 0; /* debugging, copy content */ 126 127 SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , ""); 128 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 129 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , ""); 130 SYSCTL_INT(_dev_netmap, OID_AUTO, copy, CTLFLAG_RW, &netmap_copy, 0 , ""); 131 132 #ifdef NM_BRIDGE /* support for netmap bridge */ 133 134 /* 135 * system parameters. 136 * 137 * All switched ports have prefix NM_NAME. 138 * The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap, 139 * so a practical upper bound is 64). 140 * Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet). 141 * The virtual interfaces use per-queue lock instead of core lock. 142 * In the tx loop, we aggregate traffic in batches to make all operations 143 * faster. The batch size is NM_BDG_BATCH 144 */ 145 #define NM_NAME "vale" /* prefix for the interface */ 146 #define NM_BDG_MAXPORTS 16 /* up to 64 ? */ 147 #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ 148 #define NM_BDG_HASH 1024 /* forwarding table entries */ 149 #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ 150 #define NM_BRIDGES 4 /* number of bridges */ 151 int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */ 152 SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , ""); 153 154 #ifdef linux 155 #define ADD_BDG_REF(ifp) (NA(ifp)->if_refcount++) 156 #define DROP_BDG_REF(ifp) (NA(ifp)->if_refcount-- <= 1) 157 #else /* !linux */ 158 #define ADD_BDG_REF(ifp) (ifp)->if_refcount++ 159 #define DROP_BDG_REF(ifp) refcount_release(&(ifp)->if_refcount) 160 #ifdef __FreeBSD__ 161 #include <sys/endian.h> 162 #include <sys/refcount.h> 163 #endif /* __FreeBSD__ */ 164 #define prefetch(x) __builtin_prefetch(x) 165 #endif /* !linux */ 166 167 static void bdg_netmap_attach(struct ifnet *ifp); 168 static int bdg_netmap_reg(struct ifnet *ifp, int onoff); 169 /* per-tx-queue entry */ 170 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 171 void *buf; 172 uint64_t dst; /* dst mask */ 173 uint32_t src; /* src index ? */ 174 uint16_t len; /* src len */ 175 }; 176 177 struct nm_hash_ent { 178 uint64_t mac; /* the top 2 bytes are the epoch */ 179 uint64_t ports; 180 }; 181 182 /* 183 * Interfaces for a bridge are all in ports[]. 184 * The array has fixed size, an empty entry does not terminate 185 * the search. 186 */ 187 struct nm_bridge { 188 struct ifnet *bdg_ports[NM_BDG_MAXPORTS]; 189 int n_ports; 190 uint64_t act_ports; 191 int freelist; /* first buffer index */ 192 NM_SELINFO_T si; /* poll/select wait queue */ 193 NM_LOCK_T bdg_lock; /* protect the selinfo ? */ 194 195 /* the forwarding table, MAC+ports */ 196 struct nm_hash_ent ht[NM_BDG_HASH]; 197 198 int namelen; /* 0 means free */ 199 char basename[IFNAMSIZ]; 200 }; 201 202 struct nm_bridge nm_bridges[NM_BRIDGES]; 203 204 #define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock) 205 #define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock) 206 207 /* 208 * NA(ifp)->bdg_port port index 209 */ 210 211 // XXX only for multiples of 64 bytes, non overlapped. 212 static inline void 213 pkt_copy(void *_src, void *_dst, int l) 214 { 215 uint64_t *src = _src; 216 uint64_t *dst = _dst; 217 if (unlikely(l >= 1024)) { 218 bcopy(src, dst, l); 219 return; 220 } 221 for (; likely(l > 0); l-=64) { 222 *dst++ = *src++; 223 *dst++ = *src++; 224 *dst++ = *src++; 225 *dst++ = *src++; 226 *dst++ = *src++; 227 *dst++ = *src++; 228 *dst++ = *src++; 229 *dst++ = *src++; 230 } 231 } 232 233 /* 234 * locate a bridge among the existing ones. 235 * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. 236 * We assume that this is called with a name of at least NM_NAME chars. 237 */ 238 static struct nm_bridge * 239 nm_find_bridge(const char *name) 240 { 241 int i, l, namelen, e; 242 struct nm_bridge *b = NULL; 243 244 namelen = strlen(NM_NAME); /* base length */ 245 l = strlen(name); /* actual length */ 246 for (i = namelen + 1; i < l; i++) { 247 if (name[i] == ':') { 248 namelen = i; 249 break; 250 } 251 } 252 if (namelen >= IFNAMSIZ) 253 namelen = IFNAMSIZ; 254 ND("--- prefix is '%.*s' ---", namelen, name); 255 256 /* use the first entry for locking */ 257 BDG_LOCK(nm_bridges); // XXX do better 258 for (e = -1, i = 1; i < NM_BRIDGES; i++) { 259 b = nm_bridges + i; 260 if (b->namelen == 0) 261 e = i; /* record empty slot */ 262 else if (strncmp(name, b->basename, namelen) == 0) { 263 ND("found '%.*s' at %d", namelen, name, i); 264 break; 265 } 266 } 267 if (i == NM_BRIDGES) { /* all full */ 268 if (e == -1) { /* no empty slot */ 269 b = NULL; 270 } else { 271 b = nm_bridges + e; 272 strncpy(b->basename, name, namelen); 273 b->namelen = namelen; 274 } 275 } 276 BDG_UNLOCK(nm_bridges); 277 return b; 278 } 279 #endif /* NM_BRIDGE */ 280 281 282 /* 283 * Fetch configuration from the device, to cope with dynamic 284 * reconfigurations after loading the module. 285 */ 286 static int 287 netmap_update_config(struct netmap_adapter *na) 288 { 289 struct ifnet *ifp = na->ifp; 290 u_int txr, txd, rxr, rxd; 291 292 txr = txd = rxr = rxd = 0; 293 if (na->nm_config) { 294 na->nm_config(ifp, &txr, &txd, &rxr, &rxd); 295 } else { 296 /* take whatever we had at init time */ 297 txr = na->num_tx_rings; 298 txd = na->num_tx_desc; 299 rxr = na->num_rx_rings; 300 rxd = na->num_rx_desc; 301 } 302 303 if (na->num_tx_rings == txr && na->num_tx_desc == txd && 304 na->num_rx_rings == rxr && na->num_rx_desc == rxd) 305 return 0; /* nothing changed */ 306 if (netmap_verbose || na->refcount > 0) { 307 D("stored config %s: txring %d x %d, rxring %d x %d", 308 ifp->if_xname, 309 na->num_tx_rings, na->num_tx_desc, 310 na->num_rx_rings, na->num_rx_desc); 311 D("new config %s: txring %d x %d, rxring %d x %d", 312 ifp->if_xname, txr, txd, rxr, rxd); 313 } 314 if (na->refcount == 0) { 315 D("configuration changed (but fine)"); 316 na->num_tx_rings = txr; 317 na->num_tx_desc = txd; 318 na->num_rx_rings = rxr; 319 na->num_rx_desc = rxd; 320 return 0; 321 } 322 D("configuration changed while active, this is bad..."); 323 return 1; 324 } 325 326 /*------------- memory allocator -----------------*/ 327 #ifdef NETMAP_MEM2 328 #include "netmap_mem2.c" 329 #else /* !NETMAP_MEM2 */ 330 #include "netmap_mem1.c" 331 #endif /* !NETMAP_MEM2 */ 332 /*------------ end of memory allocator ----------*/ 333 334 335 /* Structure associated to each thread which registered an interface. 336 * 337 * The first 4 fields of this structure are written by NIOCREGIF and 338 * read by poll() and NIOC?XSYNC. 339 * There is low contention among writers (actually, a correct user program 340 * should have no contention among writers) and among writers and readers, 341 * so we use a single global lock to protect the structure initialization. 342 * Since initialization involves the allocation of memory, we reuse the memory 343 * allocator lock. 344 * Read access to the structure is lock free. Readers must check that 345 * np_nifp is not NULL before using the other fields. 346 * If np_nifp is NULL initialization has not been performed, so they should 347 * return an error to userlevel. 348 * 349 * The ref_done field is used to regulate access to the refcount in the 350 * memory allocator. The refcount must be incremented at most once for 351 * each open("/dev/netmap"). The increment is performed by the first 352 * function that calls netmap_get_memory() (currently called by 353 * mmap(), NIOCGINFO and NIOCREGIF). 354 * If the refcount is incremented, it is then decremented when the 355 * private structure is destroyed. 356 */ 357 struct netmap_priv_d { 358 struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */ 359 360 struct ifnet *np_ifp; /* device for which we hold a reference */ 361 int np_ringid; /* from the ioctl */ 362 u_int np_qfirst, np_qlast; /* range of rings to scan */ 363 uint16_t np_txpoll; 364 365 unsigned long ref_done; /* use with NMA_LOCK held */ 366 }; 367 368 369 static int 370 netmap_get_memory(struct netmap_priv_d* p) 371 { 372 int error = 0; 373 NMA_LOCK(); 374 if (!p->ref_done) { 375 error = netmap_memory_finalize(); 376 if (!error) 377 p->ref_done = 1; 378 } 379 NMA_UNLOCK(); 380 return error; 381 } 382 383 /* 384 * File descriptor's private data destructor. 385 * 386 * Call nm_register(ifp,0) to stop netmap mode on the interface and 387 * revert to normal operation. We expect that np_ifp has not gone. 388 */ 389 /* call with NMA_LOCK held */ 390 static void 391 netmap_dtor_locked(void *data) 392 { 393 struct netmap_priv_d *priv = data; 394 struct ifnet *ifp = priv->np_ifp; 395 struct netmap_adapter *na = NA(ifp); 396 struct netmap_if *nifp = priv->np_nifp; 397 398 na->refcount--; 399 if (na->refcount <= 0) { /* last instance */ 400 u_int i, j, lim; 401 402 if (netmap_verbose) 403 D("deleting last instance for %s", ifp->if_xname); 404 /* 405 * there is a race here with *_netmap_task() and 406 * netmap_poll(), which don't run under NETMAP_REG_LOCK. 407 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 408 * (aka NETMAP_DELETING(na)) are a unique marker that the 409 * device is dying. 410 * Before destroying stuff we sleep a bit, and then complete 411 * the job. NIOCREG should realize the condition and 412 * loop until they can continue; the other routines 413 * should check the condition at entry and quit if 414 * they cannot run. 415 */ 416 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 417 tsleep(na, 0, "NIOCUNREG", 4); 418 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 419 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 420 /* Wake up any sleeping threads. netmap_poll will 421 * then return POLLERR 422 */ 423 for (i = 0; i < na->num_tx_rings + 1; i++) 424 selwakeuppri(&na->tx_rings[i].si, PI_NET); 425 for (i = 0; i < na->num_rx_rings + 1; i++) 426 selwakeuppri(&na->rx_rings[i].si, PI_NET); 427 selwakeuppri(&na->tx_si, PI_NET); 428 selwakeuppri(&na->rx_si, PI_NET); 429 /* release all buffers */ 430 for (i = 0; i < na->num_tx_rings + 1; i++) { 431 struct netmap_ring *ring = na->tx_rings[i].ring; 432 lim = na->tx_rings[i].nkr_num_slots; 433 for (j = 0; j < lim; j++) 434 netmap_free_buf(nifp, ring->slot[j].buf_idx); 435 /* knlist_destroy(&na->tx_rings[i].si.si_note); */ 436 mtx_destroy(&na->tx_rings[i].q_lock); 437 } 438 for (i = 0; i < na->num_rx_rings + 1; i++) { 439 struct netmap_ring *ring = na->rx_rings[i].ring; 440 lim = na->rx_rings[i].nkr_num_slots; 441 for (j = 0; j < lim; j++) 442 netmap_free_buf(nifp, ring->slot[j].buf_idx); 443 /* knlist_destroy(&na->rx_rings[i].si.si_note); */ 444 mtx_destroy(&na->rx_rings[i].q_lock); 445 } 446 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 447 /* knlist_destroy(&na->tx_si.si_note); */ 448 /* knlist_destroy(&na->rx_si.si_note); */ 449 netmap_free_rings(na); 450 wakeup(na); 451 } 452 netmap_if_free(nifp); 453 } 454 455 static void 456 nm_if_rele(struct ifnet *ifp) 457 { 458 #ifndef NM_BRIDGE 459 if_rele(ifp); 460 #else /* NM_BRIDGE */ 461 int i, full; 462 struct nm_bridge *b; 463 464 if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) { 465 if_rele(ifp); 466 return; 467 } 468 if (!DROP_BDG_REF(ifp)) 469 return; 470 b = ifp->if_bridge; 471 BDG_LOCK(nm_bridges); 472 BDG_LOCK(b); 473 ND("want to disconnect %s from the bridge", ifp->if_xname); 474 full = 0; 475 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 476 if (b->bdg_ports[i] == ifp) { 477 b->bdg_ports[i] = NULL; 478 bzero(ifp, sizeof(*ifp)); 479 free(ifp, M_DEVBUF); 480 break; 481 } 482 else if (b->bdg_ports[i] != NULL) 483 full = 1; 484 } 485 BDG_UNLOCK(b); 486 if (full == 0) { 487 ND("freeing bridge %d", b - nm_bridges); 488 b->namelen = 0; 489 } 490 BDG_UNLOCK(nm_bridges); 491 if (i == NM_BDG_MAXPORTS) 492 D("ouch, cannot find ifp to remove"); 493 #endif /* NM_BRIDGE */ 494 } 495 496 static void 497 netmap_dtor(void *data) 498 { 499 struct netmap_priv_d *priv = data; 500 struct ifnet *ifp = priv->np_ifp; 501 struct netmap_adapter *na; 502 503 NMA_LOCK(); 504 if (ifp) { 505 na = NA(ifp); 506 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 507 netmap_dtor_locked(data); 508 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 509 510 nm_if_rele(ifp); 511 } 512 if (priv->ref_done) { 513 netmap_memory_deref(); 514 } 515 NMA_UNLOCK(); 516 bzero(priv, sizeof(*priv)); /* XXX for safety */ 517 free(priv, M_DEVBUF); 518 } 519 520 #ifdef __FreeBSD__ 521 #include <vm/vm.h> 522 #include <vm/vm_param.h> 523 #include <vm/vm_object.h> 524 #include <vm/vm_page.h> 525 #include <vm/vm_pager.h> 526 #include <vm/uma.h> 527 528 static struct cdev_pager_ops saved_cdev_pager_ops; 529 530 static int 531 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 532 vm_ooffset_t foff, struct ucred *cred, u_short *color) 533 { 534 if (netmap_verbose) 535 D("first mmap for %p", handle); 536 return saved_cdev_pager_ops.cdev_pg_ctor(handle, 537 size, prot, foff, cred, color); 538 } 539 540 static void 541 netmap_dev_pager_dtor(void *handle) 542 { 543 saved_cdev_pager_ops.cdev_pg_dtor(handle); 544 ND("ready to release memory for %p", handle); 545 } 546 547 548 static struct cdev_pager_ops netmap_cdev_pager_ops = { 549 .cdev_pg_ctor = netmap_dev_pager_ctor, 550 .cdev_pg_dtor = netmap_dev_pager_dtor, 551 .cdev_pg_fault = NULL, 552 }; 553 554 static int 555 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 556 vm_size_t objsize, vm_object_t *objp, int prot) 557 { 558 vm_object_t obj; 559 560 ND("cdev %p foff %jd size %jd objp %p prot %d", cdev, 561 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 562 obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff, 563 curthread->td_ucred); 564 ND("returns obj %p", obj); 565 if (obj == NULL) 566 return EINVAL; 567 if (saved_cdev_pager_ops.cdev_pg_fault == NULL) { 568 ND("initialize cdev_pager_ops"); 569 saved_cdev_pager_ops = *(obj->un_pager.devp.ops); 570 netmap_cdev_pager_ops.cdev_pg_fault = 571 saved_cdev_pager_ops.cdev_pg_fault; 572 }; 573 obj->un_pager.devp.ops = &netmap_cdev_pager_ops; 574 *objp = obj; 575 return 0; 576 } 577 #endif /* __FreeBSD__ */ 578 579 580 /* 581 * mmap(2) support for the "netmap" device. 582 * 583 * Expose all the memory previously allocated by our custom memory 584 * allocator: this way the user has only to issue a single mmap(2), and 585 * can work on all the data structures flawlessly. 586 * 587 * Return 0 on success, -1 otherwise. 588 */ 589 590 #ifdef __FreeBSD__ 591 static int 592 netmap_mmap(__unused struct cdev *dev, 593 #if __FreeBSD_version < 900000 594 vm_offset_t offset, vm_paddr_t *paddr, int nprot 595 #else 596 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 597 __unused vm_memattr_t *memattr 598 #endif 599 ) 600 { 601 int error = 0; 602 struct netmap_priv_d *priv; 603 604 if (nprot & PROT_EXEC) 605 return (-1); // XXX -1 or EINVAL ? 606 607 error = devfs_get_cdevpriv((void **)&priv); 608 if (error == EBADF) { /* called on fault, memory is initialized */ 609 ND(5, "handling fault at ofs 0x%x", offset); 610 error = 0; 611 } else if (error == 0) /* make sure memory is set */ 612 error = netmap_get_memory(priv); 613 if (error) 614 return (error); 615 616 ND("request for offset 0x%x", (uint32_t)offset); 617 *paddr = netmap_ofstophys(offset); 618 619 return (*paddr ? 0 : ENOMEM); 620 } 621 622 static int 623 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 624 { 625 if (netmap_verbose) 626 D("dev %p fflag 0x%x devtype %d td %p", 627 dev, fflag, devtype, td); 628 return 0; 629 } 630 631 static int 632 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 633 { 634 struct netmap_priv_d *priv; 635 int error; 636 637 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 638 M_NOWAIT | M_ZERO); 639 if (priv == NULL) 640 return ENOMEM; 641 642 error = devfs_set_cdevpriv(priv, netmap_dtor); 643 if (error) 644 return error; 645 646 return 0; 647 } 648 #endif /* __FreeBSD__ */ 649 650 651 /* 652 * Handlers for synchronization of the queues from/to the host. 653 * Netmap has two operating modes: 654 * - in the default mode, the rings connected to the host stack are 655 * just another ring pair managed by userspace; 656 * - in transparent mode (XXX to be defined) incoming packets 657 * (from the host or the NIC) are marked as NS_FORWARD upon 658 * arrival, and the user application has a chance to reset the 659 * flag for packets that should be dropped. 660 * On the RXSYNC or poll(), packets in RX rings between 661 * kring->nr_kcur and ring->cur with NS_FORWARD still set are moved 662 * to the other side. 663 * The transfer NIC --> host is relatively easy, just encapsulate 664 * into mbufs and we are done. The host --> NIC side is slightly 665 * harder because there might not be room in the tx ring so it 666 * might take a while before releasing the buffer. 667 */ 668 669 /* 670 * pass a chain of buffers to the host stack as coming from 'dst' 671 */ 672 static void 673 netmap_send_up(struct ifnet *dst, struct mbuf *head) 674 { 675 struct mbuf *m; 676 677 /* send packets up, outside the lock */ 678 while ((m = head) != NULL) { 679 head = head->m_nextpkt; 680 m->m_nextpkt = NULL; 681 if (netmap_verbose & NM_VERB_HOST) 682 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 683 NM_SEND_UP(dst, m); 684 } 685 } 686 687 struct mbq { 688 struct mbuf *head; 689 struct mbuf *tail; 690 int count; 691 }; 692 693 /* 694 * put a copy of the buffers marked NS_FORWARD into an mbuf chain. 695 * Run from hwcur to cur - reserved 696 */ 697 static void 698 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 699 { 700 /* Take packets from hwcur to cur-reserved and pass them up. 701 * In case of no buffers we give up. At the end of the loop, 702 * the queue is drained in all cases. 703 * XXX handle reserved 704 */ 705 int k = kring->ring->cur - kring->ring->reserved; 706 u_int n, lim = kring->nkr_num_slots - 1; 707 struct mbuf *m, *tail = q->tail; 708 709 if (k < 0) 710 k = k + kring->nkr_num_slots; 711 for (n = kring->nr_hwcur; n != k;) { 712 struct netmap_slot *slot = &kring->ring->slot[n]; 713 714 n = (n == lim) ? 0 : n + 1; 715 if ((slot->flags & NS_FORWARD) == 0 && !force) 716 continue; 717 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 718 D("bad pkt at %d len %d", n, slot->len); 719 continue; 720 } 721 slot->flags &= ~NS_FORWARD; // XXX needed ? 722 m = m_devget(NMB(slot), slot->len, 0, kring->na->ifp, NULL); 723 724 if (m == NULL) 725 break; 726 if (tail) 727 tail->m_nextpkt = m; 728 else 729 q->head = m; 730 tail = m; 731 q->count++; 732 m->m_nextpkt = NULL; 733 } 734 q->tail = tail; 735 } 736 737 /* 738 * called under main lock to send packets from the host to the NIC 739 * The host ring has packets from nr_hwcur to (cur - reserved) 740 * to be sent down. We scan the tx rings, which have just been 741 * flushed so nr_hwcur == cur. Pushing packets down means 742 * increment cur and decrement avail. 743 * XXX to be verified 744 */ 745 static void 746 netmap_sw_to_nic(struct netmap_adapter *na) 747 { 748 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 749 struct netmap_kring *k1 = &na->tx_rings[0]; 750 int i, howmany, src_lim, dst_lim; 751 752 howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */ 753 754 src_lim = kring->nkr_num_slots; 755 for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) { 756 ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail); 757 dst_lim = k1->nkr_num_slots; 758 while (howmany > 0 && k1->ring->avail > 0) { 759 struct netmap_slot *src, *dst, tmp; 760 src = &kring->ring->slot[kring->nr_hwcur]; 761 dst = &k1->ring->slot[k1->ring->cur]; 762 tmp = *src; 763 src->buf_idx = dst->buf_idx; 764 src->flags = NS_BUF_CHANGED; 765 766 dst->buf_idx = tmp.buf_idx; 767 dst->len = tmp.len; 768 dst->flags = NS_BUF_CHANGED; 769 ND("out len %d buf %d from %d to %d", 770 dst->len, dst->buf_idx, 771 kring->nr_hwcur, k1->ring->cur); 772 773 if (++kring->nr_hwcur >= src_lim) 774 kring->nr_hwcur = 0; 775 howmany--; 776 kring->nr_hwavail--; 777 if (++k1->ring->cur >= dst_lim) 778 k1->ring->cur = 0; 779 k1->ring->avail--; 780 } 781 kring->ring->cur = kring->nr_hwcur; // XXX 782 k1++; 783 } 784 } 785 786 /* 787 * netmap_sync_to_host() passes packets up. We are called from a 788 * system call in user process context, and the only contention 789 * can be among multiple user threads erroneously calling 790 * this routine concurrently. 791 */ 792 static void 793 netmap_sync_to_host(struct netmap_adapter *na) 794 { 795 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 796 struct netmap_ring *ring = kring->ring; 797 u_int k, lim = kring->nkr_num_slots - 1; 798 struct mbq q = { NULL, NULL }; 799 800 k = ring->cur; 801 if (k > lim) { 802 netmap_ring_reinit(kring); 803 return; 804 } 805 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 806 807 /* Take packets from hwcur to cur and pass them up. 808 * In case of no buffers we give up. At the end of the loop, 809 * the queue is drained in all cases. 810 */ 811 netmap_grab_packets(kring, &q, 1); 812 kring->nr_hwcur = k; 813 kring->nr_hwavail = ring->avail = lim; 814 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 815 816 netmap_send_up(na->ifp, q.head); 817 } 818 819 /* 820 * rxsync backend for packets coming from the host stack. 821 * They have been put in the queue by netmap_start() so we 822 * need to protect access to the kring using a lock. 823 * 824 * This routine also does the selrecord if called from the poll handler 825 * (we know because td != NULL). 826 * 827 * NOTE: on linux, selrecord() is defined as a macro and uses pwait 828 * as an additional hidden argument. 829 */ 830 static void 831 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 832 { 833 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 834 struct netmap_ring *ring = kring->ring; 835 u_int j, n, lim = kring->nkr_num_slots; 836 u_int k = ring->cur, resvd = ring->reserved; 837 838 (void)pwait; /* disable unused warnings */ 839 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 840 if (k >= lim) { 841 netmap_ring_reinit(kring); 842 return; 843 } 844 /* new packets are already set in nr_hwavail */ 845 /* skip past packets that userspace has released */ 846 j = kring->nr_hwcur; 847 if (resvd > 0) { 848 if (resvd + ring->avail >= lim + 1) { 849 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 850 ring->reserved = resvd = 0; // XXX panic... 851 } 852 k = (k >= resvd) ? k - resvd : k + lim - resvd; 853 } 854 if (j != k) { 855 n = k >= j ? k - j : k + lim - j; 856 kring->nr_hwavail -= n; 857 kring->nr_hwcur = k; 858 } 859 k = ring->avail = kring->nr_hwavail - resvd; 860 if (k == 0 && td) 861 selrecord(td, &kring->si); 862 if (k && (netmap_verbose & NM_VERB_HOST)) 863 D("%d pkts from stack", k); 864 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 865 } 866 867 868 /* 869 * get a refcounted reference to an interface. 870 * Return ENXIO if the interface does not exist, EINVAL if netmap 871 * is not supported by the interface. 872 * If successful, hold a reference. 873 */ 874 static int 875 get_ifp(const char *name, struct ifnet **ifp) 876 { 877 #ifdef NM_BRIDGE 878 struct ifnet *iter = NULL; 879 880 do { 881 struct nm_bridge *b; 882 int i, l, cand = -1; 883 884 if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) 885 break; 886 b = nm_find_bridge(name); 887 if (b == NULL) { 888 D("no bridges available for '%s'", name); 889 return (ENXIO); 890 } 891 /* XXX locking */ 892 BDG_LOCK(b); 893 /* lookup in the local list of ports */ 894 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 895 iter = b->bdg_ports[i]; 896 if (iter == NULL) { 897 if (cand == -1) 898 cand = i; /* potential insert point */ 899 continue; 900 } 901 if (!strcmp(iter->if_xname, name)) { 902 ADD_BDG_REF(iter); 903 ND("found existing interface"); 904 BDG_UNLOCK(b); 905 break; 906 } 907 } 908 if (i < NM_BDG_MAXPORTS) /* already unlocked */ 909 break; 910 if (cand == -1) { 911 D("bridge full, cannot create new port"); 912 no_port: 913 BDG_UNLOCK(b); 914 *ifp = NULL; 915 return EINVAL; 916 } 917 ND("create new bridge port %s", name); 918 /* space for forwarding list after the ifnet */ 919 l = sizeof(*iter) + 920 sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ; 921 iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO); 922 if (!iter) 923 goto no_port; 924 strcpy(iter->if_xname, name); 925 bdg_netmap_attach(iter); 926 b->bdg_ports[cand] = iter; 927 iter->if_bridge = b; 928 ADD_BDG_REF(iter); 929 BDG_UNLOCK(b); 930 ND("attaching virtual bridge %p", b); 931 } while (0); 932 *ifp = iter; 933 if (! *ifp) 934 #endif /* NM_BRIDGE */ 935 *ifp = ifunit_ref(name); 936 if (*ifp == NULL) 937 return (ENXIO); 938 /* can do this if the capability exists and if_pspare[0] 939 * points to the netmap descriptor. 940 */ 941 if (NETMAP_CAPABLE(*ifp)) 942 return 0; /* valid pointer, we hold the refcount */ 943 nm_if_rele(*ifp); 944 return EINVAL; // not NETMAP capable 945 } 946 947 948 /* 949 * Error routine called when txsync/rxsync detects an error. 950 * Can't do much more than resetting cur = hwcur, avail = hwavail. 951 * Return 1 on reinit. 952 * 953 * This routine is only called by the upper half of the kernel. 954 * It only reads hwcur (which is changed only by the upper half, too) 955 * and hwavail (which may be changed by the lower half, but only on 956 * a tx ring and only to increase it, so any error will be recovered 957 * on the next call). For the above, we don't strictly need to call 958 * it under lock. 959 */ 960 int 961 netmap_ring_reinit(struct netmap_kring *kring) 962 { 963 struct netmap_ring *ring = kring->ring; 964 u_int i, lim = kring->nkr_num_slots - 1; 965 int errors = 0; 966 967 RD(10, "called for %s", kring->na->ifp->if_xname); 968 if (ring->cur > lim) 969 errors++; 970 for (i = 0; i <= lim; i++) { 971 u_int idx = ring->slot[i].buf_idx; 972 u_int len = ring->slot[i].len; 973 if (idx < 2 || idx >= netmap_total_buffers) { 974 if (!errors++) 975 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 976 ring->slot[i].buf_idx = 0; 977 ring->slot[i].len = 0; 978 } else if (len > NETMAP_BUF_SIZE) { 979 ring->slot[i].len = 0; 980 if (!errors++) 981 D("bad len %d at slot %d idx %d", 982 len, i, idx); 983 } 984 } 985 if (errors) { 986 int pos = kring - kring->na->tx_rings; 987 int n = kring->na->num_tx_rings + 1; 988 989 RD(10, "total %d errors", errors); 990 errors++; 991 RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 992 kring->na->ifp->if_xname, 993 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 994 ring->cur, kring->nr_hwcur, 995 ring->avail, kring->nr_hwavail); 996 ring->cur = kring->nr_hwcur; 997 ring->avail = kring->nr_hwavail; 998 } 999 return (errors ? 1 : 0); 1000 } 1001 1002 1003 /* 1004 * Set the ring ID. For devices with a single queue, a request 1005 * for all rings is the same as a single ring. 1006 */ 1007 static int 1008 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 1009 { 1010 struct ifnet *ifp = priv->np_ifp; 1011 struct netmap_adapter *na = NA(ifp); 1012 u_int i = ringid & NETMAP_RING_MASK; 1013 /* initially (np_qfirst == np_qlast) we don't want to lock */ 1014 int need_lock = (priv->np_qfirst != priv->np_qlast); 1015 int lim = na->num_rx_rings; 1016 1017 if (na->num_tx_rings > lim) 1018 lim = na->num_tx_rings; 1019 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 1020 D("invalid ring id %d", i); 1021 return (EINVAL); 1022 } 1023 if (need_lock) 1024 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1025 priv->np_ringid = ringid; 1026 if (ringid & NETMAP_SW_RING) { 1027 priv->np_qfirst = NETMAP_SW_RING; 1028 priv->np_qlast = 0; 1029 } else if (ringid & NETMAP_HW_RING) { 1030 priv->np_qfirst = i; 1031 priv->np_qlast = i + 1; 1032 } else { 1033 priv->np_qfirst = 0; 1034 priv->np_qlast = NETMAP_HW_RING ; 1035 } 1036 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 1037 if (need_lock) 1038 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1039 if (netmap_verbose) { 1040 if (ringid & NETMAP_SW_RING) 1041 D("ringid %s set to SW RING", ifp->if_xname); 1042 else if (ringid & NETMAP_HW_RING) 1043 D("ringid %s set to HW RING %d", ifp->if_xname, 1044 priv->np_qfirst); 1045 else 1046 D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); 1047 } 1048 return 0; 1049 } 1050 1051 /* 1052 * ioctl(2) support for the "netmap" device. 1053 * 1054 * Following a list of accepted commands: 1055 * - NIOCGINFO 1056 * - SIOCGIFADDR just for convenience 1057 * - NIOCREGIF 1058 * - NIOCUNREGIF 1059 * - NIOCTXSYNC 1060 * - NIOCRXSYNC 1061 * 1062 * Return 0 on success, errno otherwise. 1063 */ 1064 static int 1065 netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 1066 int fflag, struct thread *td) 1067 { 1068 struct netmap_priv_d *priv = NULL; 1069 struct ifnet *ifp; 1070 struct nmreq *nmr = (struct nmreq *) data; 1071 struct netmap_adapter *na; 1072 int error; 1073 u_int i, lim; 1074 struct netmap_if *nifp; 1075 1076 (void)dev; /* UNUSED */ 1077 (void)fflag; /* UNUSED */ 1078 #ifdef linux 1079 #define devfs_get_cdevpriv(pp) \ 1080 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 1081 (*pp ? 0 : ENOENT); }) 1082 1083 /* devfs_set_cdevpriv cannot fail on linux */ 1084 #define devfs_set_cdevpriv(p, fn) \ 1085 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 1086 1087 1088 #define devfs_clear_cdevpriv() do { \ 1089 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 1090 } while (0) 1091 #endif /* linux */ 1092 1093 CURVNET_SET(TD_TO_VNET(td)); 1094 1095 error = devfs_get_cdevpriv((void **)&priv); 1096 if (error) { 1097 CURVNET_RESTORE(); 1098 /* XXX ENOENT should be impossible, since the priv 1099 * is now created in the open */ 1100 return (error == ENOENT ? ENXIO : error); 1101 } 1102 1103 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 1104 switch (cmd) { 1105 case NIOCGINFO: /* return capabilities etc */ 1106 if (nmr->nr_version != NETMAP_API) { 1107 D("API mismatch got %d have %d", 1108 nmr->nr_version, NETMAP_API); 1109 nmr->nr_version = NETMAP_API; 1110 error = EINVAL; 1111 break; 1112 } 1113 /* update configuration */ 1114 error = netmap_get_memory(priv); 1115 ND("get_memory returned %d", error); 1116 if (error) 1117 break; 1118 /* memsize is always valid */ 1119 nmr->nr_memsize = nm_mem.nm_totalsize; 1120 nmr->nr_offset = 0; 1121 nmr->nr_rx_rings = nmr->nr_tx_rings = 0; 1122 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 1123 if (nmr->nr_name[0] == '\0') /* just get memory info */ 1124 break; 1125 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 1126 if (error) 1127 break; 1128 na = NA(ifp); /* retrieve netmap_adapter */ 1129 netmap_update_config(na); 1130 nmr->nr_rx_rings = na->num_rx_rings; 1131 nmr->nr_tx_rings = na->num_tx_rings; 1132 nmr->nr_rx_slots = na->num_rx_desc; 1133 nmr->nr_tx_slots = na->num_tx_desc; 1134 nm_if_rele(ifp); /* return the refcount */ 1135 break; 1136 1137 case NIOCREGIF: 1138 if (nmr->nr_version != NETMAP_API) { 1139 nmr->nr_version = NETMAP_API; 1140 error = EINVAL; 1141 break; 1142 } 1143 /* ensure allocators are ready */ 1144 error = netmap_get_memory(priv); 1145 ND("get_memory returned %d", error); 1146 if (error) 1147 break; 1148 1149 /* protect access to priv from concurrent NIOCREGIF */ 1150 NMA_LOCK(); 1151 if (priv->np_ifp != NULL) { /* thread already registered */ 1152 error = netmap_set_ringid(priv, nmr->nr_ringid); 1153 NMA_UNLOCK(); 1154 break; 1155 } 1156 /* find the interface and a reference */ 1157 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1158 if (error) { 1159 NMA_UNLOCK(); 1160 break; 1161 } 1162 na = NA(ifp); /* retrieve netmap adapter */ 1163 1164 for (i = 10; i > 0; i--) { 1165 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 1166 if (!NETMAP_DELETING(na)) 1167 break; 1168 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1169 tsleep(na, 0, "NIOCREGIF", hz/10); 1170 } 1171 if (i == 0) { 1172 D("too many NIOCREGIF attempts, give up"); 1173 error = EINVAL; 1174 nm_if_rele(ifp); /* return the refcount */ 1175 NMA_UNLOCK(); 1176 break; 1177 } 1178 1179 /* ring configuration may have changed, fetch from the card */ 1180 netmap_update_config(na); 1181 priv->np_ifp = ifp; /* store the reference */ 1182 error = netmap_set_ringid(priv, nmr->nr_ringid); 1183 if (error) 1184 goto error; 1185 nifp = netmap_if_new(nmr->nr_name, na); 1186 if (nifp == NULL) { /* allocation failed */ 1187 error = ENOMEM; 1188 } else if (ifp->if_capenable & IFCAP_NETMAP) { 1189 /* was already set */ 1190 } else { 1191 /* Otherwise set the card in netmap mode 1192 * and make it use the shared buffers. 1193 */ 1194 for (i = 0 ; i < na->num_tx_rings + 1; i++) 1195 mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF); 1196 for (i = 0 ; i < na->num_rx_rings + 1; i++) { 1197 mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF); 1198 } 1199 error = na->nm_register(ifp, 1); /* mode on */ 1200 if (error) { 1201 netmap_dtor_locked(priv); 1202 netmap_if_free(nifp); 1203 } 1204 } 1205 1206 if (error) { /* reg. failed, release priv and ref */ 1207 error: 1208 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1209 nm_if_rele(ifp); /* return the refcount */ 1210 priv->np_ifp = NULL; 1211 priv->np_nifp = NULL; 1212 NMA_UNLOCK(); 1213 break; 1214 } 1215 1216 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1217 1218 /* the following assignment is a commitment. 1219 * Readers (i.e., poll and *SYNC) check for 1220 * np_nifp != NULL without locking 1221 */ 1222 wmb(); /* make sure previous writes are visible to all CPUs */ 1223 priv->np_nifp = nifp; 1224 NMA_UNLOCK(); 1225 1226 /* return the offset of the netmap_if object */ 1227 nmr->nr_rx_rings = na->num_rx_rings; 1228 nmr->nr_tx_rings = na->num_tx_rings; 1229 nmr->nr_rx_slots = na->num_rx_desc; 1230 nmr->nr_tx_slots = na->num_tx_desc; 1231 nmr->nr_memsize = nm_mem.nm_totalsize; 1232 nmr->nr_offset = netmap_if_offset(nifp); 1233 break; 1234 1235 case NIOCUNREGIF: 1236 // XXX we have no data here ? 1237 D("deprecated, data is %p", nmr); 1238 error = EINVAL; 1239 break; 1240 1241 case NIOCTXSYNC: 1242 case NIOCRXSYNC: 1243 nifp = priv->np_nifp; 1244 1245 if (nifp == NULL) { 1246 error = ENXIO; 1247 break; 1248 } 1249 rmb(); /* make sure following reads are not from cache */ 1250 1251 1252 ifp = priv->np_ifp; /* we have a reference */ 1253 1254 if (ifp == NULL) { 1255 D("Internal error: nifp != NULL && ifp == NULL"); 1256 error = ENXIO; 1257 break; 1258 } 1259 1260 na = NA(ifp); /* retrieve netmap adapter */ 1261 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 1262 if (cmd == NIOCTXSYNC) 1263 netmap_sync_to_host(na); 1264 else 1265 netmap_sync_from_host(na, NULL, NULL); 1266 break; 1267 } 1268 /* find the last ring to scan */ 1269 lim = priv->np_qlast; 1270 if (lim == NETMAP_HW_RING) 1271 lim = (cmd == NIOCTXSYNC) ? 1272 na->num_tx_rings : na->num_rx_rings; 1273 1274 for (i = priv->np_qfirst; i < lim; i++) { 1275 if (cmd == NIOCTXSYNC) { 1276 struct netmap_kring *kring = &na->tx_rings[i]; 1277 if (netmap_verbose & NM_VERB_TXSYNC) 1278 D("pre txsync ring %d cur %d hwcur %d", 1279 i, kring->ring->cur, 1280 kring->nr_hwcur); 1281 na->nm_txsync(ifp, i, 1 /* do lock */); 1282 if (netmap_verbose & NM_VERB_TXSYNC) 1283 D("post txsync ring %d cur %d hwcur %d", 1284 i, kring->ring->cur, 1285 kring->nr_hwcur); 1286 } else { 1287 na->nm_rxsync(ifp, i, 1 /* do lock */); 1288 microtime(&na->rx_rings[i].ring->ts); 1289 } 1290 } 1291 1292 break; 1293 1294 #ifdef __FreeBSD__ 1295 case BIOCIMMEDIATE: 1296 case BIOCGHDRCMPLT: 1297 case BIOCSHDRCMPLT: 1298 case BIOCSSEESENT: 1299 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1300 break; 1301 1302 default: /* allow device-specific ioctls */ 1303 { 1304 struct socket so; 1305 bzero(&so, sizeof(so)); 1306 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1307 if (error) 1308 break; 1309 so.so_vnet = ifp->if_vnet; 1310 // so->so_proto not null. 1311 error = ifioctl(&so, cmd, data, td); 1312 nm_if_rele(ifp); 1313 break; 1314 } 1315 1316 #else /* linux */ 1317 default: 1318 error = EOPNOTSUPP; 1319 #endif /* linux */ 1320 } 1321 1322 CURVNET_RESTORE(); 1323 return (error); 1324 } 1325 1326 1327 /* 1328 * select(2) and poll(2) handlers for the "netmap" device. 1329 * 1330 * Can be called for one or more queues. 1331 * Return true the event mask corresponding to ready events. 1332 * If there are no ready events, do a selrecord on either individual 1333 * selfd or on the global one. 1334 * Device-dependent parts (locking and sync of tx/rx rings) 1335 * are done through callbacks. 1336 * 1337 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1338 * The first one is remapped to pwait as selrecord() uses the name as an 1339 * hidden argument. 1340 */ 1341 static int 1342 netmap_poll(struct cdev *dev, int events, struct thread *td) 1343 { 1344 struct netmap_priv_d *priv = NULL; 1345 struct netmap_adapter *na; 1346 struct ifnet *ifp; 1347 struct netmap_kring *kring; 1348 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1349 u_int lim_tx, lim_rx, host_forwarded = 0; 1350 struct mbq q = { NULL, NULL, 0 }; 1351 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1352 void *pwait = dev; /* linux compatibility */ 1353 1354 (void)pwait; 1355 1356 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1357 return POLLERR; 1358 1359 if (priv->np_nifp == NULL) { 1360 D("No if registered"); 1361 return POLLERR; 1362 } 1363 rmb(); /* make sure following reads are not from cache */ 1364 1365 ifp = priv->np_ifp; 1366 // XXX check for deleting() ? 1367 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1368 return POLLERR; 1369 1370 if (netmap_verbose & 0x8000) 1371 D("device %s events 0x%x", ifp->if_xname, events); 1372 want_tx = events & (POLLOUT | POLLWRNORM); 1373 want_rx = events & (POLLIN | POLLRDNORM); 1374 1375 na = NA(ifp); /* retrieve netmap adapter */ 1376 1377 lim_tx = na->num_tx_rings; 1378 lim_rx = na->num_rx_rings; 1379 /* how many queues we are scanning */ 1380 if (priv->np_qfirst == NETMAP_SW_RING) { 1381 if (priv->np_txpoll || want_tx) { 1382 /* push any packets up, then we are always ready */ 1383 kring = &na->tx_rings[lim_tx]; 1384 netmap_sync_to_host(na); 1385 revents |= want_tx; 1386 } 1387 if (want_rx) { 1388 kring = &na->rx_rings[lim_rx]; 1389 if (kring->ring->avail == 0) 1390 netmap_sync_from_host(na, td, dev); 1391 if (kring->ring->avail > 0) { 1392 revents |= want_rx; 1393 } 1394 } 1395 return (revents); 1396 } 1397 1398 /* if we are in transparent mode, check also the host rx ring */ 1399 kring = &na->rx_rings[lim_rx]; 1400 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 1401 && want_rx 1402 && (netmap_fwd || kring->ring->flags & NR_FORWARD) ) { 1403 if (kring->ring->avail == 0) 1404 netmap_sync_from_host(na, td, dev); 1405 if (kring->ring->avail > 0) 1406 revents |= want_rx; 1407 } 1408 1409 /* 1410 * check_all is set if the card has more than one queue and 1411 * the client is polling all of them. If true, we sleep on 1412 * the "global" selfd, otherwise we sleep on individual selfd 1413 * (we can only sleep on one of them per direction). 1414 * The interrupt routine in the driver should always wake on 1415 * the individual selfd, and also on the global one if the card 1416 * has more than one ring. 1417 * 1418 * If the card has only one lock, we just use that. 1419 * If the card has separate ring locks, we just use those 1420 * unless we are doing check_all, in which case the whole 1421 * loop is wrapped by the global lock. 1422 * We acquire locks only when necessary: if poll is called 1423 * when buffers are available, we can just return without locks. 1424 * 1425 * rxsync() is only called if we run out of buffers on a POLLIN. 1426 * txsync() is called if we run out of buffers on POLLOUT, or 1427 * there are pending packets to send. The latter can be disabled 1428 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1429 */ 1430 check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); 1431 1432 /* 1433 * core_lock indicates what to do with the core lock. 1434 * The core lock is used when either the card has no individual 1435 * locks, or it has individual locks but we are cheking all 1436 * rings so we need the core lock to avoid missing wakeup events. 1437 * 1438 * It has three possible states: 1439 * NO_CL we don't need to use the core lock, e.g. 1440 * because we are protected by individual locks. 1441 * NEED_CL we need the core lock. In this case, when we 1442 * call the lock routine, move to LOCKED_CL 1443 * to remember to release the lock once done. 1444 * LOCKED_CL core lock is set, so we need to release it. 1445 */ 1446 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1447 #ifdef NM_BRIDGE 1448 /* the bridge uses separate locks */ 1449 if (na->nm_register == bdg_netmap_reg) { 1450 ND("not using core lock for %s", ifp->if_xname); 1451 core_lock = NO_CL; 1452 } 1453 #endif /* NM_BRIDGE */ 1454 if (priv->np_qlast != NETMAP_HW_RING) { 1455 lim_tx = lim_rx = priv->np_qlast; 1456 } 1457 1458 /* 1459 * We start with a lock free round which is good if we have 1460 * data available. If this fails, then lock and call the sync 1461 * routines. 1462 */ 1463 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 1464 kring = &na->rx_rings[i]; 1465 if (kring->ring->avail > 0) { 1466 revents |= want_rx; 1467 want_rx = 0; /* also breaks the loop */ 1468 } 1469 } 1470 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 1471 kring = &na->tx_rings[i]; 1472 if (kring->ring->avail > 0) { 1473 revents |= want_tx; 1474 want_tx = 0; /* also breaks the loop */ 1475 } 1476 } 1477 1478 /* 1479 * If we to push packets out (priv->np_txpoll) or want_tx is 1480 * still set, we do need to run the txsync calls (on all rings, 1481 * to avoid that the tx rings stall). 1482 */ 1483 if (priv->np_txpoll || want_tx) { 1484 flush_tx: 1485 for (i = priv->np_qfirst; i < lim_tx; i++) { 1486 kring = &na->tx_rings[i]; 1487 /* 1488 * Skip the current ring if want_tx == 0 1489 * (we have already done a successful sync on 1490 * a previous ring) AND kring->cur == kring->hwcur 1491 * (there are no pending transmissions for this ring). 1492 */ 1493 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1494 continue; 1495 if (core_lock == NEED_CL) { 1496 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1497 core_lock = LOCKED_CL; 1498 } 1499 if (na->separate_locks) 1500 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 1501 if (netmap_verbose & NM_VERB_TXSYNC) 1502 D("send %d on %s %d", 1503 kring->ring->cur, 1504 ifp->if_xname, i); 1505 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 1506 revents |= POLLERR; 1507 1508 /* Check avail/call selrecord only if called with POLLOUT */ 1509 if (want_tx) { 1510 if (kring->ring->avail > 0) { 1511 /* stop at the first ring. We don't risk 1512 * starvation. 1513 */ 1514 revents |= want_tx; 1515 want_tx = 0; 1516 } else if (!check_all) 1517 selrecord(td, &kring->si); 1518 } 1519 if (na->separate_locks) 1520 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 1521 } 1522 } 1523 1524 /* 1525 * now if want_rx is still set we need to lock and rxsync. 1526 * Do it on all rings because otherwise we starve. 1527 */ 1528 if (want_rx) { 1529 for (i = priv->np_qfirst; i < lim_rx; i++) { 1530 kring = &na->rx_rings[i]; 1531 if (core_lock == NEED_CL) { 1532 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1533 core_lock = LOCKED_CL; 1534 } 1535 if (na->separate_locks) 1536 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 1537 if (netmap_fwd ||kring->ring->flags & NR_FORWARD) { 1538 ND(10, "forwarding some buffers up %d to %d", 1539 kring->nr_hwcur, kring->ring->cur); 1540 netmap_grab_packets(kring, &q, netmap_fwd); 1541 } 1542 1543 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 1544 revents |= POLLERR; 1545 if (netmap_no_timestamp == 0 || 1546 kring->ring->flags & NR_TIMESTAMP) { 1547 microtime(&kring->ring->ts); 1548 } 1549 1550 if (kring->ring->avail > 0) 1551 revents |= want_rx; 1552 else if (!check_all) 1553 selrecord(td, &kring->si); 1554 if (na->separate_locks) 1555 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 1556 } 1557 } 1558 if (check_all && revents == 0) { /* signal on the global queue */ 1559 if (want_tx) 1560 selrecord(td, &na->tx_si); 1561 if (want_rx) 1562 selrecord(td, &na->rx_si); 1563 } 1564 1565 /* forward host to the netmap ring */ 1566 kring = &na->rx_rings[lim_rx]; 1567 if (kring->nr_hwavail > 0) 1568 ND("host rx %d has %d packets", lim_rx, kring->nr_hwavail); 1569 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 1570 && (netmap_fwd || kring->ring->flags & NR_FORWARD) 1571 && kring->nr_hwavail > 0 && !host_forwarded) { 1572 if (core_lock == NEED_CL) { 1573 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1574 core_lock = LOCKED_CL; 1575 } 1576 netmap_sw_to_nic(na); 1577 host_forwarded = 1; /* prevent another pass */ 1578 want_rx = 0; 1579 goto flush_tx; 1580 } 1581 1582 if (core_lock == LOCKED_CL) 1583 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1584 if (q.head) 1585 netmap_send_up(na->ifp, q.head); 1586 1587 return (revents); 1588 } 1589 1590 /*------- driver support routines ------*/ 1591 1592 /* 1593 * default lock wrapper. 1594 */ 1595 static void 1596 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 1597 { 1598 struct netmap_adapter *na = NA(dev); 1599 1600 switch (what) { 1601 #ifdef linux /* some system do not need lock on register */ 1602 case NETMAP_REG_LOCK: 1603 case NETMAP_REG_UNLOCK: 1604 break; 1605 #endif /* linux */ 1606 1607 case NETMAP_CORE_LOCK: 1608 mtx_lock(&na->core_lock); 1609 break; 1610 1611 case NETMAP_CORE_UNLOCK: 1612 mtx_unlock(&na->core_lock); 1613 break; 1614 1615 case NETMAP_TX_LOCK: 1616 mtx_lock(&na->tx_rings[queueid].q_lock); 1617 break; 1618 1619 case NETMAP_TX_UNLOCK: 1620 mtx_unlock(&na->tx_rings[queueid].q_lock); 1621 break; 1622 1623 case NETMAP_RX_LOCK: 1624 mtx_lock(&na->rx_rings[queueid].q_lock); 1625 break; 1626 1627 case NETMAP_RX_UNLOCK: 1628 mtx_unlock(&na->rx_rings[queueid].q_lock); 1629 break; 1630 } 1631 } 1632 1633 1634 /* 1635 * Initialize a ``netmap_adapter`` object created by driver on attach. 1636 * We allocate a block of memory with room for a struct netmap_adapter 1637 * plus two sets of N+2 struct netmap_kring (where N is the number 1638 * of hardware rings): 1639 * krings 0..N-1 are for the hardware queues. 1640 * kring N is for the host stack queue 1641 * kring N+1 is only used for the selinfo for all queues. 1642 * Return 0 on success, ENOMEM otherwise. 1643 * 1644 * By default the receive and transmit adapter ring counts are both initialized 1645 * to num_queues. na->num_tx_rings can be set for cards with different tx/rx 1646 * setups. 1647 */ 1648 int 1649 netmap_attach(struct netmap_adapter *arg, int num_queues) 1650 { 1651 struct netmap_adapter *na = NULL; 1652 struct ifnet *ifp = arg ? arg->ifp : NULL; 1653 1654 if (arg == NULL || ifp == NULL) 1655 goto fail; 1656 na = malloc(sizeof(*na), M_DEVBUF, M_NOWAIT | M_ZERO); 1657 if (na == NULL) 1658 goto fail; 1659 WNA(ifp) = na; 1660 *na = *arg; /* copy everything, trust the driver to not pass junk */ 1661 NETMAP_SET_CAPABLE(ifp); 1662 if (na->num_tx_rings == 0) 1663 na->num_tx_rings = num_queues; 1664 na->num_rx_rings = num_queues; 1665 na->refcount = na->na_single = na->na_multi = 0; 1666 /* Core lock initialized here, others after netmap_if_new. */ 1667 mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF); 1668 if (na->nm_lock == NULL) { 1669 ND("using default locks for %s", ifp->if_xname); 1670 na->nm_lock = netmap_lock_wrapper; 1671 } 1672 #ifdef linux 1673 if (ifp->netdev_ops) { 1674 ND("netdev_ops %p", ifp->netdev_ops); 1675 /* prepare a clone of the netdev ops */ 1676 na->nm_ndo = *ifp->netdev_ops; 1677 } 1678 na->nm_ndo.ndo_start_xmit = linux_netmap_start; 1679 #endif 1680 D("success for %s", ifp->if_xname); 1681 return 0; 1682 1683 fail: 1684 D("fail, arg %p ifp %p na %p", arg, ifp, na); 1685 return (na ? EINVAL : ENOMEM); 1686 } 1687 1688 1689 /* 1690 * Free the allocated memory linked to the given ``netmap_adapter`` 1691 * object. 1692 */ 1693 void 1694 netmap_detach(struct ifnet *ifp) 1695 { 1696 struct netmap_adapter *na = NA(ifp); 1697 1698 if (!na) 1699 return; 1700 1701 mtx_destroy(&na->core_lock); 1702 1703 if (na->tx_rings) { /* XXX should not happen */ 1704 D("freeing leftover tx_rings"); 1705 free(na->tx_rings, M_DEVBUF); 1706 } 1707 bzero(na, sizeof(*na)); 1708 WNA(ifp) = NULL; 1709 free(na, M_DEVBUF); 1710 } 1711 1712 1713 /* 1714 * Intercept packets from the network stack and pass them 1715 * to netmap as incoming packets on the 'software' ring. 1716 * We are not locked when called. 1717 */ 1718 int 1719 netmap_start(struct ifnet *ifp, struct mbuf *m) 1720 { 1721 struct netmap_adapter *na = NA(ifp); 1722 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1723 u_int i, len = MBUF_LEN(m); 1724 u_int error = EBUSY, lim = kring->nkr_num_slots - 1; 1725 struct netmap_slot *slot; 1726 1727 if (netmap_verbose & NM_VERB_HOST) 1728 D("%s packet %d len %d from the stack", ifp->if_xname, 1729 kring->nr_hwcur + kring->nr_hwavail, len); 1730 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1731 if (kring->nr_hwavail >= lim) { 1732 if (netmap_verbose) 1733 D("stack ring %s full\n", ifp->if_xname); 1734 goto done; /* no space */ 1735 } 1736 if (len > NETMAP_BUF_SIZE) { 1737 D("%s from_host, drop packet size %d > %d", ifp->if_xname, 1738 len, NETMAP_BUF_SIZE); 1739 goto done; /* too long for us */ 1740 } 1741 1742 /* compute the insert position */ 1743 i = kring->nr_hwcur + kring->nr_hwavail; 1744 if (i > lim) 1745 i -= lim + 1; 1746 slot = &kring->ring->slot[i]; 1747 m_copydata(m, 0, len, NMB(slot)); 1748 slot->len = len; 1749 slot->flags = kring->nkr_slot_flags; 1750 kring->nr_hwavail++; 1751 if (netmap_verbose & NM_VERB_HOST) 1752 D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); 1753 selwakeuppri(&kring->si, PI_NET); 1754 error = 0; 1755 done: 1756 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1757 1758 /* release the mbuf in either cases of success or failure. As an 1759 * alternative, put the mbuf in a free list and free the list 1760 * only when really necessary. 1761 */ 1762 m_freem(m); 1763 1764 return (error); 1765 } 1766 1767 1768 /* 1769 * netmap_reset() is called by the driver routines when reinitializing 1770 * a ring. The driver is in charge of locking to protect the kring. 1771 * If netmap mode is not set just return NULL. 1772 */ 1773 struct netmap_slot * 1774 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1775 u_int new_cur) 1776 { 1777 struct netmap_kring *kring; 1778 int new_hwofs, lim; 1779 1780 if (na == NULL) 1781 return NULL; /* no netmap support here */ 1782 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1783 return NULL; /* nothing to reinitialize */ 1784 1785 if (tx == NR_TX) { 1786 if (n >= na->num_tx_rings) 1787 return NULL; 1788 kring = na->tx_rings + n; 1789 new_hwofs = kring->nr_hwcur - new_cur; 1790 } else { 1791 if (n >= na->num_rx_rings) 1792 return NULL; 1793 kring = na->rx_rings + n; 1794 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1795 } 1796 lim = kring->nkr_num_slots - 1; 1797 if (new_hwofs > lim) 1798 new_hwofs -= lim + 1; 1799 1800 /* Alwayws set the new offset value and realign the ring. */ 1801 kring->nkr_hwofs = new_hwofs; 1802 if (tx == NR_TX) 1803 kring->nr_hwavail = kring->nkr_num_slots - 1; 1804 ND(10, "new hwofs %d on %s %s[%d]", 1805 kring->nkr_hwofs, na->ifp->if_xname, 1806 tx == NR_TX ? "TX" : "RX", n); 1807 1808 #if 0 // def linux 1809 /* XXX check that the mappings are correct */ 1810 /* need ring_nr, adapter->pdev, direction */ 1811 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 1812 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1813 D("error mapping rx netmap buffer %d", i); 1814 // XXX fix error handling 1815 } 1816 1817 #endif /* linux */ 1818 /* 1819 * Wakeup on the individual and global lock 1820 * We do the wakeup here, but the ring is not yet reconfigured. 1821 * However, we are under lock so there are no races. 1822 */ 1823 selwakeuppri(&kring->si, PI_NET); 1824 selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); 1825 return kring->ring->slot; 1826 } 1827 1828 1829 /* 1830 * Default functions to handle rx/tx interrupts 1831 * we have 4 cases: 1832 * 1 ring, single lock: 1833 * lock(core); wake(i=0); unlock(core) 1834 * N rings, single lock: 1835 * lock(core); wake(i); wake(N+1) unlock(core) 1836 * 1 ring, separate locks: (i=0) 1837 * lock(i); wake(i); unlock(i) 1838 * N rings, separate locks: 1839 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 1840 * work_done is non-null on the RX path. 1841 */ 1842 int 1843 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 1844 { 1845 struct netmap_adapter *na; 1846 struct netmap_kring *r; 1847 NM_SELINFO_T *main_wq; 1848 1849 if (!(ifp->if_capenable & IFCAP_NETMAP)) 1850 return 0; 1851 ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 1852 na = NA(ifp); 1853 if (na->na_flags & NAF_SKIP_INTR) { 1854 ND("use regular interrupt"); 1855 return 0; 1856 } 1857 1858 if (work_done) { /* RX path */ 1859 if (q >= na->num_rx_rings) 1860 return 0; // regular queue 1861 r = na->rx_rings + q; 1862 r->nr_kflags |= NKR_PENDINTR; 1863 main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; 1864 } else { /* tx path */ 1865 if (q >= na->num_tx_rings) 1866 return 0; // regular queue 1867 r = na->tx_rings + q; 1868 main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; 1869 work_done = &q; /* dummy */ 1870 } 1871 if (na->separate_locks) { 1872 mtx_lock(&r->q_lock); 1873 selwakeuppri(&r->si, PI_NET); 1874 mtx_unlock(&r->q_lock); 1875 if (main_wq) { 1876 mtx_lock(&na->core_lock); 1877 selwakeuppri(main_wq, PI_NET); 1878 mtx_unlock(&na->core_lock); 1879 } 1880 } else { 1881 mtx_lock(&na->core_lock); 1882 selwakeuppri(&r->si, PI_NET); 1883 if (main_wq) 1884 selwakeuppri(main_wq, PI_NET); 1885 mtx_unlock(&na->core_lock); 1886 } 1887 *work_done = 1; /* do not fire napi again */ 1888 return 1; 1889 } 1890 1891 1892 #ifdef linux /* linux-specific routines */ 1893 1894 /* 1895 * Remap linux arguments into the FreeBSD call. 1896 * - pwait is the poll table, passed as 'dev'; 1897 * If pwait == NULL someone else already woke up before. We can report 1898 * events but they are filtered upstream. 1899 * If pwait != NULL, then pwait->key contains the list of events. 1900 * - events is computed from pwait as above. 1901 * - file is passed as 'td'; 1902 */ 1903 static u_int 1904 linux_netmap_poll(struct file * file, struct poll_table_struct *pwait) 1905 { 1906 #if LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0) 1907 int events = pwait ? pwait->key : POLLIN | POLLOUT; 1908 #else /* in 3.4.0 field 'key' was renamed to '_key' */ 1909 int events = pwait ? pwait->_key : POLLIN | POLLOUT; 1910 #endif 1911 return netmap_poll((void *)pwait, events, (void *)file); 1912 } 1913 1914 static int 1915 linux_netmap_mmap(struct file *f, struct vm_area_struct *vma) 1916 { 1917 int lut_skip, i, j; 1918 int user_skip = 0; 1919 struct lut_entry *l_entry; 1920 int error = 0; 1921 unsigned long off, tomap; 1922 /* 1923 * vma->vm_start: start of mapping user address space 1924 * vma->vm_end: end of the mapping user address space 1925 * vma->vm_pfoff: offset of first page in the device 1926 */ 1927 1928 // XXX security checks 1929 1930 error = netmap_get_memory(f->private_data); 1931 ND("get_memory returned %d", error); 1932 if (error) 1933 return -error; 1934 1935 off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */ 1936 tomap = vma->vm_end - vma->vm_start; 1937 for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */ 1938 const struct netmap_obj_pool *p = &nm_mem.pools[i]; 1939 /* 1940 * In each pool memory is allocated in clusters 1941 * of size _clustsize, each containing clustentries 1942 * entries. For each object k we already store the 1943 * vtophys mapping in lut[k] so we use that, scanning 1944 * the lut[] array in steps of clustentries, 1945 * and we map each cluster (not individual pages, 1946 * it would be overkill). 1947 */ 1948 1949 /* 1950 * We interpret vm_pgoff as an offset into the whole 1951 * netmap memory, as if all clusters where contiguous. 1952 */ 1953 for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) { 1954 unsigned long paddr, mapsize; 1955 if (p->_clustsize <= off) { 1956 off -= p->_clustsize; 1957 continue; 1958 } 1959 l_entry = &p->lut[lut_skip]; /* first obj in the cluster */ 1960 paddr = l_entry->paddr + off; 1961 mapsize = p->_clustsize - off; 1962 off = 0; 1963 if (mapsize > tomap) 1964 mapsize = tomap; 1965 ND("remap_pfn_range(%lx, %lx, %lx)", 1966 vma->vm_start + user_skip, 1967 paddr >> PAGE_SHIFT, mapsize); 1968 if (remap_pfn_range(vma, vma->vm_start + user_skip, 1969 paddr >> PAGE_SHIFT, mapsize, 1970 vma->vm_page_prot)) 1971 return -EAGAIN; // XXX check return value 1972 user_skip += mapsize; 1973 tomap -= mapsize; 1974 if (tomap == 0) 1975 goto done; 1976 } 1977 } 1978 done: 1979 1980 return 0; 1981 } 1982 1983 static netdev_tx_t 1984 linux_netmap_start(struct sk_buff *skb, struct net_device *dev) 1985 { 1986 netmap_start(dev, skb); 1987 return (NETDEV_TX_OK); 1988 } 1989 1990 1991 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38 1992 #define LIN_IOCTL_NAME .ioctl 1993 int 1994 linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */) 1995 #else 1996 #define LIN_IOCTL_NAME .unlocked_ioctl 1997 long 1998 linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */) 1999 #endif 2000 { 2001 int ret; 2002 struct nmreq nmr; 2003 bzero(&nmr, sizeof(nmr)); 2004 2005 if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0) 2006 return -EFAULT; 2007 ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file); 2008 if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0) 2009 return -EFAULT; 2010 return -ret; 2011 } 2012 2013 2014 static int 2015 netmap_release(struct inode *inode, struct file *file) 2016 { 2017 (void)inode; /* UNUSED */ 2018 if (file->private_data) 2019 netmap_dtor(file->private_data); 2020 return (0); 2021 } 2022 2023 static int 2024 linux_netmap_open(struct inode *inode, struct file *file) 2025 { 2026 struct netmap_priv_d *priv; 2027 (void)inode; /* UNUSED */ 2028 2029 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 2030 M_NOWAIT | M_ZERO); 2031 if (priv == NULL) 2032 return -ENOMEM; 2033 2034 file->private_data = priv; 2035 2036 return (0); 2037 } 2038 2039 static struct file_operations netmap_fops = { 2040 .open = linux_netmap_open, 2041 .mmap = linux_netmap_mmap, 2042 LIN_IOCTL_NAME = linux_netmap_ioctl, 2043 .poll = linux_netmap_poll, 2044 .release = netmap_release, 2045 }; 2046 2047 static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */ 2048 MISC_DYNAMIC_MINOR, 2049 "netmap", 2050 &netmap_fops, 2051 }; 2052 2053 static int netmap_init(void); 2054 static void netmap_fini(void); 2055 2056 /* Errors have negative values on linux */ 2057 static int linux_netmap_init(void) 2058 { 2059 return -netmap_init(); 2060 } 2061 2062 module_init(linux_netmap_init); 2063 module_exit(netmap_fini); 2064 /* export certain symbols to other modules */ 2065 EXPORT_SYMBOL(netmap_attach); // driver attach routines 2066 EXPORT_SYMBOL(netmap_detach); // driver detach routines 2067 EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error 2068 EXPORT_SYMBOL(netmap_buffer_lut); 2069 EXPORT_SYMBOL(netmap_total_buffers); // index check 2070 EXPORT_SYMBOL(netmap_buffer_base); 2071 EXPORT_SYMBOL(netmap_reset); // ring init routines 2072 EXPORT_SYMBOL(netmap_buf_size); 2073 EXPORT_SYMBOL(netmap_rx_irq); // default irq handler 2074 EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away 2075 2076 2077 MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/"); 2078 MODULE_DESCRIPTION("The netmap packet I/O framework"); 2079 MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */ 2080 2081 #else /* __FreeBSD__ */ 2082 2083 static struct cdevsw netmap_cdevsw = { 2084 .d_version = D_VERSION, 2085 .d_name = "netmap", 2086 .d_open = netmap_open, 2087 .d_mmap = netmap_mmap, 2088 .d_mmap_single = netmap_mmap_single, 2089 .d_ioctl = netmap_ioctl, 2090 .d_poll = netmap_poll, 2091 .d_close = netmap_close, 2092 }; 2093 #endif /* __FreeBSD__ */ 2094 2095 #ifdef NM_BRIDGE 2096 /* 2097 *---- support for virtual bridge ----- 2098 */ 2099 2100 /* ----- FreeBSD if_bridge hash function ------- */ 2101 2102 /* 2103 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2104 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2105 * 2106 * http://www.burtleburtle.net/bob/hash/spooky.html 2107 */ 2108 #define mix(a, b, c) \ 2109 do { \ 2110 a -= b; a -= c; a ^= (c >> 13); \ 2111 b -= c; b -= a; b ^= (a << 8); \ 2112 c -= a; c -= b; c ^= (b >> 13); \ 2113 a -= b; a -= c; a ^= (c >> 12); \ 2114 b -= c; b -= a; b ^= (a << 16); \ 2115 c -= a; c -= b; c ^= (b >> 5); \ 2116 a -= b; a -= c; a ^= (c >> 3); \ 2117 b -= c; b -= a; b ^= (a << 10); \ 2118 c -= a; c -= b; c ^= (b >> 15); \ 2119 } while (/*CONSTCOND*/0) 2120 2121 static __inline uint32_t 2122 nm_bridge_rthash(const uint8_t *addr) 2123 { 2124 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key 2125 2126 b += addr[5] << 8; 2127 b += addr[4]; 2128 a += addr[3] << 24; 2129 a += addr[2] << 16; 2130 a += addr[1] << 8; 2131 a += addr[0]; 2132 2133 mix(a, b, c); 2134 #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) 2135 return (c & BRIDGE_RTHASH_MASK); 2136 } 2137 2138 #undef mix 2139 2140 2141 static int 2142 bdg_netmap_reg(struct ifnet *ifp, int onoff) 2143 { 2144 int i, err = 0; 2145 struct nm_bridge *b = ifp->if_bridge; 2146 2147 BDG_LOCK(b); 2148 if (onoff) { 2149 /* the interface must be already in the list. 2150 * only need to mark the port as active 2151 */ 2152 ND("should attach %s to the bridge", ifp->if_xname); 2153 for (i=0; i < NM_BDG_MAXPORTS; i++) 2154 if (b->bdg_ports[i] == ifp) 2155 break; 2156 if (i == NM_BDG_MAXPORTS) { 2157 D("no more ports available"); 2158 err = EINVAL; 2159 goto done; 2160 } 2161 ND("setting %s in netmap mode", ifp->if_xname); 2162 ifp->if_capenable |= IFCAP_NETMAP; 2163 NA(ifp)->bdg_port = i; 2164 b->act_ports |= (1<<i); 2165 b->bdg_ports[i] = ifp; 2166 } else { 2167 /* should be in the list, too -- remove from the mask */ 2168 ND("removing %s from netmap mode", ifp->if_xname); 2169 ifp->if_capenable &= ~IFCAP_NETMAP; 2170 i = NA(ifp)->bdg_port; 2171 b->act_ports &= ~(1<<i); 2172 } 2173 done: 2174 BDG_UNLOCK(b); 2175 return err; 2176 } 2177 2178 2179 static int 2180 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp) 2181 { 2182 int i, ifn; 2183 uint64_t all_dst, dst; 2184 uint32_t sh, dh; 2185 uint64_t mysrc = 1 << NA(ifp)->bdg_port; 2186 uint64_t smac, dmac; 2187 struct netmap_slot *slot; 2188 struct nm_bridge *b = ifp->if_bridge; 2189 2190 ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports); 2191 /* only consider valid destinations */ 2192 all_dst = (b->act_ports & ~mysrc); 2193 /* first pass: hash and find destinations */ 2194 for (i = 0; likely(i < n); i++) { 2195 uint8_t *buf = ft[i].buf; 2196 dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; 2197 smac = le64toh(*(uint64_t *)(buf + 4)); 2198 smac >>= 16; 2199 if (unlikely(netmap_verbose)) { 2200 uint8_t *s = buf+6, *d = buf; 2201 D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x", 2202 i, 2203 ft[i].len, 2204 s[0], s[1], s[2], s[3], s[4], s[5], 2205 d[0], d[1], d[2], d[3], d[4], d[5]); 2206 } 2207 /* 2208 * The hash is somewhat expensive, there might be some 2209 * worthwhile optimizations here. 2210 */ 2211 if ((buf[6] & 1) == 0) { /* valid src */ 2212 uint8_t *s = buf+6; 2213 sh = nm_bridge_rthash(buf+6); // XXX hash of source 2214 /* update source port forwarding entry */ 2215 b->ht[sh].mac = smac; /* XXX expire ? */ 2216 b->ht[sh].ports = mysrc; 2217 if (netmap_verbose) 2218 D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", 2219 s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port); 2220 } 2221 dst = 0; 2222 if ( (buf[0] & 1) == 0) { /* unicast */ 2223 uint8_t *d = buf; 2224 dh = nm_bridge_rthash(buf); // XXX hash of dst 2225 if (b->ht[dh].mac == dmac) { /* found dst */ 2226 dst = b->ht[dh].ports; 2227 if (netmap_verbose) 2228 D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x", 2229 d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16)); 2230 } 2231 } 2232 if (dst == 0) 2233 dst = all_dst; 2234 dst &= all_dst; /* only consider valid ports */ 2235 if (unlikely(netmap_verbose)) 2236 D("pkt goes to ports 0x%x", (uint32_t)dst); 2237 ft[i].dst = dst; 2238 } 2239 2240 /* second pass, scan interfaces and forward */ 2241 all_dst = (b->act_ports & ~mysrc); 2242 for (ifn = 0; all_dst; ifn++) { 2243 struct ifnet *dst_ifp = b->bdg_ports[ifn]; 2244 struct netmap_adapter *na; 2245 struct netmap_kring *kring; 2246 struct netmap_ring *ring; 2247 int j, lim, sent, locked; 2248 2249 if (!dst_ifp) 2250 continue; 2251 ND("scan port %d %s", ifn, dst_ifp->if_xname); 2252 dst = 1 << ifn; 2253 if ((dst & all_dst) == 0) /* skip if not set */ 2254 continue; 2255 all_dst &= ~dst; /* clear current node */ 2256 na = NA(dst_ifp); 2257 2258 ring = NULL; 2259 kring = NULL; 2260 lim = sent = locked = 0; 2261 /* inside, scan slots */ 2262 for (i = 0; likely(i < n); i++) { 2263 if ((ft[i].dst & dst) == 0) 2264 continue; /* not here */ 2265 if (!locked) { 2266 kring = &na->rx_rings[0]; 2267 ring = kring->ring; 2268 lim = kring->nkr_num_slots - 1; 2269 na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0); 2270 locked = 1; 2271 } 2272 if (unlikely(kring->nr_hwavail >= lim)) { 2273 if (netmap_verbose) 2274 D("rx ring full on %s", ifp->if_xname); 2275 break; 2276 } 2277 j = kring->nr_hwcur + kring->nr_hwavail; 2278 if (j > lim) 2279 j -= kring->nkr_num_slots; 2280 slot = &ring->slot[j]; 2281 ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j); 2282 pkt_copy(ft[i].buf, NMB(slot), ft[i].len); 2283 slot->len = ft[i].len; 2284 kring->nr_hwavail++; 2285 sent++; 2286 } 2287 if (locked) { 2288 ND("sent %d on %s", sent, dst_ifp->if_xname); 2289 if (sent) 2290 selwakeuppri(&kring->si, PI_NET); 2291 na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0); 2292 } 2293 } 2294 return 0; 2295 } 2296 2297 /* 2298 * main dispatch routine 2299 */ 2300 static int 2301 bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 2302 { 2303 struct netmap_adapter *na = NA(ifp); 2304 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 2305 struct netmap_ring *ring = kring->ring; 2306 int i, j, k, lim = kring->nkr_num_slots - 1; 2307 struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1); 2308 int ft_i; /* position in the forwarding table */ 2309 2310 k = ring->cur; 2311 if (k > lim) 2312 return netmap_ring_reinit(kring); 2313 if (do_lock) 2314 na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr); 2315 2316 if (netmap_bridge <= 0) { /* testing only */ 2317 j = k; // used all 2318 goto done; 2319 } 2320 if (netmap_bridge > NM_BDG_BATCH) 2321 netmap_bridge = NM_BDG_BATCH; 2322 2323 ft_i = 0; /* start from 0 */ 2324 for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) { 2325 struct netmap_slot *slot = &ring->slot[j]; 2326 int len = ft[ft_i].len = slot->len; 2327 char *buf = ft[ft_i].buf = NMB(slot); 2328 2329 prefetch(buf); 2330 if (unlikely(len < 14)) 2331 continue; 2332 if (unlikely(++ft_i == netmap_bridge)) 2333 ft_i = nm_bdg_flush(ft, ft_i, ifp); 2334 } 2335 if (ft_i) 2336 ft_i = nm_bdg_flush(ft, ft_i, ifp); 2337 /* count how many packets we sent */ 2338 i = k - j; 2339 if (i < 0) 2340 i += kring->nkr_num_slots; 2341 kring->nr_hwavail = kring->nkr_num_slots - 1 - i; 2342 if (j != k) 2343 D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail); 2344 2345 done: 2346 kring->nr_hwcur = j; 2347 ring->avail = kring->nr_hwavail; 2348 if (do_lock) 2349 na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr); 2350 2351 if (netmap_verbose) 2352 D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock); 2353 return 0; 2354 } 2355 2356 static int 2357 bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 2358 { 2359 struct netmap_adapter *na = NA(ifp); 2360 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 2361 struct netmap_ring *ring = kring->ring; 2362 u_int j, n, lim = kring->nkr_num_slots - 1; 2363 u_int k = ring->cur, resvd = ring->reserved; 2364 2365 ND("%s ring %d lock %d avail %d", 2366 ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail); 2367 2368 if (k > lim) 2369 return netmap_ring_reinit(kring); 2370 if (do_lock) 2371 na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr); 2372 2373 /* skip past packets that userspace has released */ 2374 j = kring->nr_hwcur; /* netmap ring index */ 2375 if (resvd > 0) { 2376 if (resvd + ring->avail >= lim + 1) { 2377 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 2378 ring->reserved = resvd = 0; // XXX panic... 2379 } 2380 k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd; 2381 } 2382 2383 if (j != k) { /* userspace has released some packets. */ 2384 n = k - j; 2385 if (n < 0) 2386 n += kring->nkr_num_slots; 2387 ND("userspace releases %d packets", n); 2388 for (n = 0; likely(j != k); n++) { 2389 struct netmap_slot *slot = &ring->slot[j]; 2390 void *addr = NMB(slot); 2391 2392 if (addr == netmap_buffer_base) { /* bad buf */ 2393 if (do_lock) 2394 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2395 return netmap_ring_reinit(kring); 2396 } 2397 /* decrease refcount for buffer */ 2398 2399 slot->flags &= ~NS_BUF_CHANGED; 2400 j = unlikely(j == lim) ? 0 : j + 1; 2401 } 2402 kring->nr_hwavail -= n; 2403 kring->nr_hwcur = k; 2404 } 2405 /* tell userspace that there are new packets */ 2406 ring->avail = kring->nr_hwavail - resvd; 2407 2408 if (do_lock) 2409 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2410 return 0; 2411 } 2412 2413 static void 2414 bdg_netmap_attach(struct ifnet *ifp) 2415 { 2416 struct netmap_adapter na; 2417 2418 ND("attaching virtual bridge"); 2419 bzero(&na, sizeof(na)); 2420 2421 na.ifp = ifp; 2422 na.separate_locks = 1; 2423 na.num_tx_desc = NM_BRIDGE_RINGSIZE; 2424 na.num_rx_desc = NM_BRIDGE_RINGSIZE; 2425 na.nm_txsync = bdg_netmap_txsync; 2426 na.nm_rxsync = bdg_netmap_rxsync; 2427 na.nm_register = bdg_netmap_reg; 2428 netmap_attach(&na, 1); 2429 } 2430 2431 #endif /* NM_BRIDGE */ 2432 2433 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 2434 2435 2436 /* 2437 * Module loader. 2438 * 2439 * Create the /dev/netmap device and initialize all global 2440 * variables. 2441 * 2442 * Return 0 on success, errno on failure. 2443 */ 2444 static int 2445 netmap_init(void) 2446 { 2447 int error; 2448 2449 error = netmap_memory_init(); 2450 if (error != 0) { 2451 printf("netmap: unable to initialize the memory allocator.\n"); 2452 return (error); 2453 } 2454 printf("netmap: loaded module\n"); 2455 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 2456 "netmap"); 2457 2458 #ifdef NM_BRIDGE 2459 { 2460 int i; 2461 for (i = 0; i < NM_BRIDGES; i++) 2462 mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF); 2463 } 2464 #endif 2465 return (error); 2466 } 2467 2468 2469 /* 2470 * Module unloader. 2471 * 2472 * Free all the memory, and destroy the ``/dev/netmap`` device. 2473 */ 2474 static void 2475 netmap_fini(void) 2476 { 2477 destroy_dev(netmap_dev); 2478 netmap_memory_fini(); 2479 printf("netmap: unloaded module.\n"); 2480 } 2481 2482 2483 #ifdef __FreeBSD__ 2484 /* 2485 * Kernel entry point. 2486 * 2487 * Initialize/finalize the module and return. 2488 * 2489 * Return 0 on success, errno on failure. 2490 */ 2491 static int 2492 netmap_loader(__unused struct module *module, int event, __unused void *arg) 2493 { 2494 int error = 0; 2495 2496 switch (event) { 2497 case MOD_LOAD: 2498 error = netmap_init(); 2499 break; 2500 2501 case MOD_UNLOAD: 2502 netmap_fini(); 2503 break; 2504 2505 default: 2506 error = EOPNOTSUPP; 2507 break; 2508 } 2509 2510 return (error); 2511 } 2512 2513 2514 DEV_MODULE(netmap, netmap_loader, NULL); 2515 #endif /* __FreeBSD__ */ 2516